1
|
Sun H, McKeen T, Wang H, Ni HM. Necroptosis in ischemia-reperfusion injury of lean and steatotic livers. LIVER RESEARCH 2019. [DOI: 10.1016/j.livres.2019.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
2
|
Matsui A, Uchida S, Hayashi A, Kataoka K, Itaka K. Prolonged engraftment of transplanted hepatocytes in the liver by transient pro-survival factor supplementation using ex vivo mRNA transfection. J Control Release 2018; 285:1-11. [PMID: 29966689 DOI: 10.1016/j.jconrel.2018.06.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 06/15/2018] [Accepted: 06/28/2018] [Indexed: 12/17/2022]
Abstract
Cell transplantation therapy needs engraftment efficiency improvement of transplanted cells to the host tissues. Ex vivo transfection of a pro-survival gene to transplanted cells is a possible solution; however prolonged expression and/or genomic integration of the gene can be cancer promoting. To supply pro-survival protein only when it is needed, we used mRNA transfection, which exhibits transient protein expression profiles without the risk of genomic integration. Ex vivo transfection of mRNA encoding Bcl-2, a pro-survival factor, led to enhanced hepatocyte engraftment in both of normal and diseased mouse liver, effectively supporting liver function in a model of chronic hepatitis. The transplanted hepatocytes maintained their viability and function in the liver for at least one month, though Bcl-2 expression from mRNA was sustained for just a few days. Mechanism analyses suggest that Bcl-2 inhibits Kupffer cell-mediated hepatocyte clearance, which occurs within 2 days after transplantation. Within 2 days, hepatocytes migrated to the liver parenchyma, presumably a suitable place for the hepatocytes to survive without Bcl-2 expression. Thus, the duration of Bcl-2 expression from mRNA was sufficient to achieve prolonged engraftment. Ex vivo mRNA transfection allows supply of pro-survival factors to transplanted cells with minimal safety concerns accompanying prolonged expression, providing an effective platform to improve engraftment efficiency in cell transplantation therapy.
Collapse
Affiliation(s)
- Akitsugu Matsui
- Division of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan; Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, Kawasaki, Kanagawa 210-0821, Japan
| | - Satoshi Uchida
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, Kawasaki, Kanagawa 210-0821, Japan; Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Bunkyo, Tokyo 113-8656, Japan.
| | - Akimasa Hayashi
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Kazunori Kataoka
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, Kawasaki, Kanagawa 210-0821, Japan; Policy Alternatives Research Institute, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Keiji Itaka
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, Kawasaki, Kanagawa 210-0821, Japan; Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda, Tokyo 101-0062, Japan.
| |
Collapse
|
3
|
Choi H, Kim SH, Chun YS, Cho YS, Park JW, Kim MS. In Vivo Hyperoxic Preconditioning Prevents Myocardial Infarction by Expressing Bcl-2. Exp Biol Med (Maywood) 2016; 231:463-72. [PMID: 16565442 DOI: 10.1177/153537020623100412] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Preconditioning with oxidative stress has been demonstrated in vitro to stimulate the cellular adaptation to subsequent severe oxidative stress. However, it is uncertain whether this preconditioning works in vivo. In the present study, we examined in vivo the beneficial effect of oxidative preconditioning. After rats were pretreated with whole-body hyperoxygenation (100% 02 at 3 atmosphere for 20 mins, four cycles with 20-min intermission), isolated hearts were subjected to 45-min ischemia followed by 90-min reperfusion. This hyperoxic preconditioning significantly reduced infarct size, cytochrome-c release, DNA fragmentation, and terminal deoxynucleotidyl transferase-mediated dUTD nick-end labeling-positive cell frequency in the left ventricle, biphasically with an early (30-min) and a delayed (48-hr) effect after the hyperoxygenation. Mechanistically, the NF-κB activity and Bcl-2 expression were enhanced in the hearts, and a NF-κB inhibitor, pyrrolidine dithiocarbamate, abolished the Bcl-2 induction as well as the infarct-limiting effect. An antioxidant, N-acetylcysteine, and protein kinase C (PKC) inhibitors chelerythrine and Gö 6983 also blocked the preconditioning effects. These results indicate that hyperoxia induces myocardial tolerance against ischemia-reperfusion injury in association with Bcl-2 induction by NF-κB activation through reactive oxygen species and PKC-dependent signaling pathway.
Collapse
Affiliation(s)
- Hong Choi
- Department of Pharmacology, Seoul National University College of Medicine and Heart Research Institute SNUMRC, 28 Yongon-dong, Chongno-gu, Seoul 110-799, Korea
| | | | | | | | | | | |
Collapse
|
4
|
Patouraux S, Rousseau D, Rubio A, Bonnafous S, Lavallard VJ, Lauron J, Saint-Paul MC, Bailly-Maitre B, Tran A, Crenesse D, Gual P. Osteopontin deficiency aggravates hepatic injury induced by ischemia-reperfusion in mice. Cell Death Dis 2014; 5:e1208. [PMID: 24810044 PMCID: PMC4047890 DOI: 10.1038/cddis.2014.174] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 02/26/2014] [Accepted: 03/18/2014] [Indexed: 12/17/2022]
Abstract
Osteopontin (OPN) is a multifunctional protein involved in hepatic steatosis, inflammation, fibrosis and cancer progression. However, its role in hepatic injury induced by ischemia–reperfusion (I–R) has not yet been investigated. We show here that hepatic warm ischemia for 45 min followed by reperfusion for 4 h induced the upregulation of the hepatic and systemic level of OPN in mice. Plasma aspartate aminotransferase and alanine aminotransferase levels were strongly increased in Opn−/− mice compared with wild-type (Wt) mice after I–R, and histological analysis of the liver revealed a significantly higher incidence of necrosis of hepatocytes. In addition, the expression levels of inducible nitric oxide synthase (iNOS), tumor necrosis factor-α (TNFα), interleukin 6 (IL6) and interferon-γ were strongly upregulated in Opn−/− mice versus Wt mice after I–R. One explanation for these responses could be the vulnerability of the OPN-deficient hepatocyte. Indeed, the downregulation of OPN in primary and AML12 hepatocytes decreased cell viability in the basal state and sensitized AML12 hepatocytes to cell death induced by oxygen–glucose deprivation and TNFα. Further, the downregulation of OPN in AML12 hepatocytes caused a strong decrease in the expression of anti-apoptotic Bcl2 and in the ATP level. The hepatic expression of Bcl2 also decreased in Opn−/− mice versus Wt mice livers after I–R. Another explanation could be the regulation of the macrophage activity by OPN. In RAW macrophages, the downregulation of OPN enhanced iNOS expression in the basal state and sensitized macrophages to inflammatory signals, as evaluated by the upregulation of iNOS, TNFα and IL6 in response to lipopolysaccharide. In conclusion, OPN partially protects from hepatic injury and inflammation induced in this experimental model of liver I–R. This could be due to its ability to partially prevent death of hepatocytes and to limit the production of toxic iNOS-derived NO by macrophages.
Collapse
Affiliation(s)
- S Patouraux
- 1] INSERM, U1065, Centre Méditerranéen de médecine Moléculaire (C3M), Équipe 8 « Complications hépatiques de l'obésité», Nice, France [2] Université de Nice-Sophia-Antipolis, Faculté de Médecine, Nice, France [3] Centre Hospitalier Universitaire de Nice, Pôle Biologique, Hôpital Pasteur, Nice, France
| | - D Rousseau
- 1] INSERM, U1065, Centre Méditerranéen de médecine Moléculaire (C3M), Équipe 8 « Complications hépatiques de l'obésité», Nice, France [2] Université de Nice-Sophia-Antipolis, Faculté de Médecine, Nice, France
| | - A Rubio
- 1] INSERM, U1065, Centre Méditerranéen de médecine Moléculaire (C3M), Équipe 8 « Complications hépatiques de l'obésité», Nice, France [2] Université de Nice-Sophia-Antipolis, Faculté de Médecine, Nice, France
| | - S Bonnafous
- 1] INSERM, U1065, Centre Méditerranéen de médecine Moléculaire (C3M), Équipe 8 « Complications hépatiques de l'obésité», Nice, France [2] Université de Nice-Sophia-Antipolis, Faculté de Médecine, Nice, France [3] Centre Hospitalier Universitaire de Nice, Pôle Digestif, Hôpital L'Archet, Nice, France
| | - V J Lavallard
- 1] INSERM, U1065, Centre Méditerranéen de médecine Moléculaire (C3M), Équipe 8 « Complications hépatiques de l'obésité», Nice, France [2] Université de Nice-Sophia-Antipolis, Faculté de Médecine, Nice, France
| | - J Lauron
- 1] INSERM, U1065, Centre Méditerranéen de médecine Moléculaire (C3M), Équipe 8 « Complications hépatiques de l'obésité», Nice, France [2] Université de Nice-Sophia-Antipolis, Faculté de Médecine, Nice, France
| | - M-C Saint-Paul
- 1] INSERM, U1065, Centre Méditerranéen de médecine Moléculaire (C3M), Équipe 8 « Complications hépatiques de l'obésité», Nice, France [2] Université de Nice-Sophia-Antipolis, Faculté de Médecine, Nice, France [3] Centre Hospitalier Universitaire de Nice, Pôle Biologique, Hôpital Pasteur, Nice, France
| | - B Bailly-Maitre
- 1] INSERM, U1065, Centre Méditerranéen de médecine Moléculaire (C3M), Équipe 8 « Complications hépatiques de l'obésité», Nice, France [2] Université de Nice-Sophia-Antipolis, Faculté de Médecine, Nice, France
| | - A Tran
- 1] INSERM, U1065, Centre Méditerranéen de médecine Moléculaire (C3M), Équipe 8 « Complications hépatiques de l'obésité», Nice, France [2] Université de Nice-Sophia-Antipolis, Faculté de Médecine, Nice, France [3] Centre Hospitalier Universitaire de Nice, Pôle Digestif, Hôpital L'Archet, Nice, France
| | - D Crenesse
- 1] INSERM, U1065, Centre Méditerranéen de médecine Moléculaire (C3M), Équipe 8 « Complications hépatiques de l'obésité», Nice, France [2] Université de Nice-Sophia-Antipolis, Faculté de Médecine, Nice, France [3] Centre Hospitalier Universitaire de Nice, Hôpitaux Pédiatriques CHU Lenval, Nice, France
| | - P Gual
- 1] INSERM, U1065, Centre Méditerranéen de médecine Moléculaire (C3M), Équipe 8 « Complications hépatiques de l'obésité», Nice, France [2] Université de Nice-Sophia-Antipolis, Faculté de Médecine, Nice, France
| |
Collapse
|
5
|
Lentsch AB. Regulatory mechanisms of injury and repair after hepatic ischemia/reperfusion. SCIENTIFICA 2012; 2012:513192. [PMID: 24278708 PMCID: PMC3820555 DOI: 10.6064/2012/513192] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 09/12/2012] [Indexed: 06/02/2023]
Abstract
Hepatic ischemia/reperfusion injury is an important complication of liver surgery and transplantation. The mechanisms of this injury as well as the subsequent reparative and regenerative processes have been the subject of thorough study. In this paper, we discuss the complex and coordinated responses leading to parenchymal damage after liver ischemia/reperfusion as well as the manner in which the liver clears damaged cells and regenerates functional mass.
Collapse
Affiliation(s)
- Alex B. Lentsch
- Department of Surgery, College of Medicine, University of Cincinnati, 231 Albert Sabin Way, ML 0558, Cincinnati, OH 45267-0558, USA
| |
Collapse
|
6
|
Wu Q, Tang C, Zhang YJ, Jiang Y, Li XW, Wang SG, Bie P. Diazoxide Suppresses Hepatic Ischemia/Reperfusion Injury After Mouse Liver Transplantation by a BCL-2-Dependent Mechanism. J Surg Res 2011; 169:e155-66. [DOI: 10.1016/j.jss.2010.04.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2009] [Revised: 04/08/2010] [Accepted: 04/12/2010] [Indexed: 11/26/2022]
|
7
|
Junnarkar SP, Tapuria N, Mani A, Dijk S, Fuller B, Seifalian AM, Davidson BR. Attenuation of warm ischemia-reperfusion injury in the liver by bucillamine through decreased neutrophil activation and Bax/Bcl-2 modulation. J Gastroenterol Hepatol 2010; 25:1891-9. [PMID: 21092002 DOI: 10.1111/j.1440-1746.2010.06312.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND AND AIM Liver transplantation and resection surgery involve a period of ischemia and reperfusion to the liver, which initiates an inflammatory cascade resulting in liver and remote organ injury. Bucillamine is a low molecular weight thiol antioxidant that is capable of rapidly entering cells. We hypothesized that bucillamine acts by replenishing glutathione levels, thus reducing neutrophil activation, modulating Bax/Bcl-2 expression, and subsequently, attenuating the effects of warm ischemia-reperfusion injury (IRI) in the liver. METHODS The effect of bucillamine was studied in a rat model of liver IRI with 45 min of partial (70%) liver ischemia and 3 h of reperfusion. Liver injury was assessed by measuring serum transaminases (aspartate aminotransferase [AST] and alanine aminotransferase [ALT]) and liver histology. Oxidative stress was quantified by measuring F(2) isoprostane and glutathione levels. Leukocyte adhesion was assessed by intravital microscopy, and inflammatory cytokine response was assessed by measuring serum cytokine-induced neutrophil chemoattractant-1 (CINC-1) levels. Bax and Bcl-2 expression was measured by reverse transcription-polymerase chain reaction. RESULTS The model produced significant liver injury with elevated transaminases and an acute inflammatory response. Bucillamine reduced the liver injury, as indicated by reduced AST (932 ± 200.8 vs 2072.5 ± 511.79, P < 0.05). Bucillamine reduced Bax expression, serum CINC-1 levels, and neutrophil adhesion, and upregulated Bcl-2. However, bucillamine did not affect tissue glutathione levels nor the levels of oxidative stress, as measured by plasma and hepatic F(2) isoprostane levels. CONCLUSIONS Bucillamine reduces warm ischemia-reperfusion in the liver by inhibiting neutrophil activation and modulating Bax/Bcl-2 expression.
Collapse
Affiliation(s)
- Sameer P Junnarkar
- Department of Surgery, Royal Free Hospital and University College London, London, UK.
| | | | | | | | | | | | | |
Collapse
|
8
|
Kern TS, Du Y, Miller CM, Hatala DA, Levin LA. Overexpression of Bcl-2 in vascular endothelium inhibits the microvascular lesions of diabetic retinopathy. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:2550-8. [PMID: 20363911 DOI: 10.2353/ajpath.2010.091062] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recent studies on the pathogenesis of diabetic retinopathy have focused on correcting adverse biochemical alterations, but there have been fewer efforts to enhance prosurvival pathways. Bcl-2 is the archetypal member of a group of antiapoptotic proteins. In this study, we investigated the ability of overexpressing Bcl-2 in vascular endothelium to protect against early stages of diabetic retinopathy. Transgenic mice overexpressing Bcl-2 regulated by the pre-proendothelin promoter were generated, resulting in increased endothelial Bcl-2. Diabetes was induced with streptozotocin, and mice were sacrificed at 2 months of study to measure superoxide generation, leukostasis, and immunohistochemistry, and at 7 months to assess retinal histopathology. Diabetes of 2 months duration caused a significant decrease in expression of Bcl-2 in retina, upregulation of Bax in whole retina and isolated retinal microvessels, and increased generation of retinal superoxide and leukostasis. Seven months of diabetes caused a significant increase in the number of degenerate (acellular) capillaries in diabetic animals. Furthermore, overexpression of Bcl-2 in the vascular endothelium inhibited the diabetes-induced degeneration of retinal capillaries and aberrant superoxide generation, but had no effect on Bax expression or leukostasis. Therefore, overexpression of Bcl-2 in endothelial cells inhibits the capillary degeneration that is characteristic of the early stages of diabetic retinopathy, and this effect seems likely to involve inhibition of oxidative stress.
Collapse
Affiliation(s)
- Timothy S Kern
- Center for Diabetes Research, Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| | | | | | | | | |
Collapse
|
9
|
Concurrent induction of necrosis, apoptosis, and autophagy in ischemic preconditioned human livers formerly treated by chemotherapy. J Hepatol 2009; 51:881-9. [PMID: 19765849 DOI: 10.1016/j.jhep.2009.06.028] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 05/26/2009] [Accepted: 06/17/2009] [Indexed: 12/04/2022]
Abstract
BACKGROUND/AIMS Liver pathology induced by chemotherapy (steatosis or vascular injury) is known to increase the liver's sensitivity to ischemia/ reperfusion (I/R) injury, thereby increasing morbidity and mortality after liver resection. Our aim was to assess whether ischemic preconditioning (IP) reduces I/R injury to livers with chemotherapy-induced pathology. METHODS We analyzed a series of livers from patients treated with chemotherapy for colorectal cancer who underwent IP (n=30) or not (n=31) before hepatectomy. All but one of the livers exhibited chemotherapy-induced steatosis and/ or peliosis before the I/R insult. RESULTS Necrosis was less frequent (p=0.038) in livers with IP than in the others. IP had no influence on apoptosis as assessed by terminal transferase uridyl nick-end labeling (TUNEL) assay or caspase-3, -8 and -9 expression. IP induced a twofold increase in B-cell leukemia/ lymphoma 2 (Bcl-2; p<0.05), which was localized to hepatocytes of centrolobular and peliotic areas and colocalized with the autophagy protein beclin-1 in livers with IP, suggesting their coordinated role in autophagy. Increased expression of the phosphorylated Bcl-2 was observed in preconditioned livers and was associated with a decreased immunoprecipitation of beclin-1 and the increased expression of light chain 3 type II (LC3-II). The increased number of autophagic vacuoles seen by electron microscopy confirmed an association of autophagy in chemotherapy-injured livers following IP. However, the differences in protein expression were not reflected in postresection liver-injury tests or measure of patient morbidity. CONCLUSIONS IP is associated with a reduction in necrosis of hepatocytes already damaged by chemotherapy and an activation of autophagy. Bcl-2 and beclin-1 could be major targets in the regulation of cell death during I/R injury.
Collapse
|
10
|
Suzuki C, Isaka Y, Shimizu S, Tsujimoto Y, Takabatake Y, Ito T, Takahara S, Imai E. Bcl-2 protects tubular epithelial cells from ischemia reperfusion injury by inhibiting apoptosis. Cell Transplant 2008; 17:223-9. [PMID: 18468253 DOI: 10.3727/000000008783907053] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Ischemia followed by reperfusion leads to severe organ injury and dysfunction. Inflammation is considered to be the most important cause of graft dysfunction in kidney transplantation subjected to ischemia. The mechanism that triggers inflammation and renal injury after ischemia remains to be elucidated; however, cellular stress may induce apoptosis during the first hours and days after transplantation, which might play a crucial role in early graft dysfunction. Bcl-2 is known to inhibit apoptosis induced by the etiological factors promoting ischemia and reperfusion injury. Accordingly, we hypothesized that an augmentation of the antiapoptotic factor Bcl-2 may thus protect tubular epithelial cells by inhibiting apoptosis, thereby ameliorating the subsequent tubulointerstitial injury. We examined the effects of Bcl-2 overexpression on ischemia-reperfusion (I/R) injury using Bcl-2 transgenic mice (Bcl-2 TG) and their wild-type littermates (WT). To investigate the effects of I/R injury, the left renal artery and vein were clamped for 45 min, followed by reperfusion for 0-96 h. Bcl-2 TG exhibited decreased active caspase protein in the tubular cells, which led to a reduction in TUNEL-positive apoptotic cells. Consequently, interstitial fibrosis and phenotypic changes were ameliorated in Bcl-2 TG. In conclusion, Bcl-2 augmentation protected renal tubular epithelial cells from I/R, and subsequent interstitial injury by inhibiting tubular apoptosis.
Collapse
Affiliation(s)
- Chigure Suzuki
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Hepatic ischemia/reperfusion (I/R) results in a chain of events that culminate in liver dysfunction and injury. I/R injury is characterized by early oxidant stress followed by an intense acute inflammatory response that involves the transcription factor nuclear factor (NF)-kappaB. In addition to being a primary regulator of pro-inflammatory gene expression, NF-kappaB may play other roles in the hepatic response to I/R, such as mediating the expression of anti-apoptotic genes, preventing the accumulation of damaging reactive oxygen species, facilitating liver regeneration, and mediating the protective effects of ischemic preconditioning. In the present study, we review the diverse functions of NF-kappaB during hepatic I/R injury.
Collapse
Affiliation(s)
- Thomas Shin
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio, USA
| | | | | |
Collapse
|
12
|
Effect of Ligustrazine on Chronic Allograft Nephropathy in Rats. Transplant Proc 2007; 39:3415-9. [DOI: 10.1016/j.transproceed.2007.04.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2006] [Revised: 04/01/2007] [Accepted: 04/06/2007] [Indexed: 10/22/2022]
|
13
|
Surendran S, Kim SH, Jee BK, Ahn SH, Gopinathan P, Han CW. Anti-apoptotic Bcl-2 gene transfection of human articular chondrocytes protects against nitric oxide-induced apoptosis. ACTA ACUST UNITED AC 2006; 88:1660-5. [PMID: 17159184 DOI: 10.1302/0301-620x.88b12.17717] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We stably transfected early passage chondrocytes with an anti-apoptotic Bcl-2 gene in vitro using a retrovirus vector. Samples of articular cartilage were obtained from 11 patients with a mean age of 69 years (61 to 75) who were undergoing total knee replacement for osteoarthritis. The Bcl-2-gene-transfected chondrocytes were compared with non-transfected and lac-Z-gene-transfected chondrocytes, both of which were used as controls. All three groups of cultured chondrocytes were incubated with nitric oxide (NO) for ten days. Using the Trypan Blue exclusion assay, an enzyme-linked immunosorbent assay and flow cytometric analysis, we found that the number of apoptotic chondrocytes was significantly higher in the non-transfected and lac-Z-transfected groups than in the Bcl-2-transfected group (p < 0.05). The Bcl-2-transfected chondrocytes were protected from NO-induced impairment of proteoglycan synthesis. We conclude that NO-induced chondrocyte death involves a mechanism which appears to be subject to regulation by an anti-apoptotic Bcl-2 gene. Therefore, Bcl-2 gene therapy may prove to be of therapeutic value in protecting human articular chondrocytes.
Collapse
Affiliation(s)
- S Surendran
- Department of Orthopaedic Surgery, St Mary's Hospital, Daejeon College of Medicine, The Catholic University of Korea, Daejeon, Korea
| | | | | | | | | | | |
Collapse
|
14
|
Horiba M, Kadomatsu K, Yasui K, Lee JK, Takenaka H, Sumida A, Kamiya K, Chen S, Sakuma S, Muramatsu T, Kodama I. Midkine plays a protective role against cardiac ischemia/reperfusion injury through a reduction of apoptotic reaction. Circulation 2006; 114:1713-20. [PMID: 17015789 DOI: 10.1161/circulationaha.106.632273] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Midkine (MK) is a heparin-binding growth factor involved in diverse biological phenomena, eg, neural survival, carcinogenesis, and tissue repair. MK could have a protective action against ischemia/reperfusion (I/R) injury in the heart, because MK was shown to have cytoprotective activity in cultured neurons and tumor cells. We investigated this hypothesis in mice with and without genetic MK deletion. METHODS AND RESULTS Myocardial injury after I/R was produced by transient occlusion of coronary arteries. In wild-type (Mdk+/+) mice, MK expression was increased after I/R in the periinfarct area. Infarct size/area at risk 24 hours after I/R in MK-deficient (Mdk-/-) mice was larger than in Mdk+/+ mice (55.4+/-9.1% versus 32.1+/-5.3%, P<0.05). Terminal dUTP nick end-labeling-positive myocyte population in the periinfarct area in Mdk-/- mice was higher than in Mdk+/+ mice (6.8+/-0.9% versus 3.2+/-0.6%, P<0.05). Left ventricular fractional shortening 24 hours after I/R in Mdk-/- mice was significantly less than that in Mdk+/+ mice (34.3+/-4.4% versus 50.8+/-2.1%, P<0.05). Supplemental application of MK protein to left ventricle of Mdk-/- mice at the time of I/R resulted in reduction of the infarct size. Application of exogenous MK to cultured cardiomyocytes resulted in increased Bcl-2 expression and decreased apoptosis after hypoxia/reoxygenation. CONCLUSIONS These results suggest that MK plays a protective role against I/R injury, most likely through a prevention of apoptotic reaction. MK is a potentially important new molecular target for treatment of ischemic heart disease.
Collapse
Affiliation(s)
- Mitsuru Horiba
- Department of Cardiovascular Research, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
O'Connor KC, Muhitch JW, Lacks DJ, Al-Rubeai M. Modeling suppression of cell death by Bcl-2 over-expression in myeloma NS0 6A1 cells. Biotechnol Lett 2006; 28:1919-24. [PMID: 16988783 DOI: 10.1007/s10529-006-9177-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Accepted: 07/26/2006] [Indexed: 10/24/2022]
Abstract
A novel population-balance model was employed to evaluate the suppression of cell death in myeloma NS0 6A1 cells metabolically engineered to over-express the apoptotic suppressor Bcl-2. The model is robust in its ability to simulate cell population dynamics in batch suspension culture and in response to thymidine-induced growth inhibition: 89% of simulated cell concentrations are within two standard deviations of experimental data. Kinetic rate constants in model equations suggest that Bcl-2 over-expression extends culture longevity from 6 days to at least 15 days by suppressing the specific rate of early apoptotic cell formation by more than 6-fold and necrotic cell formation by at least 3-fold, despite nearly a 3-fold decrease in initial cell growth rate and no significant change in the specific rate of late apoptotic cell formation. This computational analysis supports a mechanism in which Bcl-2 is a common mediator of early apoptotic and necrotic events occurring at rates that are dependent on cellular factors accumulating over time. The model has current application to the rational design of cell cultures through metabolic engineering for the industrial production of biopharmaceuticals.
Collapse
Affiliation(s)
- Kim C O'Connor
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, LA 70118, USA
| | | | | | | |
Collapse
|
16
|
Takushi Y, Shiraishi M, Nozato E, Toyoda A, Nishimaki T. Expression of Anti-Apoptotic Protein, Bcl-2, in Liver Regeneration After a Partial Hepatectomy. J Surg Res 2006; 134:93-101. [PMID: 16464469 DOI: 10.1016/j.jss.2005.11.586] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2005] [Revised: 11/22/2005] [Accepted: 11/28/2005] [Indexed: 11/20/2022]
Abstract
BACKGROUND Although Bcl-2 is well known to have anti-apoptotic activities in vitro and in vivo, the role of Bcl-2 relating to liver regeneration remains controversial. The aim of this study was to document the effect of Bcl-2 expression on liver regeneration in rats undergoing a partial hepatectomy. MATERIAL AND METHODS Adult male Wistar rats (n = 4/group) at 72 h before undergoing a 70% partial hepatectomy (PH) were administered 1 x 10(9) plaque-forming units of adenovirus vector encoding either human Bcl-2 (group 1) or LacZ (group 2) intravenously and were sacrificed at 0, 12 h, and at 1, 2, 3, 7, 14, and 21 days postoperatively. In group 3, normal saline was injected instead of adenovirus vector. Liver regeneration was monitored by measuring the restituted liver mass and proliferating cell nuclear antigen (PCNA) immunostaining. The incidence of apoptosis in the liver was analyzed by the immunohistochemical detection of single-stranded DNA at 14 and 21 days postoperatively. RESULTS The restituted liver mass showed significantly higher values in group 1 (26.1 +/- 7.2%) than in group 2 (14.7 +/- 6.8%) and 3 (13.6 +/- 5.0%) at 1 day after PH (P < 0.05). The PCNA labeling index was significantly higher in group 1 (47.2 +/- 9.9%) than in groups 2 (19.0 +/- 7.8%) and 3 (19.2 +/- 15.2%) at 1 day after a partial hepatectomy (P < 0.05). The hepatocyte growth factor (HGF) mRNA expression was significantly lower in group 1 than in group 2 at 12 h after PH (P < 0.05). The number of single-stranded DNA-positive cells decreased significantly more in group 1 (5.67 +/- 1.53 positive cells/10 fields per tissue) than those in group 2 (18.33 +/- 7.57 positive cells/10 fields per tissue) at 14 days after PH. CONCLUSIONS These results thus indicated that an overexpression of anti-apoptotic protein Bcl-2 does not necessarily have an anti-apoptotic effect on liver regeneration but appears to have a pro-proliferative effect in the early phase of liver regeneration.
Collapse
Affiliation(s)
- Yasukatsu Takushi
- The First Department of Surgery, University of the Ryukyus, School of Medicine, Okinawa, Japan.
| | | | | | | | | |
Collapse
|
17
|
Barrier A, Olaya N, Chiappini F, Roser F, Scatton O, Artus C, Franc B, Dudoit S, Flahault A, Debuire B, Azoulay D, Lemoine A. Ischemic preconditioning modulates the expression of several genes, leading to the overproduction of IL-1Ra, iNOS, and Bcl-2 in a human model of liver ischemia-reperfusion. FASEB J 2006; 19:1617-26. [PMID: 16195370 DOI: 10.1096/fj.04-3445com] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Ischemia triggers an inflammatory response that precipitates cell death during reperfusion. Several studies have shown that tissues are protected by ischemic preconditioning (IP) consisting of 10 min of ischemia followed by 10 min of reperfusion just before ischemia. The molecular basis of this protective effect is poorly understood. We used cDNA arrays (20K) to compare global gene expression in liver biopsies from living human liver donors who underwent IP (n=7) or not (n=7) just before liver devascularization. Microarray data were analyzed using pairedt test with a type I error rate fixed at alpha = 2.5 10(6) (Bonferroni correction). We found that 60 genes were differentially expressed (36 over- and 24 underexpressed in preconditioning group). After IP, the most significantly overexpressed gene was IL-1Ra. This was confirmed by immunoblotting. Differentially expressed were genes involved in apoptosis (NOD2, ephrin-A1, and calpain) and in the carbohydrate metabolism. A significant increase in the amount of the anti-apoptotic protein Bcl-2 in preconditioned livers but no change in the cleavage of procaspase-3, -8, and -9 was observed. We also observed an increase in the amount in the inducible nitric oxide synthase. Therefore, the benefits of IP may be associated with the overproduction of IL-1Ra, Bcl-2, and NO countering the proinflammatory and proapoptotic effects generated during ischemia-reperfusion.
Collapse
Affiliation(s)
- Alain Barrier
- Inserm 602; Service de Biochimie et Biologie Moléculaire; Hôpital Universitaire Paul Brousse; Université Paris-Sud/XI, Villejuif Cedex; Assistance Publique-Hôpitaux de Paris, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Death of hepatocytes and other hepatic cell types is a characteristic feature of liver diseases as diverse as cholestasis, viral hepatitis, ischemia/reperfusion, liver preservation for transplantation and drug/toxicant-induced injury. Cell death typically follows one of two patterns: oncotic necrosis and apoptosis. Necrosis is typically the consequence of acute metabolic perturbation with ATP depletion as occurs in ischemia/reperfusion and acute drug-induced hepatotoxicity. Apoptosis, in contrast, represents the execution of an ATP-dependent death program often initiated by death ligand/death receptor interactions, such as Fas ligand with Fas, which leads to a caspase activation cascade. A common event leading to both apoptosis and necrosis is mitochondrial permeabilization and dysfunction, although the mechanistic basis of mitochondrial injury may vary in different settings. Prevention of these modes of cell death is an important target of therapy, but controversies still exist regarding which mode of cell death predominates in various forms of liver disease and injury. Resolution of these controversies may come with the recognition that apoptosis and necrosis frequently represent alternate outcomes of the same cellular pathways to cell death, especially for cell death mediated by mitochondrial permeabilization. An understanding of processes leading to liver cell death will be important for development of effective interventions to prevent hepatocellular death leading to liver failure and to promote cancer and stellate cell death in malignancy and fibrotic disease.
Collapse
Affiliation(s)
- Harmeet Malhi
- Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | | | | |
Collapse
|
19
|
Kawashita Y, Fujioka H, Ohtsuru A, Kaneda Y, Kamohara Y, Kawazoe Y, Yamashita S, Kanematsu T. The efficacy and safety of gene transfer into the porcine liver in vivo by HVJ (Sendai virus) liposome. Transplantation 2006; 80:1623-9. [PMID: 16371934 DOI: 10.1097/01.tp.0000184447.88283.f3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Gene transfer systems using viral vectors are efficient; however, most viral vectors also tend to evoke immunologic reactions, thereby clinically causing serial side effects. HVJ-liposome vector is a hybrid vector consisting of liposome and an inactivated Sendai virus (Hemmagglutinating Virus of Japan [HVJ]), which has been reported to be less immunogenic and can also be repeatedly administered. We examined the usefulness of this vector for hepatic gene therapy in a pig model. METHODS Genes encoding beta-galactosidase and luciferase were used as reporter genes. The pigs were injected with the reporter gene loaded-HVJ-liposome into the portal vein under total vascular exclusion of the liver. The transfection efficiencies were then assessed by beta-galactosidase staining, a luciferase assay, and RT-PCR for LacZ mRNA. Biochemical and histologic analyses were performed to evaluate tissue toxicity after gene transfer. RESULTS The luciferase gene expression in the liver reached its highest level at 7 days after transfection. It continued to be detected up to 28 days after transfection, while all pigs remained healthy throughout the observation period. The transfection efficiency was 15% in the hepatocytes according to beta-galactosidase staining. Extrahepatic transgene expression was slightly observed in the lung and kidney, but not in the spleen or ovary. CONCLUSIONS These data suggest for the first time that the use of the HVJ-liposome vector is a safe and feasible modality for liver-directed gene transfer in pigs, and it might therefore be suitable for clinical gene therapy trials.
Collapse
Affiliation(s)
- Yujo Kawashita
- Department of Transplantation and Digestive Surgery, Graduate School of Biomedical Science, Nagasaki University School of Medicine, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Tan PH, Chan CLH, Chan C, George AJT. The evolving role of gene-based treatment in surgery. Br J Surg 2005; 92:1466-80. [PMID: 16273530 DOI: 10.1002/bjs.5181] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Abstract
Background
The completion of the sequencing of the human genome in 2003 marked the dawn of a new era of human biology and medicine. Although these remarkable scientific advances improve the understanding of human biology, the question remains how this rapidly expanding knowledge of functional genomics affects the role of surgeons. This article reviews the potential therapeutic application of gene therapy for various surgical conditions.
Methods
The core of this review was derived from a Medline database literature search.
Results and conclusion
The currently available vectors in the field of gene therapy and their limitations for clinical applications were analysed. The achievements of gene therapy in clinical trials and the future ramifications for surgery were also explored. Whether gene therapy takes a major role in surgical practice will depend greatly on the success of future vector development. Advances in viral vector technology to reduce the inflammatory effect, and improvements in the efficiency of gene delivery using non-viral vector technology, would allow this form of therapy to become more clinically applicable.
Collapse
Affiliation(s)
- P H Tan
- Department of Surgery, Stoke Mandeville Hospital, South Buckinghamshire NHS Trust, Aylesbury, UK.
| | | | | | | |
Collapse
|
21
|
Yanada S, Saitoh Y, Kaneda Y, Miwa N. Cytoprotection by bcl-2 gene transfer against ischemic liver injuries together with repressed lipid peroxidation and increased ascorbic acid in livers and serum. J Cell Biochem 2005; 93:857-70. [PMID: 15449323 DOI: 10.1002/jcb.20221] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The maximum gene exhibition was shown to be achieved at 48 h after transfection with human bcl-2 (hbcl-2) genes built in an SV40 early promoter-based plasmid vector and HVJ-liposome for cultured rat hepatocytes. The similar procedure of hbcl-2 transfection was therefore conducted for livers in rats via the portal vein, and after 48 h followed by post-ischemic reperfusion (I/R) operation for some hepatic lobes. The I/R-induced hepatic injuries were in situ observed as both cell morphological degeneration and cellular DNA strand cleavages around capillary vessels of the ischemic liver lobes as detected by HE stain and TUNEL assay, and were biochemically observed as release of two hepatic marker enzymes AST and ALT into serum. All the I/R-induced injuries examined were appreciably repressed for rats transfected with hbcl-2; hbcl-2 was expressed in hepatocytes around the capillaries of ischemic regions such as the median lobe and the left lobe, but scarcely around those of non-ischemic regions. Thus cytoprotection against I/R-induced injuries may be attributed to the I/R-promoted expression of transferred hbcl-2 genes. The possibility was examined firstly by methylphenylindole method, which showed that I/R-enhanced lipid peroxidation in the reference vector-transfected livers were markedly repressed in the hbcl-2-transfected livers. Contents of ascorbic acid (Asc) in serum and livers of hbcl-2-transfected rats were enriched, unexpectedly, versus those of non-transfected rats, and were as abundant as 1.90-fold and 1.95- to 2.60-fold versus those in the pre-ischemic state, respectively. After I/R, an immediate decline in serum Asc occurred in hbcl-2-transfectants, and was followed by prompt restoration up to the pre-ischemic Asc levels in contrast to the unaltered lower Asc levels in non-transfectants except a transient delayed increase. Hepatic Asc contents were also diminished appreciably at the initial stage after I/R in the ischemic lobes of hbcl-2-transfectants, which however retained more abundant Asc versus non-transfectants especially at the initial I/R stage when scavenging of the oxidative stress should be most necessary for cytoprotection. The results showed a close correlation between cytoprotection by exogenously transferred hbcl-2 and repressive effects on the lipid peroxidation associated with Asc consumption or redistribution.
Collapse
Affiliation(s)
- Shinobu Yanada
- Laboratory of Cell Death Control BioTechnology, Hiroshima Prefectural University School of BioSciences, Hiroshima, Japan
| | | | | | | |
Collapse
|
22
|
Mueller THJ, Kienle K, Beham A, Geissler EK, Jauch KW, Rentsch M. Caspase 3 inhibition improves survival and reduces early graft injury after ischemia and reperfusion in rat liver transplantation. Transplantation 2004; 78:1267-73. [PMID: 15548962 DOI: 10.1097/01.tp.0000141095.06273.10] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Apoptosis plays a crucial role after ischemia-reperfusion in organ transplantation. It is executed by caspases and influenced by the rheostat of pro- and anti-apoptotic proteins of the bcl-2 family. This study investigated the effect of specific inhibition of caspases 3 and 7 on graft function, survival, and hepatic bcl-2 levels after liver transplantation. METHODS Lewis rats underwent syngeneic orthotopic liver transplantation after 16 hr of cold graft storage (in University of Wisconsin solution). Livers of donor animals treated with D(OMe)E(OMe)VD(OMe)-fluoromethylketone (specific inhibitor of apoptosis executor caspases 3 and 7), and appropriate control groups, were investigated. Early graft injury was quantified by measurement of bile flow and determination of microvascular graft injury by using in vivo fluorescence microscopy. Apoptosis and its regulation were examined by terminal deoxynucleotide transferase-mediated dUTP nick-end labeling staining and Western blot analysis of cell death effectors, respectively. RESULTS After specific in vivo caspase inhibition, Western blot analysis revealed inhibition of caspase-induced cleavage of poly-ADP-ribose-polymerase. Inhibition of caspases 3 and 7 resulted in a significantly decreased number of apoptotic endothelial cells and improved microvascular perfusion. A cell protective effect was also suggested by an increase of bcl-2 levels at 7 days. Most important, specific caspase blockade resulted in improved rat survival after liver transplantation. CONCLUSION Specific inhibition of apoptosis executor caspases effectively reduces graft ischemia-reperfusion injury and improves survival in liver transplantation. Better tissue preservation after caspase inhibition correlates with reduced apoptosis execution, improved microvascular perfusion, and bcl-2 up-regulation. Therefore, specific caspase inhibition represents a promising regimen for clinical use in liver transplantation.
Collapse
Affiliation(s)
- Thomas H J Mueller
- Department of Surgery, University of Regensburg, 93053 Regensburg, Germany
| | | | | | | | | | | |
Collapse
|
23
|
Feng L, Xiong Y, Cheng F, Zhang L, Li S, Li Y. Effect of ligustrazine on ischemia-reperfusion injury in murine kidney. Transplant Proc 2004; 36:1949-51. [PMID: 15518708 DOI: 10.1016/j.transproceed.2004.07.050] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Ischemia-reperfusion (I/R) injury is unavoidable in cadaveric renal transplantation. It contributes to acute rejection and chronic allograft dysfunction. Studies have shown that Ligustrazine, a purified and chemically identified component of a Chinese herbal remedy, is a potent blocker of vasoconstriction and has strong effects to scavenge oxygen free radicals. Since warm I/R is potentially more damaging than cold storage, we investigated the possible protective effect of Ligustrazine on warm I/R in mice. METHODS Unilaterally nephrectomized C57BL/6 male mice were subjected to 50 minutes of left renal ischemia. Group I were sham-operated animals; group II, nontreated animals (saline, iP 30 minutes before I/R); and group III, Ligustrazine-treated animals (80 mg/kg, iP 30 minutes before I/R). Mice were sacrificed 24 hours postreperfusion. Serum creatinine, blood urea nitrogen, kidney malondialdehyde (MDA)level, and superoxide dismutase (SOD) were determined as well as examining the kidneys histologically with immunohistochemistry for Bcl-2, and ICAM-1. RESULTS I/R produced a six fold increase in creatinine and urea nitrogen levels in group II. Ligustrazine halved the increase, as well as attenuated the necrosis and apoptosis in the tubules (P < .01). Ligustrazine decreased MDA levels and ameliorated the down-regulation of SOD activity. Bcl-2 was up-regulated following I/R, especially in the Ligustrazine-treated group (P < .01). The up-regulation of ICAM-1 was greatly diminished by Ligustrazine (P < .01). CONCLUSION These findings suggest that Ligustrazine reduces the renal dysfunction associated with warm I/R of the kidney.
Collapse
Affiliation(s)
- L Feng
- Lab of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
24
|
Sugioka R, Shimizu S, Funatsu T, Tamagawa H, Sawa Y, Kawakami T, Tsujimoto Y. BH4-domain peptide from Bcl-xL exerts anti-apoptotic activity in vivo. Oncogene 2003; 22:8432-40. [PMID: 14627984 DOI: 10.1038/sj.onc.1207180] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The Bcl-2 family of proteins regulates apoptosis chiefly by controlling mitochondrial membrane permeability. It has previously been shown that the BH4 domain of Bcl-2/Bcl-xL is essential for the prevention of apoptotic mitochondrial changes, including the release of cytochrome c and apoptotic cell death. We have previously reported that BH4 peptide fused to the protein transduction domain of HIV-1 TAT protein (TAT-BH4) significantly inhibits etoposide-induced apoptosis in a cell line. This time, we investigated whether TAT-BH4 peptide was cytoprotective in ex vivo and in vivo rodent models. Intraperitoneal injection of TAT-BH4 peptide greatly inhibited X-ray-induced apoptosis in the small intestine of mice and partially suppressed Fas-induced fulminant hepatitis. In addition, this peptide markedly suppressed heart failure after ischemia-reperfusion injury in isolated rat heart, probably by preventing mitochondrial dysfunction. These findings demonstrate that TAT-BH4 peptide exerts anti-apoptotic activity both in vivo and ex vivo, and imply that it may be a useful therapeutic agent for diseases involving mitochondrial dysfunction and apoptosis.
Collapse
Affiliation(s)
- Rie Sugioka
- Department of Post-Genomics & Diseases, Osaka University Medical School, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Warm and cold hepatic ischemia followed by reperfusion leads to necrotic cell death (oncosis), which often occurs within minutes of reperfusion. Recent studies also suggest a large component of apoptosis after ischemia/reperfusion. Here, we review the mechanisms underlying adenosine triphosphate depletion-dependent oncotic necrosis and caspase-dependent apoptosis, with emphasis on shared features and pathways. Although apoptosis causes internucleosomal DNA degradation that can be detected by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling and related assays, DNA degradation also occurs after oncotic necrosis and leads to pervasive terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling staining far in excess of that for apoptosis. Similarly, although apoptosis can occur in a physiological setting without inflammation, in pathophysiological settings apoptosis frequently induces inflammation because of the onset of secondary necrosis and stimulation of cytokine and chemokine formation. In liver, the mitochondrial permeability transition represents a shared pathway that leads to both oncotic necrosis and apoptosis. When the mitochondrial permeability transition causes severe adenosine triphosphate depletion, plasma membrane failure and necrosis ensue. If adenosine triphosphate is preserved, at least in part, cytochrome c release after the mitochondrial permeability transition activates caspase-dependent apoptosis. Mitochondrial permeability transition-dependent cell death illustrates the concept of necrapoptosis, whereby common pathways lead to both necrosis and apoptosis. In conclusion, oncotic necrosis and apoptosis can share features and mechanisms, which sometimes makes discrimination between the 2 forms of cell death difficult. However, elucidation of critical cell death pathways under clinically relevant conditions will show potentially important therapeutic intervention strategies in hepatic ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Hartmut Jaeschke
- Liver Research Institute, University of Arizona, College of Medicine, Room 6309, 1501 N. Campbell Avenue, Tucson, Arizona, USA.
| | | |
Collapse
|
26
|
Sun Z, Klein AS, Radaeva S, Hong F, El-Assal O, Pan HN, Jaruga B, Batkai S, Hoshino S, Tian Z, Kunos G, Diehl AM, Gao B. In vitro interleukin-6 treatment prevents mortality associated with fatty liver transplants in rats. Gastroenterology 2003; 125:202-15. [PMID: 12851884 DOI: 10.1016/s0016-5085(03)00696-6] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Orthotopic liver transplantation is currently the only curative therapy for chronic end-stage liver disease and acute liver failure. However, a scarcity of cadaveric donors has led to a critical shortage of organs available for transplant. This is further complicated by the prevalence of steatosis in about 13%-50% of donor livers, which is associated with a high risk of dysfunction and primary nonfunction. METHODS Steatotic Zucker rat livers and livers from alcohol-fed rats were transplanted into lean control rats. Liver injury, activation of survival signals, and hepatic microcirculation were compared in nontreated and interleukin-6 (IL-6)-treated steatotic isografts. RESULTS IL-6 pretreatment of steatotic Zucker rat liver isografts dramatically reduces mortality and liver injury following transplantation. Reperfusion after transplantation induces significant sinusoidal endothelial cell necrapoptosis in steatotic Zucker rat liver isografts, which is prevented by in vitro IL-6 pretreatment. IL-6 treatment activates cell survival signal transducer and activator of transcription factor 3 (STAT3) in hepatocytes and sinusoidal endothelial cells. Laser Doppler imaging and microsphere analyses demonstrate that IL-6 treatment markedly improves hepatic microcirculation, which is impaired in steatotic Zucker rat liver transplants. Finally, in vitro IL-6 treatment of donor livers also markedly reduces mortality associated with fatty liver transplants from alcohol-fed rats. CONCLUSIONS IL-6 induces hepatoprotection of steatotic liver isografts via preventing sinusoidal endothelial cell necrapoptosis and consequent amelioration of hepatic microcirculation, and protecting against hepatocyte death. IL-6 pretreatment of steatotic livers may render such allografts useable for clinical transplantation.
Collapse
Affiliation(s)
- Zhaoli Sun
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Mischiati C, Puviani AC, Brogli M, Guarniero S, Sereni A, Breda L, Ricci D, Galavotti D, Morsiani E, Gambari R. Modulation of pro-apoptotic (Bax) and anti-apoptotic (Bcl-2) gene expression in isolated porcine hepatocytes perfused within a radial-flow bioreactor after low-temperature storing. Int J Artif Organs 2003; 26:139-48. [PMID: 12653348 DOI: 10.1177/039139880302600208] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Due to the scarcity of available human livers, porcine hepatocytes are currently being evaluated as a xenogeneic cell source for extracorporeal bioartificial liver (BAL). Hypothermic storage of isolated porcine hepatocytes could support stocking of cell-loaded bioreactors for BAL use and may provide bioreactors ready to be used at the patient's bedside. For the development of this technology, it is of utmost importance to ensure cell viability and differentiated functions after low-temperature storage and following warm reperfusion. We compared cell viability, functional activity and apoptosis in isolated porcine hepatocytes which were perfused within a radial-flow bioreactor (RFB), stored at 4 degrees C and then reperfused at 37 degrees C. RFBs were loaded with 8 x 10(9), > or = 90% viable hepatocytes at 37 degrees C for 3 h. RFBs were then flushed with 4 degrees C University of Wisconsin solution (UW) and subsequently stored for 24 h or 48 h. RFBs were then reperfused for 8 h with recirculating medium plus serum at 37 degrees C . Cytochrome P450 (CYP) activity was studied before and after cold storage by means of monoethylglycinexylide (MEGX) detection in the effluent medium, after repeated lidocaine injections. After reperfusion experiments, hepatocytes were harvested for total RNA isolation. Reverse transcriptase-polymerase chain reaction (RT-PCR) was used in order to amplify specific mRNAs for Bcl-2 and Bax genes, by using appropriate primers; beta-actin primers were used as control. Total RNA was extracted by northern blotting analysis and for Bcl-2, Bax and beta-actin RNA messenger detection, RT-PCR amplification was used. Freshly isolated hepatocytes perfused into the RFB showed a progressive increase of MEGX while a loss in Bax expression was paralleled by an increase in Bcl-2 expression, in comparison to starting hepatocytes. After 4 degrees C storage and warm reperfusion, MEGX production was preserved in 24 h- and 48 h-stored bioreactors as well as a sharp increase of Bcl-2 and a decrease of Bax mRNAs. Our study suggests that refrigeration of hepatocyte-bioreactors is a suitable strategy to maintain both viability and function of isolated hepatocytes, for up to 48 h a time-length that is compatible with long-distance delivery of ready-to-use bioreactors.
Collapse
Affiliation(s)
- C Mischiati
- Department of Biochemistry and Molecular Biology, University of Ferrara, Ferrara, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Giatromanolaki A, Sivridis E, Maltezos E, Athanassou N, Papazoglou D, Gatter KC, Harris AL, Koukourakis MI. Upregulated hypoxia inducible factor-1alpha and -2alpha pathway in rheumatoid arthritis and osteoarthritis. Arthritis Res Ther 2003; 5:R193-201. [PMID: 12823854 PMCID: PMC165055 DOI: 10.1186/ar756] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2002] [Revised: 02/26/2003] [Accepted: 03/10/2003] [Indexed: 01/21/2023] Open
Abstract
The pathogenesis of rheumatoid arthritis (RA) and osteoarthritis (OA) remains obscure, although angiogenesis appears to play an important role. We recently confirmed an overexpression of two angiogenic factors, namely vascular endothelial growth factor (VEGF) and platelet-derived endothelial cell growth factor (PD-ECGF), by the lining and stromal cells of the synovium in both conditions. Because hypoxia inducible factor (HIF)-1alpha and HIF-2alpha are essential in regulating transcription of the VEGF gene, active participation of HIF-alpha molecules in the pathogenesis of these arthritides is anticipated. We investigated the immunohistochemical expression of HIF-1alpha and HIF-2alpha in the synovium of 22 patients with RA, 34 patients with OA and 22 'normal' nonarthritic individuals, in relation to VEGF, VEGF/KDR (kinase insert domain protein receptor) vascular activation, PD-ECGF and bcl-2. A significant cytoplasmic and nuclear overexpression of HIF-1alpha and HIF-2alpha was noted in the synovial lining and stromal cells of both diseases relative to normal. Overexpression of HIF-alphas was related to high microvessel density, high PD-ECGF expression and high VEGF/KDR receptor activation, suggesting HIF-alpha-dependent synovial angiogenesis in OA. By contrast, the activation of the angiogenic VEGF/KDR pathway was persistently increased in RA, as indeed was microvessel density and the expression of PD-ECGF, irrespective of the extent of HIF-alpha expression, indicating a cytokine-dependent angiogenesis. In all cases, the VEGF/KDR vascular activation was significantly lower in OA than in RA, suggesting a relative failure of the HIF-alpha pathway to effectively produce a viable vasculature for OA, which is consistent with the degenerative nature of the disease. The activation of the HIF-alpha pathway occurs in both RA and OA, although for unrelated reasons.
Collapse
Affiliation(s)
| | - Efthimios Sivridis
- Department of Pathology, Democritus University of Thrace, Alexandroupolis, Greece
| | - Efstratios Maltezos
- Department of Internal Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Nick Athanassou
- Department of Pathology, Nuffield Department of Clinical Laboratory Sciences, John Radcliffe Hospital, Oxford, UK
| | - Dimitrios Papazoglou
- Department of Internal Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Kevin C Gatter
- Department of Pathology, Nuffield Department of Clinical Laboratory Sciences, John Radcliffe Hospital, Oxford, UK
| | - Adrian L Harris
- Cancer Research UK, Molecular Oncology Laboratories, Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, UK
| | - Michael I Koukourakis
- Department of Radiotherapy/Oncology Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
29
|
Jaeschke H. Reperfusion injury after warm ischemia or cold storage of the liver: role of apoptotic cell death. Transplant Proc 2002; 34:2656-8. [PMID: 12431564 DOI: 10.1016/s0041-1345(02)03464-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- H Jaeschke
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
30
|
Peralta C, Perales JC, Bartrons R, Mitchell C, Gilgenkrantz H, Xaus C, Prats N, Fernández L, Gelpí E, Panés J, Roselló-Catafau J. The combination of ischemic preconditioning and liver Bcl-2 overexpression is a suitable strategy to prevent liver and lung damage after hepatic ischemia-reperfusion. THE AMERICAN JOURNAL OF PATHOLOGY 2002; 160:2111-22. [PMID: 12057915 PMCID: PMC1850813 DOI: 10.1016/s0002-9440(10)61160-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The present study evaluates the effectiveness of ischemic preconditioning and Bcl-2 overexpression against the liver and lung damage that follow hepatic ischemia-reperfusion and investigates the underlying protective mechanisms. Preconditioning and Bcl-2, respectively, reduced the increased tumor necrosis factor (TNF) and macrophage inflammatory protein-2 (MIP)-2 levels observed after hepatic reperfusion. Bcl-2 overexpression or anti-MIP-2 pretreatment seems to be more effective than preconditioning or anti-TNF pretreatment against inflammatory response, microcirculatory disorders, and subsequent hepatic ischemia-reperfusion injury. Furthermore, each one of these strategies individually was unable to completely inhibit hepatic injury. The combination of preconditioning and Bcl-2 overexpression as well as the combined anti-TNF and anti-MIP-2 pretreatment totally prevented hepatic injury, whereas the benefits of preconditioning and Bcl-2 were abolished by TNF and MIP-2. In contrast to preconditioning, Bcl-2 did not modify lung damage induced by hepatic reperfusion. This could be explained by the differential effect of both treatments on TNF release. Anti-TNF therapy or preconditioning, by reducing TNF release, reduced pulmonary inflammatory response, whereas the benefits of preconditioning on lung damage were abolished by TNF. Thus, the induction of both Bcl-2 overexpression in liver and preconditioning, as well as pharmacological strategies that simulated their benefits, such as anti-TNF and anti-MIP-2 therapies, could be new strategies aimed to reduce lung damage and inhibit the hepatic injury associated with hepatic ischemia-reperfusion.
Collapse
Affiliation(s)
- Carmen Peralta
- Department of Medical Bioanalysis, Instituto de Investigaciones Biomédicas de Barcelona, Consejo Superior de Investigaciones Científicas, Institut d'Investigacions Biomèdiques August Pi i Sunyer, CSIC-IDIBAPS, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Frenzel J, Richter J, Eschrich K. Fructose inhibits apoptosis induced by reoxygenation in rat hepatocytes by decreasing reactive oxygen species via stabilization of the glutathione pool. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1542:82-94. [PMID: 11853882 DOI: 10.1016/s0167-4889(01)00169-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Oxidative stress induces apoptosis in liver parenchymal cells. The present study demonstrates that the substitution of fructose for glucose as sole carbon source in the incubation medium reduced apoptosis due to reoxygenation up to 50% in cultured rat hepatocytes. This anti-apoptotic action of fructose cannot be explained by the effects of this sugar on the intracellular ATP concentration and the ATP/ADP ratio. Rather, the suppression of apoptosis by fructose seems to be a consequence of remarkably higher intracellular levels of glutathione observed during reoxygenation in fructose-fed hepatocytes in contrast to glucose-fed ones. With fructose as substrate, the generation of excess reactive oxygen species (ROS) during the initial phase of reoxygenation was strongly reduced. With respect to ROS reduction and stabilization of the cellular glutathione pool fructose was found as efficient as a pretreatment of glucose fed cells with N-acetyl-L-cysteine. The enhanced metabolization of ROS by the glutathione/glutathione peroxidase system in fructose-cultured hepatocytes under reoxygenation was expected to improve their mitochondrial status so that late events in the apoptotic pathway are suppressed. This could be confirmed by the reduced release of cytochrome c from mitochondria into the cytosol as well as by the observed decrease of caspase-3 activity during reoxygenation.
Collapse
Affiliation(s)
- Jochen Frenzel
- Institut für Biochemie, Medizinische Fakultät Leipzig, Germany
| | | | | |
Collapse
|
32
|
Contreras JL, Bilbao G, Smyth CA, Eckhoff DE, Jiang XL, Jenkins S, Thomas FT, Curiel DT, Thomas JM. Cytoprotection of pancreatic islets before and early after transplantation using gene therapy. Kidney Int 2002; 61:S79-84. [PMID: 11841618 DOI: 10.1046/j.1523-1755.2002.0610s1079.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pancreatic islet transplantation (PIT) is an attractive alternative to insulin-dependent diabetes treatment but is not yet a clinical reality. The first few days after PIT are characterized by substantial pancreatic islet dysfunction and death. Apoptosis has been documented in PI after extracellular matrix removal, during culture time, after exposure to proinflammatory cytokines, hypoxic conditions before islet revascularization, and rejection. Targeting the apoptosis pathway by adenoviral-mediated gene transfer of the anti-apoptotic Bcl-2 gene exerts a major cytoprotective effect on isolated macaque pancreatic islets. Bcl-2 transfection ex vivo protects islets from apoptosis induced by disruption of the islet extracellular matrix during pancreatic digestion. Additionally, over-expression of Bcl-2 confers long-term, stable protection and maintenance of functional islet mass after transplantation into diabetic SCID mice. Genetic modification of PI also reduced the islet mass required to achieve stable euglycemia. Ex vivo gene transfer of anti-apoptotic genes has potential as a therapeutic approach to both minimize loss of functional islet mass post-transplant and reduce the high islet requirement currently needed for successful stable reversal of insulin-dependent diabetes [1, 2].
Collapse
Affiliation(s)
- Juan L Contreras
- Transplant Center and Division of Human Gene Therapy, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Monack DM, Navarre WW, Falkow S. Salmonella-induced macrophage death: the role of caspase-1 in death and inflammation. Microbes Infect 2001; 3:1201-12. [PMID: 11755408 DOI: 10.1016/s1286-4579(01)01480-0] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Salmonella typhimurium invades host macrophages and can induce either an almost immediate cell death or establish an intracellular niche within the phagocytic vacuole. Rapid cell death depends on the Salmonella pathogenicity island SPI1 and the host protein caspase-1, a member of the pro-apoptotic caspase family of proteases. Caspase-1-dependent cell death leads to the activation of the potent pro-inflammatory cytokines interleukin (IL)-1beta and IL-18 to produce bioactive cytokines. Animal studies indicate that the activation of these cytokines is necessary for efficient colonization of the mouse gastrointestinal tract. Salmonella that reside in the phagocytic vacuole do not cause this early cell death and can trigger a macrophage death at a much later time point. This late-phase cell death is dependent on SPI2-encoded genes and ompR.
Collapse
Affiliation(s)
- D M Monack
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | | | | |
Collapse
|
34
|
Soeda J, Miyagawa S, Sano K, Masumoto J, Taniguchi S, Kawasaki S. Cytochrome c release into cytosol with subsequent caspase activation during warm ischemia in rat liver. Am J Physiol Gastrointest Liver Physiol 2001; 281:G1115-23. [PMID: 11557532 DOI: 10.1152/ajpgi.2001.281.4.g1115] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Apoptosis plays an important role in liver ischemia and reperfusion (I/R) injury. However, the molecular basis of apoptosis in I/R injury is poorly understood. The aims of this study were to ascertain when and how apoptotic signal transduction occurs in I/R injury. The apoptotic pathway in rats undergoing 90 min of warm ischemia with reperfusion was compared with that of rats undergoing prolonged ischemia alone. During ischemia, mitochondrial cytochrome c was released into the cytosol in a time-dependent manner in hepatocytes and sinusoidal endothelial cells, and caspase-3 and an inhibitor of caspase-activated DNase were cleaved. However, apoptotic manifestation and DNA fragmentation were not observed. After reperfusion, nuclear condensation, cells positive for terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labeling, and DNA fragmentation were observed and caspase-8 and Bid cleavage occurred. In contrast, prolonged ischemia alone induced necrosis rather than apoptosis. In summary, our results show that release of mitochondrial cytochrome c and caspase activation proceed during ischemia, although apoptosis is manifested after reperfusion.
Collapse
Affiliation(s)
- J Soeda
- First Department of Surgery, Research Center on Aging and Adaptation, Shinshu University School of Medicine, Nagano 390-8621, Japan
| | | | | | | | | | | |
Collapse
|
35
|
Contreras JL, Bilbao G, Smyth CA, Jiang XL, Eckhoff DE, Jenkins SM, Thomas FT, Curiel DT, Thomas JM. Gene transfer of the Bcl-2 gene confers cytoprotection to isolated adult porcine pancreatic islets exposed to xenoreactive antibodies and complement. Surgery 2001; 71:1015-23. [PMID: 11374395 DOI: 10.1097/00007890-200104270-00001] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Exposing adult porcine pancreatic islets (PI) to xenoreactive natural antibodies (XNA) induces brisk inflammatory injury that involves activation of the complement system. Gene transfer of Bcl-2 has been shown to protect PI from apoptosis and necrosis in several models. In this study, we investigated the effect of Bcl-2 gene transfer on protection of PI from primate XNA and complement-mediated injury. METHODS The PI were isolated from adult female sows. Only islet preparations that exhibited >90% viability and purity were used. Fresh rhesus monkey serum served as the XNA source. Gene transfer of Bcl-2 was achieved with an adenoviral vector (AdBcl-2) at 500 particle forming units (pfu)/cell. The Bcl-2 expression was confirmed by Western blot technique. Untransfected and transfected PI were incubated in 50% fresh complete serum (CS) or heat-inactivated (HI) rhesus serum for 24 hours. The PI viability was analyzed with acridine orange and ethidium bromide staining. Antibody and complement-mediated cytotoxicity were tested by intracellular lactate dehydrogenase (LDH) release. The PI function was assessed in vitro by static incubation studies and in vivo after intraportal transplantation in diabetic severe combined immunodeficiency (SCID) mice. RESULTS The AdBcl-2 gene transfer resulted in Bcl-2 gene expression in >90% of PI cells. Following exposure to XNA, <15% of the untransfected cells were viable. Similar results were obtained in PI transfected with a similar recombinant adenovirus encoding the reporter gene E coli beta-galactosidase (AdLacZ), an irrelevant gene. A significant increase in LDH release was observed in control PI after exposure to CS compared with PI that overexpressed Bcl-2 (82.89% +/- 7.78% vs 34.31% +/- 5.4%, P <.005). Higher insulin release was observed in vitro in PI transfected with Bcl-2 compared with untransfected PI or islets transfected with AdLacZ (stimulation index of 0.9 +/- 0.31, 0.9 +/- 0.3 vs 2.67 +/- 0.4, respectively). Only PI treated with AdBcl-2 were able to achieve euglycemia after exposure to XNA and complement after transplantation. CONCLUSIONS Transfer of the antiapoptotic and antinecrotic Bcl-2 gene into PI can reduce primate XNA and complement-mediated lysis. Cytoprotection of PI with Bcl-2 has potential to improve survival of PI xenotransplants.
Collapse
Affiliation(s)
- J L Contreras
- Transplant Immunobiology Division, Transplant Center, University of Alabama at Birmingham, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Song E, Chen J, Antus B, Su F, Wang M, Exton MS. Adenovirus-mediated Bcl-2 gene transfer inhibits apoptosis and promotes survival of allogeneic transplanted hepatocytes. Surgery 2001; 130:502-11. [PMID: 11562676 DOI: 10.1067/msy.2001.116027] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Donor hepatocyte apoptosis that is induced by host cytotoxic T lymphocytes (CTLs) limits the application of hepatocyte transplantation. Hepatocytes from Bcl-2 transgenic mice can resist the lethal effect of anti-Fas antibody. However, the anti-apoptotic effect of Bcl-2 expression on allogeneic transplanted hepatocytes remains elusive. This study tested the feasibility of Bcl-2 gene transfer as an approach to inhibit CTL-mediated apoptosis in allogeneic transplanted hepatocytes. METHODS An adenovirus vector that encoded human Bcl-2 gene (AdCMVhBcl-2) was used to transfect cultured rat hepatocytes, which were then transplanted into allogeneic spleens. DNA fragmentation and caspase-3 activation were examined by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end-labeling assay and immunohistochemistry for active caspase-3, respectively. Cocultivation of hepatocytes and allogeneic CD8(+) T lymphocytes was performed, and cytotoxicity on hepatocytes was examined by alanine transaminase release. RESULTS Bcl-2 gene transfer inhibited apoptosis and increased liver-associated enzyme activities in allogeneic transplanted hepatocytes, which were associated with inhibition of caspase-3 activation. Alanine transaminase release in hBcl-2 modified hepatocytes was lower compared with controls, which could not be further decreased by inhibition of Fas ligand and granzyme B. CONCLUSIONS Adenovirus-mediated Bcl-2 gene transfer blocks CTL-mediated apoptosis in allogeneic hepatocytes by inhibition of caspase-3 activation. Bcl-2 gene transfer could be used to promote survival of transplanted hepatocytes.
Collapse
Affiliation(s)
- E Song
- Department of Hepatobiliary Surgery, Sun-Yat-Sen Memorial Hospital, Sun-Yat-Sen University of Medical Science, Guangzhou, People's Republic of China
| | | | | | | | | | | |
Collapse
|
37
|
Jung F, Weiland U, Johns RA, Ihling C, Dimmeler S. Chronic hypoxia induces apoptosis in cardiac myocytes: a possible role for Bcl-2-like proteins. Biochem Biophys Res Commun 2001; 286:419-25. [PMID: 11500055 DOI: 10.1006/bbrc.2001.5406] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effect of prolonged hypoxia as well as the molecular mechanisms on cardiac cell death is not well established. A possible role of Bcl-2 and Bax in hypoxia-induced apoptosis in different cell types has been proposed. Here we demonstrate the effect of hypoxia on the induction of apoptosis and the expression of Bcl-2-like proteins in vivo and in vitro. Hearts from rats exposed to chronic hypoxia (n = 4) showed an increased rate of apoptosis compared to normoxic hearts (n = 4). The induction of apoptosis in hypoxic hearts correlated with a significant decrease of Bcl-2 protein level, whereas Bax protein expression was increased. Exposure of isolated neonatal rat cardiac myocytes to hypoxia also resulted in a significant increase in apoptosis. However, Bcl-2 and Bax protein levels essentially remained unchanged. Our results may suggest a different molecular mechanism of hypoxia-induced apoptosis in vivo and in vitro.
Collapse
Affiliation(s)
- F Jung
- Molecular Cardiology, University of Frankfurt, Frankfurt, Germany
| | | | | | | | | |
Collapse
|
38
|
Oehler MK, Norbury C, Hague S, Rees MC, Bicknell R. Adrenomedullin inhibits hypoxic cell death by upregulation of Bcl-2 in endometrial cancer cells: a possible promotion mechanism for tumour growth. Oncogene 2001; 20:2937-45. [PMID: 11420706 DOI: 10.1038/sj.onc.1204422] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2000] [Revised: 02/26/2001] [Accepted: 02/26/2001] [Indexed: 11/09/2022]
Abstract
Regions of hypoxia are a common feature of solid tumours. When tumour cells are exposed to hypoxic stress, transcription of a battery of genes is initiated. The angiogenic factor adrenomedullin (ADM) is a hypoxia regulated gene. ADM is thought to act through the G protein-coupled receptor calcitonin receptor-like receptor (CRLR), with specificity being conferred by the receptor associated modifying protein 2 (RAMP2). Here we report for the first time that ADM treated or stably transfected Ishikawa cells overexpressing ADM show increased resistance to hypoxia induced apoptosis. These cells also show an upregulation of the oncoprotein Bcl-2, which is protective against hypoxic cell death when transiently transfected into Ishikawa cells. Since Ishikawa cells express the putative ADM-receptor CRLR-RAMP2 the production and secretion of ADM with the consecutive upregulation of Bcl-2 could establish an autocrine/paracrine mechanism rescuing malignant cells from hypoxic cell death. These results, taken together with our previous findings that ADM is an angiogenic factor which is upregulated by the nonsteroidal antiestrogen tamoxifen (TAM) in endometrial cells, implicate this peptide as a promoter of tumour growth and a possible target for anticancer strategies.
Collapse
Affiliation(s)
- M K Oehler
- Molecular Angiogenesis Laboratory, Imperial Cancer Research Fund, Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | | | | | | | | |
Collapse
|
39
|
Nakamura T, Mizuno S, Matsumoto K, Sawa Y, Matsuda H, Nakamura T. Myocardial protection from ischemia/reperfusion injury by endogenous and exogenous HGF. J Clin Invest 2000; 106:1511-9. [PMID: 11120758 PMCID: PMC387252 DOI: 10.1172/jci10226] [Citation(s) in RCA: 355] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Using a rat model of ischemia/reperfusion injury, we demonstrate here that HGF is cardioprotective due to its antiapoptotic effect on cardiomyocytes. Following transient myocardial ischemia and reperfusion, c-Met/HGF receptor expression rapidly increased in the ischemic myocardium, an event accompanied by a dramatic increase in plasma HGF levels in the infarcted rats. When endogenous HGF was neutralized with a specific antibody, the number of myocyte cell deaths increased markedly, the infarct area expanded, and the mortality increased to 50%, as compared with a control group in which there was no mortality. Plasma from the myocardial infarcted rats had cardioprotective effects on primary cultured cardiomyocytes, but these effects were significantly diminished by neutralizing HGF. In contrast, recombinant HGF administration reduced the size of infarct area and improved cardiac function by suppressing apoptosis in cardiomyocytes. HGF rapidly augmented Bcl-xL expression in injured cardiomyocytes both in vitro and in vivo. As apoptosis of cardiomyocytes is one of the major contributors to the pathogenesis in subjects with ischemia/reperfusion injury, prevention of apoptosis may prove to be a reasonable therapeutic strategy. Supplements of HGF, an endogenous cardioprotective factor, may be found clinically suitable in treating subjects with myocardial infarction.
Collapse
Affiliation(s)
- T Nakamura
- Division of Biochemistry, Department of Oncology, Biomedical Research Center B7, Osaka University Graduate School of Medicine, Suita, Japan.
| | | | | | | | | | | |
Collapse
|
40
|
Ward NS, Waxman AB, Homer RJ, Mantell LL, Einarsson O, Du Y, Elias JA. Interleukin-6-induced protection in hyperoxic acute lung injury. Am J Respir Cell Mol Biol 2000; 22:535-42. [PMID: 10783124 DOI: 10.1165/ajrcmb.22.5.3808] [Citation(s) in RCA: 183] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Hyperoxic lung injury is commonly encountered in patients who require treatment with high concentrations of inspired oxygen. To determine whether interleukin (IL)-6 is protective in oxygen toxicity, we compared the effects of 100% O(2) in transgenic mice that overexpress IL-6 in the lung and transgene (-) controls. IL-6 markedly enhanced survival, with 100% of transgene (-) animals dying within 72 to 96 h, 100% of transgene (+) animals living for more than 8 d and more than 90% of transgene (+) animals living longer than 12 d. This protection was associated with markedly diminished alveolar-capillary protein leak, endothelial and epithelial membrane injury, and lung lipid peroxidation. Hyperoxia also caused cell death with DNA fragmentation in the lungs of transgene (-) animals and IL-6 markedly diminished this cytopathic response. The protective effects of IL-6 were not associated with significant alterations in the activities of copper/ zinc superoxide dismutase (SOD) or manganese SOD. They were, however, associated with the enhanced accumulation of the cell-death inhibitor Bcl-2, but not the cell-death stimulator BAX, and with the heightened accumulation of the cell-death regulator tissue inhibitor of metalloproteinase-1 (TIMP-1). These studies demonstrate that IL-6 markedly diminishes hyperoxic lung injury and that this protection is associated with a marked diminution in hyperoxia-induced cell death and DNA fragmentation. They also demonstrate that this protection is not associated with significant alterations in SOD activity, but is associated with the induction of Bcl-2 and TIMP-1.
Collapse
Affiliation(s)
- N S Ward
- Section of Pulmonary and Critical Care Medicine, Department of Internal Medicine, and Yale University School of Medicine, Department of Pathology, New Haven, Connecticut 06520-8057, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Cell death occurs by apoptosis or necrosis. Although these are morphologically distinct, they share similar initiating events (death receptor ligation, chemicals, drug hypoxia, oxidative stress), and usually involve the participation of mitochondria. The ultimate shape of cell death depends on the extent of functional collapse of mitochondria, which either leads to a rapid loss of ATP, swelling and lysis, or a more selective release of cytochrome c in the presence of sufficient ATP to activate executioner caspases, leading to the development of apoptosis. Apoptosis and necrosis participate in the pathogenesis of most liver diseases. Therapies targeting the death receptors, initiator caspases and mitochondria show potential promise in various liver disease, whereas targeting inhibition of executioner caspases may rapidly or in delayed fashion switch from apoptotic to necrotic cell death.
Collapse
Affiliation(s)
- N Kaplowitz
- University of Southern California Research Center for Liver Diseases, Los Angeles, California
| |
Collapse
|
42
|
Formigli L, Papucci L, Tani A, Schiavone N, Tempestini A, Orlandini GE, Capaccioli S, Orlandini SZ. Aponecrosis: morphological and biochemical exploration of a syncretic process of cell death sharing apoptosis and necrosis. J Cell Physiol 2000; 182:41-9. [PMID: 10567915 DOI: 10.1002/(sici)1097-4652(200001)182:1<41::aid-jcp5>3.0.co;2-7] [Citation(s) in RCA: 252] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A rat fibroblastic cell line (rat-1/myc-ERtrade mark) was treated with different concentration of Antimycin A, a metabolic poison that affects mitochondrial respiratory chain complex III. The modes of cell death were analyzed by time-lapse videomicroscopy, in situ end-labeling (ISEL) technique, and ultrastructural analysis. Intracellular ATP levels were also measured in order to detect whether the energetic stores were determinant for the type of cell death. It was found that while apoptosis was the prevalent cell death in the fibroblasts treated with low doses, 100 or 200 microM Antimycin A, a new type of cell demise that shared dynamic, molecular, and morphological features with both apoptosis and necrosis represents the most common cell death when the cells were exposed to high doses, 300 or 400 microM, of the hypoxic stimulus. This new type of cell death has been chimerically termed aponecrosis. The inhibition of caspase 3, an enzyme critical for the apoptotic DNA degradation, caused a clear shift from aponecrosis to necrosis in the cell culture, suggesting that this new type of cell death could account for an incomplete execution of the apoptotic program and the following degeneration in necrosis. After being treated with higher doses, i.e., 1000 microM Antimycin A, almost all of the cells died by true necrosis. The analysis of the cellular energetic stores showed that the levels of ATP were a primary determinant in directing toward active cell death (apoptosis), aponecrosis, or necrosis. We conclude that chemically induced hypoxia produces different types of cell death depending on the intensity of the insult and on the ATP availability of the cell, and that the classic apoptosis and necrosis may represent only two extremes of a continuum of intermediate forms of cell demise.
Collapse
Affiliation(s)
- L Formigli
- Department of Anatomy, University of Florence, Florence, Italy
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Glucocorticoid effects on lymphoid cells depend on the cell type, the state of differentiation and the extracellular milieu. Cells often studied for glucocorticoid-dependent apoptosis include: rat and mouse thymocytes or splenocytes in vivo or in vitro; a variety of transformed lymphoid cell lines; lines of growth factor-dependent cells; and growth-stimulated peripheral blood lymphocytes. It is unwise to assume that all results in any one system are generally applicable. Only a moment's consideration of the diversity of lymphoid cells, and even of thymocytes themselves, shows that many states of differentiation define varying sensitivity to steroids. Such differences point out a valuable lesson: the apoptotic effects of glucocorticoids are influenced by a complex network of interactive signaling systems. Before we fully understand the apoptotic action of these steroids, it will be necessary to understand how these networks mesh. Each system has its merits and problems; the use of multiple systems has provided overlapping insights into the pathways involved in glucocorticoid-dependent lymphoid cell apoptosis. At times, visualization of the major shared themes is threatened by the inevitable contradictory data resulting from studying multiple systems, but in fact several common threads can be seen. In this light, this article briefly reviews recent developments in glucocorticoid-dependent lymphoid cell apoptosis.
Collapse
|
44
|
Yadav SS, Sindram D, Perry DK, Clavien PA. Ischemic preconditioning protects the mouse liver by inhibition of apoptosis through a caspase-dependent pathway. Hepatology 1999; 30:1223-31. [PMID: 10534344 DOI: 10.1002/hep.510300513] [Citation(s) in RCA: 205] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A short period of ischemia and reperfusion, called ischemic preconditioning, protects various tissues against subsequent sustained ischemic insults. We previously showed that apoptosis of hepatocytes and sinusoidal endothelial cells is a critical mechanism of injury in the ischemic liver. Because caspases, calpains, and Bcl-2 have a pivotal role in the regulation of apoptosis, we hypothesized that ischemic preconditioning protects by inhibition of apoptosis through down-regulation of caspase and calpain activities and up-regulation of Bcl-2. A preconditioning period of 10 minutes of ischemia followed by 15 minutes of reperfusion maximally protected livers subjected to prolonged ischemia. After reperfusion, serum aspartate transaminase (AST) levels were reduced up to 3-fold in preconditioned animals. All animals subjected to 75 minutes of ischemia died, whereas all those who received ischemic preconditioning survived. Apoptosis of hepatocytes and sinusoidal endothelial cells, assessed by in situ TUNEL assay and DNA fragmentation by gel electrophoresis, was dramatically reduced with preconditioning. Caspase activity, measured by poly (adenosine diphosphate ribose) polymerase (PARP) proteolysis and a specific caspase-3 fluorometric assay, was inhibited by ischemic preconditioning. The antiapoptotic mechanism did not involve calpain-like activity or Bcl-2 expression because levels were similar in control and preconditioned livers. In conclusion, ischemic preconditioning confers dramatic protection against prolonged ischemia via inhibition of apoptosis through down-regulation of caspase 3 activity, independent of calpain-like activity or Bcl-2 expression.
Collapse
Affiliation(s)
- S S Yadav
- Hepatobiliary and Transplant Laboratory, Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
45
|
Abstract
Facilitation of solid organ and cell transplantation depends on metabolic and immunologic factors that can be manipulated ex vivo and in vivo using gene transfer technology. Vectors have been developed which can optimally transfer relevant genes to various tissues and organs. Interventions aimed at promoting tissue preservation before transplantation, prevention of oxidative stress and immunological rejection have recently become attractive options using viral and nonviral gene delivery vehicles. Further understanding of the mechanisms involved in tolerance induction as well as the facilitation of xenogeneic engraftment have made possible a variety of avenues that can be exploited using gene transfer technology.
Collapse
Affiliation(s)
- N Giannoukakis
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15261, USA
| | | | | |
Collapse
|
46
|
Bilbao G, Contreras JL, Eckhoff DE, Mikheeva G, Krasnykh V, Douglas JT, Thomas FT, Thomas JM, Curiel DT. Reduction of ischemia-reperfusion injury of the liver by in vivo adenovirus-mediated gene transfer of the antiapoptotic Bcl-2 gene. Ann Surg 1999; 230:185-93. [PMID: 10450732 PMCID: PMC1420860 DOI: 10.1097/00000658-199908000-00008] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To examine the possibility of reducing ischemia-reperfusion injury (I/R injury) to the mouse liver by in vivo adenovirus-mediated gene transfer of the antiapoptotic human Bcl-2 gene. SUMMARY BACKGROUND DATA Ischemia-reperfusion injury has been demonstrated in a number of clinically relevant diseases such as myocardial infarction, cerebrovascular disease, sepsis, peripheral vascular disease, and organ transplantation. In this regard, apoptosis plays a central role. METHODS Normal C57BL/6 mice were used. An adenovirus (deltaE1) vector containing the human Bcl-2 gene was developed in the authors' laboratory. An adenovirus vector encoding an irrelevant gene (beta-galactosidase, AdCMVLacZ) was used as a control. Taking advantage of the hepatotropic properties of adenovirus vectors, gene transfer was performed with 1 x 10(9) plaque-forming units by intravenous tail injection, 48 hours before the ischemic injury. Ischemic-reperfusion injury was induced by temporal and segmental occlusion of hepatic blood flow. Aspartate aminotransferase, alanine aminotransferase, and lactate dehydrogenase activity was measured using standard assays. Liver biopsies were obtained before and 6 hours after I/R injury for morphologic assessment, and apoptosis was determined in situ with a histochemical assay. RESULTS The expression of AdCMVhBcl-2 vector was confirmed by reverse transcription-polymerase chain reaction and functionally validated in apoptotic studies in endothelial cells. Expression of the Bcl-2 gene protects against I/R injury, as shown by a significant decrease in transaminases (p < 0.05) and necrosis and apoptosis (p < 0.001), and permanent survival (p < 0.0001), compared with sham-operated animals and animals treated with AdCMVLacZ. CONCLUSIONS Genetic modification of the liver to induce cytoprotection has potential applications to prevent I/R injury to the liver in surgical interventions, including liver transplantation.
Collapse
Affiliation(s)
- G Bilbao
- Gene Therapy Program, Department of Surgery, University of Alabama at Birmingham, 35294, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Bilbao G, Contreras JL, Zhang HG, Pike MJ, Overturf K, Mikheeva G, Krasnykh V, Curiel DT. Adenovirus-mediated gene expression in vivo is enhanced by the antiapoptotic bcl-2 gene. J Virol 1999; 73:6992-7000. [PMID: 10400798 PMCID: PMC112785 DOI: 10.1128/jvi.73.8.6992-7000.1999] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An adenovirus vector encoding the human Bcl-2 gene (hBcl-2) was derived. In vivo expression of hBcl-2 in murine livers enhanced and prolonged adenovirus-mediated gene expression. Furthermore, in the hBcl-2-treated group a significant reduction in the apoptosis induced by the adenovirus vector was observed. Thus, the cytoprotection of the vector-infected cells with antiapoptotic genes appears promising for successful in vivo gene therapy.
Collapse
Affiliation(s)
- G Bilbao
- Gene Therapy Center, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Bilbao G, Contreras JL, Gómez-Navarro J, Eckhoff DE, Mikheeva G, Krasnykh V, Hynes T, Thomas FT, Thomas JM, Curiel DT. Genetic modification of liver grafts with an adenoviral vector encoding the Bcl-2 gene improves organ preservation. Transplantation 1999; 67:775-83. [PMID: 10199723 DOI: 10.1097/00007890-199903270-00001] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Liver function after transplantation is determined by the quality of the donor organ and the influences of preservation, flush, and reperfusion injury. In this regard, cell death (apoptosis) plays an important role in organ preservation and rejection. Therefore, we examined the possibility of genetic modification of the liver graft with a recombinant adenovirus vector encoding the Bcl-2 gene to reduce apoptosis during the preservation time. METHODS Liver grafts from C57B1/6 mice were procured and preserved using standard techniques. A replication defective adenovirus vector (deltaE1) containing the human Bcl-2 gene (AdCMVhBcl-2) was developed in our laboratory. An adenovirus vector encoding an irrelevant gene (Escherichia coli beta-galactosidase) was used as a control. Each mouse received 1 x 10(9) plaque forming units administered i.v. 48 hr before the liver procurement. Analyses of liver enzyme activities were determined in the preservation solution. Apoptosis in liver biopsies was determined by DNA fragmentation with an in situ histochemical assay. RESULTS Immunohistochemical analysis and RT-PCR confirmed the expression of hBcl-2 in the grafts. Grafts from livers expressing hBcl-2 showed significant reduction of the aspartame amino transferase (AST) and lactate dehydrogenase (LDH) release compared with grafts from the control groups. After rewarming, significant cytoprotection was also observed in grafts from animals treated with AdCMVhBcl-2. Histological analysis correlated with the hepatocellular injury determined with transaminases and LDH in the preservation solution. Significant reduction in the number of apoptotic cells was observed in grafts expressing hBcl-2. CONCLUSIONS We have demonstrated a novel approach to reducing the preservation injury to liver grafts with the human Bcl-2 gene. This approach may allow a longer preservation time, potentially reduce the incidence of primary nonfunction, decrease the immunogenicity of the cold injured organ, and increase the safer use of "marginal" liver grafts.
Collapse
Affiliation(s)
- G Bilbao
- Gene Therapy Center, Department of Surgery, University of Alabama at Birmingham, 35294, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|