1
|
Malinowska AL, Huynh HL, Bose S. Peptide-Oligonucleotide Conjugation: Chemistry and Therapeutic Applications. Curr Issues Mol Biol 2024; 46:11031-11047. [PMID: 39451535 PMCID: PMC11506717 DOI: 10.3390/cimb46100655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
Oligonucleotides have been identified as powerful therapeutics for treating genetic disorders and diseases related to epigenetic factors such as metabolic and immunological dysfunctions. However, they face certain obstacles in terms of limited delivery to tissues and poor cellular uptake due to their large size and often highly charged nature. Peptide-oligonucleotide conjugation is an extensively utilized approach for addressing the challenges associated with oligonucleotide-based therapeutics by improving their delivery, cellular uptake and bioavailability, consequently enhancing their overall therapeutic efficiency. In this review, we present an overview of the conjugation of oligonucleotides to peptides, covering the different strategies associated with the synthesis of peptide-oligonucleotide conjugates (POC), the commonly used peptides employed to generate POCs, with the aim to develop oligonucleotides with favourable pharmacokinetic (PK) or pharmacodynamic (PD) properties for therapeutic applications. The advantages and drawbacks of the synthetic methods and applications of POCs are also described.
Collapse
Affiliation(s)
| | | | - Sritama Bose
- Medical Research Council, Nucleic Acid Therapy Accelerator (UKRI), Research Complex at Harwell (RCaH), Rutherford Appleton Laboratory, Harwell OX11 0FA, UK
| |
Collapse
|
2
|
Semizo H, Yabu R, Ohgishi Y, Kai H, Nishimura H, Matsuo Y. Proton Conduction in Gly-X (X = Ser, Ser-Gly-Ser) and GS50. Bioengineering (Basel) 2023; 10:1223. [PMID: 37892953 PMCID: PMC10604563 DOI: 10.3390/bioengineering10101223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/09/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
In recent years, the use of biomaterials has been required from the viewpoint of biocompatibility of electronic devices. In this study, the proton conductivity of Glycyl-L-serine (Gly-Ser) was investigated to clarify the relationship between hydration and proton conduction in peptides. From the crystal and conductivity data, it was inferred that the proton conductivity in hydrated Gly-Ser crystals is caused by the cleavage and rearrangement of hydrogen bonds between hydration shells formed by hydrogen bonds between amino acids and water molecules. Moreover, a staircase-like change in proton conduction with hydration was observed at n = 0.3 and 0.5. These results indicate that proton transport in Gly-Ser is realized by hydration water. In addition, we also found that hydration of GSGS and GS50 can achieve proton conduction of Gly-Ser tetrameric GSGS and GS50 containing repeating sequences. The proton conductivity at n = 0.3 is due to percolation by the formation of proton-conducting pathways. In addition to these results, we found that proton conductivity at GS50 is realized by the diffusion constant of 3.21 × 10-8 cm2/s at GS50.
Collapse
Affiliation(s)
- Hitoki Semizo
- Faculty of Science & Engineering, Setsunan University, Ikeda-Nakamachi, Neyagawa 572-8508, Japan; (R.Y.); (Y.O.); (H.K.); (H.N.)
| | | | | | | | | | - Yasumitsu Matsuo
- Faculty of Science & Engineering, Setsunan University, Ikeda-Nakamachi, Neyagawa 572-8508, Japan; (R.Y.); (Y.O.); (H.K.); (H.N.)
| |
Collapse
|
3
|
Klabenkova K, Fokina A, Stetsenko D. Chemistry of Peptide-Oligonucleotide Conjugates: A Review. Molecules 2021; 26:5420. [PMID: 34500849 PMCID: PMC8434111 DOI: 10.3390/molecules26175420] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 12/25/2022] Open
Abstract
Peptide-oligonucleotide conjugates (POCs) represent one of the increasingly successful albeit costly approaches to increasing the cellular uptake, tissue delivery, bioavailability, and, thus, overall efficiency of therapeutic nucleic acids, such as, antisense oligonucleotides and small interfering RNAs. This review puts the subject of chemical synthesis of POCs into the wider context of therapeutic oligonucleotides and the problem of nucleic acid drug delivery, cell-penetrating peptide structural types, the mechanisms of their intracellular transport, and the ways of application, which include the formation of non-covalent complexes with oligonucleotides (peptide additives) or covalent conjugation. The main strategies for the synthesis of POCs are viewed in detail, which are conceptually divided into (a) the stepwise solid-phase synthesis approach and (b) post-synthetic conjugation either in solution or on the solid phase, especially by means of various click chemistries. The relative advantages and disadvantages of both strategies are discussed and compared.
Collapse
Affiliation(s)
- Kristina Klabenkova
- Faculty of Physics, Novosibirsk State University, 630090 Novosibirsk, Russia; (K.K.); (D.S.)
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Branch, 630090 Novosibirsk, Russia
| | - Alesya Fokina
- Faculty of Physics, Novosibirsk State University, 630090 Novosibirsk, Russia; (K.K.); (D.S.)
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Branch, 630090 Novosibirsk, Russia
| | - Dmitry Stetsenko
- Faculty of Physics, Novosibirsk State University, 630090 Novosibirsk, Russia; (K.K.); (D.S.)
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Branch, 630090 Novosibirsk, Russia
| |
Collapse
|
4
|
Laurent Q, Martinent R, Lim B, Pham AT, Kato T, López-Andarias J, Sakai N, Matile S. Thiol-Mediated Uptake. JACS AU 2021; 1:710-728. [PMID: 34467328 PMCID: PMC8395643 DOI: 10.1021/jacsau.1c00128] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Indexed: 05/19/2023]
Abstract
This Perspective focuses on thiol-mediated uptake, that is, the entry of substrates into cells enabled by oligochalcogenides or mimics, often disulfides, and inhibited by thiol-reactive agents. A short chronology from the initial observations in 1990 until today is followed by a summary of cell-penetrating poly(disulfide)s (CPDs) and cyclic oligochalcogenides (COCs) as privileged scaffolds in thiol-mediated uptake and inhibitors of thiol-mediated uptake as potential antivirals. In the spirit of a Perspective, the main part brings together topics that possibly could help to explain how thiol-mediated uptake really works. Extreme sulfur chemistry mostly related to COCs and their mimics, cyclic disulfides, thiosulfinates/-onates, diselenolanes, benzopolysulfanes, but also arsenics and Michael acceptors, is viewed in the context of acidity, ring tension, exchange cascades, adaptive networks, exchange affinity columns, molecular walkers, ring-opening polymerizations, and templated polymerizations. Micellar pores (or lipid ion channels) are considered, from cell-penetrating peptides and natural antibiotics to voltage sensors, and a concise gallery of membrane proteins, as possible targets of thiol-mediated uptake, is provided, including CLIC1, a thiol-reactive chloride channel; TMEM16F, a Ca-activated scramblase; EGFR, the epithelial growth factor receptor; and protein-disulfide isomerase, known from HIV entry or the transferrin receptor, a top hit in proteomics and recently identified in the cellular entry of SARS-CoV-2.
Collapse
Affiliation(s)
- Quentin Laurent
- Department of Organic Chemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Rémi Martinent
- Department of Organic Chemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Bumhee Lim
- Department of Organic Chemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Anh-Tuan Pham
- Department of Organic Chemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Takehiro Kato
- Department of Organic Chemistry, University of Geneva, 1211 Geneva, Switzerland
| | | | - Naomi Sakai
- Department of Organic Chemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Stefan Matile
- Department of Organic Chemistry, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
5
|
Stasińska AR, Putaj P, Chmielewski MK. Disulfide bridge as a linker in nucleic acids' bioconjugation. Part II: A summary of practical applications. Bioorg Chem 2019; 95:103518. [PMID: 31911308 DOI: 10.1016/j.bioorg.2019.103518] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/11/2019] [Accepted: 12/16/2019] [Indexed: 12/15/2022]
Abstract
Disulfide conjugation invariably remains a key tool in research on nucleic acids. This versatile and cost-effective method plays a crucial role in structural studies of DNA and RNA as well as their interactions with other macromolecules in a variety of biological systems. In this article we review applications of disulfide-bridged conjugates of oligonucleotides with other (bio)molecules such as peptides, proteins etc. and present key findings obtained with their help.
Collapse
Affiliation(s)
- Anna R Stasińska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, ul. Noskowskiego 12/14, 61-704 Poznań, Poland; FutureSynthesis sp. z o.o. ul. Rubież 46H, 61-612 Poznań, Poland
| | - Piotr Putaj
- FutureSynthesis sp. z o.o. ul. Rubież 46H, 61-612 Poznań, Poland
| | - Marcin K Chmielewski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, ul. Noskowskiego 12/14, 61-704 Poznań, Poland; FutureSynthesis sp. z o.o. ul. Rubież 46H, 61-612 Poznań, Poland.
| |
Collapse
|
6
|
Engineered polymeric nanoparticles to guide the cellular internalization and trafficking of small interfering ribonucleic acids. J Control Release 2017; 259:3-15. [DOI: 10.1016/j.jconrel.2017.02.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/15/2017] [Accepted: 02/18/2017] [Indexed: 12/29/2022]
|
7
|
Empowering the Potential of Cell-Penetrating Peptides for Targeted Intracellular Delivery via Molecular Self-Assembly. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1030:265-278. [DOI: 10.1007/978-3-319-66095-0_12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
8
|
Bera S, Kar RK, Mondal S, Pahan K, Bhunia A. Structural Elucidation of the Cell-Penetrating Penetratin Peptide in Model Membranes at the Atomic Level: Probing Hydrophobic Interactions in the Blood-Brain Barrier. Biochemistry 2016; 55:4982-96. [PMID: 27532224 PMCID: PMC5014585 DOI: 10.1021/acs.biochem.6b00518] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cell-penetrating peptides (CPPs) have shown promise in nonpermeable therapeutic drug delivery, because of their ability to transport a variety of cargo molecules across the cell membranes and their noncytotoxicity. Drosophila antennapedia homeodomain-derived CPP penetratin (RQIKIWFQNRRMKWKK), being rich in positively charged residues, has been increasingly used as a potential drug carrier for various purposes. Penetratin can breach the tight endothelial network known as the blood-brain barrier (BBB), permitting treatment of several neurodegenerative maladies, including Alzheimer's disease, Parkinson's disease, and Huntington's disease. However, a detailed structural understanding of penetratin and its mechanism of action is lacking. This study defines structural features of the penetratin-derived peptide, DK17 (DRQIKIWFQNRRMKWKK), in several model membranes and describes a membrane-induced conformational transition of the DK17 peptide in these environments. A series of biophysical experiments, including high-resolution nuclear magnetic resonance spectroscopy, provides the three-dimensional structure of DK17 in different membranes mimicking the BBB or total brain lipid extract. Molecular dynamics simulations support the experimental results showing preferential binding of DK17 to particular lipids at atomic resolution. The peptide conserves the structure of the subdomain spanning residues Ile6-Arg11, despite considerable conformational variation in different membrane models. In vivo data suggest that the wild type, not a mutated sequence, enters the central nervous system. Together, these data highlight important structural and functional attributes of DK17 that could be utilized in drug delivery for neurodegenerative disorders.
Collapse
Affiliation(s)
- Swapna Bera
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII(M), Kolkata 700054, India
| | - Rajiv K Kar
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII(M), Kolkata 700054, India
| | - Susanta Mondal
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Kalipada Pahan
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
- Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, 820 South Damen Avenue, Chicago, IL, USA
| | - Anirban Bhunia
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII(M), Kolkata 700054, India
| |
Collapse
|
9
|
Maegawa Y, Mochizuki S, Miyamoto N, Sakurai K. Gene silencing using a conjugate comprising Tat peptide and antisense oligonucleotide with phosphorothioate backbones. Bioorg Med Chem Lett 2016; 26:1276-8. [PMID: 26774656 DOI: 10.1016/j.bmcl.2016.01.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 12/29/2015] [Accepted: 01/08/2016] [Indexed: 01/06/2023]
Abstract
Antisense oligonucleotides (ASOs) have a great therapeutic potential for the modulation of gene expression because of the high specificity. The major obstacles for clinical application are enzymatic degradation and low uptake into cells in vivo. In this study, we prepared the conjugate comprising Tat peptide and ASO with phosphorothioate linkages in a simple manner; azide alkyne Huisgen cycloaddition using a copper catalyst. The obtained conjugate showed a high stability in serum, compared with the conjugate with phosphodiester linkages. The conjugates with antisense for c-myb that is transcriptional factor concerning cell growth inhibited the cell proliferation in a dose dependent manner sequence-specifically. These findings suggest Tat-mediated ASOs delivery is useful for the treatment of various diseases.
Collapse
Affiliation(s)
- Yoshiya Maegawa
- Department of Chemistry and Biochemistry, The University of Kitakyushu, 1-1, Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka 808-0135, Japan
| | - Shinichi Mochizuki
- Department of Chemistry and Biochemistry, The University of Kitakyushu, 1-1, Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka 808-0135, Japan.
| | - Noriko Miyamoto
- Department of Chemistry and Biochemistry, The University of Kitakyushu, 1-1, Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka 808-0135, Japan
| | - Kazuo Sakurai
- Department of Chemistry and Biochemistry, The University of Kitakyushu, 1-1, Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka 808-0135, Japan; CREST, Japan Science and Technology Agency, 4-1-8, Honcho, Kawaguchi-shi, Saitama 332-0012, Japan.
| |
Collapse
|
10
|
A Heparan Sulfate-Binding Cell Penetrating Peptide for Tumor Targeting and Migration Inhibition. BIOMED RESEARCH INTERNATIONAL 2015; 2015:237969. [PMID: 26064887 PMCID: PMC4433633 DOI: 10.1155/2015/237969] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 10/31/2014] [Accepted: 11/14/2014] [Indexed: 11/18/2022]
Abstract
As heparan sulfate proteoglycans (HSPGs) are known as co-receptors to interact with numerous growth factors and then modulate downstream biological activities, overexpression of HS/HSPG on cell surface acts as an increasingly reliable prognostic factor in tumor progression. Cell penetrating peptides (CPPs) are short-chain peptides developed as functionalized vectors for delivery approaches of impermeable agents. On cell surface negatively charged HS provides the initial attachment of basic CPPs by electrostatic interaction, leading to multiple cellular effects. Here a functional peptide (CPPecp) has been identified from critical HS binding region in hRNase3, a unique RNase family member with in vitro antitumor activity. In this study we analyze a set of HS-binding CPPs derived from natural proteins including CPPecp. In addition to cellular binding and internalization, CPPecp demonstrated multiple functions including strong binding activity to tumor cell surface with higher HS expression, significant inhibitory effects on cancer cell migration, and suppression of angiogenesis in vitro and in vivo. Moreover, different from conventional highly basic CPPs, CPPecp facilitated magnetic nanoparticle to selectively target tumor site in vivo. Therefore, CPPecp could engage its capacity to be developed as biomaterials for diagnostic imaging agent, therapeutic supplement, or functionalized vector for drug delivery.
Collapse
|
11
|
Copolovici DM, Langel K, Eriste E, Langel Ü. Cell-penetrating peptides: design, synthesis, and applications. ACS NANO 2014; 8:1972-94. [PMID: 24559246 DOI: 10.1021/nn4057269] [Citation(s) in RCA: 680] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The intrinsic property of cell-penetrating peptides (CPPs) to deliver therapeutic molecules (nucleic acids, drugs, imaging agents) to cells and tissues in a nontoxic manner has indicated that they may be potential components of future drugs and disease diagnostic agents. These versatile peptides are simple to synthesize, functionalize, and characterize yet are able to deliver covalently or noncovalently conjugated bioactive cargos (from small chemical drugs to large plasmid DNA) inside cells, primarily via endocytosis, in order to obtain high levels of gene expression, gene silencing, or tumor targeting. Typically, CPPs are often passive and nonselective yet must be functionalized or chemically modified to create effective delivery vectors that succeed in targeting specific cells or tissues. Furthermore, the design of clinically effective systemic delivery systems requires the same amount of attention to detail in both design of the delivered cargo and the cell-penetrating peptide used to deliver it.
Collapse
Affiliation(s)
- Dana Maria Copolovici
- Laboratory of Molecular Biotechnology, Institute of Technology, Tartu University , 504 11 Tartu, Estonia
| | | | | | | |
Collapse
|
12
|
Montrose K, Yang Y, Sun X, Wiles S, Krissansen GW. Xentry, a new class of cell-penetrating peptide uniquely equipped for delivery of drugs. Sci Rep 2013; 3:1661. [PMID: 23588666 PMCID: PMC3627194 DOI: 10.1038/srep01661] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 03/27/2013] [Indexed: 01/25/2023] Open
Abstract
Here we describe an entirely new class of cell-penetrating peptide (CPP) represented by the short peptide Xentry (LCLRPVG) derived from an N-terminal region of the X-protein of the hepatitis B virus. Xentry permeates adherent cells using syndecan-4 as a portal for entry, and is uniquely restricted from entering syndecan-deficient, non-adherent cells, such as resting blood cells. Intravenous injection of Xentry alone or conjugated to β-galactosidase led to its delivery to most tissues in mice, except circulating blood cells. There was a predilection for uptake by epithelia. Anti-B-raf antibodies and siRNAs linked to Xentry were capable of killing B-raf-dependent melanoma cells. Xentry represents a new class of CPP with properties that are potentially advantageous for life science and therapeutic applications.
Collapse
Affiliation(s)
- Kristopher Montrose
- Department of Molecular Medicine & Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1005, New Zealand
| | | | | | | | | |
Collapse
|
13
|
Raouane M, Desmaële D, Urbinati G, Massaad-Massade L, Couvreur P. Lipid conjugated oligonucleotides: a useful strategy for delivery. Bioconjug Chem 2012; 23:1091-104. [PMID: 22372953 DOI: 10.1021/bc200422w] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Oligonucleotides, including antisense oligonucleotides and siRNA, are promising therapeutic agents against a variety of diseases. Effective delivery of these molecules is critical in view of their clinical application. Therefore, cation-based nanoplexes have been developed to improve the stability as well as the intracellular penetration of these short fragments of nucleic acids. However, this approach is clearly limited by the strong interaction with proteins after administration and by the inherent toxicity of these positively charged transfection materials. Neutral lipid-oligonucleotide conjugates have become a subject of considerable interest to improve the safe delivery of oligonucleotides. These molecules have been chemically conjugated to hydrophobic moieties such as cholesterol, squalene, or fatty acids to enhance their pharmacokinetic behavior and trans-membrane delivery. The present review gives an account of the main synthetic methods available to conjugate lipids to oligonucleotides and will discuss the pharmacological efficacy of this approach.
Collapse
Affiliation(s)
- Mouna Raouane
- Laboratoire de physicochimie, Pharmacotechnie et biopharmacie, UMR CNRS 8612, Université Paris Sud 11 , Faculté de pharmacie, 5 rue J. B. Clément, 92296 Châtenay-Malabry, France
| | | | | | | | | |
Collapse
|
14
|
Abstract
The classical view on how peptides enter cells has been changed due to the development in the research field of cell-penetrating peptides (CPPs). During the last 15 years, more than 100 peptide sequences have been published to enter cells and also to bring different biological cargoes with them. Here, we present an overview of CPPs, mainly trying to analyze their common properties yielding the prediction of their cell-penetrating properties. Furthermore, examples of recent research, ideas on classification and uptake mechanisms, as well as a summary of the therapeutic potential of CPPs are presented.
Collapse
|
15
|
Lu K, Duan QP, Ma L, Zhao DX. Chemical strategies for the synthesis of peptide-oligonucleotide conjugates. Bioconjug Chem 2010; 21:187-202. [PMID: 19856957 DOI: 10.1021/bc900158s] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The use of synthetic oligonucleotides and their mimics to inhibit gene expression by hybridizing with their target sequences has been hindered by their poor cellular uptake and inability to reach the nucleus. Covalent postsynthesis or solid-phase conjugation of peptides to oligonucleotides offers a possible solution to these problems. As feasible chemistry is a prerequisite for biological studies, development of efficient and reproducible approaches for convenient preparation of peptide-oligonucleotide conjugates has become a subject of considerable importance. The present review gives an account of the main synthetic methods available to prepare covalent conjugation of peptides to oligonucleotides.
Collapse
Affiliation(s)
- Kui Lu
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | | | | | | |
Collapse
|
16
|
Singh Y, Murat P, Defrancq E. Recent developments in oligonucleotide conjugation. Chem Soc Rev 2010; 39:2054-70. [PMID: 20393645 DOI: 10.1039/b911431a] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Synthetic oligonucleotides (ONs) are being investigated for various therapeutic and diagnostic applications. The interest in ONs arises because of their capability to cause selective inhibition of gene expression by binding to the target DNA/RNA sequences through mechanisms such as antigene, antisense, and RNA interference. ONs with catalytic activity (ribozymes and DNAzymes) against the target sequences, and ability to bind to the target molecules (aptamers), ranging from small molecules to proteins, are also known. Therefore ONs are considered potentially useful for the treatment of viral diseases and cancer. ONs also find use in the design of DNA microchips (a powerful bio-analytical tool) and novel materials in nanotechnology. However, the clinical success achieved so far with ONs has not been satisfactory, and the major impediments have been recognised as their instability against nucleases, lack of target specificity, and poor uptake and targeted delivery. Tremendous efforts have been made to improve the ON properties by either incorporating chemical modifications in the ON structure or covalently linking (conjugation) reporter groups, with biologically relevant properties, to ONs. Conjugation is of great interest because it can be used not only to improve the existing ON properties but also to impart entirely new properties. This tutorial review focuses on the recent developments in ON conjugation, and describes the key challenges in efficient ON conjugation and major synthetic approaches available for successful ON conjugate syntheses. In addition, an overview on major classes of ON conjugates along with their use in therapeutics, diagnostics and nanotechnology is provided.
Collapse
Affiliation(s)
- Yashveer Singh
- Départment of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA.
| | | | | |
Collapse
|
17
|
Sergeev ME, Voyushina TL. Enzymatic acylation of nucleosides—Novel route to nucleopeptides. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.molcatb.2009.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
|
19
|
Aubry S, Burlina F, Dupont E, Delaroche D, Joliot A, Lavielle S, Chassaing G, Sagan S. Cell‐surface thiols affect cell entry of disulfide‐conjugated peptides. FASEB J 2009; 23:2956-67. [DOI: 10.1096/fj.08-127563] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Soline Aubry
- UPMC Université Paris 06 UMR 7613, Synthesis, Structure, and Function of Bioactive Molecules Paris France
- CNRS UMR 7613, Synthesis, Structure, and Function of Bioactive Molecules Paris France
| | - Fabienne Burlina
- UPMC Université Paris 06 UMR 7613, Synthesis, Structure, and Function of Bioactive Molecules Paris France
- CNRS UMR 7613, Synthesis, Structure, and Function of Bioactive Molecules Paris France
| | - Edmond Dupont
- Ecole Normale Superieure CNRS UMR 8542 Homeoprotein Cell Biology Paris France
| | - Diane Delaroche
- UPMC Université Paris 06 UMR 7613, Synthesis, Structure, and Function of Bioactive Molecules Paris France
- CNRS UMR 7613, Synthesis, Structure, and Function of Bioactive Molecules Paris France
| | - Alain Joliot
- Ecole Normale Superieure CNRS UMR 8542 Homeoprotein Cell Biology Paris France
| | - Solange Lavielle
- UPMC Université Paris 06 UMR 7613, Synthesis, Structure, and Function of Bioactive Molecules Paris France
- CNRS UMR 7613, Synthesis, Structure, and Function of Bioactive Molecules Paris France
| | - Gerard Chassaing
- UPMC Université Paris 06 UMR 7613, Synthesis, Structure, and Function of Bioactive Molecules Paris France
- CNRS UMR 7613, Synthesis, Structure, and Function of Bioactive Molecules Paris France
| | - Sandrine Sagan
- UPMC Université Paris 06 UMR 7613, Synthesis, Structure, and Function of Bioactive Molecules Paris France
- CNRS UMR 7613, Synthesis, Structure, and Function of Bioactive Molecules Paris France
| |
Collapse
|
20
|
Noor F, Kinscherf R, Bonaterra GA, Walczak S, Wölfl S, Metzler-Nolte N. Enhanced cellular uptake and cytotoxicity studies of organometallic bioconjugates of the NLS peptide in Hep G2 cells. Chembiochem 2009; 10:493-502. [PMID: 19115329 DOI: 10.1002/cbic.200800469] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
SPACE INVADERS: Organometallic fragments such as the ferrocenyl group (shown in red in the picture) help to enhance cellular entry of NLS peptides. Eventually, these nontoxic conjugates find their way to the cellular nucleus as shown by fluorescence microscopy studies in this work. Intracellular delivery to biomolecular targets is still a major challenge in molecular and cell biology. We recently found that attaching an organometallic group, namely the cobaltocenium cation, to the SV 40 large T antigen nuclear localisation signal (NLS) greatly enhances cellular uptake of the conjugate (Noor et al., Angew. Chem. Int. Ed. 2005, 45, 2429). In addition, nuclear localisation of the conjugate was observed. In this work, we present a thorough investigation of this novel cellular delivery system with respect to the nature of the metal complex and the peptide sequence. A number of ferrocene ((Fe(II)), neutral metal complex) and cobaltocenium ((Co(III)), cationic metal complex) bioconjugates with both the NLS wild-type sequence PKKKRKV and a scrambled sequence (NLS(scr), KKVKPKR) were prepared by solid-phase peptide synthesis (SPPS). Cellular and nuclear uptake of these bioconjugates was studied by fluorescence microscopy on living Hep G2 cells. In addition, cytotoxicity screening on the conjugates was carried out, as the toxic effects of several simple metallocenes have been noted previously. Rapid cellular uptake as well as nuclear localisation was observed for the metal-NLS conjugates, but not for any dipeptide controls, the metal-NLS(scr) conjugates or any metal-free conjugates. It thus appears that the presence of a metallocene, but not its charge, and the correct NLS sequence is essential for cellular uptake. Fluorescence microscopy co-localisation studies did not reveal a significant endosomal entrapment of the conjugates. The metallocene not only provides a hydrophobic handle for membrane translocation but also facilitates the localisation and distribution of the conjugate in the cytoplasm. The NLS peptide on the other hand is responsible for the nuclear localisation of the bioconjugate. Finally, none of the conjugates were found to be toxic up to the highest concentrations that was tested (1 mM) against the Hep G2 cells that were used in this study. In conclusion, this work supports metallocene-NLS bioconjugates, in particular with the very robust cobaltocenium group, as a simple but potent, nontoxic system for cellular uptake and nuclear delivery. Concurrently, our finding is relevant to the still-unresolved question of cytotoxicity of metallocenes because it excludes binding and/or damage to the DNA as a mechanism of metallocene cytotoxicity. This finding is confirmed by a combined yeast cytotoxicity/genotoxicity assay, which also shows very little toxic effects for all organometal-NLS conjugates that were tested.
Collapse
Affiliation(s)
- Fozia Noor
- Department of Biochemical Engineering, University of Saarland, Saarbrücken, Germany
| | | | | | | | | | | |
Collapse
|
21
|
Hervé F, Ghinea N, Scherrmann JM. CNS delivery via adsorptive transcytosis. AAPS J 2008; 10:455-72. [PMID: 18726697 PMCID: PMC2761699 DOI: 10.1208/s12248-008-9055-2] [Citation(s) in RCA: 372] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Accepted: 06/30/2008] [Indexed: 11/30/2022] Open
Abstract
Adsorptive-mediated transcytosis (AMT) provides a means for brain delivery of medicines across the blood-brain barrier (BBB). The BBB is readily equipped for the AMT process: it provides both the potential for binding and uptake of cationic molecules to the luminal surface of endothelial cells, and then for exocytosis at the abluminal surface. The transcytotic pathways present at the BBB and its morphological and enzymatic properties provide the means for movement of the molecules through the endothelial cytoplasm. AMT-based drug delivery to the brain was performed using cationic proteins and cell-penetrating peptides (CPPs). Protein cationization using either synthetic or natural polyamines is discussed and some examples of diamine/polyamine modified proteins that cross BBB are described. Two main families of CPPs belonging to the Tat-derived peptides and Syn-B vectors have been extensively used in CPP vector-mediated strategies allowing delivery of a large variety of small molecules as well as proteins across cell membranes in vitro and the BBB in vivo. CPP strategy suffers from several limitations such as toxicity and immunogenicity--like the cationization strategy--as well as the instability of peptide vectors in biological media. The review concludes by stressing the need to improve the understanding of AMT mechanisms at BBB and the effectiveness of cationized proteins and CPP-vectorized proteins as neurotherapeutics.
Collapse
Affiliation(s)
- Françoise Hervé
- UFR Biomédicale, Université Paris Descartes, CNRS, UPR2228, 45 rue des Saints-Pères, 75270 Paris, France.
| | | | | |
Collapse
|
22
|
Extra- and Intranuclear Dynamics and Distribution of Modified-PAMAM Polyplexes in Living Cells: A Single-Molecule Analysis. B KOREAN CHEM SOC 2008. [DOI: 10.5012/bkcs.2008.29.8.1565] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Fabani MM, Ivanova GD, Gait MJ. Peptide–Peptide Nucleic Acid Conjugates for Modulation of Gene Expression. THERAPEUTIC OLIGONUCLEOTIDES 2008. [DOI: 10.1039/9781847558275-00080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Martin M. Fabani
- Medical Research Council Laboratory of Molecular Biology Hills Road Cambridge CB2 0QH UK
| | - Gabriela D. Ivanova
- Medical Research Council Laboratory of Molecular Biology Hills Road Cambridge CB2 0QH UK
| | - Michael J. Gait
- Medical Research Council Laboratory of Molecular Biology Hills Road Cambridge CB2 0QH UK
| |
Collapse
|
24
|
Fischer PM. Cellular uptake mechanisms and potential therapeutic utility of peptidic cell delivery vectors: progress 2001-2006. Med Res Rev 2008; 27:755-95. [PMID: 17019680 DOI: 10.1002/med.20093] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cell delivery vectors (CDVs) are short amphipathic and cationic peptides and peptide derivatives, usually containing multiple lysine and arginine residues. They possess inherent membrane activity and can be conjugated or complexed with large impermeable macromolecules and even microscopic particles to facilitate cell entry. Various mechanisms have been proposed but it is now becoming clear that the main port of entry into cells of such CDV constructs involves adsorptive-mediated endocytosis rather than direct penetration of the plasma membrane. It is still unclear, however, how and to what extent CDV constructs are capable of exiting endosomal compartments and reaching their intended cellular site of action, usually the cytosol or the nucleus. Furthermore, although many CDVs can mediate cellular uptake of their cargo and appear comparatively non-toxic to cells in tissue culture, the utility of CDVs for in vivo applications remains poorly understood. Whatever the mechanisms of cell entry and disposition, the overriding question as far as potential pharmacological application of CDV conjugates is concerned is whether or not a therapeutic margin can be achieved by their administration. Such a margin will only result if the intracellular concentration in the target tissues necessary to elicit the biological effect of the CDV cargo can be achieved at systemic CDV exposure levels that are non-toxic to both target and bystander cells. It is proposed that the focus of CDV research now be shifted from mechanistic in vitro studies with labeled but otherwise unconjugated CDVs to in vivo pharmacological and toxicological studies using CDV-derivatized and other cationized forms of inherently non-permeable macromolecules of true therapeutic interest.
Collapse
Affiliation(s)
- Peter M Fischer
- Centre for Biomolecular Sciences and School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom.
| |
Collapse
|
25
|
Hodoniczky J, Sims CG, Best WM, Bentel JM, Wilce JA. The intracellular and nuclear-targeted delivery of an antiandrogen drug by carrier peptides. Biopolymers 2008; 90:595-603. [DOI: 10.1002/bip.20986] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
26
|
Ye Z, Houssein HSH, Mahato RI. Bioconjugation of oligonucleotides for treating liver fibrosis. Oligonucleotides 2008; 17:349-404. [PMID: 18154454 DOI: 10.1089/oli.2007.0097] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Liver fibrosis results from chronic liver injury due to hepatitis B and C, excessive alcohol ingestion, and metal ion overload. Fibrosis culminates in cirrhosis and results in liver failure. Therefore, a potent antifibrotic therapy is urgently needed to reverse scarring and eliminate progression to cirrhosis. Although activated hepatic stellate cells (HSCs) remain the principle cell type responsible for liver fibrosis, perivascular fibroblasts of portal and central veins as well as periductular fibroblasts are other sources of fibrogenic cells. This review will critically discuss various treatment strategies for liver fibrosis, including prevention of liver injury, reduction of inflammation, inhibition of HSC activation, degradation of scar matrix, and inhibition of aberrant collagen synthesis. Oligonucleotides (ODNs) are short, single-stranded nucleic acids, which disrupt expression of target protein by binding to complementary mRNA or forming triplex with genomic DNA. Triplex forming oligonucleotides (TFOs) provide an attractive strategy for treating liver fibrosis. A series of TFOs have been developed for inhibiting the transcription of alpha1(I) collagen gene, which opens a new area for antifibrotic drugs. There will be in-depth discussion on the use of TFOs and how different bioconjugation strategies can be utilized for their site-specific delivery to HSCs or hepatocytes for enhanced antifibrotic activities. Various insights developed in individual strategy and the need for multipronged approaches will also be discussed.
Collapse
Affiliation(s)
- Zhaoyang Ye
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | | |
Collapse
|
27
|
Foerg C, Merkle HP. On The Biomedical Promise of Cell Penetrating Peptides: Limits Versus Prospects. J Pharm Sci 2008; 97:144-62. [PMID: 17763452 DOI: 10.1002/jps.21117] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The cell membrane poses a substantial hurdle to the use of pharmacologically active biomacromolecules that are not per se actively translocated into cells. An appealing approach to deliver such molecules involves tethering or complexing them with so-called cell penetrating peptides (CPPs) that are able to cross the plasma membrane of mammalian cells. The CPP approach is currently a major avenue in engineering delivery systems that are hoped to mediate the non-invasive import of problematic cargos into cells. The large number of different cargo molecules that have been efficiently delivered by CPPs ranges from small molecules to proteins and even liposomes and particles. With respect to the involved mechanism(s) there is increasing evidence for endocytosis as a major route of entry. Moreover, in terms of intracellular trafficking, current data argues for the transport to acidic early endosomal compartments with cytosolic release mediated via retrograde delivery through the Golgi apparatus and the endoplasmic reticulum. The focus of this review is to revisit the performance of cell penetrating peptides for drug delivery. To this aim we cover both accomplishments and failures and report on new prospects of the CPP approach. Besides a selection of successful case histories of CPPs we also review the limitations of CPP mediated translocation. In particular, we comment on the impact of (i) metabolic degradation, (ii) the cell line and cellular differentiation state dependent uptake of CPPs, as well as (iii) the regulation of their endocytic traffic by Rho-family GTPases. Further on, we aim at the identification of promising niches for CPP application in drug delivery. In this context, as inspired by current literature, we focus on three principal areas: (i) the delivery of antineoplastic agents, (ii) the delivery of CPPs as antimicrobials, and (iii) the potential of CPPs to target inflammatory tissues.
Collapse
Affiliation(s)
- Christina Foerg
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Wolfgang-Pauli-Strasse 10, CH-8093 Zurich, Switzerland
| | | |
Collapse
|
28
|
Peyrottes S, Mestre B, Burlina F, Gait MJ. Studies Towards the Synthesis of Peptide-Oligonucleotide Conjugates. ACTA ACUST UNITED AC 2006. [DOI: 10.1080/07328319908044748] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
29
|
Hudecz F, Bánóczi Z, Csík G. Medium-sized peptides as built in carriers for biologically active compounds. Med Res Rev 2006; 25:679-736. [PMID: 15952174 DOI: 10.1002/med.20034] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A growing number of oligopeptides of natural and/or synthetic origin have been described and considered as targeting structures for delivery bioactive compounds into various cell types. This review will outline the discovery of peptide sequences and the corresponding mid-sized oligopeptides with membrane translocating properties and also summarize de novo designed structures possessing similar features. Conjugates and chimera constructs derived from these sequences with covalently attached bioactive peptide, epitope, oligonucleotide, PNA, drug, reporter molecule will be reviewed. A brief note will refer to the present understanding on the uptake mechanism at the end of each section.
Collapse
Affiliation(s)
- Ferenc Hudecz
- Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös Loránd University, Budapest 112, POB 32, Hungary H-1518. hudecz@szerves,chem.elte.hu
| | | | | |
Collapse
|
30
|
Deshayes S, Morris MC, Divita G, Heitz F. Interactions of amphipathic CPPs with model membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1758:328-35. [PMID: 16277976 DOI: 10.1016/j.bbamem.2005.10.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2005] [Revised: 10/07/2005] [Accepted: 10/07/2005] [Indexed: 10/25/2022]
Abstract
We have investigated the interactions between two carrier peptides and model membrane systems as well as the conformational consequences of these interactions. Studies performed with lipid monolayers at the air-water interface have enabled identification of the nature of the lipid-peptide interactions and characterization of the influence of phospholipids on the ability of these peptides to penetrate into lipidic media. Penetration experiments reveal that both peptides interact strongly with phospholipids. Conformational investigations indicate that the lipid-peptide interaction govern the conformational state of the peptides. Based on the ability of both peptides to promote ion permeabilization of both natural and artificial membranes, we propose a model illustrating the translocation process. For MPG, it is based on the formation of a beta-barrel pore-like structure, while for Pep-1, it is based on association of helices.
Collapse
Affiliation(s)
- Sébastien Deshayes
- CRBM-CNRS, FRE 2593, 1919, Route de Mende, F-34293 Montpellier cedex, France
| | | | | | | |
Collapse
|
31
|
Pujals S, Fernández-Carneado J, López-Iglesias C, Kogan MJ, Giralt E. Mechanistic aspects of CPP-mediated intracellular drug delivery: relevance of CPP self-assembly. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1758:264-79. [PMID: 16545772 DOI: 10.1016/j.bbamem.2006.01.006] [Citation(s) in RCA: 172] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2005] [Revised: 01/03/2006] [Accepted: 01/04/2006] [Indexed: 02/03/2023]
Abstract
In recent years, cell-penetrating peptides have proven to be an efficient intracellular delivery system. The mechanism for CPP internalisation, which first involves interaction with the extracellular matrix, is followed in most cases by endocytosis and finally, depending on the type of endocytosis, an intracellular fate is reached. Delivery of cargo attached to a CPP requires endosomal release, for which different methods have recently been proposed. Positively charged amino acids, hydrophobicity and/or amphipathicity are common to CPPs. Moreover, some CPPs can self-assemble. Herein is discussed the role of self assembly in the cellular uptake of CPPs. Sweet Arrow Peptide (SAP) CPP has been shown to aggregate by CD and TEM (freeze-fixation/freeze-drying), although the internalised species have yet to be identified as either the monomer or an aggregate.
Collapse
Affiliation(s)
- Sílvia Pujals
- Institut de Recerca Biomèdica de Barcelona, Parc Científic de Barcelona, Josep Samitier 1-5, E-08028 Barcelona, Spain
| | | | | | | | | |
Collapse
|
32
|
Deshayes S, Morris MC, Divita G, Heitz F. Interactions of amphipathic carrier peptides with membrane components in relation with their ability to deliver therapeutics. J Pept Sci 2006; 12:758-65. [PMID: 17131287 DOI: 10.1002/psc.810] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
To identify rules for the design of efficient CPPs that can deliver therapeutic agents such as nucleic acids (DNAs, siRNAs) or proteins and PNAs into subcellular compartments, we compared the properties of several primary and secondary amphipathic CPPs. Studies performed with lipid monolayers at the air-water interface have enabled identification of the nature of the lipid-peptide interactions and characterization of the influence of phospholipids on the ability of these peptides to penetrate into lipidic media. Penetration and compression experiments reveal that both peptides interact strongly with phospholipids, and observations on Langmuir-Blodgett transfers indicate that they can modify the lipid organization. Conformational investigations indicate that the lipid-peptide interactions govern the conformational state(s) of the peptides. On the basis of the ability of both peptides to promote ion permeation through both natural and artificial membranes, models illustrating the translocation processes have been proposed. One is based on the formation of a beta-barrel pore-like structure while another is based on the association of helices.
Collapse
|
33
|
Plénat T, Boichot S, Dosset P, Milhiet PE, Le Grimellec C. Coexistence of a two-states organization for a cell-penetrating peptide in lipid bilayer. Biophys J 2005; 89:4300-9. [PMID: 16199494 PMCID: PMC1366994 DOI: 10.1529/biophysj.105.061697] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Primary amphipathic cell-penetrating peptides transport cargoes across cell membranes with high efficiency and low lytic activity. These primary amphipathic peptides were previously shown to form aggregates or supramolecular structures in mixed lipid-peptide monolayers, but their behavior in lipid bilayers remains to be characterized. Using atomic force microscopy, we have examined the interactions of P(alpha), a primary amphipathic cell-penetrating peptide which remains alpha-helical whatever the environment, with dipalmitoylphosphatidylcholine (DPPC) bilayers. Addition of P(alpha) at concentrations up to 5 mol % markedly modified the supported bilayers topography. Long and thin filaments lying flat at the membrane surface coexisted with deeply embedded peptides which induced a local thinning of the bilayer. On the other hand, addition of P(alpha) only exerted very limited effects on the corresponding liposome's bilayer physical state, as estimated from differential scanning calorimetry and diphenylhexatriene fluorescence anisotropy experiments. The use of a gel-fluid phase separated supported bilayers made of a dioleoylphosphatidylcholine/dipalmitoylphosphatidylcholine mixture confirmed both the existence of long filaments, which at low peptide concentration were preferentially localized in the fluid phase domains and the membrane disorganizing effects of 5 mol % P(alpha). The simultaneous two-states organization of P(alpha), at the membrane surface and deeply embedded in the bilayer, may be involved in the transmembrane carrier function of this primary amphipathic peptide.
Collapse
Affiliation(s)
- Thomas Plénat
- Nanostructures et Complexes Membranaires, Centre de Biochimie Structurale, INSERM UMR 554, CNRS UMR 5048-Université Montpellier I, 34090 Montpellier Cedex, France
| | | | | | | | | |
Collapse
|
34
|
Lochmann D, Jauk E, Zimmer A. Drug delivery of oligonucleotides by peptides. Eur J Pharm Biopharm 2005; 58:237-51. [PMID: 15296952 DOI: 10.1016/j.ejpb.2004.03.031] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2004] [Accepted: 03/11/2004] [Indexed: 01/18/2023]
Abstract
Oligonucleotides are promising tools for in vitro studies where specific downregulation of proteins is required. In addition, antisense oligonucleotides have been studied in vivo and have entered clinical trials as new chemical entities with various therapeutic targets such as antiviral drugs or for tumour treatments. The formulation of these substances were widely studied in the past. With this review we will focus on peptides used as drug delivery vehicles for oligonucleotides. Different strategies are summarised. Cationically charged peptides from different origins were used e.g. as cellular penetration enhancers or nuclear localisation tool. Examples are given for Poly-L-lysine alone or in combination with receptor specific targeting ligands such as asialoglycoprotein, galactose, growth factors or transferrin. Another large group of peptides are those with membrane translocating properties. Fusogenic peptides rich in lysine or arginine are reviewed. They have been used for DNA complexation and condensation to form transport vehicles. Some of them, additionally, have so called nuclear localisation properties. Here, DNA sequences, which facilitate intracellular trafficking of macromolecules to the nucleus were explored. Summarizing the present literature, peptides are interesting pharmaceutical excipients and it seems to be feasible to combine the specific properties of peptides to improve drug delivery devices for oligonucleotides in the future.
Collapse
Affiliation(s)
- Dirk Lochmann
- Institute for Pharmaceutical Technology, Johann Wolfgang Goethe-University, Frankfurtam Main, Germany
| | | | | |
Collapse
|
35
|
Glomm WR. Functionalized Gold Nanoparticles for Applications in Bionanotechnology. J DISPER SCI TECHNOL 2005. [DOI: 10.1081/dis-200052457] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
36
|
Noor F, Wüstholz A, Kinscherf R, Metzler-Nolte N. Ein Peptid-Cobaltocenium-Biokonjugat mit verbesserter Aufnahme in Zellen und Anreicherung im Zellkern. Angew Chem Int Ed Engl 2005. [DOI: 10.1002/ange.200462519] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
37
|
Noor F, Wüstholz A, Kinscherf R, Metzler-Nolte N. A Cobaltocenium-Peptide Bioconjugate Shows Enhanced Cellular Uptake and Directed Nuclear Delivery. Angew Chem Int Ed Engl 2005; 44:2429-32. [PMID: 15747385 DOI: 10.1002/anie.200462519] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Fozia Noor
- Institut für Pharmazie und Molekulare Biotechnologie, Universität Heidelberg, Germany
| | | | | | | |
Collapse
|
38
|
Zorko M, Langel U. Cell-penetrating peptides: mechanism and kinetics of cargo delivery. Adv Drug Deliv Rev 2005; 57:529-45. [PMID: 15722162 DOI: 10.1016/j.addr.2004.10.010] [Citation(s) in RCA: 628] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2004] [Accepted: 10/27/2004] [Indexed: 11/20/2022]
Abstract
Cell-penetrating peptides (CPPs) are short peptides of less than 30 amino acids that are able to penetrate cell membranes and translocate different cargoes into cells. The only common feature of these peptides appears to be that they are amphipathic and net positively charged. The mechanism of cell translocation is not known but it is apparently receptor and energy independent although, in certain cases, translocation can be partially mediated by endocytosis. Cargoes that are successfully internalized by CPPs range from small molecules to proteins and supramolecular particles. Most CPPs are inert or have very limited side effects. Their penetration into cells is rapid and initially first-order, with half-times from 5 to 20 min. The size of smaller cargoes does not affect the rate of internalization, but with larger cargoes, the rate is substantially decreased. CPPs are novel vehicles for the translocation of cargo into cells, whose properties make them potential drug delivery agents, of interest for future use.
Collapse
Affiliation(s)
- Matjaz Zorko
- Institute of Biochemistry, Medical Faculty, University of Ljubljana, Vrazov trg 2, SLO-1000, Ljubljana, Slovenia.
| | | |
Collapse
|
39
|
Dietz GPH, Bähr M. Delivery of bioactive molecules into the cell: the Trojan horse approach. Mol Cell Neurosci 2005; 27:85-131. [PMID: 15485768 DOI: 10.1016/j.mcn.2004.03.005] [Citation(s) in RCA: 358] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2003] [Revised: 02/17/2004] [Accepted: 03/16/2004] [Indexed: 01/12/2023] Open
Abstract
In recent years, vast amounts of data on the mechanisms of neural de- and regeneration have accumulated. However, only in disproportionally few cases has this led to efficient therapies for human patients. Part of the problem is to deliver cell death-averting genes or gene products across the blood-brain barrier (BBB) and cellular membranes. The discovery of Antennapedia (Antp)-mediated transduction of heterologous proteins into cells in 1992 and other "Trojan horse peptides" raised hopes that often-frustrating attempts to deliver proteins would now be history. The demonstration that proteins fused to the Tat protein transduction domain (PTD) are capable of crossing the BBB may revolutionize molecular research and neurobiological therapy. However, it was only recently that PTD-mediated delivery of proteins with therapeutic potential has been achieved in models of neural degeneration in nerve trauma and ischemia. Several groups have published the first positive results using protein transduction domains for the delivery of therapeutic proteins in relevant animal models of human neurological disorders. Here, we give an extensive review of peptide-mediated protein transduction from its early beginnings to new advances, discuss their application, with particular focus on a critical evaluation of the limitations of the method, as well as alternative approaches. Besides applications in neurobiology, a large number of reports using PTD in other systems are included as well. Because each protein requires an individual purification scheme that yields sufficient quantities of soluble, transducible material, the neurobiologist will benefit from the experiences of other researchers in the growing field of protein transduction.
Collapse
|
40
|
Zaramella S, Yeheskiely E, Strömberg R. A method for solid-phase synthesis of oligonucleotide 5'-peptide-conjugates using acid-labile alpha-amino protections. J Am Chem Soc 2004; 126:14029-35. [PMID: 15506766 DOI: 10.1021/ja046945o] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We describe the development of a solid-phase technique for the synthesis of 5'-peptide-oligonucleotide conjugates (POCs) with a uniform protection strategy for the nucleic acid and the peptide fragments. On the alpha-amino function, the amino acid building blocks were protected with the 2-(biphenyl-4-yl)propan-2-yloxycarbonyl (Bpoc) group. This protection is removed during the stepwise peptide elongation by the same acidic conditions used for removal of the dimethoxytrityl (DMT) group used in the oligonucleotide assembly (3% trichloroacetic acid, 2 min). The 2-(3,5-dimethoxyphenyl)propan-2-yloxycarbonyl (Ddz) group was also tested. With this somewhat more stable group, a prolonged contact with the acid (at least 16 min) was required for accomplishing complete alpha-amino deprotection, which resulted in some degree of depurination of the acid-sensitive DNA chain. Base-labile acyl protections were adopted for the side-chains of histidine, lysine, and the nucleobase amino functions. These were all removed in the final deblocking step by ammonolysis. This uniform protection scheme for the peptide and the oligonucleotide enabled the total stepwise synthesis of model conjugates in the 3' --> N direction with high efficiency and purity.
Collapse
Affiliation(s)
- Simone Zaramella
- Division of Organic and Bioorganic Chemistry, MBB, Scheele Laboratory, Karolinska Institutet, S-17177 Stockholm, Sweden
| | | | | |
Collapse
|
41
|
Abstract
In the past decade, several peptides that can translocate cell membranes have been identified. Some of these peptides, which can be divided into different families, have short amino acid sequences (10-27 residues in length) and enter the cell by a receptor-independent mechanism. Furthermore, these peptides are capable of internalizing hydrophilic cargoes. Although the detailed mechanism by which these molecules enter cells is poorly understood, their ability to traverse the membrane into the cytoplasm has provided a new and powerful biological tool for transporting drugs across cell membranes.
Collapse
Affiliation(s)
- Jamal Temsamani
- Synt:em, Parc Scientifique Georges Besse, 30000 Nîmes, France.
| | | |
Collapse
|
42
|
Plénat T, Deshayes S, Boichot S, Milhiet PE, Cole RB, Heitz F, Le Grimellec C. Interaction of primary amphipathic cell-penetrating peptides with phospholipid-supported monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2004; 20:9255-9261. [PMID: 15461515 DOI: 10.1021/la048622b] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The mesoscopic organization adopted by two primary amphipathic peptides, P(beta) and P(alpha), in Langmuir-Blodgett (LB) films made of either the pure peptide or peptide-phospholipid mixtures was examined by atomic force microscopy. P(beta), a potent cell-penetrating peptide (CPP), and P(alpha) mainly differ by their conformational states, predominantly a beta-sheet for P(beta) and an alpha-helix for P(alpha), as determined by Fourier transform infrared spectroscopy. LB films of pure peptide, transferred significantly below their collapse pressure, were characterized by the presence of supramolecular structures, globular aggregates for P(beta) and filaments for P(alpha), inserted into the monomolecular film. In mixed peptide-phospholipid films, similar structures could be observed, as a function of the phospholipid headgroup and acyl chain saturation. They often coexisted with a liquid-expanded phase composed of miscible peptide-lipid. These data strongly suggest that primary amphipathic CPP and antimicrobial peptides may share, to some extent, common mechanisms of interaction with membranes.
Collapse
Affiliation(s)
- Thomas Plénat
- Nanostructures et Complexes Membranaires, CBS, CNRS UMR5048-INSERM U554, 29 rue de Navacelles, 34090 Montpellier Cedex, France
| | | | | | | | | | | | | |
Collapse
|
43
|
Tréhin R, Merkle HP. Chances and pitfalls of cell penetrating peptides for cellular drug delivery. Eur J Pharm Biopharm 2004; 58:209-23. [PMID: 15296950 DOI: 10.1016/j.ejpb.2004.02.018] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2003] [Accepted: 02/24/2004] [Indexed: 11/17/2022]
Abstract
Over the past decade, several classes and/or prototypes of cell penetrating peptides (CPP) have been identified and investigated in multiple aspects. CPP represent peptides, which show the ability to cross the plasma membrane of mammalian cells, and may thus give rise to the intracellular delivery of problematic therapeutic cargos, such as peptides, proteins, oligonucleotides, plasmids and even nanometer-sized particles, which otherwise cannot cross the plasma membrane. Most of the currently recognized CPP are of cationic nature and derived from viral, insect or mammalian proteins endowed with membrane translocation properties. The exact mechanisms underlying the translocation of CPP across the cellular membrane are still poorly understood. However, several similarities in translocation can be found. Early studies on CPP translocation mechanisms tended to suggest that the internalization of these peptides was neither significantly inhibited by low temperature, depletion of the cellular adenosine triphosphate (ATP) pool, nor by inhibitors of endocytosis. Moreover, chemical modification of the peptide sequence, such as the synthesis of retro-, enantio- or retroenantio-analogs, appeared not to affect the internalization properties. Therefore, translocation was concluded to result from direct, physical transfer through the lipid bilayer of the cell membrane. Later studies, however, showed convincing evidence for the involvement of endocytosis as the dominating mechanism for cellular internalization. In addition to describing the general properties of the commonly recognized classes of CPP, in this review we will also point out some limitations and typical pitfalls of CPP as carriers for therapeutics. In particular we will comment on emerging discrepancies with the current dogma, on cell-to-cell variability, biological barrier permeability, metabolic fate, toxicity and immunogenicity of CPP.
Collapse
Affiliation(s)
- Rachel Tréhin
- Center for Molecular Imaging Research (CMIR), Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA.
| | | |
Collapse
|
44
|
Fernández-Carneado J, Kogan MJ, Pujals S, Giralt E. Amphipathic peptides and drug delivery. Biopolymers 2004; 76:196-203. [PMID: 15054899 DOI: 10.1002/bip.10585] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The discovery of cell-penetrating peptides as gene delivery systems and the interest in the mechanism by which these vectors cross the cell membrane have generated a large number of studies. Among the parameters involved in the translocation process, controversy has arisen about the role of the amphipathicity of the carriers in the interaction and reorganization of the cell membrane. In this review we have summarized the vectors with primary or secondary amphipathicity related to secondary structure. Some of the insights into the relationship between the aggregation state of the peptide at the concentrations used for internalization studies and its interaction with the cell membrane result from our contribution to the field with a new family of amphipathic proline-rich peptides.
Collapse
Affiliation(s)
- Jimena Fernández-Carneado
- Institut de Recerca Biomèdica de Barcelona, Parc Científic de Barcelona, Josep Samitier 1-5, E-08028 Barcelona, Spain
| | | | | | | |
Collapse
|
45
|
Tengvall U, Auriola S, Antopolsky M, Azhayev A, Biegelman L. Characterization of antisense oligonucleotide-peptide conjugates with negative ionization electrospray mass spectrometry and liquid chromatography-mass spectrometry. J Pharm Biomed Anal 2003; 32:581-90. [PMID: 12899948 DOI: 10.1016/s0731-7085(03)00165-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covalent post-synthesis or solid-phase conjugation of peptides to oligonucleotides has been reported as a possible method of delivering antisense oligonucleotides into cells. While synthesis strategies for preparing these conjugates have been widely addressed, few detailed reports on their structural characterization have been published. This paper discusses the negative ion electrospray ionization mass spectrometric (ESI-MS) and liquid chromatography-mass spectrometric (LC-MS) analysis of various peptide-oligonucleotide conjugates ranging from small T(6)-nucleopeptides to large peptide-oligonucleotide phosphorothioate conjugates and ribozyme-peptide hybrids (3-13 kDa). Molecular weight determination with mass errors of 0.1-3.1 amu were conducted, employing on-line IP-RP-HPLC and high m/z range mode to facilitate the analysis of large compounds and difficult modifications.
Collapse
Affiliation(s)
- Unni Tengvall
- Department of Pharmaceutical Chemistry, University of Kuopio, P.O. Box 1627, FIN-70211 Kuopio, Finland
| | | | | | | | | |
Collapse
|
46
|
Abstract
Oligonucleotides (ONs) are a new class of therapeutic compounds under investigation for the treatment of a variety of disease states, such as cancer and HIV, and for FDA approval of an anti-CMV retinitis antisense molecule (Vitravene trade mark, Isis Pharmaceuticals). However, these molecules are limited not only by poor cellular uptake, but also by a general lack of understanding regarding the mechanism(s) of ON cellular uptake. As a result, various delivery vehicles have been developed that circumvent the proposed mechanism of uptake, endocytosis, while improving target specific delivery and/or drug stability. This review describes various traditional and novel delivery mechanisms that have been employed to improve ON cellular delivery, cost effectiveness, and therapeutic efficacy.
Collapse
Affiliation(s)
- Melanie A Lysik
- Midwestern University, College of Pharmacy-Glendale, Department of Pharmaceutical Sciences, 19555 N 59th Avenue, Glendale, Arizona 18308, USA.
| | | |
Collapse
|
47
|
Wu CCN, Castro JE, Motta M, Cottam HB, Kyburz D, Kipps TJ, Corr M, Carson DA. Selection of oligonucleotide aptamers with enhanced uptake and activation of human leukemia B cells. Hum Gene Ther 2003; 14:849-60. [PMID: 12828856 DOI: 10.1089/104303403765701141] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The clinical use of oligonucleotide (ODN) therapeutics has been hampered by their limited ability to penetrate intact cells. To identify ODN properties that would facilitate cellular uptake, we developed a repetitive selection procedure using an ODN library containing at least 10(14) different molecules and human B lymphoma cells as a target. Natural phosphodiester single-stranded DNA ODNs (R-aptamers) were obtained after 10 rounds of selection. A common feature in the R-aptamers was guanine-rich 3' terminal sequences, and many also contained potential immunostimulatory (ISS) CpG sequence motifs. Two R-aptamers (R10-60 and D-R15-8) with the predominant shared characteristics were selected for further study on primary human chronic lymphocytic leukemia (CLL) B cells, which are well known to be difficult to transfect and activate. Flow cytometry analysis of the CLL cells demonstrated that the fluorochrome-labeled R-aptamers were internalized much more efficiently than nonselected random sequence ODN. Studies on sequence modifications indicated that efficient uptake required ODN multimerization, that was promoted by guanine-rich sequences at the 3' terminus. In addition, CLL cells that were exposed to the aggregating R-aptamers containing CpG motifs were strongly activated, as indicated by upregulation of CD40 levels as compared to cells treated with nonaggregating CpG R-aptamers. Together, these findings suggest that the sequence compositions in R-aptamers that promote multimerization and contain optimal ISS CpG motifs facilitate the delivery of ISS-ODN to CLL cells and enhance the activation of these cells.
Collapse
MESH Headings
- Adjuvants, Immunologic/chemistry
- Adjuvants, Immunologic/metabolism
- Adjuvants, Immunologic/pharmacology
- Animals
- Centrifugation, Density Gradient
- Chromatography, High Pressure Liquid
- DNA-Binding Proteins/immunology
- DNA-Binding Proteins/metabolism
- Gene Library
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Mice
- Oligodeoxyribonucleotides/chemistry
- Oligodeoxyribonucleotides/metabolism
- Oligodeoxyribonucleotides/pharmacology
- Oligonucleotides/chemistry
- Oligonucleotides/metabolism
- Oligonucleotides/pharmacology
- Permeability
- Receptors, Cell Surface/analysis
- Receptors, Cell Surface/immunology
- Receptors, Cell Surface/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Toll-Like Receptor 9
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Christina C N Wu
- Division of Rheumatology Allergy and Immunology, Department of Medicine, Sam and Rose Stein Institute for Research on Aging, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0663, USA.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Pipkorn R, Waldeck W, Braun K. Synthesis and application of functional peptides as cell nucleus-directed molecules in the treatment of malignant diseases. J Mol Recognit 2003; 16:240-7. [PMID: 14523935 DOI: 10.1002/jmr.632] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The unique functions of biomolecules, including transport across biological membranes (e.g. the cell membrane, the nuclear envelope), modulation of protein function, gene transcription, reconstitution of the malignant transformation, and viral, bacterial and fungal activities underlie a high pharmaceutical potential. The development of combinatorial functional peptide modules in this important area has been slow, in contrast to the rapid development in the synthesis of small biopolymers. The conjugation of a short transmembrane transport peptide module with a cell nucleus address peptide module and with any substance is attractive for preparation of BioShuttle-based peptides because of the well-established automated synthesis of peptides. Variation of the different functional modules for drug targeting and the choice of substances can be combined to create novel bioconjugates with unique properties. This article provides an overview of previous work on the BioShuttle technology and outlines the promising use of this approach in combinatorial peptide synthesis and drug discovery.
Collapse
Affiliation(s)
- R Pipkorn
- German Cancer Research Center, Heidelberg, Germany.
| | | | | |
Collapse
|
49
|
Tung CH, Mueller S, Weissleder R. Novel branching membrane translocational peptide as gene delivery vector. Bioorg Med Chem 2002; 10:3609-14. [PMID: 12213476 DOI: 10.1016/s0968-0896(02)00248-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A fragment of HIV-tat protein, RKKRRQRRR, has been shown to have membrane penetration and nuclear localization properties, which are critical attributes of gene therapy agents. In this study, we designed a series of arborizing tat peptides, containing 1-8 tat moieties, and evaluated them as transfection enhancers in a variety of cell lines. We found that all compounds complexed with plasmid DNA, but only the molecule containing 8 tat-peptide chains shows significant transfection capabilities. Using rhodamine labeled plasmid and eight tat-peptide complex, we were also able to demonstrate intracellular delivery of the complex by fluorescence microscopy.
Collapse
Affiliation(s)
- Ching-Hsuan Tung
- Center for Molecular Imaging Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA.
| | | | | |
Collapse
|
50
|
Oehlke J, Birth P, Klauschenz E, Wiesner B, Beyermann M, Oksche A, Bienert M. Cellular uptake of antisense oligonucleotides after complexing or conjugation with cell-penetrating model peptides. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:4025-32. [PMID: 12180979 DOI: 10.1046/j.1432-1033.2002.03093.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The uptake by mammalian cells of phosphorothioate oligonucleotides was compared with that of their respective complexes or conjugates with cationic, cell-penetrating model peptides of varying helix-forming propensity and amphipathicity. An HPLC-based protocol for the synthesis and purification of disulfide bridged conjugates in the 10-100 nmol range was developed. Confocal laser scanning microscopy (CLSM) in combination with gel-capillary electrophoresis and laser induced fluorescence detection (GCE-LIF) revealed cytoplasmic and nuclear accumulationin all cases. The uptake differences between naked oligonucleotides and their respective peptide complexes or conjugates were generally confined to one order of magnitude. No significant influence of the structural properties of the peptide components upon cellular uptake was found. Our results question the common belief that the increased biological activity of oligonucleotides after derivatization with membrane permeable peptides may be primarily due to improved membrane translocation.
Collapse
Affiliation(s)
- J Oehlke
- Institute of Molecular Pharmacology, Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|