1
|
Leung LL, Myles T, Morser J. Thrombin Cleavage of Osteopontin and the Host Anti-Tumor Immune Response. Cancers (Basel) 2023; 15:3480. [PMID: 37444590 PMCID: PMC10340489 DOI: 10.3390/cancers15133480] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/28/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023] Open
Abstract
Osteopontin (OPN) is a multi-functional protein that is involved in various cellular processes such as cell adhesion, migration, and signaling. There is a single conserved thrombin cleavage site in OPN that, when cleaved, yields two fragments with different properties from full-length OPN. In cancer, OPN has tumor-promoting activity and plays a role in tumor growth and metastasis. High levels of OPN expression in cancer cells and tumor tissue are found in various types of cancer, including breast, lung, prostate, ovarian, colorectal, and pancreatic cancer, and are associated with poor prognosis and decreased survival rates. OPN promotes tumor progression and invasion by stimulating cell proliferation and angiogenesis and also facilitates the metastasis of cancer cells to other parts of the body by promoting cell adhesion and migration. Furthermore, OPN contributes to immune evasion by inhibiting the activity of immune cells. Thrombin cleavage of OPN initiates OPN's tumor-promoting activity, and thrombin cleavage fragments of OPN down-regulate the host immune anti-tumor response.
Collapse
Affiliation(s)
- Lawrence L. Leung
- Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA; (L.L.L.); (T.M.)
- Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA 94304, USA
| | - Timothy Myles
- Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA; (L.L.L.); (T.M.)
- Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA 94304, USA
| | - John Morser
- Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA; (L.L.L.); (T.M.)
- Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA 94304, USA
| |
Collapse
|
2
|
Shaalan AAM, El-Sherbiny M, El-Abaseri TB, Shoaeir MZ, Abdel-Aziz TM, Mohamed MI, Zaitone SA, Mohammad HMF. Supplement With Calcium or Alendronate Suppresses Osteopenia Due to Long Term Rabeprazole Treatment in Female Mice: Influence on Bone TRAP and Osteopontin Levels. Front Pharmacol 2020; 11:583. [PMID: 32477111 PMCID: PMC7237708 DOI: 10.3389/fphar.2020.00583] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 04/16/2020] [Indexed: 12/11/2022] Open
Abstract
Background and Purpose Rabeprazole, a proton pump inhibitor (PPIs) is much endorsed to patients with increased gastric acidity. PPIs were accused to have osteoporotic effects on patients who chronically use them. The point of the current investigation was to decide the impact of rabeprazole on osteoporosis and to explore the modulatory effects of dietary calcium or alendronate on this side effect. Methods 80 female mice were alienated into four groups maintained for 18 weeks: [1] Vehicle group: given distilled water in 12 ml/kg, P.O. [2] Rabeprazole control group: given rabeprazole in a dose equals 10 mg/kg every 48 h, P.O. [3] Rabeprazole + calcium: given rabeprazole (10 mg/kg every 48 h) along with calcium supplement. [4] Rabeprazole + alendronate: given rabeprazole (10 mg/kg every 48 h) and alendronate (1 mg/kg per week, i.p.). Serum calcium, phosphorus and parathyroid hormone were measured. Both femurs were kept in paraformaldehyde, and then the right one was used for X-ray examination with analysis by Digora software and the left one for histopathological examination (H&E) and immunohistochemical stains for osteopontin and tartrate resistant acid phosphatase (TRAP). Results Calcium supplementation or administration of alendronate along with rabeprazole significantly restored the mean bone density as shown by X-ray analysis. Femurs from mice received rabeprazole showed widely separated, thin-walled bone trabeculae and increased number of osteoclasts. Calcium or alendronate with rabeprazole showed thick bone trabeculae without full recovery from rabeprazole induced damage. Adding calcium supplementation to rabeprazole did not affect the histological abnormalities related to osteoclasts meanwhile alendronate produced inactivation of osteoclasts. Both calcium and alendronate decreased the rabeprazole-induced increment in the femur osteopontin level. Conclusion Calcium or alendronate can be recommended for female patients on PPI therapy who are at risk of osteopenia.
Collapse
Affiliation(s)
- Aly A M Shaalan
- Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.,Department of Anatomy, Faculty of Medicine, Jazan University, Jazan, Saudi Arabia
| | - Mohamed El-Sherbiny
- Department of Human Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, Egypt.,Department of Anatomy, College of Medicine, Almaarefa University, Riyadh, Saudi Arabia
| | - Taghrid B El-Abaseri
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Mohamed Z Shoaeir
- Department of Rheumatology and Rehabilitation, Al-Azhar Asyut Faculty of Medicine for Men, Asyut, Egypt
| | - Tarek M Abdel-Aziz
- Department of Rheumatology and Rehabilitation, Al-Azhar Asyut Faculty of Medicine for Men, Asyut, Egypt
| | - Magda I Mohamed
- Department of Physiology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Sawsan A Zaitone
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Hala M F Mohammad
- Department of Clinical Pharmacology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.,Central Laboratory, Center of Excellence in Molecular and Cellular Medicine (CEMCM), Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
3
|
Yamaguchi Y, Hanashima S, Yagi H, Takahashi Y, Sasakawa H, Kurimoto E, Iguchi T, Kon S, Uede T, Kato K. NMR characterization of intramolecular interaction of osteopontin, an intrinsically disordered protein with cryptic integrin-binding motifs. Biochem Biophys Res Commun 2010; 393:487-91. [DOI: 10.1016/j.bbrc.2010.02.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 02/08/2010] [Indexed: 11/16/2022]
|
4
|
Kazanecki CC, Kowalski AJ, Ding T, Rittling SR, Denhardt DT. Characterization of anti-osteopontin monoclonal antibodies: Binding sensitivity to post-translational modifications. J Cell Biochem 2008; 102:925-35. [PMID: 17786932 DOI: 10.1002/jcb.21487] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Osteopontin (OPN) is primarily a secreted phosphoglycoprotein found in a variety of tissues and body fluids. It has a wide range of reported functions, many of which are affected by the degree of post-translational modification (PTM) of the protein. These PTMs include phosphorylation, glycosylation, and cross-linking by transglutaminase. Here we describe the generation of unique monoclonal antibodies raised against recombinant OPN utilizing the OPN knockout mouse. The antibodies exhibit differential binding to OPN produced by different cell lines from the same species, as well to the multiple OPN forms in human urine. Most of the antibodies generated are able to recognize OPN produced by ras-transformed mouse fibroblasts, however only one antibody recognizes the more phosphorylated protein produced by the differentiating pre-osteoblast murine cell line MC3T3E1. Using a novel biopanning procedure combining T7 phage gene fragment display and protein G precipitation, we have epitope-mapped these antibodies. Several of the antibodies bind to regions of the OPN molecule that are phosphorylated, and one binds the region of OPN that is glycosylated. Using phosphorylated and non-phosphorylated peptides, we show that the binding of two antibodies to the C-terminal end of OPN is inhibited by phosphorylation of this region. In addition, these two antibodies are able to inhibit cell adhesion to recombinant and weakly modified OPN. The antibodies described herein may prove useful in determining the presence of modifications at specific sites and for identifying structural forms of OPN. Also, the sensitivity of these antibodies to PTMs suggests that caution must be taken when choosing anti-OPN monoclonal antibodies to detect this highly modified protein.
Collapse
Affiliation(s)
- Christian C Kazanecki
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway New Jersey, USA
| | | | | | | | | |
Collapse
|
5
|
Jenny RJ, Mann KG, Lundblad RL. A critical review of the methods for cleavage of fusion proteins with thrombin and factor Xa. Protein Expr Purif 2003; 31:1-11. [PMID: 12963335 DOI: 10.1016/s1046-5928(03)00168-2] [Citation(s) in RCA: 192] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Expression and purification of proteins in recombinant DNA systems is a powerful and widely used technique. Frequently there is the need to express the protein of interest as a fusion protein or chimeric protein. Fusion protein technology is frequently used to attach a "signal" which can be used for subsequent localization of the protein or a "carrier" which can be used to deliver a "therapeutic" such as a radioactive molecule to a specific site. In addition to these applications, fusion protein technology can be employed for several other useful purposes. Of these, the most frequent reason is to provide a 'tag' or 'handle' which will aid in the purification of the protein. Another useful purpose is to improve the expression or folding of the protein of interest. In these latter two situations, it is often necessary to remove the fusion partner before the recombinant protein of interest can be used for further studies. This removal process involves the insertion of a unique amino acid sequence that is susceptible to cleavage by a highly specific protease. Thrombin and factor Xa are the most frequently used proteases for this application. The purpose of this review is to discuss the application of thrombin and factor Xa for the cleavage of fusion proteins. It is emphasized that while these enzymes are quite specific for cleavage at the inserted cleavage site, proteolysis can frequently occur at other site(s) in the protein of interest. It is necessary to characterize the protein of interest after cleavage from the affinity label to assure that there are no changes in the covalent structure of the protein of interest. Examples are presented which describe the proteolysis of the protein of interest by either factor Xa or thrombin.
Collapse
|
6
|
Matsui Y, Rittling SR, Okamoto H, Inobe M, Jia N, Shimizu T, Akino M, Sugawara T, Morimoto J, Kimura C, Kon S, Denhardt D, Kitabatake A, Uede T. Osteopontin deficiency attenuates atherosclerosis in female apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 2003; 23:1029-34. [PMID: 12730087 DOI: 10.1161/01.atv.0000074878.29805.d0] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Osteopontin (OPN), a noncollagenous adhesive protein, is implicated in atherosclerosis, in which macrophages within atherosclerotic plaques express OPN. However, it is not known whether the elevated OPN expression is a cause or result of atherosclerosis. METHODS AND RESULTS We generated mice that lacked OPN and crossed them with apolipoprotein (apo) E-deficient mice and analyzed these mice with a mixed C57BL/6x129 background after 36 weeks on a normal chow diet. In female mice, OP+/-E-/- and OP-/-E-/- mice had significantly smaller atherosclerotic and inflammatory lesions compared with OP+/+E-/- mice, and that was reflected by smaller area of MOMA-2-positive staining. In male mice, however, there was no significant difference in the atherosclerosis lesion areas among 3 genotypes. In both OP-/-E-/- and OP+/+E-/- mice, typical atherosclerotic lesions were detected, which include necrotic core, foamy cell collections, and cholesterol clefts. However, we found that vascular mineral-deposited areas in 60-week-old male OP-/-E-/- mice were significantly increased compared with those in OP+/+E-/- male mice. CONCLUSIONS These results suggest that OPN plays a promoting effect in atherosclerosis and inhibitory effect in vascular calcification. The suppression of OPN expression in females should be considered a therapeutic possibility in atherosclerosis.
Collapse
Affiliation(s)
- Yutaka Matsui
- Division of Molecular Immunology, Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo 060-0815, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Ohshima S, Kobayashi H, Yamaguchi N, Nishioka K, Umeshita-Sasai M, Mima T, Nomura S, Kon S, Inobe M, Uede T, Saeki Y. Expression of osteopontin at sites of bone erosion in a murine experimental arthritis model of collagen-induced arthritis: possible involvement of osteopontin in bone destruction in arthritis. ARTHRITIS AND RHEUMATISM 2002; 46:1094-101. [PMID: 11953989 DOI: 10.1002/art.10143] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
OBJECTIVE To investigate the involvement of osteopontin (OPN) in bone destruction in a murine experimental arthritis model of collagen-induced arthritis (CIA). METHODS The expression of OPN was examined at both the messenger RNA (mRNA) and protein levels in various arthritic lesions in mice with CIA by in situ hybridization and immunohistochemistry, respectively. In addition, the expression of alpha(v)beta3 integrin, a receptor for OPN, the ligation of which is thought to be essential for bone resorption by osteoclasts, was examined by immunohistochemistry. Plasma concentrations of OPN were measured at different time points in the course of CIA by enzyme-linked immunosorbent assay. RESULTS OPN mRNA was detected mainly at sites of bone erosion in arthritic lesions, where activated osteoclasts were present; OPN protein was also detected at sites of bone erosion. In the arthritic synovium, OPN was predominantly expressed in the synovial lining layer, but not in lymphoid aggregates. In addition, alpha(v)beta3 integrin was detected coincident with OPN at sites of bone erosion (bone-pannus junction). Plasma OPN levels were markedly elevated at the time points that corresponded to arthritis flares, and higher levels were maintained during the progression of arthritis. CONCLUSION OPN may mediate bone resorption by osteoclasts in arthritis through ligation with its receptor, alpha(v)beta3 integrin. OPN may be a useful therapeutic target molecule in the prevention of bone destruction in arthritis.
Collapse
Affiliation(s)
- Shiro Ohshima
- Osaka University Medical School, Suita City, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Weiss JM, Renkl AC, Maier CS, Kimmig M, Liaw L, Ahrens T, Kon S, Maeda M, Hotta H, Uede T, Simon JC. Osteopontin is involved in the initiation of cutaneous contact hypersensitivity by inducing Langerhans and dendritic cell migration to lymph nodes. J Exp Med 2001; 194:1219-29. [PMID: 11696588 PMCID: PMC2195976 DOI: 10.1084/jem.194.9.1219] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Osteopontin (OPN) is a chemotactic protein that attracts immune cells, to inflammatory sites. The sensitization phase of allergic cutaneous contact hypersensitivity (CHS) requires the migration of Langerhans cells/dendritic cells (LCs/DCs) from skin to draining lymph nodes. Characterizing OPN function for LC/DC migration we found upregulated OPN expression in hapten sensitized skin and draining lymph nodes. OPN induces chemotactic LC/DC migration, initiates their emigration from the epidermis, and attracts LCs/DCs to draining lymph nodes by interacting with CD44 and alphav integrin. Furthermore, OPN-deficient mice have a significantly reduced CHS response that correlates with an impaired ability of OPN-deficient mice to attract LCs/DCs to draining lymph nodes. In conclusion, OPN is an important factor in the initiation of CHS by guiding LCs/DCs from skin into lymphatic organs.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/immunology
- Cell Differentiation
- Cell Movement/immunology
- Cells, Cultured
- Chemotaxis
- Dendritic Cells/cytology
- Dendritic Cells/immunology
- Dermatitis, Allergic Contact/immunology
- Disease Models, Animal
- Epidermis/immunology
- Hyaluronan Receptors/immunology
- Injections, Intradermal
- Langerhans Cells/cytology
- Langerhans Cells/immunology
- Lymph Nodes/cytology
- Lymph Nodes/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Osteopontin
- Receptors, Vitronectin/biosynthesis
- Receptors, Vitronectin/immunology
- Sialoglycoproteins/administration & dosage
- Sialoglycoproteins/genetics
- Sialoglycoproteins/immunology
- Up-Regulation
Collapse
Affiliation(s)
- J M Weiss
- Department of Dermatology, University of Freiburg, D-79104 Freiburg, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Iizuka K, Murakami T, Kawaguchi H. Pure atmospheric pressure promotes an expression of osteopontin in human aortic smooth muscle cells. Biochem Biophys Res Commun 2001; 283:493-8. [PMID: 11327728 DOI: 10.1006/bbrc.2001.4796] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although the types of pathophysiological stimulation that initiate an overexpression of OPN have yet to be determined, we hypothesized that mechanical stress is one of the candidates which initiates OPN expression in vascular smooth muscle cells. Cell proliferation assay indicated that a pure atmospheric pressure of 160 mmHg activated cell proliferation by 11% in human aortic smooth muscle cells (HASMC) compared to nonpressurized controls. Immunoblot analysis probed with an anti-OPN antibody demonstrated a 50% increase in OPN. Dual-luciferase reporter assay demonstrated that OPN promoter, corresponding to the -771 through -1 region of OPN gene, was highly responsive to pure atmospheric pressure by ten times that of the control. From these observations, we concluded that pure atmospheric pressure directly promotes an expression of OPN in HASMC, with these results also suggesting that high blood pressure-mediated mechanical compression is involved in the process of atherosclerosis and remodeling via OPN expression in HASMC.
Collapse
Affiliation(s)
- K Iizuka
- Department of Laboratory Medicine, Hokkaido University Graduate School of Medicine, Kita-15 Nishi-7 Kita-ku, Sapporo, 060-8638, Japan.
| | | | | |
Collapse
|
10
|
Chiba S, Rashid MM, Okamoto H, Shiraiwa H, Kon S, Maeda M, Murakami M, Inobe M, Kitabatake A, Chambers AF, Uede T. The role of osteopontin in the development of granulomatous lesions in lung. Microbiol Immunol 2000; 44:319-32. [PMID: 10832978 DOI: 10.1111/j.1348-0421.2000.tb02501.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Osteopontin (OPN) has been shown to be expressed by cells in granulomas of various origins, but whether it plays a functional role in granuloma formation is not known. Here we used a cardiomyopathic hamster (TO2) model, to test the hypothesis that OPN contributes functionally to granuloma development. We immunized cardiomyopathic and normal hamsters by subcutaneous injection of bovine serum albumin in complete Freund's adjuvant, and assessed various tissues for both OPN RNA expression and granuloma formation. Cardiomyopathic hamsters expressed OPN, and formed granulomatous lesions, in heart tissue in both immunized and untreated animals. In addition, immunization induced expression of OPN in lung and lymph nodes of cardiomyopathic (but not normal) hamsters, and also induced granuloma formation in these organs. To test whether OPN expression could play a functional role in inducing granulomas, we produced an adenoviral vector containing the murine OPN gene, and introduced this vector intratracheally into the lungs of normal hamsters. The OPN-containing vector, but not the control vector, induced pulmonary granuloma formation. These studies provided direct in vivo evidence that OPN can contribute functionally to the formation of granulomatous lesions, and suggest that OPN expression may be a common factor involved in formation of granulomas of various origin.
Collapse
Affiliation(s)
- S Chiba
- Section of Immunopathogenesis, Institute of Immunological Science, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Kon S, Maeda M, Segawa T, Hagiwara Y, Horikoshi Y, Chikuma S, Tanaka K, Rashid MM, Inobe M, Chambers AF, Uede T. Antibodies to different peptides in osteopontin reveal complexities in the various secreted forms. J Cell Biochem 2000. [DOI: 10.1002/(sici)1097-4644(20000601)77:3<487::aid-jcb13>3.0.co;2-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|