1
|
Pluta AJ, Studniarek C, Murphy S, Norbury CJ. Cyclin-dependent kinases: Masters of the eukaryotic universe. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 15:e1816. [PMID: 37718413 PMCID: PMC10909489 DOI: 10.1002/wrna.1816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/21/2023] [Accepted: 08/03/2023] [Indexed: 09/19/2023]
Abstract
A family of structurally related cyclin-dependent protein kinases (CDKs) drives many aspects of eukaryotic cell function. Much of the literature in this area has considered individual members of this family to act primarily either as regulators of the cell cycle, the context in which CDKs were first discovered, or as regulators of transcription. Until recently, CDK7 was the only clear example of a CDK that functions in both processes. However, new data points to several "cell-cycle" CDKs having important roles in transcription and some "transcriptional" CDKs having cell cycle-related targets. For example, novel functions in transcription have been demonstrated for the archetypal cell cycle regulator CDK1. The increasing evidence of the overlap between these two CDK types suggests that they might play a critical role in coordinating the two processes. Here we review the canonical functions of cell-cycle and transcriptional CDKs, and provide an update on how these kinases collaborate to perform important cellular functions. We also provide a brief overview of how dysregulation of CDKs contributes to carcinogenesis, and possible treatment avenues. This article is categorized under: RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Processing > 3' End Processing RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
| | | | - Shona Murphy
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| | - Chris J. Norbury
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| |
Collapse
|
2
|
Zhao L, Yan Y, Dai Q, Wang Z, Yin J, Xu Y, Wang Z, Guo X, Li W, Cao R, Zhong W. The CDK1 inhibitor, Ro-3306, is a potential antiviral candidate against influenza virus infection. Antiviral Res 2022; 201:105296. [DOI: 10.1016/j.antiviral.2022.105296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 11/02/2022]
|
3
|
Petasny M, Bentata M, Pawellek A, Baker M, Kay G, Salton M. Splicing to Keep Cycling: The Importance of Pre-mRNA Splicing during the Cell Cycle. Trends Genet 2020; 37:266-278. [PMID: 32950269 DOI: 10.1016/j.tig.2020.08.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/09/2020] [Accepted: 08/18/2020] [Indexed: 12/16/2022]
Abstract
Pre-mRNA splicing is a fundamental process in mammalian gene expression, and alternative splicing plays an extensive role in generating protein diversity. Because the majority of genes undergo pre-mRNA splicing, most cellular processes depend on proper spliceosome function. We focus on the cell cycle and describe its dependence on pre-mRNA splicing and accurate alternative splicing. We outline the key cell-cycle factors and their known alternative splicing isoforms. We discuss different levels of pre-mRNA splicing regulation such as post-translational modifications and changes in the expression of splicing factors. We describe the effect of chromatin dynamics on pre-mRNA splicing during the cell cycle. In addition, we focus on spliceosome component SF3B1, which is mutated in many types of cancer, and describe the link between SF3B1 and its inhibitors and the cell cycle.
Collapse
Affiliation(s)
- Mayra Petasny
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Mercedes Bentata
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Andrea Pawellek
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Mai Baker
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Gillian Kay
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Maayan Salton
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel.
| |
Collapse
|
4
|
Chen X, Guo D, Zhu Y, Xian F, Liu S, Wu L, Lou X. Nuclear phosphoproteomics analysis reveals that CDK1/2 are involved in EGF-regulated constitutive pre-mRNA splicing in MDA-MB-468 cells. J Proteomics 2016; 141:77-84. [PMID: 27109354 DOI: 10.1016/j.jprot.2016.04.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 04/06/2016] [Accepted: 04/19/2016] [Indexed: 12/12/2022]
Abstract
UNLABELLED The epidermal growth factor (EGF) receptor (EGFR) pathway is one of the most dysregulated and extensively investigated signaling pathways in human cancers and plays important roles in the regulation of nuclear functions through both cytoplasmic and nuclear EGFR pathways. However, the current understanding of the nuclear phosphorylation responses to activated EGFR pathways remains limited. In the present study, phosphoproteomics analysis revealed the increased phosphorylation of 90 nuclear proteins, primarily involved in RNA processing, pre-mRNA splicing and cell cycle regulation, upon EGF stimulation in MDA-MB-468 cells. Cellular splicing assays of the β-globin (HBB) minigene confirmed that EGF induced constitutive pre-mRNA splicing. Further analysis of phosphoproteomics data identified multiple CDK1/2 substrates in pre-mRNA splicing-related proteins, and both CDK1/2 inhibitors and CDK1/2 knockdowns reduced EGF-regulated pre-mRNA splicing. In conclusion, the results of the present study provide evidence that CDK1/2 participate in the regulation of constitutive pre-mRNA splicing by EGF stimulation in MDA-MB-468 cells. SIGNIFICANCE In this study, we successfully carried out a survey of nuclear phosphorylation changes in response to EGF stimulation. The results from the functional category analysis and pre-mRNA splicing assay strongly indicated that EGFR activation increased constitutive pre-mRNA splicing in MDA-MB-468 cells, revealing additional role of EGFR on regulation of mRNA maturation beyond alternative pre-mRNA splicing reported by previous studies. Furthermore, we found that CDK1/2 participated in constitutive pre-mRNA splicing regulation by EGF in MDA-MB-468 cells. Our study provides new knowledge for understanding the regulation of constitutive pre-mRNA splicing by EGF stimulation.
Collapse
Affiliation(s)
- Xianwei Chen
- CAS Key Laboratory of Genome Sciences and Information, China Gastrointestinal Cancer Research Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Dan Guo
- CAS Key Laboratory of Genome Sciences and Information, China Gastrointestinal Cancer Research Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yinghui Zhu
- CAS Key Laboratory of Genome Sciences and Information, China Gastrointestinal Cancer Research Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Feng Xian
- CAS Key Laboratory of Genome Sciences and Information, China Gastrointestinal Cancer Research Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Siqi Liu
- CAS Key Laboratory of Genome Sciences and Information, China Gastrointestinal Cancer Research Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Lin Wu
- CAS Key Laboratory of Genome Sciences and Information, China Gastrointestinal Cancer Research Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiaomin Lou
- CAS Key Laboratory of Genome Sciences and Information, China Gastrointestinal Cancer Research Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
5
|
CD82 suppresses CD44 alternative splicing-dependent melanoma metastasis by mediating U2AF2 ubiquitination and degradation. Oncogene 2016; 35:5056-5069. [PMID: 27041584 PMCID: PMC5033661 DOI: 10.1038/onc.2016.67] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 12/26/2015] [Accepted: 02/02/2016] [Indexed: 12/29/2022]
Abstract
Melanoma is one of the most lethal forms of skin cancer because of its early metastatic spread. The variant form of CD44 (CD44v), a cell surface glycoprotein, is highly expressed on metastatic melanoma. The mechanisms of regulation of CD44 alternative splicing in melanoma and its pathogenic contributions are so far poorly understood. Here, we investigated the expression level of CD44 in a large set of melanocytic lesions at different stages. We found that the expression of CD44v8-10 and a splicing factor, U2AF2, is significantly increased during melanoma progression, whereas CD82/KAI1, a tetraspanin family of tumor suppressor, is reduced in metastatic melanoma. CD44v8-10 and U2AF2 expression levels, which are negatively correlated with CD82 levels, are markedly elevated in primary melanoma compared with dysplastic nevi and further increased in metastatic melanoma. We also showed that patients with higher CD44v8-10 and U2AF2 expression levels tended to have shorter survival. By using both in vivo and in vitro assays, we demonstrated that CD82 inhibits the production of CD44v8-10 on melanoma. Mechanistically, U2AF2 is a downstream target of CD82 and in malignant melanoma facilitates CD44v8-10 alternative splicing. U2AF2-mediated CD44 isoform switch is required for melanoma migration in vitro and lung and liver metastasis in vivo. Notably, overexpression of CD82 suppresses U2AF2 activity by inducing U2AF2 ubiquitination. In addition, our data suggested that enhancement of melanoma migration by U2AF2-dependent CD44v8-10 splicing is mediated by Src/focal adhesion kinase/RhoA activation and formation of stress fibers, as well as CD44-E-selectin binding reinforcement. These findings uncovered a hitherto unappreciated function of CD82 in severing the linkage between U2AF2-mediated CD44 alternative splicing and cancer aggressiveness, with potential prognostic and therapeutic implications in melanoma.
Collapse
|
6
|
Rabinow L, Samson ML. The role of the Drosophila LAMMER protein kinase DOA in somatic sex determination. J Genet 2010; 89:271-7. [DOI: 10.1007/s12041-010-0038-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
7
|
Abstract
The SR proteins are not only involved in pre-mRNA splicing but in mRNA export and the initiation of translation. Summary The processing of pre-mRNAs is a fundamental step required for the expression of most metazoan genes. Members of the family of serine/arginine (SR)-rich proteins are critical components of the machineries carrying out these essential processing events, highlighting their importance in maintaining efficient gene expression. SR proteins are characterized by their ability to interact simultaneously with RNA and other protein components via an RNA recognition motif (RRM) and through a domain rich in arginine and serine residues, the RS domain. Their functional roles in gene expression are surprisingly diverse, ranging from their classical involvement in constitutive and alternative pre-mRNA splicing to various post-splicing activities, including mRNA nuclear export, nonsense-mediated decay, and mRNA translation. These activities point up the importance of SR proteins during the regulation of mRNA metabolism.
Collapse
Affiliation(s)
- Peter J Shepard
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA 92697-4025, USA
| | | |
Collapse
|
8
|
Jang SW, Liu X, Fu H, Rees H, Yepes M, Levey A, Ye K. Interaction of Akt-phosphorylated SRPK2 with 14-3-3 mediates cell cycle and cell death in neurons. J Biol Chem 2009; 284:24512-25. [PMID: 19592491 DOI: 10.1074/jbc.m109.026237] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Terminally differentiated neurons are unable to reenter the cell cycle. Aberrant cell cycle activation provokes neuronal cell death, whereas cell cycle inhibition elevates neuronal survival. However, the molecular mechanism regulating the cell cycle and cell death in mature neurons remains elusive. Here we show that SRPK2, a protein kinase specific for the serine/arginine (SR) family of splicing factors, triggers cell cycle progression in neurons and induces apoptosis through regulation of nuclear cyclin D1. Akt phosphorylates SRPK2 on Thr-492 and promotes its nuclear translocation leading to cyclin D1 up-regulation, cell cycle reentry, and neuronal apoptosis. In addition, SRPK2 phosphorylates SC35 and, thus, inactivates p53, resulting in cyclin D1 up-regulation. 14-3-3 binding to SRPK2, regulated by Akt phosphorylation, inhibits these events. We find that SRPK2 is phosphorylated in ischemia-attacked brain, correlating with the observed increase in cyclin D1 levels. Hence, phosphatidylinositol 3-kinase/Akt mediates the cell cycle and cell death machinery in the nervous system through phosphorylation of SRPK2.
Collapse
Affiliation(s)
- Sung-Wuk Jang
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Jang SW, Yang SJ, Ehlén A, Dong S, Khoury H, Chen J, Persson JL, Ye K. Serine/arginine protein-specific kinase 2 promotes leukemia cell proliferation by phosphorylating acinus and regulating cyclin A1. Cancer Res 2008; 68:4559-70. [PMID: 18559500 DOI: 10.1158/0008-5472.can-08-0021] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Serine/arginine (SR) protein-specific kinase (SRPK), a family of cell cycle-regulated protein kinases, phosphorylate SR domain-containing proteins in nuclear speckles and mediate the pre-mRNA splicing. However, the physiologic roles of this event in cell cycle are incompletely understood. Here, we show that SRPK2 binds and phosphorylates acinus, an SR protein essential for RNA splicing, and redistributes it from the nuclear speckles to the nucleoplasm, resulting in cyclin A1 but not A2 up-regulation. Acinus S422D, an SRPK2 phosphorylation mimetic, enhances cyclin A1 transcription, whereas acinus S422A, an unphosphorylatable mutant, blocks the stimulatory effect of SRPK2. Ablation of acinus or SRPK2 abrogates cyclin A1 expression in leukemia cells and arrest cells at G(1) phase. Overexpression of acinus or SRPK2 increases leukemia cell proliferation. Furthermore, both SRPK2 and acinus are overexpressed in some human acute myelogenous leukemia patients and correlate with elevated cyclin A1 expression levels, fitting with the oncogenic activity of cyclin A1 in leukemia. Thus, our findings establish a molecular mechanism by which SR splicing machinery regulates cell cycle and contributes to leukemia tumorigenesis.
Collapse
Affiliation(s)
- Sung-Wuk Jang
- Department of Pathology and Laboratory Medicine and Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
CDK13, a new potential human immunodeficiency virus type 1 inhibitory factor regulating viral mRNA splicing. J Virol 2008; 82:7155-66. [PMID: 18480452 DOI: 10.1128/jvi.02543-07] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) Tat is a 14-kDa viral protein that acts as a potent transactivator by binding to the transactivation-responsive region, a structured RNA element located at the 5' end of all HIV-1 transcripts. Tat transactivates viral gene expression by inducing the phosphorylation of the C-terminal domain of RNA polymerase II through several Tat-activated kinases and by recruiting chromatin-remodeling complexes and histone-modifying enzymes to the HIV-1 long terminal repeat. Histone acetyltransferases, including p300 and hGCN5, not only acetylate histones but also acetylate Tat at lysine positions 50 and 51 in the arginine-rich motif. Acetylated Tat at positions 50 and 51 interacts with a specialized protein module, the bromodomain, and recruits novel factors having this particular domain, such as P/CAF and SWI/SNF. In addition to having its effect on transcription, Tat has been shown to be involved in splicing. In this study, we demonstrate that Tat interacts with cyclin-dependent kinase 13 (CDK13) both in vivo and in vitro. We also found that CDK13 increases HIV-1 mRNA splicing and favors the production of the doubly spliced protein Nef. In addition, we demonstrate that CDK13 acts as a possible restriction factor, in that its overexpression decreases the production of the viral proteins Gag and Env and subsequently suppresses virus production. Using small interfering RNA against CDK13, we show that silencing of CDK13 leads to a significant increase in virus production. Finally, we demonstrate that CDK13 mediates its effect on splicing through the phosphorylation of ASF/SF2.
Collapse
|
11
|
Poon B, Chang MA, Chen ISY. Vpr is required for efficient Nef expression from unintegrated human immunodeficiency virus type 1 DNA. J Virol 2007; 81:10515-23. [PMID: 17652391 PMCID: PMC2045493 DOI: 10.1128/jvi.00947-07] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Unintegrated human immunodeficiency virus (HIV) DNA are viral DNA products formed naturally during HIV replication. While the integrated proviral DNA form is transcriptionally active and results in productive infection, unintegrated DNA is also capable of expression of viral RNA and proteins. Previously, we showed that HIV Vpr enhances expression from integrase-defective HIV. Here we show that Vpr activation of expression is partially dependent upon the presence of a transcriptionally active HIV promoter and results in increased transcription of unspliced gag and spliced nef viral RNA. While Tat is detectable during infection with integrase-defective HIV, Tat levels are not affected by the presence of Vpr. Mutation studies reveal that Tat is dispensable for the Vpr-mediated enhancement of expression from unintegrated DNA. We find that virion-associated Vpr is sufficient for Nef expression from unintegrated viral DNA, resulting in the efficient downregulation of CD4 from the surface of infected cells. These results provide a mechanism by which Nef expression from unintegrated HIV type 1 DNA expression occurs.
Collapse
MESH Headings
- CD4 Antigens/genetics
- Cell Line
- DNA, Viral/genetics
- Down-Regulation
- Gene Expression Regulation, Viral
- Gene Products, nef/genetics
- Gene Products, tat/genetics
- Gene Products, vpr/genetics
- Gene Products, vpr/metabolism
- HIV-1/genetics
- Humans
- Mutation
- Promoter Regions, Genetic
- Transcription, Genetic
- Transcriptional Activation
- Virus Integration
- Virus Replication/genetics
- nef Gene Products, Human Immunodeficiency Virus
- tat Gene Products, Human Immunodeficiency Virus
- vpr Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- Betty Poon
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at UCLA, UCLA AIDS Institute and Jonsson Comprehensive CAncer Center, 11-934 Factor Building, 10833 Le Conte Avenue, Los Angeles, CA 90095-1678, USA
| | | | | |
Collapse
|
12
|
Chen HH, Wong YH, Geneviere AM, Fann MJ. CDK13/CDC2L5 interacts with L-type cyclins and regulates alternative splicing. Biochem Biophys Res Commun 2007; 354:735-40. [PMID: 17261272 DOI: 10.1016/j.bbrc.2007.01.049] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2006] [Accepted: 01/09/2007] [Indexed: 11/29/2022]
Abstract
Due to the strong sequence homology it has been suggested that CDC2L5 and CDK12 belong to a high molecular weight subfamily of CDC2 family with PITAI/VRE motifs [F. Marques, J.L. Moreau, G. Peaucellier, J.C. Lozano, P. Schatt, A. Picard, I. Callebaut, E. Perret, A.M. Geneviere, A new subfamily of high molecular mass CDC2-related kinases with PITAI/VRE motifs, Biochem. Biophys. Res. Commun. 279 (2000) 832-837]. Recently, we reported that CDK12 interacts with L-type cyclins and is involved in alternative splicing regulation [H.-H. Chen, Y.-C. Wang, M.-J. Fann, Identification and characterization of the CDK12/Cyclin L1 complex involved in alternative splicing regulation, Mol. Cel. Biol. 26 (2006) 2736-2745]. Here, we provide evidence that CDC2L5 also interacts with L-type cyclins and thus rename it as cyclin-dependent kinase 13 (CDK13). The kinase domain of CDK13 is sufficient to bind the cyclin domains of L-type cyclins. Moreover, CDK13 and L-type cyclins modulate each other's subcellular localization. When CDK13 and an E1a minigene reporter construct were over-expressed in HEK293T cells, CDK13 alters the splicing pattern of E1a transcripts in a dose-dependent manner. Similar to effects of CDK12, effects of CDK13 on splicing pattern are counteracted by SF2/ASF and SC35. These findings strengthen CDK12 and CDK13 as a subfamily of cyclin-dependent kinases that regulate alternative splicing.
Collapse
Affiliation(s)
- Hung-Hsi Chen
- Institute of Neuroscience, National Yang-Ming University, Taipei 11221, Taiwan, ROC
| | | | | | | |
Collapse
|
13
|
Hagiwara M. Alternative splicing: a new drug target of the post-genome era. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1754:324-31. [PMID: 16260193 DOI: 10.1016/j.bbapap.2005.09.010] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2005] [Revised: 09/07/2005] [Accepted: 09/10/2005] [Indexed: 11/18/2022]
Abstract
Alternative splicing allows for the creation of multiple distinct mRNA transcripts from a given gene in a multicellular organism. Pre-mRNA splicing is catalyzed by a multi-molecular complex, including serine/arginine-rich (SR) proteins, which are highly phosphorylated in living cells, and thought to play crucial roles in spliceosomal formation and in the regulation of alternative splicing. Recently, reports of low molecular compounds, which alter splicing pattern of genes, have been accumulated. A benzothiazole compound TG003, a kinase inhibitor that targets Clk1 and Clk4, suppressed dissociation of nuclear speckles, altered the splicing patterns, and rescued the embryonic defects induced by excessive Clk activity. The emerging inhibitors of the signal transduction pathways regulating pre-mRNA alternative splicing may open the way to therapies against diseases caused by missplicing.
Collapse
Affiliation(s)
- Masatoshi Hagiwara
- Department of Functional Genomics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan.
| |
Collapse
|
14
|
Shimada M, Namikawa-Yamada C, Nakanishi M, Murakami H. Regulation of Cdc2p and Cdc13p Is Required for Cell Cycle Arrest Induced by Defective RNA Splicing in Fission Yeast. J Biol Chem 2005; 280:32640-8. [PMID: 16049013 DOI: 10.1074/jbc.m504746200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Screening of cdc mutants of fission yeast for those whose cell cycle arrest is independent of the DNA damage checkpoint identified the RNA splicing-deficient cdc28 mutant. A search for mutants of cdc28 cells that enter mitosis with unspliced RNA resulted in the identification of an orb5 point mutant. The orb5+ gene, which encodes a catalytic subunit of casein kinase II, was found to be required for cell cycle arrest in other mutants with defective RNA metabolism but not for operation of the DNA replication or DNA damage checkpoints. Loss of function of wee1+ or rad24+ also suppressed the arrest of several splicing mutants. Overexpression of the major B-type cyclin Cdc13p induced cdc28 cells to enter mitosis. The abundance of Cdc13p was reduced, and the phosphorylation of Cdc2p on tyrosine 15 was maintained in splicing-defective cells. These results suggest that regulation of Cdc13p and Cdc2p is required for G2 arrest in splicing mutants.
Collapse
Affiliation(s)
- Midori Shimada
- Department of Biochemistry and Cell Biology, Graduate School of Medicine, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | | | | | | |
Collapse
|
15
|
Patel NA, Kaneko S, Apostolatos HS, Bae SS, Watson JE, Davidowitz K, Chappell DS, Birnbaum MJ, Cheng JQ, Cooper DR. Molecular and genetic studies imply Akt-mediated signaling promotes protein kinase CbetaII alternative splicing via phosphorylation of serine/arginine-rich splicing factor SRp40. J Biol Chem 2005; 280:14302-9. [PMID: 15684423 DOI: 10.1074/jbc.m411485200] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Insulin regulates alternative splicing of PKCbetaII mRNA by phosphorylation of SRp40 via a phosphatidylinositol 3-kinase pathway (Patel, N. A., Chalfant, C. E., Watson, J. E., Wyatt, J. R., Dean, N. M., Eichler, D. C., and Cooper, D. C. (2001) J. Biol. Chem. 276, 22648-22654). Transient transfection of constitutively active Akt2 kinase promotes PKCbetaII exon inclusion. Serine/arginine-rich (SR) RNA-binding proteins regulating the selection of alternatively spliced exons are potential substrates of Akt kinase because many of them contain RXRXX(S/T) motifs. Here we show that Akt2 kinase phosphorylated SRp40 in vivo and in vitro. Mutation of Ser86 on SRp40 blocked in vitro phosphorylation. In control Akt2(+/+) fibroblasts, insulin treatment increased the phosphorylation of endogenous SR proteins, but their phosphorylation state remained unaltered by insulin in fibroblasts from Akt2(-/-) mice. Levels of PKCbetaII protein were up-regulated by insulin in Akt2(+/+) cells; however, only very low levels of PKCbetaII were detected in Akt2(-/-) cells and did not change following insulin treatment. Endogenous PKCbetaI and -betaII mRNA levels in Akt2(+/+) and Akt2(-/-) gastrocnemius muscle tissues were compared using quantitative real time PCR. The results indicated a 54% decrease in the expression of PKCbetaII levels in Akt(-/-), whereas PKCbetaI levels remained unchanged in both samples. Further, transfection of Akt2(-/-) cells with a PKCbetaII splicing minigene revealed defective betaII exon inclusion. Co-transfection of the mutated SRp40 attenuated betaII exon inclusion. This study provides in vitro and in vivo evidence showing Akt2 kinase directly phosphorylated SRp40, thereby connecting the insulin, PI 3-kinase/Akt pathway with phosphorylation of a site on a nuclear splicing protein promoting exon inclusion. This model is upheld in Akt2-deficient mice with insulin resistance leading to diabetes mellitus.
Collapse
Affiliation(s)
- Niketa A Patel
- Department of Biochemistry, University of South Florida College of Medicine, Tampa, Florida 33612, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Shepard RN, Ornelles DA. Diverse roles for E4orf3 at late times of infection revealed in an E1B 55-kilodalton protein mutant background. J Virol 2004; 78:9924-35. [PMID: 15331726 PMCID: PMC515017 DOI: 10.1128/jvi.78.18.9924-9935.2004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2003] [Accepted: 05/15/2004] [Indexed: 11/20/2022] Open
Abstract
Species C human adenovirus mutants that fail to express open reading frame 3 of early region 4 (E4orf3) are phenotypically indistinguishable from the wild-type virus when evaluated in cells cultured in vitro. However, E4orf3 gene function has been productively studied in the context of additional viral mutations. This study identifies diverse roles for the E4orf3 protein that are evident in the absence of early region 1B 55-kDa protein (E1B-55K) function. In an E1B-55K-deficient background, the E4orf3 protein promotes viral replication by increasing both the burst size and the probability that an infected cell will produce virus. Early viral gene expression is not impaired in E1B-55K/E4orf3 double mutant virus-infected cells. Cells infected with the double mutant virus accumulated concatemers of viral DNA. However, the E1B-55K/E4orf3 double mutant virus did not replicate any better in MO59J cells, in which viral DNA concatemers did not accumulate, than in MO59K cells, in which viral DNA concatemers were produced, suggesting that viral DNA concatenation is not the primary growth defect of the E1B-55K/E4orf3 double mutant virus. Accumulation of viral mRNA in the nucleus and cytoplasm of E1B-55K/E4orf3 double mutant virus-infected cells was severely reduced compared to that on wild-type virus-infected cells. Thus, in an E1B-55K mutant background, the E4orf3 protein promotes the accumulation of late viral RNA and enhances late gene expression. Finally, within the context of an E1B-55K mutant virus, the E4orf3 protein acts to suppress host cell translation and preserve the viability of cells at moderately late times of infection.
Collapse
Affiliation(s)
- Robin N Shepard
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1064.
| | | |
Collapse
|
17
|
Zhu YQ, Lu Y, Tan XD. Monochloramine induces reorganization of nuclear speckles and phosphorylation of SRp30 in human colonic epithelial cells: role of protein kinase C. Am J Physiol Cell Physiol 2003; 285:C1294-303. [PMID: 12826600 DOI: 10.1152/ajpcell.00090.2003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Intestinal epithelial cells are constantly stimulated by reactive oxidant metabolites (ROMs) in inflamed mucosa. Monochloramine (NH2Cl), a cell-permeant ROM, is particularly relevant to the pathogenesis of inflammation in the gastrointestinal tract. Nuclear speckles, a unique nuclear subcompartment, accumulate a family of proteins, namely, serine- and arginine-rich (SR) proteins. They play important roles in regulation of pre-mRNA splicing. Currently, little is known about the link between inflammatory stimulation and the pre-mRNA splicing process, although gene expression is changed in inflamed tissues. The present study was designed to investigate whether stimulation of human colonic epithelial cells (HT-29 and Caco-2 cell lines) with NH2Cl affects nuclear speckles and their components. By indirect immunofluorescence, nuclear speckles have been shown to undergo rapid aggregation after NH2Cl stimulation. By utilizing Western blotting, SRp30 (a subset of SR proteins) in intestinal epithelial cells was found to be phosphorylated after NH2Cl treatment, whereas other SR proteins were not responsive to NH2Cl stimulation. The cytotoxic effect of NH2Cl was excluded by both negative lactate dehydrogenase assay and propidium iodide staining. Therefore, NH2Cl-induced morphological changes on nuclear speckles and phosphorylated SRp30 do not result from intestinal epithelial injury. Furthermore, the effect of NH2Cl on nuclear speckles and SRp30 was blocked by bisindolylmaleimide I, a selective PKC inhibitor. Together, the available data suggest that stimulation of intestinal epithelial cells with NH2Cl results in a consequent change on pre-mRNA splicing machinery via a distinctive signal pathway involving activation of PKC. This effect may contribute to oxidant-induced pathophysiological changes in the gastrointestinal tract.
Collapse
Affiliation(s)
- Ya-Qin Zhu
- Disease Pathogenesis Program, Box 217, Children's Memorial Institute for Education and Research, Children's Memorial Hospital, 2300 Children's Plaza, Chicago, IL 60614, USA
| | | | | |
Collapse
|
18
|
Kamachi M, Le TM, Kim SJ, Geiger ME, Anderson P, Utz PJ. Human autoimmune sera as molecular probes for the identification of an autoantigen kinase signaling pathway. J Exp Med 2002; 196:1213-25. [PMID: 12417631 PMCID: PMC2194102 DOI: 10.1084/jem.20021167] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Using human autoimmune sera as molecular probes, we previously described the association of phosphorylated serine/arginine splicing factors (SR splicing factors) with the U1-small nuclear ribonucleoprotein (U1-snRNP) and U3-small nucleolar RNP (snoRNP) in apoptotic cells. SR proteins are highly conserved autoantigens whose activity is tightly regulated by reversible phosphorylation of serine residues by at least eight different SR protein kinase kinases (SRPKs), including SRPK1, SRPK2, and the scleroderma autoantigen topoisomerase I. In this report, we demonstrate that only one of the known SRPKs, SRPK1, is associated with the U1-snRNP autoantigen complex in healthy and apoptotic cells. SRPK1 is activated early during apoptosis, followed by caspase-mediated proteolytic inactivation at later time points. SRPKs are cleaved in vivo after multiple apoptotic stimuli, and cleavage can be inhibited by overexpression of bcl-2 and bcl-x(L), and by exposure to soluble peptide caspase inhibitors. Incubation of recombinant caspases with in vitro-translated SRPKs demonstrates that SRPK1 and SRPK2 are in vitro substrates for caspases-8 and -9, respectively. In contrast, topoisomerase I is cleaved by downstream caspases (-3 and -6). Since each of these SRPKs sits at a distinct checkpoint in the caspase cascade, SRPKs may serve an important role in signaling pathways governing apoptosis, alternative mRNA splicing, SR protein trafficking, RNA stability, and possibly the generation of autoantibodies directed against splicing factors.
Collapse
Affiliation(s)
- Makoto Kamachi
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | |
Collapse
|
19
|
Engemann H, Heinzel V, Page G, Preuss U, Scheidtmann KH. DAP-like kinase interacts with the rat homolog of Schizosaccharomyces pombe CDC5 protein, a factor involved in pre-mRNA splicing and required for G2/M phase transition. Nucleic Acids Res 2002; 30:1408-17. [PMID: 11884640 PMCID: PMC101352 DOI: 10.1093/nar/30.6.1408] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
DAP-like kinase (Dlk, also termed ZIP kinase) is a leucine zipper-containing serine/threonine-specific protein kinase with as yet unknown biological function(s). Interaction partners so far identified are either transcription factors or proteins that can support or counteract apoptosis. Thus, Dlk might be involved in regulating transcription or, more generally, survival or apoptosis. Here we report on a new interaction partner, the rat homolog of Schizosaccharomyces pombe CDC5 protein, a presumptive transcription and splicing factor involved in the G(2)/M transition. In vitro, rat CDC5 forms complexes with, but is not phosphorylated by, Dlk. Rather, it was phosphorylated by an associated kinase which was identified as CK2. The interaction domain of Dlk was mapped to the leucine zipper, while that of CDC5 was mapped to the C-terminal region between residues 500 and 802. In vivo, both proteins co-localize perfectly in distinct speckle-like structures in the nucleus, some of which overlap with promyelocytic leukemia protein. Interestingly, splicing factor SC35, which also resides in speckles, was partially displaced upon overexpression of either CDC5 or Dlk, perhaps due to phosphorylation by Dlk. Together with previous data, these results suggest that Dlk might play a role in coordinating specific transcription and splicing events.
Collapse
Affiliation(s)
- Harry Engemann
- Institute of Genetics, University of Bonn, Roemerstrasse 164, D-53117 Bonn, Germany
| | | | | | | | | |
Collapse
|
20
|
Kojima T, Zama T, Wada K, Onogi H, Hagiwara M. Cloning of human PRP4 reveals interaction with Clk1. J Biol Chem 2001; 276:32247-56. [PMID: 11418604 DOI: 10.1074/jbc.m103790200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prp4 is a protein kinase of Schizosaccharomyces pombe identified through its role in pre-mRNA splicing, and belongs to a kinase family including mammalian serine/arginine-rich protein-specific kinases and Clks, whose substrates are serine/arginine-rich proteins. We cloned human PRP4 (hPRP4) full-length cDNA and the antiserum raised against a partial peptide of hPRP4 recognized 170-kDa polypeptide in HeLa S3 cell extracts. Northern blot analysis revealed that hPRP4 mRNA was ubiquitously expressed in multiple tissues. The extended NH(2)-terminal region of hPRP4 contains an arginine/serine-rich domain and putative nuclear localization signals. hPRP4 phosphorylated and interacted with SF2/ASF, one of the essential splicing factors. Indirect immunofluorescence analysis revealed that endogenous hPRP4 was distributed in a nuclear speckled pattern and colocalized with SF2/ASF in HeLa S3 cells. Furthermore, hPRP4 interacted directly with Clk1 on its COOH terminus, and the arginine/serine-rich domain of hPRP4 was phosphorylated by Clk1 in vitro. Overexpression of Clk1 caused redistribution of hPRP4, from the speckled to the diffuse pattern in nucleoplasm, whereas inactive mutant of Clk1 caused no change of hPRP4 localization. These findings suggest that the NH(2)-terminal region of hPRP4 may play regulatory roles under an unidentified signal transduction pathway through Clk1.
Collapse
Affiliation(s)
- T Kojima
- Department of Functional Genomics, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | | | | | | | | |
Collapse
|
21
|
Shav-Tal Y, Cohen M, Lapter S, Dye B, Patton JG, Vandekerckhove J, Zipori D. Nuclear relocalization of the pre-mRNA splicing factor PSF during apoptosis involves hyperphosphorylation, masking of antigenic epitopes, and changes in protein interactions. Mol Biol Cell 2001; 12:2328-40. [PMID: 11514619 PMCID: PMC58597 DOI: 10.1091/mbc.12.8.2328] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The spatial nuclear organization of regulatory proteins often reflects their functional state. PSF, a factor essential for pre-mRNA splicing, is visualized by the B92 mAb as discrete nuclear foci, which disappeared during apoptosis. Because this mode of cell death entails protein degradation, it was considered that PSF, which like other splicing factors is sensitive to proteolysis, might be degraded. Nonetheless, during the apoptotic process, PSF remained intact and was N-terminally hyperphosphorylated on serine and threonine residues. Retarded gel migration profiles suggested differential phosphorylation of the molecule in mitosis vs. apoptosis and under-phosphorylation during blockage of cells at G1/S. Experiments with the use of recombinant GFP-tagged PSF provided evidence that in the course of apoptosis the antigenic epitopes of PSF are masked and that PSF reorganizes into globular nuclear structures. In apoptotic cells, PSF dissociated from PTB and bound new partners, including the U1--70K and SR proteins and therefore may acquire new functions.
Collapse
Affiliation(s)
- Y Shav-Tal
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | | | |
Collapse
|
22
|
Patel NA, Chalfant CE, Watson JE, Wyatt JR, Dean NM, Eichler DC, Cooper DR. Insulin regulates alternative splicing of protein kinase C beta II through a phosphatidylinositol 3-kinase-dependent pathway involving the nuclear serine/arginine-rich splicing factor, SRp40, in skeletal muscle cells. J Biol Chem 2001; 276:22648-54. [PMID: 11283022 DOI: 10.1074/jbc.m101260200] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Insulin regulates the inclusion of the exon encoding protein kinase C (PKC) betaII mRNA. In this report, we show that insulin regulates this exon inclusion (alternative splicing) via the phosphatidylinositol 3-kinase (PI 3-kinase) signaling pathway through the phosphorylation state of SRp40, a factor required for insulin-regulated splice site selection for PKCbetaII mRNA. By taking advantage of a well known inhibitor of PI 3-kinase, LY294002, we demonstrated that pretreatment of L6 myotubes with LY294002 blocked insulin-induced PKCbetaII exon inclusion as well as phosphorylation of SRp40. In the absence of LY294002, overexpression of SRp40 in L6 cells mimicked insulin-induced exon inclusion. When antisense oligonucleotides targeted to a putative SRp40-binding sequence in the betaII-betaI intron were transfected into L6 cells, insulin effects on splicing and glucose uptake were blocked. Taken together, these results demonstrate a role for SRp40 in insulin-mediated alternative splicing independent of changes in SRp40 concentration but dependent on serine phosphorylation of SRp40 via a PI 3-kinase signaling pathway. This switch in PKC isozyme expression is important for increases in the glucose transport effect of insulin. Significantly, insulin regulation of PKCbetaII exon inclusion occurred in the absence of cell growth and differentiation demonstrating that insulin-induced alternative splicing of PKCbetaII mRNA in L6 cells occurs in response to a metabolic change.
Collapse
Affiliation(s)
- N A Patel
- Department of Biochemistry and Molecular Biology, University of South Florida, Tampa, Florida 33612, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Kuroyanagi H, Kimura T, Wada K, Hisamoto N, Matsumoto K, Hagiwara M. SPK-1, a C. elegans SR protein kinase homologue, is essential for embryogenesis and required for germline development. Mech Dev 2000; 99:51-64. [PMID: 11091073 DOI: 10.1016/s0925-4773(00)00477-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
SR-protein kinases (SRPKs) and their substrates, serine/arginine-rich pre-mRNA splicing factors, are key components of splicing machinery and are well conserved across phyla. Despite extensive biochemical investigation, the physiological functions of SRPKs remain unclear. In the present study, cDNAs for SPK-1, a C. elegans SRPK homologue, and CeSF2, an SPK-1 substrate, were cloned. SPK-1 binds directly to and phosphorylates the RS domain of CeSF2 in vitro. Both spk-1 and CeSF2 are predominantly expressed in germlines. RNA interference (RNAi) experiments revealed that spk-1 and CeSF2 play an essential role at the embryonic stage of C. elegans. Furthermore, RNAi studies demonstrated that spk-1 is required for germline development in C. elegans. We provide evidence that RNAi, achieved by the soaking of L1 larvae, is beneficial in the study of gene function in post-embryonic germline development.
Collapse
Affiliation(s)
- H Kuroyanagi
- Molecular Medicine Laboratories, Institute for Drug Discovery Research, Yamanouchi Pharmaceutical Co., Ltd., Tsukuba, 305-8585, Ibaraki, Japan
| | | | | | | | | | | |
Collapse
|
24
|
Beales M, Flay N, McKinney R, Habara Y, Ohshima Y, Tani T, Potashkin J. Mutations in the large subunit of U2AF disrupt pre-mRNA splicing, cell cycle progression and nuclear structure. Yeast 2000; 16:1001-13. [PMID: 10923022 DOI: 10.1002/1097-0061(200008)16:11<1001::aid-yea605>3.0.co;2-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The prp2 gene of fission yeast has previously been shown to encode the large subunit of the splicing factor spU2AF. SpU2AF(59) is an evolutionarily conserved protein that has an arginine/serine-rich region and three RNA recognition motifs (RRMs). We have sequenced three temperature-sensitive alleles of prp2 and determined that the mutations result in single amino acid changes within one of the RRMs or between RRMs. All mutant alleles of prp2 have pre-mRNA splicing defects at the non-permissive temperature. Although the mutant strains are growth-arrested at 37 degrees C, they do not elongate like typical fission yeast cell cycle mutants. The DNA of the prp2(-) strains stains more intensely than a wild-type strain, suggesting that the chromatin may be condensed. Ultrastructural studies show differences in the mutant nuclei including a prominent distinction between the chromatin- and non-chromatin-enriched regions compared to the more homogenous wild-type nucleus. Two-hybrid assays indicate that some of the wild-type protein interactions are altered in the mutant strains. These results suggest that normal functioning of spU2AF(59) may be essential not only for pre-mRNA splicing but also for the maintenance of proper nuclear structure and normal cell cycle progression.
Collapse
Affiliation(s)
- M Beales
- Department of Cellular and Molecular Pharmacology, Finch University of Health Sciences/The Chicago Medical School, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Yue BG, Ajuh P, Akusjärvi G, Lamond AI, Kreivi JP. Functional coexpression of serine protein kinase SRPK1 and its substrate ASF/SF2 in Escherichia coli. Nucleic Acids Res 2000; 28:E14. [PMID: 10666475 PMCID: PMC102625 DOI: 10.1093/nar/28.5.e14] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mammalian proteins expressed in Escherichia coli are used in a variety of applications. A major drawback in producing eukaryotic proteins in E.coli is that the bacteria lack most eukaryotic post-translational modification systems, including serine/threonine protein kinase(s). Here we show that a eukaryotic protein can be phosphorylated in E.coli by simultaneous expression of a mammalian protein kinase and its substrate. We show that in bacteria expressing SRPK1, ASF/SF2 becomes phosphorylated to a degree resembling native ASF/SF2 present in interphase HeLa cell nuclei. The E.coli phosphorylated ASF/SF2 is functional in splicing and, contrary to the unphosphorylated protein, soluble under native conditions.
Collapse
Affiliation(s)
- B G Yue
- Department of Medical Biochemistry and Microbiology, Unit of Microbiology, Uppsala University, Box 582, S-751 23 Uppsala, Sweden
| | | | | | | | | |
Collapse
|
26
|
Abstract
The SR proteins, a group of abundant arginine/serine (RS)-rich proteins, are essential pre-mRNA splicing factors that are localized in the nucleus. The RS domain of these proteins serves as a nuclear localization signal. We found that RS domain-bearing proteins do not utilize any of the known nuclear import receptors and identified a novel nuclear import receptor specific for SR proteins. The SR protein import receptor, termed transportin-SR (TRN-SR), binds specifically and directly to the RS domains of ASF/SF2 and SC35 as well as several other SR proteins. The nuclear transport regulator RanGTP abolishes this interaction. Recombinant TRN-SR mediates nuclear import of RS domain- bearing proteins in vitro. TRN-SR has amino acid sequence similarity to several members of the importin beta/transportin family. These findings strongly suggest that TRN-SR is a nuclear import receptor for the SR protein family.
Collapse
Affiliation(s)
- N Kataoka
- Howard Hughes Medical Institute, University of Pennsylvania School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania 19104-6148, USA
| | | | | |
Collapse
|
27
|
Koizumi J, Okamoto Y, Onogi H, Mayeda A, Krainer AR, Hagiwara M. The subcellular localization of SF2/ASF is regulated by direct interaction with SR protein kinases (SRPKs). J Biol Chem 1999; 274:11125-31. [PMID: 10196197 DOI: 10.1074/jbc.274.16.11125] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Serine/arginine-rich (SR) proteins play an important role in constitutive and alternative pre-mRNA splicing. The C-terminal arginine-serine domain of these proteins, such as SF2/ASF, mediates protein-protein interactions and is phosphorylated in vivo. Using glutathione S-transferase (GST)-SF2/ASF-affinity chromatography, the SF2/ASF kinase activity was co-purified from HeLa cells with a 95-kDa protein, which was recognized by an anti-SR protein kinase (SRPK) 1 monoclonal antibody. Recombinant SRPK1 and SRPK2 bound to and phosphorylated GST-SF2/ASF in vitro. Phosphopeptide mapping showed that identical sites were phosphorylated in the pull-down kinase reaction with HeLa extracts and by recombinant SRPKs. Epitope-tagged SF2/ASF transiently expressed in COS7 cells co-immunoprecipitated with SRPKs. Deletion analysis mapped the phosphorylation sites to a region containing an (Arg-Ser)8 repeat beginning at residue 204, and far-Western analysis showed that the region is required for binding of SRPKs to SF2/ASF. Further binding studies showed that SRPKs bound unphosphorylated SF2/ASF but did not bind phosphorylated SF2/ASF. Expression of an SRPK2 kinase-inactive mutant caused accumulation of SF2/ASF in the cytoplasm. These results suggest that the formation of complexes between SF2/ASF and SRPKs, which is influenced by the phosphorylation state of SF2/ASF, may have regulatory roles in the assembly and localization of this splicing factor.
Collapse
Affiliation(s)
- J Koizumi
- Department of Functional Genomics, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113, Japan
| | | | | | | | | | | |
Collapse
|