1
|
Muhammad A, Sun C, Shao Y. The humoral immune response of the lepidopteran model insect, silkworm Bombyx mori L., to microbial pathogens. CURRENT RESEARCH IN INSECT SCIENCE 2024; 6:100097. [PMID: 39364346 PMCID: PMC11447326 DOI: 10.1016/j.cris.2024.100097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/10/2024] [Accepted: 09/16/2024] [Indexed: 10/05/2024]
Abstract
Insects are valuable models for studying innate immunity and its role in combating infections. The silkworm Bombyx mori L., a well-studied insect model, is susceptible to a range of pathogens, including bacteria, fungi, viruses, and microsporidia. Their susceptibility makes it a suitable model for investigating host-pathogen interactions and immune responses against infections and diseases. This review focuses on the humoral immune response and the production of antimicrobial peptides (AMPs), the phenoloxidase (PO) system, and other soluble factors that constitute the primary defense of silkworms against microbial pathogens. The innate immune system of silkworms relies on pattern recognition receptors (PRRs) to recognize pathogen-associated molecular patterns (PAMPs), which then activate various immune pathways including Imd, Toll, JAK/STAT, and RNA interference (RNAi). Their activation triggers the secretion of AMPs, enzymatic defenses (lysozyme and PO), and the generation of reactive oxygen species (ROS). Collectively, these pathways work together to neutralize and eliminate pathogens, thereby contributing to the defense mechanism of silkworms. Understanding the innate immunity of silkworms can uncover conserved molecular pathways and key immune components shared between insects and vertebrates. Additionally, it can provide valuable insights for improving sericulture practices, developing strategies to control diseases affecting silk production, and providing a theoretical foundation for developing pest control measures.
Collapse
Affiliation(s)
- Abrar Muhammad
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Chao Sun
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Hangzhou, China
| | - Yongqi Shao
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, China
- Key Laboratory for Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
| |
Collapse
|
2
|
Zhang K, Man X, Hu X, Tan P, Su J, Abbas MN, Cui H. GATA binding protein 6 regulates apoptosis in silkworms through interaction with poly (ADP-ribose) polymerase. Int J Biol Macromol 2024; 256:128515. [PMID: 38040165 DOI: 10.1016/j.ijbiomac.2023.128515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/26/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023]
Abstract
The GATA family of genes plays various roles in crucial biological processes, such as development, cell differentiation, and disease progression. However, the roles of GATA in insects have not been thoroughly explored. In this study, a genome-wide characterization of the GATA gene family in the silkworm, Bombyx mori, was conducted, revealing lineage-specific expression profiles. Notably, GATA6 is ubiquitously expressed across various developmental stages and tissues, with predominant expression in the midgut, ovaries, and Malpighian tubules. Overexpression of GATA6 inhibits cell growth and promotes apoptosis, whereas, in contrast, knockdown of PARP mitigates the apoptotic effects driven by GATA6 overexpression. Co-immunoprecipitation (co-IP) has demonstrated that GATA6 can interact with Poly (ADP-ribose) polymerase (PARP), suggesting that GATA6 may induce cell apoptosis by activating the enzyme's activity. These findings reveal a dynamic and regulatory relationship between GATA6 and PARP, suggesting a potential role for GATA6 as a key regulator in apoptosis through its interaction with PARP. This research deepens the understanding of the diverse roles of the GATA family in insects, shedding light on new avenues for studies in sericulture and pest management.
Collapse
Affiliation(s)
- Kui Zhang
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400715, China.
| | - Xu Man
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400715, China
| | - Xin Hu
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400715, China
| | - Peng Tan
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400715, China
| | - Jingjing Su
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400715, China
| | - Muhammad Nadeem Abbas
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400715, China
| | - Hongjuan Cui
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400715, China.
| |
Collapse
|
3
|
Makwana P, Rahul K, Ito K, Subhadra B. Diversity of Antimicrobial Peptides in Silkworm. Life (Basel) 2023; 13:life13051161. [PMID: 37240807 DOI: 10.3390/life13051161] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/01/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
Antimicrobial resistance is a phenomenon that the present-day world is witnessing that poses a serious threat to global health. The decline in the development of novel therapeutics over the last couple of decades has exacerbated the situation further. In this scenario, the pursuit of new alternative therapeutics to commonly used antibiotics has gained predominance amongst researchers across the world. Antimicrobial peptides (AMPs) from natural sources have drawn significant interest in the recent years as promising pharmacological substitutes over the conventional antibiotics. The most notable advantage of AMPs is that microorganisms cannot develop resistance to them. Insects represent one of the potential sources of AMPs, which are synthesized as part of an innate immune defence against invading pathogens. AMPs from different insects have been extensively studied, and silkworm is one of them. Diverse classes of AMPs (including attacins, cecropins, defensins, enbocins, gloverins, lebocins and moricins) were identified from silkworm that exhibit antimicrobial property against bacteria, fungi and viruses, indicating their potential therapeutic benefits. This review briefs about the immune responses of silkworm to invading pathogens, the isolation of AMPs from silkworms, AMPs reported in silkworms and their activity against various microorganisms.
Collapse
Affiliation(s)
- Pooja Makwana
- Central Sericultural Research & Training Institute, Central Silk Board, Ministry of Textiles, Government of India, Berhampore, Murshidabad 742101, West Bengal, India
| | - Kamidi Rahul
- Central Sericultural Research & Training Institute, Central Silk Board, Ministry of Textiles, Government of India, Berhampore, Murshidabad 742101, West Bengal, India
| | - Katsuhiko Ito
- Laboratory of Sericultural Science, Department of Science of Biological Production, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi 183-8509, Tokyo, Japan
| | - Bindu Subhadra
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, New York, NY 11548, USA
| |
Collapse
|
4
|
Cationic protein 8 plays multiple roles in Galleria mellonella immunity. Sci Rep 2022; 12:11737. [PMID: 35817811 PMCID: PMC9273619 DOI: 10.1038/s41598-022-15929-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/01/2022] [Indexed: 11/08/2022] Open
Abstract
Galleria mellonella cationic protein 8 (GmCP8) is a hemolymph protein previously identified as an opsonin and an inhibitor of fungal proteases. In this work, we showed its bactericidal activity toward Pseudomonas entomophila, Pseudomonas aeruginosa, Bacillus thuringiensis, Staphylococcus aureus, and Escherichia coli and against yeast-like fungi Candida albicans. The activity against E. coli was correlated with bacterial membrane permeabilization. In turn, in the case of P. entomophila, B. thuringiensis, and C. albicans, the atomic force microscopy analysis of the microbial surface showed changes in the topography of cells and changes in their nanomechanical properties. GmCP8 also showed the inhibitory activity toward the serine protease trypsin and the metalloproteinase thermolysin. The expression of the gene encoding the GmCP8 protein did not increase either in the gut or in the fat body of G. mellonella after oral infection with P. entomophila. Similarly, the amount of GmCP8 in the hemolymph of G. mellonella did not change in immune-challenged insects. However, when GmCP8 was injected into the G. mellonella hemocel, a change in the survival curve was observed in the infected larvae. Our results shed new light on the function of GmCP8 protein in insect immunity, indicating its role in humoral defence mechanisms.
Collapse
|
5
|
Li J, Chen C, Zha X. Midgut and Head Transcriptomic Analysis of Silkworms Reveals the Physiological Effects of Artificial Diets. INSECTS 2022; 13:insects13030291. [PMID: 35323589 PMCID: PMC8948783 DOI: 10.3390/insects13030291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/06/2022] [Accepted: 03/11/2022] [Indexed: 02/04/2023]
Abstract
Silkworms, a model lepidopteran insect, have a very simple diet. Artificial diets as an alternative nutrient source for silkworms are gradually being developed. To understand the effects of various nutrients on the growth and development of silkworms, we studied the transcriptomic differences in the midgut and head tissues of male and female silkworms fed either fresh mulberry leaves or artificial diets. In the artificial diet group, compared with the control group (fed mulberry leaves), 923 and 619 differentially expressed genes (DEGs) were identified from the midgut, and 2969 and 3427 DEGs were identified from the head, in female and male silkworms. According to our analysis, the DEGs were mainly involved in the digestion and absorption of nutrients and silkworm innate immunity. These experimental results provide insights into the effects of different foods, such as artificial diets or fresh mulberry leaves, on silkworms.
Collapse
Affiliation(s)
- Juan Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; (J.L.); (C.C.)
- School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Chunbing Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; (J.L.); (C.C.)
| | - Xingfu Zha
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; (J.L.); (C.C.)
- Correspondence: ; Tel.: +86-023-68251573
| |
Collapse
|
6
|
Liu FF, Ding C, Yang LL, Li H, Rao XJ. Identification and analysis of two lebocins in the oriental armyworm Mythimna separata. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 116:103962. [PMID: 33301794 DOI: 10.1016/j.dci.2020.103962] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/04/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
The insect immune system can produce defensive molecules, such as antimicrobial peptides (AMPs), to eliminate invading pathogens. Here, we report the identification of two cDNAs (MseLeb1, MseLeb2) that encode lepidopteral lebocin preproproteins in the oriental armyworm, Mythimna separata. Their open reading frames are 483/492 bp that encode 161/164 aa peptides. MseLeb1 is mainly expressed in the fat body and epidermis, while MseLeb2 is mainly expressed in the fat body, Malpighian tube, and epidermis. They were significantly induced by Escherichia coli, Staphylococcus aureus, and Beauveria bassiana in hemocytes. The preproproteins can be processed after RXXR motifs into mature peptides. Multiple sequence alignment indicates that MseLeb1 (18-42, 121-161) are potentially active peptides. Five peptides were synthesized for analyses: 18-42, 121-161, 121-154, 121-151, 121-146. Synthetic peptides showed agglutinating activity, but no hemolytic activity. Bacterial growth assay, colony formation assay, and electron microscopy revealed that synthetic peptides can inhibit bacterial growth and disrupt bacterial cell wall. B. bassiana conidia and blastospores were lysed by synthetic peptides. These results indicate that MseLeb1 and MseLeb2 are immune responsive lebocins, and the mature peptides have antibacterial and antifungal activities.
Collapse
Affiliation(s)
- Fang-Fang Liu
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Chen Ding
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Li-Ling Yang
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Hao Li
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Xiang-Jun Rao
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
7
|
Immune mechanism in silkworm Bombyx mori L. METHODS IN MICROBIOLOGY 2021. [DOI: 10.1016/bs.mim.2021.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Antibacterial Mechanism of Silkworm Seroins. Polymers (Basel) 2020; 12:polym12122985. [PMID: 33327635 PMCID: PMC7765120 DOI: 10.3390/polym12122985] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 12/16/2022] Open
Abstract
Seroin 1 and seroin 2 are abundant in silkworm cocoon silk and show strong antibacterial activities, and thus are thought to protect cocoon silk from damage by bacteria. In this study, we characterized the expression pattern of silkworm seroin 3, and found that seroin 3 is synthesized in the female ovary and secreted into egg to play its roles. After being infected, seroin 1, 2, and 3 were significantly up-regulated in the silkworm. We synthesized the full-length protein of seroin 1, 2, and 3 and their N/C-terminal domain (seroin-N/C), and compared the antimicrobial activities in vitro. All three seroins showed higher antibacterial activity against Gram-positive bacteria than against Gram-negative bacteria. Seroin 2 showed better antibacterial effect than seroin 1 and 3, whereas seroin 1/2/3-N was better than seroin 1/2/3-C. We found that seroin 2-C has stronger peptidoglycan binding ability than seroin 2-N per the ELISA test. The binding sites of seroin 2 with bacteria were blocked by peptidoglycan, which resulted in the loss of the antibacterial activity of seroin 2. Collectively, these findings suggest that seroin 1 and 2 play antibacterial roles in cocoon silk, whereas seroin 3 functions in the eggs. The three silkworm seroins have the same antibacterial mechanism, that is, binding to bacterial peptidoglycan by the C-terminal domain and inhibiting bacterial growth by the N-terminal domain.
Collapse
|
9
|
A Toll-Spätzle Pathway in the Immune Response of Bombyx mori. INSECTS 2020; 11:insects11090586. [PMID: 32882853 PMCID: PMC7564906 DOI: 10.3390/insects11090586] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 01/12/2023]
Abstract
The Toll-Spätzle pathway is a crucial defense mechanism in insect innate immunity, it plays an important role in fighting against pathogens through the regulation of antimicrobial peptide gene expression. Although Toll and Spätzle (Spz) genes have been identified in Bombyx mori, little is known regarding the specific Spz and Toll genes members involved in innate immunity. There is also limited direct evidence of the interaction between Spz and Toll. In this study, the dual-luciferase reporter assay results showed that BmToll11 and BmToll9-1 could activate both drosomycin and diptericin promoters in S2 cells. Furthermore, BmToll11, BmToll9-1, and five BmSpzs genes were found to be significantly upregulated in B. mori infected by Escherichia coli and Staphylococcus aureus. Additionally, the yeast two-hybrid assay results confirmed that BmSpz2, but not other BmSpzs, could interact with both BmToll11 and BmToll9-1. These findings suggest that the activated BmSpz2 can bind with BmToll11 and BmToll9-1 to induce the expression of AMPs after the silkworm is infected by pathogens.
Collapse
|
10
|
Yang LL, Zhan MY, Zhuo YL, Dang XL, Li MY, Xu Y, Zhou XH, Yu XQ, Rao XJ. Characterization of the active fragments of Spodoptera litura Lebocin-1. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 103:e21626. [PMID: 31562754 DOI: 10.1002/arch.21626] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/09/2019] [Accepted: 09/14/2019] [Indexed: 06/10/2023]
Abstract
Insects can produce various antimicrobial peptides (AMPs) upon immune stimulation. One class of AMPs are characterized by their high proline content in certain fragments. They are generally called proline-rich antimicrobial peptides (PrAMPs). We previously reported the characterization of Spodoptera litura lebocin-1 (SlLeb-1), a PrAMP proprotein. Preliminary studies with synthetic polypeptides showed that among the four deductive active fragments, the C-terminal fragment SlLeb-1 (124-158) showed strong antibacterial activities. Here, we further characterized the antibacterial and antifungal activities of 124-158 and its four subfragments: 124-155, 124-149, 127-158, and 135-158. Only 124-158 and 127-158 could agglutinate bacteria, while 124-158 and four subfragments all could agglutinate Beauveria bassiana spores. Confocal microscopy showed that fluorescent peptides were located on the microbial surface. Fragment 135-158 lost activity completely against Escherichia coli and Staphylococcus aureus, and partially against Bacillus subtilis. Only 124-149 showed low activity against Serratia marcescens. Negative staining, transmission, and scanning electron microscopy of 124-158 treated bacteria showed different morphologies. Flow cytometry analysis of S. aureus showed that 124-158 and four subfragments changed bacterial subpopulations and caused an increase of DNA content. These results indicate that active fragments of SlLeb-1 may have diverse antimicrobial effects against different microbes. This study may provide an insight into the development of novel antimicrobial agents.
Collapse
Affiliation(s)
- Li-Ling Yang
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China
| | - Ming-Yue Zhan
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China
| | - Yu-Li Zhuo
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China
| | - Xiang-Li Dang
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China
| | - Mao-Ye Li
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China
| | - Yang Xu
- Biotechnology Center, Anhui Agricultural University, Hefei, Anhui, China
| | - Xiu-Hong Zhou
- Biotechnology Center, Anhui Agricultural University, Hefei, Anhui, China
| | - Xiao-Qiang Yu
- Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Xiang-Jun Rao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China
| |
Collapse
|
11
|
Lü D, Xu P, Hou C, Gao K, Guo X. Label-free LC-MS/MS proteomic analysis of the hemolymph of silkworm larvae infected with Beauveria bassiana. J Invertebr Pathol 2019; 166:107227. [PMID: 31386830 DOI: 10.1016/j.jip.2019.107227] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/31/2019] [Accepted: 08/02/2019] [Indexed: 11/16/2022]
Abstract
Beauveria bassiana, a pathogen of the economically important silkworm (Bombyx mori), causes serious losses in the sericulture industry; however, the mechanisms underlying B. bassiana infection and the silkworm response are not fully understood. To obtain new insights into the interaction between B. bassiana and its host, hemolymph samples from fifth instar silkworm larvae infected with B. bassiana were analyzed at 36-h post-inoculation using a label-free LC-MS/MS proteomic technique. In total, 671 proteins were identified in the hemolymph, including 87 differentially expressed proteins, 42 up-regulated and 45 down-regulated in infected larvae. Six were detected only in infected larvae, and five were detected only in uninfected larvae. Based on GO annotations, 48 of the differentially expressed proteins were involved in molecular functions, 42 were involved in biological processes, and 39 were involved in cell components. A KEGG pathway analysis indicated that these differentially expressed proteins participate in 85 signal transduction pathways, including the amoebiasis, MAPK signaling, Hippo signaling, Toll and Imd signaling, and lysosome pathways. The silkworm hemolymph is the main site for B. bassiana replication. We identified differentially expressed proteins involved in the regulation of the host response to B. bassiana infection, providing important experimental data for the identification of key factors contributing to the interaction between the pathogenic fungus and its host.
Collapse
Affiliation(s)
| | - Ping Xu
- Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang 212018, China
| | - Chengxiang Hou
- Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang 212018, China
| | - Kun Gao
- Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang 212018, China
| | - Xijie Guo
- Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang 212018, China.
| |
Collapse
|
12
|
Yang LL, Zhan MY, Zhuo YL, Pan YM, Xu Y, Zhou XH, Yang PJ, Liu HL, Liang ZH, Huang XD, Yu XQ, Rao XJ. Antimicrobial activities of a proline-rich proprotein from Spodoptera litura. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 87:137-146. [PMID: 29935286 DOI: 10.1016/j.dci.2018.06.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 06/08/2023]
Abstract
Antimicrobial peptides (AMPs) are produced by the stimulated humoral immune system. Most mature AMPs contain less than 50 amino acid residues. Some of them are generated from proproteins upon microbial challenges. Here, we report the antimicrobial activities of a proline-rich proprotein, named SlLebocin1 (SlLeb1), from the tobacco cutworm Spodoptera litura. SlLebocin1 cDNA contains a 477-bp open reading frame (ORF). It is mainly expressed in hemocytes and the midgut in naïve larvae. The transcript level was significantly induced in hemocytes but repressed in the midgut and fat body by bacterial challenges. The proprotein contains 158 amino acids with 3 RXXR motifs that are characteristic of some Lepidopteral lebocin proproteins. Four peptides corresponding to the predicted processed fragments were synthesized chemically, and their antimicrobial activities against two Gram-negative and two Gram-positive bacterial strains were analyzed. The peptides showed differential antimicrobial activities. For Escherichia coli and Bacillus subtilis, only the C-terminal fragment (124-158) showed strong inhibitory effects. For Staphylococcus aureus, all peptides showed partial inhibitions. None of them inhibited Serratia marcescens. Bacterial morphologies were examined by the scanning electron microscopy and confocal laser scanning microscopy. The antimicrobial peptides either disrupted cellular membrane or inhibited cell division and caused elongated/enlarged morphologies. The results may provide ideas for designing novel antibiotics.
Collapse
Affiliation(s)
- Li-Ling Yang
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Ming-Yue Zhan
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Yu-Li Zhuo
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Yue-Min Pan
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Yang Xu
- Biotechnology Center, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Xiu-Hong Zhou
- Biotechnology Center, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Pei-Jin Yang
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Hong-Li Liu
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Zi-Hao Liang
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Xiao-Dan Huang
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Xiao-Qiang Yu
- School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Xiang-Jun Rao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui, 230036, China.
| |
Collapse
|
13
|
Wang X, Luo H, Zhang R. Innate immune responses in the Chinese oak silkworm, Antheraea pernyi. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 83:22-33. [PMID: 29241953 DOI: 10.1016/j.dci.2017.12.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/10/2017] [Accepted: 12/11/2017] [Indexed: 06/07/2023]
Abstract
Innate immunity, the evolutionarily conserved defense system, has been extensively analyzed in insect models over recent decades. The significant progress in this area has formed our dominant conceptual framework of the innate immune system, but critical advances in other insects have had a profound impact on our insights into the mystery of innate immunity. In recent years, we focused on the immune responses in Antheraea pernyi, an important commercial silkworm species reared in China. Here, we review the immune responses of A. pernyi based on immune-related gene-encoded proteins that are divided into five categories, namely pattern recognition receptors, hemolymph proteinases and their inhibitors, prophenoloxidase, Toll pathway factors and antimicrobial peptides, and others. Although the summarized information is limited since the research on A. pernyi immunity is in its infancy, we hope to provide evidence for further exploration of innate immune mechanisms.
Collapse
Affiliation(s)
- Xialu Wang
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Hao Luo
- School of Life Science and Bio-pharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Rong Zhang
- School of Life Science and Bio-pharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China.
| |
Collapse
|
14
|
Tang W, Xiao Y, Li G, Zheng X, Yin Y, Wang L, Zhu Y. Analysis of digital gene expression profiling in the gonad of male silkworms (Bombyx mori) under fluoride stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 153:127-134. [PMID: 29425843 DOI: 10.1016/j.ecoenv.2018.01.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 01/09/2018] [Accepted: 01/11/2018] [Indexed: 06/08/2023]
Abstract
Fluorine is an essential element, but excessive fluoride can cause serious effects on the respiratory, digestive, and reproductive systems. Fluorine has been suggested to cause reproductive toxicity in vertebrates, but its potential to reproductively affect invertebrates remains unknown. In the present study, the lepidopteran model insect Bombyx mori was used to assess the reproductive toxicity of NaF. The underlying molecular mechanisms were explored by RNA sequencing, and we investigated the testes transcriptomic profile of B. mori treated with NaF via a digital gene expression (DGE) analysis. Among 520 candidate genes, 297 and 223 were identified as significantly upregulated or downregulated, respectively. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were carried out on all genes to determine their biological functions and associated processes. The results indicated that numerous differentially expressed genes are involved in the stress response, detoxification, antibacterial, transport, oxidative phosphorylation, and ribosome. The reliability of the data was confirmed by a quantitative real-time polymerase chain reaction (qRT-PCR) analysis. The changed Glutathione S-transferase (GST) activity and glutathione (GSH) content in the NaF-treated groups were increased and reduced respectively. This study reveals that using RNA-sequencing for the transcriptome profiling of B. mori testes can lead to better comprehension of the male reproductive toxicity effects of NaF. Furthermore, we expect that these results will aid future molecular studies on the reproductive toxicity of NaF in other species.
Collapse
Affiliation(s)
- Wenchao Tang
- School of Biotechnology, Southwest University, Chongqing 400716, China
| | - Yuanyuan Xiao
- School of Life Sciences, Southwest University, Chongqing 400716, China
| | - Guannan Li
- School of Biotechnology, Southwest University, Chongqing 400716, China
| | - Xi Zheng
- School of Biotechnology, Southwest University, Chongqing 400716, China
| | - Yaru Yin
- School of Biotechnology, Southwest University, Chongqing 400716, China
| | - Lingyan Wang
- School of Biotechnology, Southwest University, Chongqing 400716, China
| | - Yong Zhu
- School of Biotechnology, Southwest University, Chongqing 400716, China.
| |
Collapse
|
15
|
Molecular Cloning, Bioinformatic Analysis, and Expression of Bombyx mori Lebocin 5 Gene Related to Beauveria bassiana Infection. BIOMED RESEARCH INTERNATIONAL 2017; 2017:9390803. [PMID: 28194425 PMCID: PMC5282435 DOI: 10.1155/2017/9390803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 11/21/2016] [Accepted: 12/19/2016] [Indexed: 11/22/2022]
Abstract
A full-length cDNA of lebocin 5 (BmLeb5) was first cloned from silkworm, Bombyx mori, by rapid amplification of cDNA ends. The BmLeb5 gene is 808 bp in length and the open reading frame encodes a 179-amino acid hydroxyproline-rich peptide. Bioinformatic analysis results showed that BmLeb5 owns an O-glycosylation site and four RXXR motifs as other lebocins. Sequence similarity and phylogenic analysis results indicated that lebocins form a multiple gene family in silkworm as cecropins. Quantitative real-time PCR analysis revealed that BmLeb5 was highest expressed in the fat body. In the silkworm larvae infected by Beauveria bassiana, the expression level of BmLeb5 was upregulated in the fat body and hemolymph which are the most important immune tissues in silkworm. The recombinant protein of BmLeb5 was for the first time successfully expressed with prokaryotic expression system and purified. There are no reports so far that the expression of lebocins could be induced by entomopathogenic fungus. Our study suggested that BmLeb5 might play an important role in the immune response of silkworm to defend B. bassiana infection. The results also provided helpful information for further studying the lebocin family functioned in antifungal immune response in the silkworm.
Collapse
|
16
|
Balandin SV, Ovchinnikova TV. Antimicrobial peptides of invertebrates. Part 1. structure, biosynthesis, and evolution. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2016. [DOI: 10.1134/s1068162016030055] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
17
|
SK66-his, a Novel Glycine-Rich Peptide Derived fromDrosophilawith Antibacterial Activity. Biosci Biotechnol Biochem 2014; 73:769-71. [DOI: 10.1271/bbb.80756] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
18
|
Identification of immune response-related genes in the Chinese oak silkworm, Antheraea pernyi by suppression subtractive hybridization. J Invertebr Pathol 2013; 114:313-23. [PMID: 24076149 DOI: 10.1016/j.jip.2013.09.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 08/26/2013] [Accepted: 09/05/2013] [Indexed: 12/21/2022]
Abstract
Insects possess an innate immune system that responds to invading microorganisms. In this study, a subtractive cDNA library was constructed to screen for immune response-related genes in the fat bodies of Antheraea pernyi (Lepidoptera: Saturniidae) pupa challenged with Escherichia coli. Four hundred putative EST clones were identified by suppression subtractive hybridization (SSH), including 50 immune response-related genes, three cytoskeleton genes, eight cell cycle and apoptosis genes, five respiration and energy metabolism genes, five transport genes, 40 metabolism genes, ten stress response genes, four transcription and translation regulation genes and 77 unknown genes. To verify the reliability of the SSH data, the transcription of a set of randomly selected immune response-related genes were confirmed by semi-quantitative reverse transcription-PCR (RT-PCR) and real-time quantitative reverse transcription-PCR (qRT-PCR). These identified immune response-related genes provide insight into understanding the innate immunity in A. pernyi.
Collapse
|
19
|
Hussain A, Li YF, Cheng Y, Liu Y, Chen CC, Wen SY. Immune-related transcriptome of Coptotermes formosanus Shiraki workers: the defense mechanism. PLoS One 2013; 8:e69543. [PMID: 23874972 PMCID: PMC3712931 DOI: 10.1371/journal.pone.0069543] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 06/14/2013] [Indexed: 12/26/2022] Open
Abstract
Formosan subterranean termites, Coptotermes formosanus Shiraki, live socially in microbial-rich habitats. To understand the molecular mechanism by which termites combat pathogenic microbes, a full-length normalized cDNA library and four Suppression Subtractive Hybridization (SSH) libraries were constructed from termite workers infected with entomopathogenic fungi (Metarhizium anisopliae and Beauveria bassiana), Gram-positive Bacillus thuringiensis and Gram-negative Escherichia coli, and the libraries were analyzed. From the high quality normalized cDNA library, 439 immune-related sequences were identified. These sequences were categorized as pattern recognition receptors (47 sequences), signal modulators (52 sequences), signal transducers (137 sequences), effectors (39 sequences) and others (164 sequences). From the SSH libraries, 27, 17, 22 and 15 immune-related genes were identified from each SSH library treated with M. anisopliae, B. bassiana, B. thuringiensis and E. coli, respectively. When the normalized cDNA library was compared with the SSH libraries, 37 immune-related clusters were found in common; 56 clusters were identified in the SSH libraries, and 259 were identified in the normalized cDNA library. The immune-related gene expression pattern was further investigated using quantitative real time PCR (qPCR). Important immune-related genes were characterized, and their potential functions were discussed based on the integrated analysis of the results. We suggest that normalized cDNA and SSH libraries enable us to discover functional genes transcriptome. The results remarkably expand our knowledge about immune-inducible genes in C. formosanus Shiraki and enable the future development of novel control strategies for the management of Formosan subterranean termites.
Collapse
Affiliation(s)
- Abid Hussain
- Department of Entomology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, P. R. China
| | - Yi-Feng Li
- Department of Entomology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, P. R. China
| | - Yu Cheng
- Department of Entomology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, P. R. China
| | - Yang Liu
- Department of Entomology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, P. R. China
| | - Chuan-Cheng Chen
- Department of Entomology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, P. R. China
| | - Shuo-Yang Wen
- Department of Entomology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, P. R. China
- * E-mail:
| |
Collapse
|
20
|
Rao XJ, Xu XX, Yu XQ. Functional analysis of two lebocin-related proteins from Manduca sexta. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2012; 42:231-9. [PMID: 22198332 PMCID: PMC3288250 DOI: 10.1016/j.ibmb.2011.12.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 12/06/2011] [Accepted: 12/08/2011] [Indexed: 05/03/2023]
Abstract
Insects produce a group of antimicrobial peptides (AMPs) in response to microbial infections. Most AMPs are synthesized as inactive precursors/pro-proteins and require proteolytic processing to generate small active peptides. Here we report identification and functional analysis of two lebocin-related proteins (Leb-B and Leb-C) from the tobacco hornworm, Manduca sexta. The mRNA levels of Leb-B and Leb-C increased significantly in larval fat body and hemocytes after injection of Escherichia coli, Micrococcus luteus and Saccharomyces cerevisiae. Western blotting using rabbit polyclonal antibody to Leb-B showed accumulation of large protein(s) and small peptide(s) in larval hemolymph after microbial injection. This result and the presence of RXXR motifs in the deduced amino acid sequences led to our postulation that Leb-B/C may be inactive precursors that are processed in larval hemolymph to generate short active peptides. To test this hypothesis, we expressed and purified full-length and various fragments of Leb-B and Leb-C as thioredoxin (TRX) fusion proteins. We found that fusion proteins could be cleaved by induced larval plasma, and the cleavage sites were determined by protein sequencing. Antibacterial activity of peptide fragments was also verified using synthetic peptides, and active M. sexta lebocin peptides were located at the N-termini of Leb-B/C, which are different from Bombyx mori lebocins 1-4 that are located close to the C-termini. In addition, we found that synthetic Leb-B(22-48) peptide not only had higher antibacterial activity but also caused agglutination of E. coli cells. Our results provide valuable information for studying processing of lebocin precursors in lepidopteran insects.
Collapse
Affiliation(s)
| | | | - Xiao-Qiang Yu
- Send correspondence to: Xiao-Qiang Yu, PhD, Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, 5007 Rockhill Road, Kansas City, MO 64110, Telephone: (816)-235-6379, Fax: (816)-235-1503,
| |
Collapse
|
21
|
Pandiarajan J, Cathrin BP, Pratheep T, Krishnan M. Defense role of the cocoon in the silk worm Bombyx mori L. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2011; 25:3203-3206. [PMID: 22006381 DOI: 10.1002/rcm.5213] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Silk from the domesticated silk worm Bombyx mori procures foreign body response naturally, so it has been utilized as a biomaterial for decades. In India the prime focus of the sericulture industry is to improve silk production with high quality silk. Naturally, the silk worm builds its cocoon not only with silk proteins, but also with antimicrobial proteins to avoid infection since the cocoon is non-motile and non-feeding. The aim of the present study is to elucidate the antimicrobial proteins that persist in the cocoon of the silk worm Bombyx mori. At the pupal stage, the silk worm cocoon shell extract was prepared from the day of pupation (P0) to the day of natural rupture of the cocoon for the eclosion of moth (NR). Using the cocoon shell extract a microbial susceptibility test was performed by the disc diffusion method against the microbes Escherchia coli, Bacillus cereus, Staphylococcus aureus, Pseudomonas aeruginosa, and Klebsiella pneumoniae. The development of a zone of inhibition against the microbes confirmed the presence of antimicrobial/immunogenic activity of the cocoon shell extract. For further analysis, the cocoon shell extract was subjected to 7-15% sodium dodecyl sulfate/polyacrylamide gel electrophoresis (SDS-PAGE). The protein profile of the cocoon extract revealed the coomassie blue stained bands resolved from the 150-15 kDa molecular range. Interestingly, a polypeptide localized at around 29 kDa showed remarkable expressional changes during the development of pupa. To characterize the 29 kDa protein, it was eluted from the gel, digested with trypsin and analyzed by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). The trypsin-digested peptide peaks were analyzed through MASCOT and peptides were matched with the NCBI nr database. The peptides were very well matched with the 18 wheeler protein, which is reported to be responsible for innate immunity, belonging to the Toll family in insects and responsible for cellular mediated immunity.
Collapse
Affiliation(s)
- Jeyaraj Pandiarajan
- Insect Molecular Biology Laboratory, Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli-620 024, Tamil Nadu, India
| | | | | | | |
Collapse
|
22
|
Abstract
Lepidopteran insects provide important model systems for innate immunity of insects, particularly for cell biology of hemocytes and biochemical analyses of plasma proteins. Caterpillars are also among the most serious agricultural pests, and understanding of their immune systems has potential practical significance. An early response to infection in lepidopteran larvae is the activation of hemocyte adhesion, leading to phagocytosis, nodule formation, or encapsulation. Plasmatocytes and granular cells are the hemocyte types involved in these responses. Infectious microorganisms are recognized by binding of hemolymph plasma proteins to microbial surface components. This "pattern recognition" triggers phagocytosis and nodule formation, activation of prophenoloxidase and melanization and the synthesis of antimicrobial proteins that are secreted into the hemolymph. Many hemolymph proteins that function in such innate immune responses of insects were first discovered in lepidopterans. Microbial proteinases and nucleic acids released from lysed host cells may also activate lepidopteran immune responses. Hemolymph antimicrobial peptides and proteins can reach high concentrations and may have activity against a broad spectrum of microorganisms, contributing significantly to clearing of infections. Serine proteinase cascade pathways triggered by microbial components interacting with pattern recognition proteins stimulate activation of the cytokine Spätzle, which initiates the Toll pathway for expression of antimicrobial peptides. A proteinase cascade also results inproteolytic activation of phenoloxidase and production of melanin coatings that trap and kill parasites and pathogens. The proteinases in hemolymph are regulated by specific inhibitors, including members of the serpin superfamily. New developments in lepidopteran functional genomics should lead to much more complete understanding of the immune systems of this insect group.
Collapse
|
23
|
Rayaprolu S, Wang Y, Kanost MR, Hartson S, Jiang H. Functional analysis of four processing products from multiple precursors encoded by a lebocin-related gene from Manduca sexta. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2010; 34:638-47. [PMID: 20096726 PMCID: PMC2841005 DOI: 10.1016/j.dci.2010.01.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 01/07/2010] [Accepted: 01/12/2010] [Indexed: 05/10/2023]
Abstract
Antimicrobial peptides (AMPs) are a crucial component of the natural immune system in insects. Five types of AMPs have been identified in the tobacco hornworm Manduca sexta, including attacin, cecropin, moricin, gloverin, and lebocin. Here we report the isolation of lebocin-related cDNA clones and antibacterial activity of their processed protein products. The 17 cDNA sequences are composed of a constant 5' end and a variable 3' region containing 3-16 copies of an 81-nucleotide repeat. The sequence of the corresponding gene isolated from a M. sexta genomic library and Southern blotting results indicated that the gene lacks introns and exists as a single copy in the genome. The genomic sequence contained 13 complete and one partial copy of the 81-nucleotide repeat. Northern blot analysis revealed multiple transcripts with major size differences. The mRNA level of M. sexta lebocin increased substantially in fat body after larvae had been injected with bacteria. The RXXR motifs in the protein sequences led us to postulate that the precursors are processed by an intracellular convertase to form four bioactive peptides. To test this hypothesis, we chemically synthesized the peptides and examined their antibacterial activity. Peptide 1 killed Gram-positive and Gram-negative bacteria. Peptide 2, similar in sequence to a Galleria mellonella AMP, did not affect the bacterial growth. Peptide 3 was inactive but peptide 3 with an extra Arg at the carboxyl terminus was active against Escherichia coli at a high minimum inhibitory concentration. Peptide 4, encoded by the 81-bp repeat, was inactive in the antibacterial tests. The hypothesis that posttranslational processing of the precursor proteins produces multiple bioactive peptides for defense purposes was validated by identification of peptides 1, 2, and 3 from larval hemolymph via liquid chromatography and tandem mass spectrometry. Comparison with the orthologs from other lepidopteran insects indicates that the same mechanism may be used to generate several functional products from a single precursor.
Collapse
Affiliation(s)
- Subrahmanyam Rayaprolu
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Yang Wang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Michael R. Kanost
- Department of Biochemistry, Kansas State University, Manhattan, KS 66506, USA
| | - Steven Hartson
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
24
|
Tanaka H, Suzuki N, Nakajima Y, Sato M, Sagisaka A, Fujita K, Ishibashi J, Imanishi S, Mita K, Yamakawa M. Expression profiling of novel bacteria-induced genes from the silkworm, Bombyx mori. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2010; 73:148-162. [PMID: 20077574 DOI: 10.1002/arch.20347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
In this study, we have newly identified three bacteria-induced genes from the silkworm Bombyx mori by quantitative reverse transcriptase-polymerase chain reaction. One of these, eukaryotic initiation factor 4E-1 (eIF4E-1), is assumed to encode an eIF4E family, which plays a role in the initiation of translation as a mRNA cap-binding protein. The second gene is BmFOXG1, belonging to a family of forkhead transcription factors, FOXG1. The third gene is MBF2-related (MBF2-R) whose product has high homology to a co-activator protein MBF2 from B. mori. Although BmFOXG1 was up-regulated in the fat body in response to three kinds of bacteria, Escherichia coli, Staphylococcus aureus, and Bacillus subtilis, eIF4E-1 and MBF2-R were up-regulated by E. coli and B. subtilis, but not S. aureus, suggesting that bacteria possessing meso-diaminopimelic acid-containing peptidoglycan but not lysine-containing peptidoglycan activate eIF4E-1 and MBF2-R, probably through a conserved immune deficiency pathway. We further profiled the expression of three genes in different tissues and a silkworm cell line, NIAS-Bm-aff3, in response to bacteria, and at different times after bacterial challenge in the fat body.
Collapse
Affiliation(s)
- Hiromitsu Tanaka
- Innate Immunity Research Unit, National Institute of Agrobiological Sciences, 1-2 Owashi, Tsukuba, Ibaraki, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Kaneko Y, Furukawa S, Tanaka H, Yamakawa M. Expression of antimicrobial peptide genes encoding Enbocin and Gloverin isoforms in the silkworm, Bombyx mori. Biosci Biotechnol Biochem 2007; 71:2233-41. [PMID: 17827677 DOI: 10.1271/bbb.70212] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Antimicrobial peptides, Enbocin and Gloverin isoforms from the silkworm Bombyx mori, were analyzed for expression of these peptide genes. Tissue-specific expression of Enbocin and Bmgloverin isoform genes was observed mainly in the fat body upon injection of Escherichia coli. Peptidoglycan and lipopolysaccharide triggered expression of these genes in vivo. On the other hand, lipid A activated Bmgloverin isoform genes but not Enbocin isoform genes. These results illustrate the fact that expression of Enbocin and Bmgloverin isoform genes is inducible by bacteria and that the effects of bacterial cell wall components on the activation of these peptide genes are not necessarily the same. In addition, selective activation of the Enbocin2, Bmgloverin2, and Bmgloverin4 genes by BmRelB rather than BmRelA was observed, providing additional evidence for the occurrence of selective activation of antimicrobial peptide genes by a Rel protein. These results suggest complex regulatory mechanisms in insect antimicrobial peptide genes by bacterial cell wall components.
Collapse
Affiliation(s)
- Yoichi Kaneko
- Graduate School of Life and Enviromental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | | | | | | |
Collapse
|
26
|
Tanaka H, Matsuki H, Furukawa S, Sagisaka A, Kotani E, Mori H, Yamakawa M. Identification and functional analysis of Relish homologs in the silkworm, Bombyx mori. ACTA ACUST UNITED AC 2007; 1769:559-68. [PMID: 17714806 DOI: 10.1016/j.bbaexp.2007.07.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Revised: 06/18/2007] [Accepted: 07/06/2007] [Indexed: 11/17/2022]
Abstract
Two cDNAs designated BmRelish1 and 2, that encode Relish homologs, were cloned from the silkworm, Bombyx mori. BmRelish1 had an IkappaB-like domain with 5 ankyrin repeats in addition to Rel homology domain (RHD), nuclear localization signal (NLS), and acidic and hydrophobic amino acids (AHAA) rich regions. On the other hand, BmRelish2 lacked the AHAA and ankyrin repeats (ANK). Knockdown of the BmRelish gene in transgenic silkworms resulted in failure of the activation of antimicrobial peptide genes by Escherichia coli, suggesting that BmRelish plays an important role in antimicrobial peptide gene expression. Functional analysis of BmRelish1 and 2 in mbn-2 cells showed that both Relish homologs do not activate promoters of B. mori antimicrobial peptide genes encoding cecropin B1, attacin, lebocin 3 and lebocin 4. However, a gene construct BmRelish1-d2 lacking the ANK strongly activated promoters of these genes. Another gene construct lacking AHAA and ANK failed to activate these genes, suggesting that BmRelish becomes active by removal of the ANK and that the AHAA-rich region is a transactivation domain. BmRelish2 was shown to repress activation of Cecropin B1 gene expression by BmRelish1-d2, suggesting that BmRelish2 plays a role as a dominant negative factor against the BmRelish1 active form. Necessity of kappaB sites of Cecropin B1, Attacin and Lebocin 4 genes for the full activation of these genes by BmRelish1-d2 was confirmed. The requirement of the mandatory kappaB sites for Lebocin 4 gene expression was different between BmRelish1 active form and BmRelA, suggesting differential roles for kappaB sites in antimicrobial peptide gene activation by different transcription factors. The binding of the RHD portion of BmRelish1 fusion protein to the kappaB sites of Cecropin B1 and Attacin genes was also confirmed.
Collapse
Affiliation(s)
- Hiromitsu Tanaka
- Innate Immunity Research Unit, National Institute of Agrobiological Sciences, Owashi 1-2, Tsukuba, Ibaraki 305-8634, Japan
| | | | | | | | | | | | | |
Collapse
|
27
|
Cytryńska M, Mak P, Zdybicka-Barabas A, Suder P, Jakubowicz T. Purification and characterization of eight peptides from Galleria mellonella immune hemolymph. Peptides 2007; 28:533-46. [PMID: 17194500 DOI: 10.1016/j.peptides.2006.11.010] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2006] [Revised: 11/17/2006] [Accepted: 11/20/2006] [Indexed: 11/19/2022]
Abstract
Defense peptides play a crucial role in insect innate immunity against invading pathogens. From the hemolymph of immune-challenged greater wax moth, Galleria mellonella (Gm) larvae, eight peptides were isolated and characterized. Purified Gm peptides differ considerably in amino acid sequences, isoelectric point values and antimicrobial activity spectrum. Five of them, Gm proline-rich peptide 2, Gm defensin-like peptide, Gm anionic peptides 1 and 2 and Gm apolipophoricin, were not described earlier in G. mellonella. Three others, Gm proline-rich peptide 1, Gm cecropin D-like peptide and Galleria defensin, were identical with known G. mellonella peptides. Gm proline-rich peptides 1 and 2 and Gm anionic peptide 2, had unique amino acid sequences and no homologs have been found for these peptides. Antimicrobial activity of purified peptides was tested against gram-negative and gram-positive bacteria, yeast and filamentous fungi. The most effective was Gm defensin-like peptide which inhibited fungal and sensitive bacteria growth in a concentration of 2.9 and 1.9 microM, respectively. This is the first report describing at least a part of defense peptide repertoire of G. mellonella immune hemolymph.
Collapse
Affiliation(s)
- Małgorzata Cytryńska
- Department of Invertebrate Immunology, Institute of Biology, Maria Curie-Skłodowska University, 19 Akademicka St., 20-033 Lublin, Poland.
| | | | | | | | | |
Collapse
|
28
|
Cheng T, Zhao P, Liu C, Xu P, Gao Z, Xia Q, Xiang Z. Structures, regulatory regions, and inductive expression patterns of antimicrobial peptide genes in the silkworm Bombyx mori. Genomics 2006; 87:356-65. [PMID: 16406194 DOI: 10.1016/j.ygeno.2005.11.018] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2005] [Revised: 11/10/2005] [Accepted: 11/25/2005] [Indexed: 11/30/2022]
Abstract
Antimicrobial peptides (AMPs) are a group of immune proteins that protect the host from infection. In Drosophila, seven groups of inducible AMPs have been identified, with activities against fungi and gram-positive and gram-negative bacteria. On the basis of the silkworm genome sequence and expressed sequence tags, we identified 35 AMP genes, mostly belonging to the cecropin, moricin, and gloverin gene families. We predicted the core promoters required for gene transcription and the cis-regulatory elements for NF-kappaB/Rel and GATA transcription factors. The expression profiles of these genes after an immune challenge with lipopolysaccharide were examined by reverse transcription PCR. Members of the cecropin B and gloverin A subfamilies were intensely expressed in the fat body after induction. In contrast, those of the moricin B subfamily were not expressed under the same conditions. Such results suggest that these regulatory elements and their positions in the upstream regions play an important role in regulating the transcription of these defense genes.
Collapse
Affiliation(s)
- Tingcai Cheng
- The Key Sericultural Laboratory of Agricultural Ministry, Southwest University, Chongqing 400716, China
| | | | | | | | | | | | | |
Collapse
|
29
|
Tanaka H, Yamamoto M, Moriyama Y, Yamao M, Furukawa S, Sagisaka A, Nakazawa H, Mori H, Yamakawa M. A novel Rel protein and shortened isoform that differentially regulate antibacterial peptide genes in the silkworm Bombyx mori. ACTA ACUST UNITED AC 2005; 1730:10-21. [PMID: 16005991 DOI: 10.1016/j.bbaexp.2005.05.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2005] [Revised: 05/04/2005] [Accepted: 05/19/2005] [Indexed: 11/22/2022]
Abstract
Two cDNAs encoding novel Rel proteins were cloned from the silkworm, Bombyx mori. These cDNA clones (BmRelA and BmRelB) showed identical nucleotide sequences except for the 5'-region. BmRelB cDNA derived probably from an alternatively spliced mRNA lacked 241 bp nucleotides at the 5'-region of the BmRelA cDNA, resulting in a loss of the first 52 amino acids. Expression of antibacterial peptide genes was strongly inhibited upon infection with Micrococcus luteus in transgenic silkworms in which BmRel gene expression was knocked down, suggesting that these two Rel proteins are involved in activation of antibacterial peptide genes. Co-transfection experiments indicated that BmRelB activated the Attacin gene strongly and other genes to a lesser extent, whereas BmRelA activated Lebocin 4 gene strongly and Attacin and Lebocin 3 genes very weakly. The Rel homology domain of BmRelA and BmRelB was shown to bind specifically to kappaB sites of antibacterial peptide genes. Proline-rich domains of the BmRels were necessary for activation of antibacterial peptide genes. These results illustrate that a minor structural change in Rel proteins can provoke a dramatic differential activation of antibacterial peptide genes, suggesting a novel regulatory mechanism for insect antibacterial peptide gene expression.
Collapse
Affiliation(s)
- Hiromitsu Tanaka
- Innate Immunity Laboratory, National Institute of Agrobiological Sciences, Owashi 1-2, Tsukuba, Ibaraki 305-8634, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Bao Y, Yamano Y, Morishima I. A novel lebocin-like gene from eri-silkworm, Samia cynthia ricini, that does not encode the antibacterial peptide lebocin. Comp Biochem Physiol B Biochem Mol Biol 2005; 140:127-31. [PMID: 15621517 DOI: 10.1016/j.cbpc.2004.09.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2004] [Revised: 09/28/2004] [Accepted: 09/28/2004] [Indexed: 11/22/2022]
Abstract
A cDNA clone with homology to lebocin gene was isolated from fat body of immunized Samia cynthia ricini larvae. The cDNA has an open reading frame encoding 162 amino acid residues. The deduced amino acid sequence shows significant homology to lebocin precursor proteins from Bombyx mori and Trichoplusia ni only in the "prosegment" region, but no homology to mature lebocin, a proline-rich antibacterial peptide, indicating the protein is not a precursor for lebocin antibacterial peptide. Northern analysis indicates that transcript of the lebocin-like gene is not detected in any tissues of naive larvae, but induced mainly in fat body after injection of the larvae with bacterial cells or cell wall components, such as peptidoglycan.
Collapse
Affiliation(s)
- Yanyuan Bao
- Department of Biochemistry and Biotechnology, Faculty of Agriculture, Tottori University, Koyama, Tottori 680-8553, Japan
| | | | | |
Collapse
|
31
|
Zhu Y, Johnson TJ, Myers AA, Kanost MR. Identification by subtractive suppression hybridization of bacteria-induced genes expressed in Manduca sexta fat body. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2003; 33:541-559. [PMID: 12706633 DOI: 10.1016/s0965-1748(03)00028-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Insect immune processes are mediated by programs of differential gene expression. To understand the molecular regulation of the immune response in the tobacco hornworm, Manduca sexta, the relevant subset of differentially expressed genes of interest must be identified, cloned and studied in detail. In this study, suppression subtractive hybridization, a PCR-based method for cDNA subtraction was performed to identify mRNAs from fat body of immunized larvae that are not present (or present at a low level) in control larvae. A subtracted cDNA library enriched in immune-inducible genes was constructed. Northern blot analysis of a sample of clones from our subtracted library indicated that >90% of the clones randomly selected from the subtracted library are immune inducible. Sequence analysis of 238 expressed sequence tags (ESTs) revealed that 120 ESTs, representing 54 distinct genes or gene families, had sequences identical or similar to previously characterized genes, some of which have been confirmed to be involved in innate immunity. These ESTs were categorized into seven groups, including pattern recognition proteins, serine proteinases and their inhibitors, and antimicrobial proteins. 112 ESTs, about 47.5% of the library, showed no significant similarity to any known genes. The sequences identified in this M. sexta library reflect our knowledge of insect immune strategies and may facilitate better understanding of insect immune responses.
Collapse
Affiliation(s)
- Y Zhu
- Department of Biochemistry, Kansas State University, Manhattan, KS 66506, USA
| | | | | | | |
Collapse
|
32
|
Abstract
Insects are amazingly resistant to bacterial infections. To combat pathogens, insects rely on cellular and humoral mechanisms, innate immunity being dominant in the latter category. Upon detection of bacteria, a complex genetic cascade is activated, which ultimately results in the synthesis of a battery of antibacterial peptides and their release into the haemolymph. The peptides are usually basic in character and are composed of 20-40 amino acid residues, although some smaller proteins are also included in the antimicrobial repertoire. While the proline-rich peptides and the glycine-rich peptides are predominantly active against Gram-negative strains, the defensins selectively kill Gram-positive bacteria and the cecropins are active against both types. The insect antibacterial peptides are very potent: their IC50 (50% of the bacterial growth inhibition) hovers in the submicromolar or low micromolar range. The majority of the peptides act through disintegrating the bacterial membrane or interfering with membrane assembly, with the exception of drosocin, apidaecin and pyrrhocoricin which appear to deactivate a bacterial protein in a stereospecific manner. In accordance with their biological function, the membrane-active peptides form ordered structures, e.g. alpha-helices or beta-pleated sheets and often cast permeable ion-pores. Their cytotoxic properties were exploited in in vivo studies targeting tumour progression. Although the native peptides degrade quickly in biological fluids other than insect haemolymph, structural modifications render the peptides resistant against proteases without sacrificing biological activity. Indeed, a pyrrhocoricin analogue shows lack of toxicity in vitro and in vivo and protects mice against experimental Escherichia coli infection. Careful selection of lead molecules based on the insect antibacterial peptides may extend their utility and produce viable alternatives to the conventional antimicrobial compounds for mammalian therapy.
Collapse
Affiliation(s)
- L Otvos
- The Wistar Institute, Philadelphia, PA 19104, USA.
| |
Collapse
|
33
|
Taniai K, Tomita S. A novel lipopolysaccharide response element in the Bombyx mori cecropin B promoter. J Biol Chem 2000; 275:13179-82. [PMID: 10788421 DOI: 10.1074/jbc.275.18.13179] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cecropin B is one of the major antibacterial peptides in the silkworm, Bombyx mori. Transcription of the cecropin B gene (CecB) occurs rapidly after bacterial invasion. Using 235 base pairs (bp) of the CecB promoter region, a kappaB-related protein and two additional DNA-binding complexes (designated F2BPI and F4BP) were identified in nuclear extracts from immunized larval fat body by the electrophoretic mobility shift assay (EMSA) (1). Further EMSA analyses indicated that the F2BPI-binding site was CATTA, and that F2BPI translocated from the cytoplasm to the nucleus after infection. In a recently established B. mori cell line, NISES-BoMo-DZ, 235 bp of CecB promoter linked to a reporter luciferase was activated 6-fold by stimulation with lipopolysaccharide (LPS), which is a major trigger of CecB expression in larvae. Truncation of the F2BPI-binding site from the promoter reduced the activation 2-fold. Deletion of either of two kappaB motifs also reduced promoter activation 2-fold. Elimination of both the F2BPI-binding site and the kappaB motifs resulted in the complete loss of LPS inducibility. These results indicate that the F2BPI-binding site is an LPS-responsive cis-element that is necessary for full activation of CecB.
Collapse
Affiliation(s)
- K Taniai
- Laboratory of Biological Defense, Department of Insect Physiology and Behavior, National Institute of Sericultural and Entomological Science, Tsukuba 305-8634, Japan.
| | | |
Collapse
|
34
|
Liu G, Kang D, Steiner H. Trichoplusia ni lebocin, an inducible immune gene with a downstream insertion element. Biochem Biophys Res Commun 2000; 269:803-7. [PMID: 10720496 DOI: 10.1006/bbrc.2000.2366] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A cDNA clone encoding a lebocin-like protein was obtained from the cabbage looper Trichoplusia ni by using differential display PCR. Northern blot analysis showed that lebocin gene expression was inducible upon bacterial challenge. Transcripts were mainly found in fat body but were also observed in hemocytes. Expression reached its highest level at 20 h and continued at least until 60 h after bacterial injection. The deduced protein is proline-rich and contains 143 amino acid residues. At position 128, a possible O-glycosylation site is observed. The whole protein shows 35% identity to Bombyx mori lebocin. The mature peptide displays an N-terminus similar to that of lebocin and a C-terminus to that of Drosophila metchnikowin. A 39-bp repetitive element is located downstream of the coding region.
Collapse
Affiliation(s)
- G Liu
- Department of Microbiology, Stockholm University, Stockholm, 10609, Sweden
| | | | | |
Collapse
|
35
|
Yamakawa M, Tanaka H. Immune proteins and their gene expression in the silkworm, Bombyx mori. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 1999; 23:281-289. [PMID: 10426422 DOI: 10.1016/s0145-305x(99)00011-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Several self-defense proteins have been isolated from the silkworm, Bombyx mori and their amino acid sequences determined. These proteins include novel antibacterial proteins designated lebocin and moricin, and a novel lectin designated hemocytin, an insect homologue of mammalian von Willebrand factor. Antibacterial mechanisms of lebocin and moricin have been analyzed and their ability to form ion channels in bacterial membranes play an important role in defense against bacterial infection. cDNAs and genes encoding these proteins have been cloned to examine their induction mechanisms upon bacterial infection. Regulatory motifs such as the kappaB-like and GATA sequence have been identified in the B. mori antibacterial proteins. On the other hand, hemocytin gene expression was confirmed to occur upon bacterial infection and before pupation under naive conditions, suggesting that hemocytin plays an important role in both immunity and metamorphosis. Moreover, this review also describes the releasing mechanisms of a bacterial cell wall component, lipopolysaccharide (LPS), from intact bacteria, clearance of LPS from B. mori hemolymph and a possible signal transduction pathway for antibacterial protein gene expression.
Collapse
Affiliation(s)
- M Yamakawa
- Laboratory of Biological Defense, National Institute of Sericultural and Entomological Science, Ibaraki, Japan.
| | | |
Collapse
|
36
|
Kim SH, Park BS, Yun EY, Je YH, Woo SD, Kang SW, Kim KY, Kang SK. Cloning and expression of a novel gene encoding a new antibacterial peptide from silkworm, Bombyx mori. Biochem Biophys Res Commun 1998; 246:388-92. [PMID: 9610369 DOI: 10.1006/bbrc.1998.8626] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We differentially screened a novel gene encoding a new antibacterial peptide from the immunized Bombyx mori cDNA library. The gene showed a similar structure to that of cecropin-family, encoding 59 amino acids including a putative leader peptide and mature peptide. The deduced peptide, named Enbocin, had conserved amino acid residues which have been known to play an important role in the antibacterial activities. Enbocin genomic sequence revealed that the transcription unit of Enbocin gene was about 1.2 kb, and the coding sequence was interrupted by an intron of 660 bases. Recombinant Enbocin, expressed under the control of the baculovirus polyhedrin promoter, demonstrated a broad range of antibacterial activities against gram positive and gram negative bacteria.
Collapse
Affiliation(s)
- S H Kim
- National Sericulture & Entomology Research Institute, RDA, Suwon, Korea
| | | | | | | | | | | | | | | |
Collapse
|