1
|
Sf9 cells: a versatile model system to investigate the pharmacological properties of G protein-coupled receptors. Pharmacol Ther 2010; 128:387-418. [PMID: 20705094 DOI: 10.1016/j.pharmthera.2010.07.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 07/12/2010] [Indexed: 11/23/2022]
Abstract
The Sf9 cell/baculovirus expression system is widely used for high-level protein expression, often with the purpose of purification. However, proteins may also be functionally expressed in the defined Sf9 cell environment. According to the literature, the pharmacology of G-protein-coupled receptors (GPCRs) functionally reconstituted in Sf9 cells is similar to the receptor properties in mammalian cells. Sf9 cells express both recombinant GPCRs and G-proteins at much higher levels than mammalian cells. Sf9 cells can be grown in suspension culture, providing an inexpensive way of obtaining large protein amounts. Co-infection with various baculoviruses allows free combination of GPCRs with different G-proteins. The absence of constitutively active receptors in Sf9 cells provides an excellent signal-to background ratio in functional assays, allowing the detection of agonist-independent receptor activity and of small ligand-induced signals including partial agonistic and inverse agonistic effects. Insect cell Gα(i)-like proteins mostly do not couple productively to mammalian GPCRs. Thus, unlike in mammalian cells, Sf9 cells do not require pertussis toxin treatment to obtain a Gα(i)-free environment. Co-expression of GPCRs with Gα(i1), Gα(i2), Gα(i3) or Gα(o) in Sf9 cells allows the generation of a selectivity profile for these Gα(i/o)-isoforms. Additionally, GPCR-G-protein combinations can be compared with defined 1:1 stoichiometry by expressing GPCR-Gα fusion proteins. Sf9 cells can also be employed for ligand screening in medicinal chemistry programs, using radioligand binding assays or functional assays, like the steady-state GTPase- or [(35)S]GTPγS binding assay. This review shows that Sf9 cells are a versatile model system to investigate the pharmacological properties of GPCRs.
Collapse
|
2
|
Veiksina S, Kopanchuk S, Rinken A. Fluorescence anisotropy assay for pharmacological characterization of ligand binding dynamics to melanocortin 4 receptors. Anal Biochem 2010; 402:32-9. [DOI: 10.1016/j.ab.2010.03.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 02/21/2010] [Accepted: 03/13/2010] [Indexed: 11/16/2022]
|
3
|
Bruchas MR, Chavkin C. Kinase cascades and ligand-directed signaling at the kappa opioid receptor. Psychopharmacology (Berl) 2010; 210:137-47. [PMID: 20401607 PMCID: PMC3671863 DOI: 10.1007/s00213-010-1806-y] [Citation(s) in RCA: 230] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2009] [Accepted: 02/15/2010] [Indexed: 12/27/2022]
Abstract
BACKGROUND AND RATIONALE The dynorphin/kappa opioid receptor (KOR) system has been implicated as a critical component of the stress response. Stress-induced activation of dynorphin-KOR is well known to produce analgesia, and more recently, it has been implicated as a mediator of stress-induced responses including anxiety, depression, and reinstatement of drug seeking. OBJECTIVE Drugs selectively targeting specific KOR signaling pathways may prove potentially useful as therapeutic treatments for mood and addiction disorders. RESULTS KOR is a member of the seven transmembrane spanning (7TM) G-protein coupled receptor (GPCR) superfamily. KOR activation of pertussis toxin-sensitive G proteins leads to Galphai/o inhibition of adenylyl cyclase production of cAMP and releases Gbetagamma, which modulates the conductances of Ca(+2) and K(+) channels. In addition, KOR agonists activate kinase cascades including G-protein coupled Receptor Kinases (GRK) and members of the mitogen-activated protein kinase (MAPK) family: ERK1/2, p38 and JNK. Recent pharmacological data suggests that GPCRs exist as dynamic, multi-conformational protein complexes that can be directed by specific ligands towards distinct signaling pathways. Ligand-induced conformations of KOR that evoke beta-arrestin-dependent p38 MAPK activation result in aversion; whereas ligand-induced conformations that activate JNK without activating arrestin produce long-lasting inactivation of KOR signaling. CONCLUSIONS In this review, we discuss the current status of KOR signal transduction research and the data that support two novel hypotheses: (1) KOR selective partial agonists that do not efficiently activate p38 MAPK may be useful analgesics without producing the dysphoric or hallucinogenic effects of selective, highly efficacious KOR agonists and (2) KOR antagonists that do not activate JNK may be effective short-acting drugs that may promote stress-resilience.
Collapse
Affiliation(s)
- Michael R Bruchas
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | | |
Collapse
|
4
|
Koivula K, Rondinelli S, Näsman J. The three-finger toxin MTalpha is a selective alpha(2B)-adrenoceptor antagonist. Toxicon 2010; 56:440-7. [PMID: 20466015 DOI: 10.1016/j.toxicon.2010.05.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 04/14/2010] [Accepted: 05/04/2010] [Indexed: 12/16/2022]
Abstract
Muscarinic toxins (MTs) are three-finger folded peptides isolated from mamba snake venoms. In this report we describe a selective antagonistic interaction of MTalpha with the human alpha(2B)-adrenoceptor. In a functional assay, measuring the alpha(2B)-adrenoceptor-induced increase in intracellular [Ca(2+)], we found that both venomous MTalpha and synthetic MTalpha inhibited the response in a concentration-dependent way. MTalpha did not affect the responses of alpha(2A)-, alpha(2C)-, alpha(1A)- or alpha(1B)-adrenoceptors. To further explore the binding of MTalpha to the alpha(2B)-adrenoceptor, we performed ligand binding experiments on Sf9 cell homogenates with [(3)H]RX821002 as reporter ligand. MTalpha bound to the receptor rather slowly requiring about 60 min to reach equilibrium. In equilibrium binding experiments, MTalpha displaced the radioligand with an IC(50) of 3.2 nM, but was not able to displace all bound radioligand. Using a saturation binding protocol, we found that MTalpha suppressed the maximum binding without any greater impact on the affinity of the radioligand, indicating a non-competitive mode of inhibition. The toxin bound reversibly to alpha(2B)-adrenoceptor, but extensive washing was needed for full recovery of binding sites at high toxin concentrations. Surprisingly, MTalpha did not affect [(3)H]-N-methylscopolamine binding to the muscarinic receptor subtypes at concentrations found to fully block alpha(2B)-adrenoceptors, showing that the toxin is a more potent antagonist for the alpha(2B)-adrenoceptor than for muscarinic receptors. These findings should open up new views in terms of selective adrenoceptor drug design as well as in elucidation of alpha(2)-adrenoceptor physiology.
Collapse
Affiliation(s)
- Katja Koivula
- Department of Biochemistry and Pharmacy, Abo Akademi University, Tykistökatu 6, FIN-20520 Turku, Finland
| | | | | |
Collapse
|
5
|
Bruchas MR, Yang T, Schreiber S, DeFino M, Kwan SC, Li S, Chavkin C. Long-acting kappa opioid antagonists disrupt receptor signaling and produce noncompetitive effects by activating c-Jun N-terminal kinase. J Biol Chem 2007; 282:29803-11. [PMID: 17702750 PMCID: PMC2096775 DOI: 10.1074/jbc.m705540200] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Norbinaltorphimine (NorBNI), guanidinonaltrindole, and atrans-(3R,4R)-dimethyl-4-(3-hydroxyphenyl) piperidine (JDTic) are selective kappa opioid receptor (KOR) antagonists having very long durations of action in vivo despite binding non-covalently in vitro and having only moderately high affinities. Consistent with this, we found that antagonist treatment significantly reduced the subsequent analgesic response of mice to the KOR agonist U50,488 in the tail-withdrawal assay for 14-21 days. Receptor protection assays were designed to distinguish between possible explanations for this anomalous effect, and we found that mice pretreated with the readily reversible opioid antagonists naloxone or buprenorphine before norBNI responded strongly in the tail-flick analgesia assay to a subsequent challenge with U50,488 1 week later. Protection by a rapidly cleared reagent indicates that norBNI did not persist at the site of action. In vitro binding of [(3)H]U69,593 to KOR showed that K(d) and Bmax values were not significantly affected by prior in vivo norBNI exposure, indicating that the agonist binding site was intact. Consistent with the concept that the long-lasting effects might be caused by a functional disruption of KOR signaling, both norBNI and JDTic were found to stimulate c-Jun N-terminal kinase (JNK) phosphorylation in HEK293 cells expressing KOR-GFP but not in untransfected cells. Similarly, norBNI increased phospho-JNK in both the striatum and spinal cord in wild type mice but not in KOR knock-out mice. Pretreatment of mice with the JNK inhibitor SP600125 before norBNI attenuated the long acting antagonism. Together, these results suggest that the long duration KOR antagonists disrupt KOR signaling by activating JNK.
Collapse
Affiliation(s)
- Michael R. Bruchas
- From the Department of Pharmacology, University of Washington, Seattle, Washington 98195
| | | | - Selena Schreiber
- From the Department of Pharmacology, University of Washington, Seattle, Washington 98195
| | - Mia DeFino
- From the Department of Pharmacology, University of Washington, Seattle, Washington 98195
| | - Steven C. Kwan
- From the Department of Pharmacology, University of Washington, Seattle, Washington 98195
| | | | - Charles Chavkin
- From the Department of Pharmacology, University of Washington, Seattle, Washington 98195
| |
Collapse
|
6
|
Kukkonen A, Peräkylä M, Akerman KEO, Näsman J. Muscarinic Toxin 7 Selectivity Is Dictated by Extracellular Receptor Loops. J Biol Chem 2004; 279:50923-9. [PMID: 15452105 DOI: 10.1074/jbc.m406424200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Muscarinic toxin 7 (MT7) is a mamba venom protein antagonist with extremely high selectivity for the M1 muscarinic acetylcholine receptor. To map the sites for the interaction of MT7 with muscarinic receptors we have used chimeric M1:M3 receptors and site-directed mutagenesis of the M3 and M4 receptor subtypes. Two Glu residues in M1, one in extracellular loop 2 and one in extracellular loop 3, were found to be important for the high affinity binding of MT7. Substitution of the corresponding Lys residues in the M3 receptor with Glu converted the M3 mutant to an MT7 binding receptor, albeit with lower affinity compared with M1. A Phe --> Tyr substitution in extracellular loop 2 of M3 together with the 2 Glu mutations generated a receptor with an increased MT7 affinity (apparent Ki = 0.26 nM in a functional assay) compared with the M1 receptor (apparent Ki = 1.31 nM). The importance of the identified amino acid residues was confirmed with a mutated M4 receptor constructs. The results indicate that the high selectivity of MT7 for the M1 receptor depends on very few residues, thus providing good prospects for future design and synthesis of muscarinic receptor-selective ligands.
Collapse
Affiliation(s)
- Anu Kukkonen
- A. I. Virtanen Institute for Molecular Sciences, Department of Neurobiology, Kuopio University, FIN-70211 Kuopio, Finland
| | | | | | | |
Collapse
|
7
|
Fossetta J, Jackson J, Deno G, Fan X, Du XK, Bober L, Soudé-Bermejo A, de Bouteiller O, Caux C, Lunn C, Lundell D, Palmer RK. Pharmacological analysis of calcium responses mediated by the human A3 adenosine receptor in monocyte-derived dendritic cells and recombinant cells. Mol Pharmacol 2003; 63:342-50. [PMID: 12527805 DOI: 10.1124/mol.63.2.342] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Extensive characterization of adenosine receptors expressed by human monocyte-derived dendritic cells (MDDCs) was performed with quantitative polymerase chain reaction, radioligand binding, and calcium signaling. Transcript for the A3 adenosine receptor was elevated more than 100-fold in immature MDDCs compared with monocyte precursors. A3 receptor transcript was substantially diminished, and A2A receptor transcript increased, by lipopolysaccharide maturation of MDDCs. Saturation binding of N(6)-(3-[(125)I]iodo-4-aminobenzyl)-adenosine-5'-N-methyluronamide ([(125)I]AB-MECA) to membranes from immature MDDCs yielded B(max) of 298 fmol/mg of protein and K(D) of 0.7 nM. Competition against [(125)I]AB-MECA binding confirmed the site to be the A3 receptor. Adenosine elicited pertussis toxin-sensitive calcium responses with EC(50) values ranging as low as 2 nM. The order of potency for related agonists was N(6)-(3-iodobenzyl)-adenosine-5'-N-methylcarboxamide (IB-MECA) >/= I-AB-MECA > 2Cl-IB-MECA >/= adenosine > 2-[p-(2-carboxyethyl)phenylethylamino]-5'-N-ethylcarboxyamidoadenosine (CGS21680). The order of efficacy was adenosine >/= CGS21680 > IB-MECA >/= I-AB-MECA > 2Cl-IB-MECA. Calcium responses to 2Cl-IB-MECA and CGS21680, and the lower range of adenosine concentrations, were completely blocked by 10 nM N-(2-methoxyphenyl)-N-[2-(3-pyridyl)quinazolin-4-yl]urea (VUF5574) but not by 7-(2-phenylethyl)-5-amino-2-(2-furyl)-pyrazolo-[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine (SCH58261) or 8-cyclopentyl-1,3-dipropylxanthine. Pretreatment with 100 nM 2Cl-IB-MECA eliminated responses to CGS21680 but not to monocyte inhibitory protein-1alpha. For comparison, dose-response functions were obtained from double-recombinant human embryonic kidney 293 cells expressing the human A3 receptor and a chimeric Galphaq-i3 protein, which was required to establish A3-mediated calcium signaling. The pharmacological profile of calcium signaling elicited by adenosine-related agonists in the double-recombinant cells was essentially identical to that obtained from immature MDDCs. Our results provide an extensive analysis of A3-mediated calcium signaling and unequivocally identify immature MDDCs as native expressers of the human A3 receptor.
Collapse
Affiliation(s)
- James Fossetta
- Immunology Department, Schering-Plough Research Institute, Kenilworth, New Jersey 07033, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Vauquelin G, Van Liefde I, Vanderheyden P. Models and methods for studying insurmountable antagonism. Trends Pharmacol Sci 2002; 23:514-8. [PMID: 12413806 DOI: 10.1016/s0165-6147(02)02081-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Insurmountable antagonists depress the concentration-response curves of subsequently added agonists. The longevity of the antagonist-receptor complex and the existence of allosteric binding sites are the most frequent explanations for this phenomenon. Yet, observed antagonist behaviour often depends on the tissue, the animal species, the duration of the measured response and the study design. Intact cell studies allow greater flexibility and tighter control of the experimental conditions and therefore have the potential to offer a better insight into the molecular basis of insurmountable antagonism.
Collapse
Affiliation(s)
- Georges Vauquelin
- Dept of Molecular and Biochemical Pharmacology, Institute for Molecular Biology and Biotechnology, Free University of Brussels (VUB), Paardenstraat 65, B-1640 Sint-Genesius Rode, Belgium.
| | | | | |
Collapse
|
9
|
Vauquelin G, Van Liefde I, Birzbier BB, Vanderheyden PML. New insights in insurmountable antagonism. Fundam Clin Pharmacol 2002; 16:263-72. [PMID: 12570014 DOI: 10.1046/j.1472-8206.2002.00095.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Antagonists that produce parallel rightward shifts of agonist dose-response curves with no alteration of the maximal response are traditionally classified as surmountable, while insurmountable antagonists also depress the maximal response. Although the longevity of the antagonist-receptor complex is quoted in many studies to explain insurmountable antagonism, slowly interconverting receptor conformations, allosteric binding sites, and receptor internalization have been evoked as alternative explanations. To complicate matters even further, insurmountable antagonism is not only drug-related; it may also depend on the tissue, species and experimental design. For the sake of drug development, it is important to elucidate the molecular mechanisms of insurmountable antagonism. New experimental approaches, such as intact cell studies and the use of computer-assisted simulations based on dynamic receptor models, herald the advent of better insight in the future.
Collapse
Affiliation(s)
- G Vauquelin
- Department of Molecular and Biochemical Pharmacology, Free University of Brussels (VUB), Sint-Genesius Rode, Belgium.
| | | | | | | |
Collapse
|
10
|
Kaler G, Otto M, Okun A, Okun I. Serotonin antagonist profiling on 5HT2A and 5HT2C receptors by nonequilibrium intracellular calcium response using an automated flow-through fluorescence analysis system, HT-PS 100. JOURNAL OF BIOMOLECULAR SCREENING 2002; 7:291-301. [PMID: 12097192 DOI: 10.1177/108705710200700313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Characterization of the potencies of agonists and antagonists in cell-based assays can be complicated by nonequilibrium conditions of functional response. We assessed the potencies of a series of serotonin (5HT) antagonists by inhibition of intracellular calcium response in HEK 293 cells expressing 5HT(2A) or 5HT(2C) receptors. An automated system, HT-PS 100, was used to profile the antagonists in two experimental setups: coadministration of agonist and antagonist to cells and preincubation of the cells with antagonist prior to agonist administration. We showed that the antagonist potencies (pIC(50) values) determined in the preincubation configuration were close to or exceeded those measured in the coadministration configuration. Closeness of the potencies determined in the two configurations supposedly reflected a rapid antagonist-receptor equilibration, whereas a significantly higher preincubation potency implied slow antagonist dissociation from the receptor. Schild analysis of the inhibition of serotonin-induced cell response by a competitive 5HT(2A) antagonist, spiperone, showed a typical competitive inhibition pattern when both the agonist and antagonist were applied simultaneously. Contrary to this, an insurmountable diminishing of the maximal cell response to serotonin was observed when the cells were preincubated with spiperone. We conclude that a combination of the coadministration and preincubation experimental setups is necessary for appropriate mechanistic interpretation and quantitative assessment of the antagonist activity when using transient functional readouts.
Collapse
Affiliation(s)
- Gregory Kaler
- Axiom Biosciences, AXIOM Biotechnologies, Inc., San Diego, CA 92121, USA.
| | | | | | | |
Collapse
|
11
|
Wang H, Han H, Zhang L, Shi H, Schram G, Nattel S, Wang Z. Expression of multiple subtypes of muscarinic receptors and cellular distribution in the human heart. Mol Pharmacol 2001; 59:1029-36. [PMID: 11306684 DOI: 10.1124/mol.59.5.1029] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Five isoforms of the muscarinic acetylcholine receptor (mAChR) have been identified by molecular cloning and designated m(1)-m(5), of which four correspond to the functional subtypes M(1), M(2), M(3), and M(4) in primary tissues. The presence of M(5) receptors in tissues remains uncertain. The present study was designed to explore the diversity and cellular distribution of various mAChR subtypes in human hearts. Competition binding of [N-methyl-(3)H]-scopolamine methyl chloride with various mAChR antagonists yielded data consistent with the presence of multiple subtypes (M(1)/M(2)/M(3)/M(5)) of mAChRs in both human atrial (HA) and ventricular (HV) tissues. Expression of mRNAs encoding all five subtypes was readily detected by reverse transcription-polymerase chain reaction in both HA and HV samples. Immunoblotting with subtype-specific antibodies confirmed the presence of M(1), M(2), M(3), and M(5), but not M(4), proteins in membrane preparations from both HA and HV. The protein levels of M(1) and M(2) were comparable between HA and HV. Although the density of M(3) appeared approximately 10-fold higher in HV than HA, that of M(5) was approximately 5 times lower in HV than in HA. Positive immunostaining of single ventricular myocytes by M(1), M(2), M(3), and M(5) antibodies, respectively, was consistently detected. Under confocal microscopy, M(5) showed characteristic localization to the intercalated discs, whereas other subtypes were more evenly distributed throughout the surface membrane. Our results provide the first molecular evidence for the presence of multiple subtypes of mAChR, including endogenous M(5) receptors, in human hearts and suggest that different subtypes have different tissue distributions and cellular localization.
Collapse
Affiliation(s)
- H Wang
- Research Center, Montreal Heart Institute, Montreal, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
12
|
Lew MJ, Ziogas J, Christopoulos A. Dynamic mechanisms of non-classical antagonism by competitive AT(1) receptor antagonists. Trends Pharmacol Sci 2000; 21:376-81. [PMID: 11050317 DOI: 10.1016/s0165-6147(00)01523-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Selective competitive angiotensin AT(1) receptor antagonists exhibit diverse patterns of antagonism of angiotensin-II-mediated responses in functional assays. These range from the classical parallel rightward shift of agonist concentration-response curves with no depression of the maximum response to an apparently straightforward insurmountable antagonism with complete depression of the maximum response and no rightward shift. This article reviews some earlier equilibrium-based models that have been used to explain the insurmountable antagonism, and suggests that a kinetic model might provide a more satisfactory account of the observations. Such a model might provide deeper insights into the pharmacology of G-protein-coupled receptors than the more popular equilibrium models.
Collapse
Affiliation(s)
- M J Lew
- Department of Pharmacology, University of Melbourne, Victoria 3010, Australia.
| | | | | |
Collapse
|
13
|
Reyes-Cruz G, V�zquez-Prado J, M�ller-Esterl W, Vaca L. Regulation of the human bradykinin B2 receptor expressed in sf21 insect cells: A possible role for tyrosine kinases. J Cell Biochem 2000. [DOI: 10.1002/(sici)1097-4644(20000315)76:4<658::aid-jcb14>3.0.co;2-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Christopoulos A, Parsons AM, Lew MJ, El-Fakahany EE. The assessment of antagonist potency under conditions of transient response kinetics. Eur J Pharmacol 1999; 382:217-27. [PMID: 10556673 DOI: 10.1016/s0014-2999(99)00550-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The muscarinic acetylcholine receptor antagonists, atropine and pirenzepine, produced an apparent insurmountable antagonism of muscarinic M(1) receptor-mediated intracellular Ca(2+) mobilization in Chinese hamster ovary (CHO) cells when tested against the agonists carbachol or xanomeline. Each antagonist caused a dextral shift of the agonist concentration-response curves with depression of the maximum response that was incomplete (i.e., saturated) and which varied with the pairs of agonist and antagonist. Equilibrium competition binding assays found no deviation from simple, reversible competitive behavior for either antagonist. The relative rates of dissociation of unlabeled atropine and pirenzepine were also assessed in radioligand kinetic studies and it was found that atropine dissociated from the receptor approximately 8-fold slower than pirenzepine. Numerical dynamic simulations suggested that the insurmountability of antagonism observed in the present study was probably a kinetic artifact related to the measurement of transient responses to a non-equilibrated agonist in the presence of a slowly dissociating antagonist. Importantly, the patterns of antagonism observed included a saturable depression of agonist maximal response, a mode of antagonism that is incompatible with the previously described phenomenon of hemi-equilibrium states. Monte Carlo simulations indicated that reasonable, semi-quantitative estimates of antagonist potency could be determined by a minor modification of standard methods, where equieffective agonist concentrations, rather than EC(50) values, are compared in the absence and presence of antagonist. Application of the latter approach to the functional data yielded estimates of antagonist potency that were in excellent agreement with those derived from the equilibrium binding assays, thus indicating that the present method can be useful for quantifying antagonist potency under non-equilibrium conditions.
Collapse
Affiliation(s)
- A Christopoulos
- Department of Pharmacology, University of Melbourne, Parkville, 3052, Victoria, Australia
| | | | | | | |
Collapse
|