1
|
Paolicchi E, Gemignani F, Krstic-Demonacos M, Dedhar S, Mutti L, Landi S. Targeting hypoxic response for cancer therapy. Oncotarget 2017; 7:13464-78. [PMID: 26859576 PMCID: PMC4924654 DOI: 10.18632/oncotarget.7229] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 01/17/2016] [Indexed: 12/21/2022] Open
Abstract
Hypoxic tumor microenvironment (HTM) is considered to promote metabolic changes, oncogene activation and epithelial mesenchymal transition, and resistance to chemo- and radio-therapy, all of which are hallmarks of aggressive tumor behavior. Cancer cells within the HTM acquire phenotypic properties that allow them to overcome the lack of energy and nutrients supply within this niche. These phenotypic properties include activation of genes regulating glycolysis, glucose transport, acidosis regulators, angiogenesis, all of which are orchestrated through the activation of the transcription factor, HIF1A, which is an independent marker of poor prognosis. Moreover, during the adaptation to a HTM cancer cells undergo deep changes in mitochondrial functions such as “Warburg effect” and the “reverse Warburg effect”. This review aims to provide an overview of the characteristics of the HTM, with particular focus on novel therapeutic strategies currently in clinical trials, targeting the adaptive response to hypoxia of cancer cells.
Collapse
Affiliation(s)
- Elisa Paolicchi
- Genetics-Department of Biology, University of Pisa, Pisa, Italy
| | | | - Marija Krstic-Demonacos
- School of Environment and Life Sciences, College of Science and Technology, University of Salford, Salford, UK
| | - Shoukat Dedhar
- Department of Integrative Oncology, BC Cancer Research Centre, BC Cancer Agency and Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Luciano Mutti
- School of Environment and Life Sciences, College of Science and Technology, University of Salford, Salford, UK
| | - Stefano Landi
- Genetics-Department of Biology, University of Pisa, Pisa, Italy
| |
Collapse
|
2
|
Wang S, Hu W. Development of "-omics" research in Schistosoma spp. and -omics-based new diagnostic tools for schistosomiasis. Front Microbiol 2014; 5:313. [PMID: 25018752 PMCID: PMC4072072 DOI: 10.3389/fmicb.2014.00313] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Indexed: 12/02/2022] Open
Abstract
Schistosomiasis, caused by dioecious flatworms in the genus Schistosoma, is torturing people from many developing countries nowadays and frequently leads to severe morbidity and mortality of the patients. Praziquantel based chemotherapy and morbidity control for this disease adopted currently necessitate viable and efficient diagnostic technologies. Fortunately, those “-omics” researches, which rely on high-throughput experimental technologies to produce massive amounts of informative data, have substantially contributed to the exploitation and innovation of diagnostic tools of schistosomiasis. In its first section, this review provides a concise conclusion on the progresses pertaining to schistosomal “-omics” researches to date, followed by a comprehensive section on the diagnostic methods of schistosomiasis, especially those innovative ones based on the detection of antibodies, antigens, nucleic acids, and metabolites with a focus on those achievements inspired by “-omics” researches. Finally, suggestions about the design of future diagnostic tools of schistosomiasis are proposed, in order to better harness those data produced by “-omics” studies.
Collapse
Affiliation(s)
- Shuqi Wang
- Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University Shanghai, China
| | - Wei Hu
- Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University Shanghai, China ; Key Laboratory of Parasite and Vector Biology of Ministry of Health, National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention Shanghai, China
| |
Collapse
|
3
|
Okumura-Noji K, Miura Y, Lu R, Asai K, Ohta N, Brindley PJ, Yokoyama S. CD36-related protein in Schistosoma japonicum: candidate mediator of selective cholesteryl ester uptake from high-density lipoprotein for egg maturation. FASEB J 2012. [PMID: 23195036 DOI: 10.1096/fj.12-219816] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Familial cholesteryl ester transfer protein (CETP) deficiency is more common in some East Asian populations than elsewhere, suggesting the possibility of a selective advantage of this genetic defect against regional infectious diseases. Historically, infection with the Asian blood fluke Schistosoma japonicum has been endemic in these regions, including Japan. We previously reported that eggs of S. japonicum require cholesteryl ester uptake from normal high-density lipoprotein (HDL) but not from CETP-deficient HDL for their maturation to miracidia, a critical step of the hepatic pathogenesis of schistosomiasis. Herein we show that cholesteryl ester uptake is selective from HDL, and identified CD36-related protein (CD36RP) as a candidate to mediate the reaction. CD36RP was cloned from the adult and the egg developmental stages of S. japonicum, with 1880 bp encoding 506 amino acid residues exhibiting the CD36 domains and two transmembrane regions. Using antibodies against recombinant peptides representing the potential extracellular domains of CD36RP, Western blotting detected a protein with a molecular mass of 82 kDa in the particulate fraction of the adult parasite cells, which was reduced to 62 kDa after N-glycanase treatment. The extracellular domain peptide bound human HDL, as established by immunoblots following nondenaturing gel electrophoresis. Antibodies against the extracellular domain suppressed HDL cholesteryl ester uptake and maturation of the eggs in vitro. CD36RP is a candidate receptor on eggs of S. japonicum that facilitates uptake of HDL cholesteryl ester necessary for egg embryonation and maturation.
Collapse
Affiliation(s)
- Kuniko Okumura-Noji
- Nutritional Health Science Research Centre and Food and Nutritional Sciences, Chubu University, Kasugai 487-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
4
|
Piao X, Cai P, Liu S, Hou N, Hao L, Yang F, Wang H, Wang J, Jin Q, Chen Q. Global expression analysis revealed novel gender-specific gene expression features in the blood fluke parasite Schistosoma japonicum. PLoS One 2011; 6:e18267. [PMID: 21494327 PMCID: PMC3071802 DOI: 10.1371/journal.pone.0018267] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 02/24/2011] [Indexed: 01/17/2023] Open
Abstract
Background Schistosoma japonicum is one of the remarkable
Platyhelminths that are endemic in China and Southeast Asian countries. The
parasite is dioecious and can reside inside the host for many years. Rapid
reproduction by producing large number of eggs and count-react host
anti-parasite responses are the strategies that benefit long term survival
of the parasite. Praziquantel is currently the only drug that is effective
against the worms. Development of novel antiparasite reagents and
immune-prevention measures rely on the deciphering of parasite biology. The
decoding of the genomic sequence of the parasite has made it possible to
dissect the functions of genes that govern the development of the parasite.
In this study, the polyadenylated transcripts from male and female
S. japonicum were isolated for deep sequencing and the
sequences were systematically analysed. Results First, the number of genes actively expressed in the two sexes of S.
japonicum was similar, but around 50% of genes were
biased to either male or female in expression. Secondly, it was, at the
first time, found that more than 50% of the coding region of the
genome was transcribed from both strands. Among them, 65% of the
genes had sense and their cognate antisense transcripts co-expressed,
whereas 35% had inverse relationship between sense and antisense
transcript abundance. Further, based on gene ontological analysis, more than
2,000 genes were functionally categorized and biological pathways that are
differentially functional in male or female parasites were elucidated. Conclusions Male and female schistosomal parasites differ in gene expression patterns,
many metabolic and biological pathways have been identified in this study
and genes differentially expressed in gender specific manner were presented.
Importantly, more than 50% of the coding regions of the S.
japonicum genome transcribed from both strands, antisense
RNA-mediated gene regulation might play a critical role in the parasite
biology.
Collapse
Affiliation(s)
- Xianyu Piao
- Laboratory of Parasitology, Institute of
Pathogen Biology/Institute of Basic Medical Sciences, Chinese Academy of Medical
Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory for Molecular Virology
and Genetic Engineering, Institute of Pathogen Biology, Chinese Academy of
Medical Sciences and Peking Union Medical College, Beijing, China
| | - Pengfei Cai
- Laboratory of Parasitology, Institute of
Pathogen Biology/Institute of Basic Medical Sciences, Chinese Academy of Medical
Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory for Molecular Virology
and Genetic Engineering, Institute of Pathogen Biology, Chinese Academy of
Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuai Liu
- Laboratory of Parasitology, Institute of
Pathogen Biology/Institute of Basic Medical Sciences, Chinese Academy of Medical
Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory for Molecular Virology
and Genetic Engineering, Institute of Pathogen Biology, Chinese Academy of
Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nan Hou
- Laboratory of Parasitology, Institute of
Pathogen Biology/Institute of Basic Medical Sciences, Chinese Academy of Medical
Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory for Molecular Virology
and Genetic Engineering, Institute of Pathogen Biology, Chinese Academy of
Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lili Hao
- College of Life Science and Technology,
Southwest University of Nationalities, Chengdu, Sichuan, China
| | - Fan Yang
- State Key Laboratory for Molecular Virology
and Genetic Engineering, Institute of Pathogen Biology, Chinese Academy of
Medical Sciences and Peking Union Medical College, Beijing, China
| | - Heng Wang
- Laboratory of Parasitology, Institute of
Pathogen Biology/Institute of Basic Medical Sciences, Chinese Academy of Medical
Sciences and Peking Union Medical College, Beijing, China
| | - Jianwei Wang
- State Key Laboratory for Molecular Virology
and Genetic Engineering, Institute of Pathogen Biology, Chinese Academy of
Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qi Jin
- State Key Laboratory for Molecular Virology
and Genetic Engineering, Institute of Pathogen Biology, Chinese Academy of
Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qijun Chen
- Laboratory of Parasitology, Institute of
Pathogen Biology/Institute of Basic Medical Sciences, Chinese Academy of Medical
Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory for Molecular Virology
and Genetic Engineering, Institute of Pathogen Biology, Chinese Academy of
Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Zoonosis, Ministry of
Education, Institute of Zoonosis, Jilin University, Changchun, China
- * E-mail:
| |
Collapse
|
5
|
Our wormy world genomics, proteomics and transcriptomics in East and southeast Asia. ADVANCES IN PARASITOLOGY 2010; 73:327-71. [PMID: 20627147 DOI: 10.1016/s0065-308x(10)73011-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Helminths are the cause of some of the major infectious diseases of humanity in what is still a "wormy" world. There is, in East and Southeast Asia, a high prevalence of several helminthiases which occur primarily in rural, impoverished areas of low-income and developing countries throughout the tropics and subtropics. Subsequent to various parasite genome projects that commenced in the early 1990s, under the aegis of the World Health Organization (WHO), the draft genomes of three major helminth species (Schistosoma japonicum, S. mansoni and Brugia malayi) have been sequenced, and many other helminth parasites have now been targeted for intensive genomics investigation. The continuing release of genome sequences has catalyzed the emergence of transcriptomics, proteomics and related "-omics" analyses of helminth parasites, which provide unprecedented approaches to understanding their biology that will result in new clues for the development of novel control interventions. In this review, we present a summary of current approaches employed in helminth "-omics" studies and review recent advances in helminth genomics and post-genomics in the Southeast Asian setting.
Collapse
|
6
|
Remais J, Akullian A, Ding L, Seto E. Analytical methods for quantifying environmental connectivity for the control and surveillance of infectious disease spread. J R Soc Interface 2010; 7:1181-93. [PMID: 20164085 DOI: 10.1098/rsif.2009.0523] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The sustained transmission and spread of environmentally mediated infectious diseases is governed in part by the dispersal of parasites, disease vectors and intermediate hosts between sites of transmission. Functional geospatial models can be used to quantify and predict the degree to which environmental features facilitate or limit connectivity between target populations, yet typical models are limited in their geographical and analytical approach, providing simplistic, global measures of connectivity and lacking methods to assess the epidemiological implications of fine-scale heterogeneous landscapes. Here, functional spatial models are applied to problems of surveillance and control of the parasitic blood fluke Schistosoma japonicum and its intermediate snail host Oncomelania haupensis in western China. We advance functional connectivity methods by providing an analytical framework to (i) identify nodes of transmission where the degree of connectedness to other villages, and thus the potential for disease spread, is higher than is estimated using Euclidean distance alone and (ii) (re)organize transmission sites into disease surveillance units based on second-order relationships among nodes using non-Euclidean distance measures, termed effective geographical distance (EGD). Functional environmental models are parametrized using ecological information on the target organisms, and pair-wise distributions of inter-node EGD are estimated. A Monte Carlo rank product analysis is presented to identify nearby nodes under alternative distance models. Nodes are then iteratively embedded into EGD space and clustered using a k-means algorithm to group villages into ecologically meaningful surveillance groups. A consensus clustering approach is taken to derive the most stable cluster structure. The results indicate that novel relationships between nodes are revealed when non-Euclidean, ecologically determined distance measures are used to quantify connectivity in heterogeneous landscapes. These connections are not evident when analysing nodes in Euclidean space, and thus surveillance and control activities planned using Euclidean distance measures may be suboptimal. The methods developed here provide a quantitative framework for assessing the effectiveness of ecologically grounded surveillance systems and of control and prevention strategies for environmentally mediated diseases.
Collapse
Affiliation(s)
- Justin Remais
- Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Road NE, Atlanta, GA 30322, USA.
| | | | | | | |
Collapse
|
7
|
Han ZG, Brindley PJ, Wang SY, Chen Z. Schistosoma genomics: new perspectives on schistosome biology and host-parasite interaction. Annu Rev Genomics Hum Genet 2009; 10:211-40. [PMID: 19630560 DOI: 10.1146/annurev-genom-082908-150036] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Schistosomiasis, caused mainly by Schistosoma japonicum, S. mansoni, and S. hematobium, remains one of the most prevalent and serious parasitic diseases worldwide. The blood flukes have a complex life cycle requiring adaptation for survival in fresh water as free-living forms and as parasites in snail intermediate and vertebrate definitive hosts. Functional genomics analyses, including transcriptomic and proteomic approaches, have been performed on schistosomes, in particular S. mansoni and S. japonicum, using powerful high-throughput methodologies. These investigations have not only chartered gene expression profiles across genders and developmental stages within mammalian and snail hosts, but have also characterized the features of the surface tegument, the eggshell and excretory-secretory proteomes of schistosomes. The integration of the genomic, transcriptomic, and proteomic information, together with genetic manipulation on individual genes, will provide a global insight into the molecular architecture of the biology, pathogenesis, and host-parasite interactions of the human blood flukes. Importantly, these functional genomics analyses lay a foundation on which to develop new antischistosome vaccines as well as drug targets and diagnostic markers for treatment and control of schistosomiasis.
Collapse
Affiliation(s)
- Ze-Guang Han
- Shanghai-MOST Key Laboratory for Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai 201203, China.
| | | | | | | |
Collapse
|
8
|
Wang X, Gobert GN, Feng X, Fu Z, Jin Y, Peng J, Lin J. Analysis of early hepatic stage schistosomula gene expression by subtractive expressed sequence tags library. Mol Biochem Parasitol 2009; 166:62-9. [PMID: 19428674 DOI: 10.1016/j.molbiopara.2009.02.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Revised: 02/24/2009] [Accepted: 02/25/2009] [Indexed: 01/12/2023]
Abstract
Schistosome parasites require a complex lifecycle requiring two hosts and aquatic phases of development. The schistosomula is a key phase of parasite development within the mammalian host, however relatively little is understood about the molecular processes underlying this stage. In this study 5723 subtractive expressed sequence tags (ESTs) were randomly selected from a 7 day hepatic schistosomula enriched library constructed using suppression subtractive hybridization method. Sequence analysis of these ESTs identified 1762 unique genes (contigs). Among them, 989 contigs were annotated with known genes, 311 contigs were homologous to established genes, 101 contigs were similar to established genes, 72 contigs were weakly similar to established genes and 289 sequences did not match any published sequences. Genes identified related to metabolism, cellular development, immune evasion and host-parasite interactions were identified as enriched in the hepatic schistosomula stage. The future identification of poorly annotated but stage-specific genes may potentially represent new drugs or vaccine targets, applicable for the future controlling of schistosomiasis.
Collapse
Affiliation(s)
- Xinzhi Wang
- Shanghai Institute of Veterinary Research, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, PR China
| | | | | | | | | | | | | |
Collapse
|
9
|
Dvořák J, Mashiyama ST, Braschi S, Sajid M, Knudsen GM, Hansell E, Lim KC, Hsieh I, Bahgat M, Mackenzie B, Medzihradszky KF, Babbitt PC, Caffrey CR, McKerrow JH. Differential use of protease families for invasion by schistosome cercariae. Biochimie 2008; 90:345-58. [DOI: 10.1016/j.biochi.2007.08.013] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2007] [Accepted: 08/30/2007] [Indexed: 10/22/2022]
|
10
|
Fan J, Yang W, Brindley PJ. Lysophospholipase from the human blood fluke, Schistosoma japonicum. Int J Infect Dis 2007; 12:143-51. [PMID: 17709268 DOI: 10.1016/j.ijid.2007.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2007] [Revised: 04/08/2007] [Accepted: 05/23/2007] [Indexed: 10/22/2022] Open
Abstract
BACKGROUND Given the unusual nature of the schistosome surface (a highly unusual lipid bi-layer) and the central role of the schistosome tegument in host-parasite relations, an enhanced understanding of the lipid biochemistry of the schistosome surface can be expected to provide new insights into schistosome pathogenesis and lead to new interventions. METHODS Bioinformatics approaches including three-dimensional homology modeling, along with recombinant expression, dimensional gel electrophoresis, immunoblotting, and Southern hybridizations were employed to characterize a novel lysophospholipase gene transcript from Schistosoma japonicum. RESULTS A transcript encoding a small form lysophospholipase from the egg stage of S. japonicum was isolated as an expressed sequence tag (EST). The deduced polypeptide included 227 amino acid residues, shared identity with lysophospholipases of Schistosoma mansoni and Rattus norvegicus, and esterase A of Pseudomonas fluorescens, appeared to belong to the abhydrolase_2 family of phospholipases and carboxylesterases, and was structurally related to the alpha/beta-hydrolases (pfam00561). The S. japonicum enzyme exhibited the GXSXG consensus active site characteristic of serine proteases, esterases, and lipases, and included the catalytic triad motif of Ser-Asp-His residues characteristic of serine hydrolases. Three-dimensional structural predictions accomplished using the coordinates of human acyl protein thioesterase and P. fluorescens esterase indicated that the putative catalytic triad formed by these three residues was located at the alpha/beta-hydrolase fold characteristic of the lipases and esterases. Soluble S. japonicum lysophospholipase was expressed in Escherichia coli as a recombinant enzyme of approximately 26kDa and employed to raise a mono-specific antiserum. Immunoblot analysis revealed a single 23-kDa band in both membrane-associated and soluble tissue fractions of adult schistosomes. Southern hybridization and bioinformatics analyses indicated the likely presence of allelic-specific polymorphisms and/or two copies of the lysophospholipase gene in the S. japonicum genome. CONCLUSIONS A small form lysophospholipase has been characterized from the human schistosome, S. japonicum. The availability of the recombinant S. japonicum lysophospholipase should facilitate further characterization of the enzyme, including its substrate and inhibition profiles and its potential as an interventional target. Schistosome lysophospholipase may represent a new target for anti-schistosomal chemotherapy given that metrifonate, which targets the related enzyme acetylcholinesterase, is an effective and safe medicine for treatment of urinary schistosomiasis.
Collapse
Affiliation(s)
- Jinjiang Fan
- Molecular Parasitology Unit, Queensland Institute of Medical Research, and Australian Centre for International and Tropical Health and Nutrition, The University of Queensland, Brisbane, Queensland, Australia
| | | | | |
Collapse
|
11
|
Dolečková K, Kašný M, Mikeš L, Mutapi F, Stack C, Mountford AP, Horák P. Peptidases of Trichobilharzia regenti (Schistosomatidae) and its molluscan host Radix peregra s. lat. (Lymnaeidae): construction and screening of cDNA library from intramolluscan stages of the parasite. Folia Parasitol (Praha) 2007. [DOI: 10.14411/fp.2007.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Kasný M, Mikes L, Dalton JP, Mountford AP, Horák P. Comparison of cysteine peptidase activities inTrichobilharzia regentiandSchistosoma mansonicercariae. Parasitology 2007; 134:1599-609. [PMID: 17517170 DOI: 10.1017/s0031182007002910] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
SUMMARYCercariae of the bird schistosomeTrichobilharzia regentiand of the human schistosomeSchistosoma mansoniemploy proteases to invade the skin of their definitive hosts. To investigate whether a similar proteolytic mechanism is used by both species, cercarial extracts ofT. regentiandS. mansoniwere biochemically characterized, with the primary focus on cysteine peptidases. A similar pattern of cysteine peptidase activities was detected by zymography of cercarial extracts and their chromatographic fractions fromT. regentiandS. mansoni.The greatest peptidase activity was recorded in both species against the fluorogenic peptide substrate Z-Phe-Arg-AMC, commonly used to detect cathepsins B and L, and was markedly inhibited (>96%) by Z-Phe-Ala-CHN2at pH 4·5. Cysteine peptidases of 33 kDa and 33–34 kDa were identified in extracts ofT. regentiandS. mansonicercariae employing a biotinylated Clan CA cysteine peptidase-specific inhibitor (DCG-04). Finally, cercarial extracts from bothT. regentiandS. mansoniwere able to degrade native substrates present in skin (collagen II and IV, keratin) at physiological pH suggesting that cysteine peptidases are important in the pentration of host skin.
Collapse
Affiliation(s)
- M Kasný
- Charles University in Prague, Faculty of Science, Department of Parasitology, Vinicná 7, 12844 Prague 2, Czech Republic.
| | | | | | | | | |
Collapse
|
13
|
Gan XX, Shen LY, Wang Y, Ding JZ, Shen HY, Zeng XP, McManus DP, Brindley PJ, Fan J. Recombinant tegumental protein Shistosoma japonicum very lowdensity lipoprotein binding protein as a vaccine candidate against Schistosoma japonicum. Mem Inst Oswaldo Cruz 2006; 101:9-13. [PMID: 16612506 DOI: 10.1590/s0074-02762006000100003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A polyhistidine-tagged recombinant tegumental protein Schistosoma japonicum very lowdensity lipoprotein binding protein (SVLBP) from adult Schistosoma japonicum was expressed in Escherichia coli. The affinity purified rSVLBP was used to vaccinate mice. The worm numbers and egg deposition recovered from the livers and veins of the immunized mice were 33.5% and 47.6% less than that from control mice, respectively (p<0.05). There was also a marked increase in the antibody response in vaccinated mice: the titer of IgG1 and IgG2a, IgG2b in the vaccinated group was significantly higher than that in the controls (>1:6,400 in total IgG). In a comparison of the reactivity of sera from healthy individuals and patients with rSVLBP, recognition patterns against this parasite tegumental antigen varied among different groups of the individuals. Notably, the average titres of anti-rSVLBP antibody in sera from faecal egg-negative individuals was significantly higher than that in sera from the faecal egg-positives, which may be reflect SVLBP-specific protection. These results suggested that the parasite tegumental protein SVLBP was a promising candidate for further investigation as a vaccine antigen for use against Asian schistosomiasis.
Collapse
Affiliation(s)
- Xiao-Xian Gan
- Institute of Parasitic Diseases, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
This is the first of a projected series of canonic reviews covering all invertebrate muscle literature prior to 2005 and covers muscle genes and proteins except those involved in excitation-contraction coupling (e.g., the ryanodine receptor) and those forming ligand- and voltage-dependent channels. Two themes are of primary importance. The first is the evolutionary antiquity of muscle proteins. Actin, myosin, and tropomyosin (at least, the presence of other muscle proteins in these organisms has not been examined) exist in muscle-like cells in Radiata, and almost all muscle proteins are present across Bilateria, implying that the first Bilaterian had a complete, or near-complete, complement of present-day muscle proteins. The second is the extraordinary diversity of protein isoforms and genetic mechanisms for producing them. This rich diversity suggests that studying invertebrate muscle proteins and genes can be usefully applied to resolve phylogenetic relationships and to understand protein assembly coevolution. Fully achieving these goals, however, will require examination of a much broader range of species than has been heretofore performed.
Collapse
Affiliation(s)
- Scott L Hooper
- Neuroscience Program, Department of Biological Sciences, Irvine Hall, Ohio University, Athens, Ohio 45701, USA.
| | | |
Collapse
|
15
|
Ruppel A, Chlichlia K, Bahgat M. Invasion by schistosome cercariae: neglected aspects in Schistosoma japonicum. Trends Parasitol 2004; 20:397-400. [PMID: 15324727 DOI: 10.1016/j.pt.2004.06.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Skin invasion by schistosome cercariae was recently discussed in Trends in Parasitology. However, only Schistosoma mansoni was considered, possibly because this species predominates in laboratory studies (at least outside China). One may be tempted to extrapolate from the "model" S. mansoni to other schistosomes, but Schistosoma japonicum must not be neglected. This schistosome is distinguishable from others (particularly S. mansoni) by virtue of its remarkable speed and success of migration, as well as by specific biochemical and immunological features. This leads to the hypothesis that S. japonicum is atypical with respect to the enzymes that facilitate skin penetration.
Collapse
Affiliation(s)
- Andreas Ruppel
- Department of Tropical Hygiene and Public Health, University of Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany.
| | | | | |
Collapse
|
16
|
Fitzpatrick JM, Johansen MV, Johnston DA, Dunne DW, Hoffmann KF. Gender-associated gene expression in two related strains of Schistosoma japonicum. Mol Biochem Parasitol 2004; 136:191-209. [PMID: 15478798 DOI: 10.1016/j.molbiopara.2004.03.014] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Host inflammatory responses directed against eggs laid by sexually-mature Schistosoma japonicum female worms instigate lesion formation and associated clinical pathologies during infection. To identify parasite gene transcripts that associate with egg production and to characterise sexually-mature adult gene expression profiles of two related Chinese strains, S. japonicum cDNA microarrays were fabricated using 457 ESTs originating from three parasite developmental stages. Twenty-two female-associated and 8 male-associated gene transcripts were identified in the adult Anhui strain whereas 21 female-associated and 7 male-associated gene transcripts were revealed in the adult Zhejiang strain. RT-PCR analysis, in situ enzyme localisation studies and enzymatic assays confirmed the cDNA microarray results, and importantly, provided information previously unappreciated in schistosome conjugal biology. Specifically, our novel findings include the female-specific expression of genes putatively involved in haemoglobin digestion and eggshell formation including extracellular superoxide dismutase, two histidine-rich proteins, a large blood-brain barrier amino acid transporter and two tyrosinase orthologues. In contrast, transcripts involved in mechanical support (actin), cytoskeletal infrastructure (e.g. dynein light chain 3 and myosin regulatory light chain) and tegumental biology (e.g. TM4SF and Sj25) were more highly represented in adult male schistosomes. Together these data establish a transcriptional basis for adult schistosome labour division and expands the list of novel S. japonicum gender-associated gene transcripts that may be considered targets for improved intervention strategies.
Collapse
Affiliation(s)
- Jennifer M Fitzpatrick
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | | | | | | | | |
Collapse
|
17
|
Snoeijer CQ, Picchi GF, Dambrós BP, Steindel M, Goldenberg S, Fragoso SP, Lorenzini DM, Grisard EC. Trypanosoma rangeli Transcriptome Project: Generation and analysis of expressed sequence tags. KINETOPLASTID BIOLOGY AND DISEASE 2004; 3:1. [PMID: 15142279 PMCID: PMC419976 DOI: 10.1186/1475-9292-3-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/09/2004] [Accepted: 05/13/2004] [Indexed: 11/10/2022]
Abstract
Trypanosoma rangeli is an important hemoflagellate parasite of several mammalian species in Central and South America, sharing geographical areas, vectors and reservoirs with T. cruzi, the causative agent of Chagas disease. Thus, the occurrence of single and/or mixed infections, including in humans, must be expected and are of great importance for specific diagnosis and epidemiology. In comparison to several Trypanosomatidae species, the T. rangeli biology and genome are little known, reinforcing the needs of a gene discovery initiative. The T. rangeli transcriptome initiative aims to promote gene discovery through the generation of expressed sequence tags (ESTs) and Orestes (ORF ESTs) from both epimastigote and trypomastigote forms of the parasite, allowing further studies of the parasite biology, taxonomy and phylogeny.
Collapse
Affiliation(s)
- Cristiane Quimelli Snoeijer
- Departamento de Microbiologia e Parasitologia, Universidade Federal de Santa Catarina, Caixa postal 476, Santa Catarina, Brazil, 88040-900
| | | | - Bibiana Paula Dambrós
- Departamento de Microbiologia e Parasitologia, Universidade Federal de Santa Catarina, Caixa postal 476, Santa Catarina, Brazil, 88040-900
| | - Mário Steindel
- Departamento de Microbiologia e Parasitologia, Universidade Federal de Santa Catarina, Caixa postal 476, Santa Catarina, Brazil, 88040-900
| | | | | | - Daniel Macedo Lorenzini
- Departamento de Microbiologia e Parasitologia, Universidade Federal de Santa Catarina, Caixa postal 476, Santa Catarina, Brazil, 88040-900
| | - Edmundo Carlos Grisard
- Departamento de Microbiologia e Parasitologia, Universidade Federal de Santa Catarina, Caixa postal 476, Santa Catarina, Brazil, 88040-900
| |
Collapse
|
18
|
Hu W, Brindley PJ, McManus DP, Feng Z, Han ZG. Schistosome transcriptomes: new insights into the parasite and schistosomiasis. Trends Mol Med 2004; 10:217-25. [PMID: 15121048 DOI: 10.1016/j.molmed.2004.03.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Schistosomiasis is one of the most serious parasitic diseases. More than 250 million people are infected with schistosomes in the tropics or subtropics. The parasitic flukes have some unique biological features: dioecism, complex life cycles, mechanisms to avoid host immune responses, and an apparent reliance on host endocrine and immune signals to complete their development, maturation and egg production. Recently, a large dataset of expressed sequence tags (ESTs) were generated from Schistosoma japonicum and Schistosoma mansoni, from which numerous novel genes were identified. The transcriptome analyses provide the basis for a comprehensive understanding of the molecular mechanisms involved in schistosome nutrition and metabolism, host-dependent development and maturation, immune evasion and invertebrate evolution. In addition, new potential vaccine candidates and drug targets have been predicted.
Collapse
Affiliation(s)
- Wei Hu
- Department of Tropical Medicine, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| | | | | | | | | |
Collapse
|
19
|
Fan J, Gan X, Yang W, Shen L, McManus DP, Brindley PJ. A Schistosoma japonicum very low-density lipoprotein-binding protein. Int J Biochem Cell Biol 2003; 35:1436-51. [PMID: 12818239 DOI: 10.1016/s1357-2725(03)00105-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Schistosomes acquire fatty acids from their hosts, although how these parasites bind human low-density lipoproteins (LDL) and like molecules that transport fatty acids is not understood. Because parasite surface-bound host LDL may provide the schistosome with cholesterol and other lipids, as well as aid immune avoidance, understanding this process may provide fundamental insights into lipid metabolism and host defense in schistosomes. To investigate molecular aspects of lipid acquisition by schistosomes, transcripts encoding a very (V)LDL-receptor ligand binding, cysteine-rich repeat-containing protein were isolated from Schistosoma japonicum cDNAs. The deduced amino acid sequence included 207 residues with an NH2-terminal LDL ligand-binding Cys-rich motif and a COOH-terminal transmembrane (TM) domain. The ligand-binding domain was similar in sequence and structure to ligand-binding Cys-rich repeat domains from mammalian very low-density lipoprotein (VLDL) and LDL receptors, which are multi-domain proteins. This putative VLDL binding protein, designated S. japonicum very low-density lipoprotein binding protein (SVLBP), appeared to be membrane-associated, sensitive to reducing conditions, and included intra-molecular disulfide linkages. A three-dimensional (3D) model suggested that two of the three Cys residues form intra- and/or inter-molecular disulfide bridges that contribute to a patch of negative charge on the molecular surface, assumed to be associated with VLDL binding activity. SVLBP in membrane-associated and soluble fractions of adult schistosomes bound human plasma VLDL in vitro, and VLDL bound to recombinant SVLBP inhibited the binding of anti-recombinant SVLBP antibodies. Immunolocalization of SVLBP revealed prominent expression in the tegument and sub-tegument of adult male schistosomes. SVLBP may play a key role in lipid acquisition by S. japonicum.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Binding Sites/genetics
- Blotting, Southern
- Blotting, Western
- Carrier Proteins/chemistry
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cloning, Molecular
- Cystine/genetics
- Cystine/metabolism
- Electrophoresis, Gel, Two-Dimensional
- Enteropeptidase/genetics
- Enteropeptidase/metabolism
- Female
- Gene Dosage
- Gene Expression
- Humans
- Lipoproteins, VLDL/chemistry
- Lipoproteins, VLDL/genetics
- Lipoproteins, VLDL/metabolism
- Male
- Mice
- Microscopy, Immunoelectron/methods
- Models, Molecular
- Molecular Sequence Data
- Protein Binding
- Rabbits
- Rats
- Receptors, LDL/genetics
- Receptors, LDL/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Schistosoma japonicum/genetics
- Schistosoma japonicum/physiology
- Schistosoma japonicum/ultrastructure
- Sequence Alignment
- Sequence Homology, Amino Acid
- Structural Homology, Protein
Collapse
Affiliation(s)
- Jinjiang Fan
- Molecular Parasitology Unit, Queensland Institute of Medical Research, Brisbane, Qld, Australia
| | | | | | | | | | | |
Collapse
|
20
|
Dalton JP, Brindley PJ, Knox DP, Brady CP, Hotez PJ, Donnelly S, O'Neill SM, Mulcahy G, Loukas A. Helminth vaccines: from mining genomic information for vaccine targets to systems used for protein expression. Int J Parasitol 2003; 33:621-40. [PMID: 12782060 DOI: 10.1016/s0020-7519(03)00057-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The control of helminth diseases of people and livestock continues to rely on the widespread use of anti-helminthic drugs. However, concerns with the appearance of drug resistant parasites and the presence of pesticide residues in food and the environment, has given further incentive to the goal of discovering molecular vaccines against these pathogens. The exponential rate at which gene and protein sequence information is accruing for many helminth parasites requires new methods for the assimilation and analysis of the data and for the identification of molecules capable of inducing immunological protection. Some promising vaccine candidates have been discovered, in particular cathepsin L proteases from Fasciola hepatica, aminopeptidases from Haemonchus contortus, and aspartic proteases from schistosomes and hookworms, all of which are secreted into the host tissues or into the parasite intestine where they play important roles in host-parasite interactions. Since secreted proteins, in general, are exposed to the immune system of the host they represent obvious candidates at which vaccines could be targeted. Therefore, in this article, we consider the potential values and uses of algorithms for characterising cDNAs amongst the collated helminth genomic information that encode secreted proteins, and methods for their selective isolation and cloning. We also review the variety of prokaryotic and eukaryotic cell expression systems that have been employed for the production and downstream purification of recombinant proteins in functionally active form, and provide an overview of the parameters that must be considered if these recombinant proteins are to be commercialised as vaccine therapeutics in humans and/or animals.
Collapse
Affiliation(s)
- John P Dalton
- School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Raghavan N, Miller AN, Gardner M, FitzGerald PC, Kerlavage AR, Johnston DA, Lewis FA, Knight M. Comparative gene analysis of Biomphalaria glabrata hemocytes pre- and post-exposure to miracidia of Schistosoma mansoni. Mol Biochem Parasitol 2003; 126:181-91. [PMID: 12615317 DOI: 10.1016/s0166-6851(02)00272-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The internal defense mechanism of the snail Biomphalaria glabrata during a schistosome infection is activated and mediated via the immune effector cells known as hemocytes. Since resistance and susceptibility to schistosome infection is known to be genetically determined, our interest was to use the EST approach as a gene discovery tool to examine transcription profiles in hemocytes of resistant snails pre- and post-exposure to Schistosoma mansoni. Comparative analysis of the transcripts suggested that parasite exposure caused an active metabolic response in the hemocytes. The most abundant transcripts were those showing 23-74% similarity to known reverse transcriptases (RT). Further characterization by RT-PCR indicated the RT transcripts were expressed in normal snails, parasite exposed snails, and the embryonic cell line Bge. To determine whether the occurrence of RT transcripts correlates to the presence of functional enzyme activity in the snails, RT assays were performed from both resistant and susceptible snails, pre- and post-exposure to miracidia, using protein extracts from the head-foot and posterior region tissues. Results indicated that in the resistant snail, RT activity was greater in the posterior region than in the head-foot. After exposure, however, RT activity increased dramatically in the head-foot, with peak activity at 24 h post-exposure. The detection of RT activity in B. glabrata was unexpected and the role of this enzyme in the hemocyte-mediated killing of parasites is not yet known. However, identification of this and other transcripts from these cells by the EST approach provides a useful resource towards elucidating the molecular basis of resistance/susceptibility in this snail-host parasite relationship.
Collapse
|
22
|
Laha T, Brindley PJ, Verity CK, McManus DP, Loukas A. pido, a non-long terminal repeat retrotransposon of the chicken repeat 1 family from the genome of the Oriental blood fluke, Schistosoma japonicum. Gene 2002; 284:149-59. [PMID: 11891056 DOI: 10.1016/s0378-1119(02)00381-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A newly described non-long terminal repeat (non-LTR) retrotransposon element was isolated from the genome of the Oriental schistosome, Schistosoma japonicum. At least 1000 partial copies of the element, which was named pido, were dispersed throughout the genome of S. japonicum. As is usual with non-LTR retrotransposons, it is expected that many pido elements will be 5'-truncated. A consensus sequence of 3564 bp of the truncated pido element was assembled from several genomic fragments that contained pido-hybridizing sequences. The sequence encoded part of the first open reading frame (ORF), the entire second ORF and, at its 3'-terminus, a tandemly repetitive, A-rich (TA(6)TA(5)TA(8)) tail. The ORF1 of pido encoded a nucleic acid binding protein and ORF2 encoded a retroviral-like polyprotein that included apurinic/apyrimidinic endonuclease (EN) and reverse transcriptase (RT) domains, in that order. Based on its sequence and structure, and phylogenetic analyses of both the RT and EN domains, pido belongs to the chicken repeat 1 (CR1)-like lineage of elements known from the chicken, turtle, puffer fish, mosquitoes and other taxa. pido shared equal similarity with CR1 from chicken, an uncharacterized retrotransposon from Caenorhabditis elegans and SR1 (a non-LTR retrotransposon) from the related blood fluke Schistosoma mansoni; the level of similarity between pido and SR1 indicated that these two schistosome retrotransposons were related but not orthologous. The findings indicate that schistosomes have been colonized by at least two discrete CR1-like elements. Whereas pido did not appear to have a tight target site specificity, at least one copy of pido has inserted into the 3'-untranslated region of a protein-encoding gene (GenBank AW736757) of as yet unknown identity. mRNA encoding the RT of pido was detected by reverse transcription-polymerase chain reaction in the egg, miracidium and adult developmental stages of S. japonicum, indicating that the RT domain was transcribed and suggesting that pido was replicating actively and mobile within the S. japonicum genome.
Collapse
Affiliation(s)
- Thewarach Laha
- Molecular Parasitology Laboratory, Division of Infectious Diseases and Immunology, The Queensland Institute of Medical Research, Brisbane, Qld, Australia
| | | | | | | | | |
Collapse
|
23
|
Abstract
The past year has brought great progress in the genome-sequencing efforts on a large number of protozoan and metazoan parasites. Whereas many of these projects are in their initial stages, at least one (for Plasmodium falciparum) is nearing completion. The information released to date has been most revealing with respect to immune evasion mechanisms.
Collapse
Affiliation(s)
- R L Tarleton
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA.
| | | |
Collapse
|
24
|
Ross AG, Sleigh AC, Li Y, Davis GM, Williams GM, Jiang Z, Feng Z, McManus DP. Schistosomiasis in the People's Republic of China: prospects and challenges for the 21st century. Clin Microbiol Rev 2001; 14:270-95. [PMID: 11292639 PMCID: PMC88974 DOI: 10.1128/cmr.14.2.270-295.2001] [Citation(s) in RCA: 238] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Schistosomiasis japonica is a serious communicable disease and a major disease risk for more than 30 million people living in the tropical and subtropical zones of China. Infection remains a major public health concern despite 45 years of intensive control efforts. It is estimated that 865,000 people and 100,250 bovines are today infected in the provinces where the disease is endemic, and its transmission continues. Unlike the other schistosome species known to infect humans, the oriental schistosome, Schistosoma japonicum, is a true zoonotic organism, with a range of mammalian reservoirs, making control efforts extremely difficult. Clinical features of schistosomiasis range from fever, headache, and lethargy to severe fibro-obstructive pathology leading to portal hypertension, ascites, and hepatosplenomegaly, which can cause premature death. Infected children are stunted and have cognitive defects impairing memory and learning ability. Current control programs are heavily based on community chemotherapy with a single dose of the drug praziquantel, but vaccines (for use in bovines and humans) in combination with other control strategies are needed to make elimination of the disease possible. In this article, we provide an overview of the biology, epidemiology, clinical features, and prospects for control of oriental schistosomiasis in the People's Republic of China.
Collapse
Affiliation(s)
- A G Ross
- Australian Centre for International and Tropical Health and Nutrition, The Queensland Institute of Medical Research, and the University of Queensland, Brisbane, Queensland 4029, Australia
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Verity CK, McManus DP, Brindley PJ. Vaccine efficacy of recombinant cathepsin D aspartic protease from Schistosoma japonicum. Parasite Immunol 2001; 23:153-62. [PMID: 11240906 DOI: 10.1046/j.1365-3024.2001.00369.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mice were vaccinated with recombinant Schistosoma japonicum cathepsin D aspartic protease, expressed in both insect cells and bacteria, in order to evaluate the vaccine efficacy of the schistosome protease. Mean total worm burdens were significantly reduced in vaccinated mice by 21-38%, and significant reductions in female worm burdens were also recorded (22-40%). Vaccination did not reduce fecundity; rather, we recorded increased egg output per female worm in vaccinated animals, suggesting a crowding effect. Vaccinated mice developed high levels of antibodies (predominantly IgG1, IgG2a and IgG2b isotypes), but there was no correlation between antibody levels and protective efficacy. Immune sera from vaccinated mice did not inhibit the in vitro degradation of human haemoglobin by the recombinant protease, and passive transfer of serum or antibodies from vaccinated animals, before and after parasite challenge, did not significantly reduce worm or egg burdens in recipient animals. These results suggest that antibodies may not play a key role in the protective effect elicited, and that protection may be due to a combination of humoral and cell-mediated responses
Collapse
Affiliation(s)
- C K Verity
- Division of Infectious Diseases and Immunology and The CRC for Vaccine Technology, The Queensland Institute of Medical Research, Royal Brisbane Hospital, Queensland, Australia.
| | | | | |
Collapse
|
26
|
Laha T, Loukas A, Verity CK, McManus DP, Brindley PJ. Gulliver, a long terminal repeat retrotransposon from the genome of the oriental blood fluke Schistosoma japonicum. Gene 2001; 264:59-68. [PMID: 11245979 DOI: 10.1016/s0378-1119(00)00601-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We characterized the consensus sequence and structure of a long terminal repeat (LTR) retrotransposon from the genome of the human blood fluke, Schistosoma japonicum, and have named this element, Gulliver. The full length, consensus Gulliver LTR retrotransposon was 4788 bp, and it was flanked at its 5'- and 3'-ends by LTRs of 259 bp. Each LTR included RNA polymerase II promoter sequences, a CAAT signal and a TATA box. Gulliver exhibited features characteristic of a functional LTR retrotransposon including two read through (termination) ORFs encoding retroviral gag and pol proteins of 312 and 1071 amino acid residues, respectively. The gag ORF encoded motifs conserved in nucleic acid binding proteins, while the pol ORF encoded conserved domains of aspartic protease, reverse transcriptase (RT), RNaseH and integrase, in that order, a pol pattern conserved in the gypsy lineage of LTR retrotransposons. Whereas the sequence and structure of Gulliver was similar to that of gypsy, phylogenetic analysis revealed that Gulliver did not group particularly closely with the gypsy family. Rather, its closest relatives were a LTR retrotransposon from Caenorhabditis elegans, mag from Bombyx mori and, to a lesser extent, easel from the salmon Oncorhynchus keta. Dot blot hybridizations indicated that Gulliver was present at between 100 and several thousand copies in the S. japonicum genome, and Southern hybridization analysis suggested its probable presence in the genome of Schistosoma mansoni. Transcripts encoding the RT domain of Gulliver were detected by RT-PCR in larval and adult stages of S. japonicum, indicating that (at least) the RT domain of Gulliver is transcribed. This is the first report of the sequence and structure of an LTR retrotransposon from any schistosome or indeed from any species belonging to the phylum Platyhelminthes.
Collapse
Affiliation(s)
- T Laha
- Molecular Parasitology Laboratory, Division of Infectious Diseases and Immunology, Queensland Institute of Medical Research, Queensland, Brisbane, Australia
| | | | | | | | | |
Collapse
|
27
|
Hoekstra R, Visser A, Otsen M, Tibben J, Lenstra JA, Roos MH. EST sequencing of the parasitic nematode Haemonchus contortus suggests a shift in gene expression during transition to the parasitic stages. Mol Biochem Parasitol 2000; 110:53-68. [PMID: 10989145 DOI: 10.1016/s0166-6851(00)00255-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Expressed sequence tags from the parasitic nematode Haemonchus contortus were generated in order to identify anchor loci for comparative mapping between nematode genomes and candidate targets for future control measures. In total, 370 SL1 trans-spliced cDNAs from different developmental stages representing 195 different genes were partially sequenced. From these expressed sequence tags 50% were similar to genes with a known or predicted function and 19% were similar to nematode sequences with no ascribed function. From the first, free-living L1 and L3 stages relatively many cDNAs matched to housekeeping genes, and 11% (L1) or 23% (L3) of the encoded proteins were predicted to contain signal peptides. In contrast, no function could be ascribed to most of the cDNAs from the early L5 and adult parasitic stages, but for 30% (L5) or 55% (adult) of the encoded proteins a signal sequence was predicted. This limited analysis suggests that during the transition from the free-living to parasitic stages gene expression shifts towards the synthesis of less conserved extracellular proteins. These proteins offer the best perspectives for vaccine development and the development of anthelmintic drugs. In contrast, cDNAs from the first larval stages may be most suitable for comparative mapping with the free-living nematode Caenorhabditis elegans.
Collapse
Affiliation(s)
- R Hoekstra
- Department of Molecular Recognition, Institute for Animal Science and Health (ID-Lelystad), Lelystad, The Netherlands.
| | | | | | | | | | | |
Collapse
|
28
|
Laha T, McManus DP, Loukas A, Brindley PJ. Sjalpha elements, short interspersed element-like retroposons bearing a hammerhead ribozyme motif from the genome of the oriental blood fluke Schistosoma japonicum. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1492:477-82. [PMID: 11004517 DOI: 10.1016/s0167-4781(00)00112-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Smalpha is a short interspersed element (SINE)-like retroposon that occurs in high copy number of the genome of the human blood fluke Schistosoma mansoni. The sequence of the consensus Smalpha element includes the hallmark features of SINE-like elements including a promoter region for RNA polymerase III, an AT-rich stretch at its 3'-terminus, a short length of 500 bp or less, and short direct repeat sequences flanking the insertion site. Interestingly, the sequence of Smalpha also encodes an active ribozyme bearing a hammerhead domain. Contrary to the recent findings of Ferbeyre et al. (Mol. Cell. Biol. 18 (1998) 3880-8) that indicated that Smalpha-like elements were absent from the genome of the Oriental blood fluke Schistosoma japonicum, we report here that the genome of S. japonicum does contain a family of Smalpha-like retroposons, elements that we have named the Sjalpha family. Like Smalpha, Sjalpha elements are SINE-like in structure and sequence, are present at high copy number interspersed throughout the S. japonicum genome, and contain an ostensibly functional, hammerhead ribozyme motif. The presence of these elements in all species of Schistosoma so far examined suggests that the hammerhead domain was acquired by vertical transmission from a common schistosome ancestor.
Collapse
Affiliation(s)
- T Laha
- Molecular Parasitology Unit, Queensland Institute of Medical Research, Brisbane, Australia
| | | | | | | |
Collapse
|
29
|
Franco GR, Valadão AF, Azevedo V, Rabelo EM. The Schistosoma gene discovery program: state of the art. Int J Parasitol 2000; 30:453-63. [PMID: 10731568 DOI: 10.1016/s0020-7519(00)00020-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Schistosoma are dioecious digenetic trematodes carrying a large (270 Mb) genome. Gaining knowledge about the genome of these parasites is of importance for the understanding of their biology, mechanisms of drug resistance and antigenic variation that determine escape from the host's immune system. This review will provide an update on the Schistosoma Gene Discovery Program, which is part of the Schistosoma Genome Project created in 1992. One of the main objectives of this program is the discovery and characterisation of new genes of Schistosoma mansoni and Schistosoma japonicum in an attempt to search for new targets for drugs and vaccine development. The success of the Schistosoma Gene Discovery Program is demonstrated by the number of catalogued genes, that now reaches 15 to 20% of the full gene complement of its genome.
Collapse
Affiliation(s)
- G R Franco
- Departamento de Bioquímica e Imunologia, ICB, UFMG. Av. Antônio Carlos 6627, Pampulha., Belo Horizonte, Brazil.
| | | | | | | |
Collapse
|
30
|
Abstract
Sequences generated from the mitochondrial genome provide useful molecular markers for defining population groups, for tracing the genetic history of an individual or a particular group of related individuals, and for constructing deep-branch taxonomic phylogenies. There is every reason to believe that the mitochondrial genome will be as valuable in studies on flatworms, such as the human schistosomes, as it has been for other taxa. To date, however, our knowledge of mitochondrial genomes of flatworms remains limited, and this review summarises the currently available information. In particular, details of the recent sequence obtained for cloned Schistosoma mansoni mitochondrial DNA fragments spanning over half of the mitochondrial genome of this species are emphasised. This and other information, available as a result of the Schistosome Genome Project, provide the basis for obtaining the complete mitochondrial DNA sequence and gene order of S. mansoni and the other human schistosomes. The availability of complete mitochondrial DNA sequences from the different species will facilitate much more in-depth study of genetic diversity and host specificity in schistosomes and the interrelationships between the various forms infecting humans and between these and other flatworms.
Collapse
Affiliation(s)
- T H Le
- Molecular Parasitology Unit, Australian Centre for International and Tropical Health and Nutrition, The Queensland Institute of Medical Research and The University of Queensland, Brisbane, Australia
| | | | | |
Collapse
|
31
|
Adema CM, Léonard PM, DeJong RJ, Day HL, Edwards DJ, Burgett G, Hertel LA, Loker ES. Analysis of messages expressed by Echinostoma paraensei miracidia and sporocysts, obtained by random EST sequencing. J Parasitol 2000; 86:60-5. [PMID: 10701565 DOI: 10.1645/0022-3395(2000)086[0060:aomebe]2.0.co;2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
A lambdaZAP Express cDNA library was constructed with mRNA obtained from immature miracidia within eggs, hatched miracidia, and sporocysts of Echinostoma paraensei. This cDNA library was amplified and 213 expressed sequence tag (EST) sequences (averaging 466 nucleotides in length) were obtained. The mean percentage of unresolved bases within the EST sequences was 0.4%, ranging from 0 to 4.6%. The 213 ESTs represent 151 unique messages. BLAST (version 2.0.8) analysis disclosed that 64 unique E. paraensei messages (42.4%) had significant similarities (BLAST score < or =e-5), at deduced amino acid or nucleotide levels, with known sequences in the nonredundant GenBank databases or the dbEST database (NCBI). The remainder, 57.6% of the unique EST-encoded messages, scored nonsignificant hits. Most of the E. paraensei messages that could be assigned a cellular role based on sequence similarities were involved in gene/protein expression. Several ESTs scored highest similarities with sequences obtained from trematode species. A total of 22,560 nucleotides present in open reading frames from ESTs that aligned with known sequences was used to determine codon usage for E. paraensei. Analysis of a subset of eight ESTs that contained full-length open reading frames did not reveal a bias in codon usage. Also, EST sequences were found to contain 3' untranslated regions with an average length of 69.9 +/- 88.4 nucleotides (n = 46). The EST sequences were submitted to GenBank/dbEST, adding to the 51 available Echinostoma-derived sequences, to provide reference information for both phylogenetic analysis and study of general trematode biology.
Collapse
Affiliation(s)
- C M Adema
- Department of Biology, University of New Mexico, Albuquerque 87131, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Verity CK, McManus DP, Brindley PJ. Developmental expression of cathepsin D aspartic protease in Schistosoma japonicum. Int J Parasitol 1999; 29:1819-24. [PMID: 10616928 DOI: 10.1016/s0020-7519(99)00126-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Schistosomes utilise haemoglobin from ingested host erythrocytes as their main source of amino acids. Using reverse-transcriptase PCR, we detected transcripts encoding cathepsin D in eggs, miracidia, and adult male, female and mixed-sex Schistosoma japonicum. Using the synthetic fluorogenic peptide, o-aminobenzoyl-isoleucyl-glutamyl-phenylalanyl-p-nitro-phenylalanyl-a rgi nyl-leucine-NH2, and human haemoglobin as substrates, we detected cathepsin D-like aspartic protease activity at pH 3.6 in extracts of these developmental stages which was completely inhibited by the addition of l0 microM pepstatin. Using immunoblotting with rabbit antibodies raised against recombinant S. japonicum cathepsin D, we detected the aspartic protease in extracts of all developmental stages examined, although it appeared to be expressed at higher levels in the adult female schistosome. These results indicate that (almost) all stages of S. japonicum, express an aspartic protease. Moreover, they are consistent with the hypothesis that this enzyme plays a key role in maturing and adult schistosomes in the proteolysis of host haemoglobin from ingested erythrocytes.
Collapse
Affiliation(s)
- C K Verity
- The Queensland Institute of Medical Research, PO Royal Brisbane Hospital, Herston, Australia.
| | | | | |
Collapse
|
33
|
Maizels RM, Holland MJ, Falcone FH, Zang XX, Yazdanbakhsh M. Vaccination against helminth parasites--the ultimate challenge for vaccinologists? Immunol Rev 1999; 171:125-47. [PMID: 10582168 DOI: 10.1111/j.1600-065x.1999.tb01345.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Helminths are multicellular pathogens which infect vast numbers of human and animal hosts, causing widespread chronic disease and morbidity. Vaccination against these parasites requires more than identification of effective target antigens, because without understanding the immunology of the host-parasite relationship, ineffective immune mechanisms may be invoked, and there is a danger of amplifying immunopathogenic responses. The fundamental features of the immune response to helminths are therefore summarised in the context of vaccines to helminth parasites. The contention between type-1 and type-2 responses is a central issue in helminth infections, which bias the immune system strongly to the type-2 pathway. Evidence from both human and experimental animal infections indicates that both lineages contribute to immunity in differing circumstances, and that a balanced response leads to the most favourable outcome. A diversity of immune mechanisms can be brought to bear on various helminth species, ranging from antibody-independent macrophages, antibody-dependent granulocyte killing, and nonlymphoid actions, particularly in the gut. This diversity is highlighted by analysis of rodent infections, particularly in comparisons of cytokine-depleted and gene-targeted animals. This knowledge of protective mechanisms needs to be combined with a careful choice of parasite antigens for vaccines. Many existing candidates have been selected with host antibodies, rather than T-cell responses, and include a preponderance of highly conserved proteins with similarities to mammalian or invertebrate antigens. Advantage has yet to be taken of parasite genome projects, or of directed searches for novel, parasite-specific antigens and targets expressed only by infective stages and not mature forms which may generate immunopathology. With advances under way in parasite genomics and new vaccine delivery systems offering more rapid assessment and development, there are now excellent opportunities for new antihelminth vaccines.
Collapse
Affiliation(s)
- R M Maizels
- Institute of Cell, Animal and Population Biology, University of Edinburgh, UK.
| | | | | | | | | |
Collapse
|
34
|
Tetteh KK, Loukas A, Tripp C, Maizels RM. Identification of abundantly expressed novel and conserved genes from the infective larval stage of Toxocara canis by an expressed sequence tag strategy. Infect Immun 1999; 67:4771-9. [PMID: 10456930 PMCID: PMC96808 DOI: 10.1128/iai.67.9.4771-4779.1999] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/1999] [Accepted: 06/01/1999] [Indexed: 12/31/2022] Open
Abstract
Larvae of Toxocara canis, a nematode parasite of dogs, infect humans, causing visceral and ocular larva migrans. In noncanid hosts, larvae neither grow nor differentiate but endure in a state of arrested development. Reasoning that parasite protein production is orientated to immune evasion, we undertook a random sequencing project from a larval cDNA library to characterize the most highly expressed transcripts. In all, 266 clones were sequenced, most from both 3' and 5' ends, and similarity searches against GenBank protein and dbEST nucleotide databases were conducted. Cluster analyses showed that 128 distinct gene products had been found, all but 3 of which represented newly identified genes. Ninety-five genes were represented by a single clone, but seven transcripts were present at high frequencies, each composing >2% of all clones sequenced. These high-abundance transcripts include a mucin and a C-type lectin, which are both major excretory-secretory antigens released by parasites. Four highly expressed novel gene transcripts, termed ant (abundant novel transcript) genes, were found. Together, these four genes comprised 18% of all cDNA clones isolated, but no similar sequences occur in the Caenorhabditis elegans genome. While the coding regions of the four genes are dissimilar, their 3' untranslated tracts have significant homology in nucleotide sequence. The discovery of these abundant, parasite-specific genes of newly identified lectins and mucins, as well as a range of conserved and novel proteins, provides defined candidates for future analysis of the molecular basis of immune evasion by T. canis.
Collapse
Affiliation(s)
- K K Tetteh
- Institute of Cell, Animal and Population Biology, University of Edinburgh, Edinburgh EH9 3JT, Scotland, United Kingdom
| | | | | | | |
Collapse
|