1
|
Danilkovich AV, Turobov VI, Palikov VA, Palikova YA, Shepelyakovskaya AO, Mikhaylov ES, Slashcheva GA, Shadrina TE, Shaykhutdinova ER, Rasskazova EA, Tukhovskaya EA, Khokhlova ON, Dyachenko IA, Ismailova AM, Zinchenko DV, Navolotskaya EV, Lipkin VM, Murashev AN, Udovichenko IP. C-Terminal Region of Caveolin-3 Contains a Stretch of Amino Acid Residues Capable of Diminishing Symptoms of Experimental Autoimmune Encephalomyelitis but Not Rheumatoid Arthritis Modeled in Rats. Biomedicines 2023; 11:2855. [PMID: 37893228 PMCID: PMC10603933 DOI: 10.3390/biomedicines11102855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/24/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
A short synthetic peptide from the C-terminal part of the caveolin-3 structure was tested for experimental autoimmune encephalomyelitis (EAE) treatment in rats. The structure-function similarity established between the novel synthetic peptide of pCav3 and the well-known immunomodulator immunocortin determined pCav3's ability to reduce EAE symptoms in Dark Agouti (DA) rats injected with pCav3 (500 µg/kg). pCav3 was found to interfere with the proliferation of lymphocytes extracted from the LNs of DA rats primed with homogenate injection, with IC50 = 0.42 μM (2.35 mcg/mL). pCav3 affected EAE in a very similar manner as immunocortin. The high degree of homology between the amino acid sequences of pCav3 and immunocortin corresponded well with the therapeutic activities of both peptides, as demonstrated on EAE. The latter peptide, possessing a homologous structure to pCav3, was also tested on EAE to explore whether there were structural restrictions between these peptides implied by the MHC-involved cell machinery. Consequently, immunocortin was further examined with a different autoimmune disease model, collagen-induced arthritis (CIA), established in Sprague-Dawley rats. CIA was established using an intentionally different genetic platform than EAE. Based on the results, it was concluded that the effectiveness of pCav3 and immunocortin peptides in EAE rat model was almost identical, but differed in the rat model of rheumatoid arthritis; thus, efficacy may be sensitive to the MHC type of animals used to establish the autoimmune disease model.
Collapse
Affiliation(s)
- Alexey V. Danilkovich
- State Center for Sciences by Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences (BIBCh RAS), 6 Prospekt Nauki, 142290 Pushchino, Russia (O.N.K.); (D.V.Z.)
- Fundamental Biotechnology Department, RosBioTech University at Pushchino, 3 Prospekt Nauki, 142290 Pushchino, Russia
| | - Valery I. Turobov
- State Center for Sciences by Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences (BIBCh RAS), 6 Prospekt Nauki, 142290 Pushchino, Russia (O.N.K.); (D.V.Z.)
| | - Victor A. Palikov
- State Center for Sciences by Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences (BIBCh RAS), 6 Prospekt Nauki, 142290 Pushchino, Russia (O.N.K.); (D.V.Z.)
| | - Yulia A. Palikova
- State Center for Sciences by Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences (BIBCh RAS), 6 Prospekt Nauki, 142290 Pushchino, Russia (O.N.K.); (D.V.Z.)
| | - Anna O. Shepelyakovskaya
- State Center for Sciences by Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences (BIBCh RAS), 6 Prospekt Nauki, 142290 Pushchino, Russia (O.N.K.); (D.V.Z.)
| | - Evgeniy S. Mikhaylov
- State Center for Sciences by Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences (BIBCh RAS), 6 Prospekt Nauki, 142290 Pushchino, Russia (O.N.K.); (D.V.Z.)
| | - Gulsara A. Slashcheva
- State Center for Sciences by Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences (BIBCh RAS), 6 Prospekt Nauki, 142290 Pushchino, Russia (O.N.K.); (D.V.Z.)
| | - Tatiana E. Shadrina
- State Center for Sciences by Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences (BIBCh RAS), 6 Prospekt Nauki, 142290 Pushchino, Russia (O.N.K.); (D.V.Z.)
| | - Elvira R. Shaykhutdinova
- State Center for Sciences by Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences (BIBCh RAS), 6 Prospekt Nauki, 142290 Pushchino, Russia (O.N.K.); (D.V.Z.)
| | - Ekaterina A. Rasskazova
- State Center for Sciences by Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences (BIBCh RAS), 6 Prospekt Nauki, 142290 Pushchino, Russia (O.N.K.); (D.V.Z.)
| | - Elena A. Tukhovskaya
- State Center for Sciences by Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences (BIBCh RAS), 6 Prospekt Nauki, 142290 Pushchino, Russia (O.N.K.); (D.V.Z.)
| | - Oksana N. Khokhlova
- State Center for Sciences by Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences (BIBCh RAS), 6 Prospekt Nauki, 142290 Pushchino, Russia (O.N.K.); (D.V.Z.)
| | - Igor A. Dyachenko
- State Center for Sciences by Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences (BIBCh RAS), 6 Prospekt Nauki, 142290 Pushchino, Russia (O.N.K.); (D.V.Z.)
- Fundamental Biotechnology Department, RosBioTech University at Pushchino, 3 Prospekt Nauki, 142290 Pushchino, Russia
| | - Alina M. Ismailova
- State Center for Sciences by Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences (BIBCh RAS), 6 Prospekt Nauki, 142290 Pushchino, Russia (O.N.K.); (D.V.Z.)
| | - Dmitry V. Zinchenko
- State Center for Sciences by Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences (BIBCh RAS), 6 Prospekt Nauki, 142290 Pushchino, Russia (O.N.K.); (D.V.Z.)
| | - Elena V. Navolotskaya
- State Center for Sciences by Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences (BIBCh RAS), 6 Prospekt Nauki, 142290 Pushchino, Russia (O.N.K.); (D.V.Z.)
| | - Valery M. Lipkin
- State Center for Sciences by Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences (BIBCh RAS), 6 Prospekt Nauki, 142290 Pushchino, Russia (O.N.K.); (D.V.Z.)
| | - Arkady N. Murashev
- State Center for Sciences by Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences (BIBCh RAS), 6 Prospekt Nauki, 142290 Pushchino, Russia (O.N.K.); (D.V.Z.)
- Fundamental Biotechnology Department, RosBioTech University at Pushchino, 3 Prospekt Nauki, 142290 Pushchino, Russia
| | - Igor. P. Udovichenko
- State Center for Sciences by Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences (BIBCh RAS), 6 Prospekt Nauki, 142290 Pushchino, Russia (O.N.K.); (D.V.Z.)
| |
Collapse
|
2
|
Li X, Zhang Y, Wang J, Li Y, Wang Y, Shi F, Hong L, Li L, Diao H. zVAD alleviates experimental autoimmune hepatitis in mice by increasing the sensitivity of macrophage to TNFR1-dependent necroptosis. J Autoimmun 2022; 133:102904. [PMID: 36108506 DOI: 10.1016/j.jaut.2022.102904] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Autoimmune hepatitis (AIH) is characterized by hepatocyte destruction, leading to lymphocyte and macrophage accumulation in the liver. Macrophages are key drivers of AIH. A membrane-permeable pan-caspase inhibitor, Z-Val-Ala-DL-Asp-fluoromethylketone (zVAD), induces macrophage necroptosis in response to certain stimuli. However, the function of zVAD in the pathogenesis of autoimmune hepatitis remains elusive. In this study, we aimed to evaluate the effect and explore the underlying mechanisms of zVAD against AIH. METHODS Murine acute autoimmune liver injury was established by concanavalin A (ConA) injection. Bone marrow-derived macrophages (BMDMs) were used in adoptive cell transfer experiments. The mechanism of action of zVAD was examined using macrophage cell lines and BMDMs. Phosphorylation of mixed lineage kinase domain-like proteins was used as a marker of necroptosis. RESULTS Treatment with zVAD increased necroptosis, reduced inflammatory cytokine production, and alleviated liver injury in a ConA-induced liver injury mouse model. Regardless of zVAD treatment, macrophage deletion resulted in reduced neutrophil accumulation and relieved ConA-induced liver injury. In vitro studies have shown that zVAD pretreatment promotes lipopolysaccharide-induced macrophage necroptosis and leads to reduced pro-inflammatory cytokine and chemokine secretion. Transferring zVAD-pretreated BMDMs in mice notably reduced ConA-associated liver inflammation and injury, resulting in lower mortality than that observed after transferring normal BMDMs. Mechanistically, zVAD treatment increased the expression of tumour necrosis factor receptor (TNFR)-1 and interleukin (IL)-10 in macrophages. TNFR1 expression decreased upon transfection with IL-10-specific small interfering RNAs and blocking of TNFR1 decreased macrophage necroptosis. CONCLUSIONS We found that zVAD alleviated ConA-induced liver injury by increasing the sensitivity of macrophages to necroptosis via IL-10-induced TNFR1 expression. This study provides new insights into the treatment of autoimmune hepatitis via zVAD-induced macrophage necroptosis.
Collapse
Affiliation(s)
- Xuehui Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yongting Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinping Wang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yuyu Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuchong Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fan Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liang Hong
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China.
| | - Hongyan Diao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
3
|
Peptidyl Fluoromethyl Ketones and Their Applications in Medicinal Chemistry. Molecules 2020; 25:molecules25174031. [PMID: 32899354 PMCID: PMC7504820 DOI: 10.3390/molecules25174031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 12/29/2022] Open
Abstract
Peptidyl fluoromethyl ketones occupy a pivotal role in the current scenario of synthetic chemistry, thanks to their numerous applications as inhibitors of hydrolytic enzymes. The insertion of one or more fluorine atoms adjacent to a C-terminal ketone moiety greatly modifies the physicochemical properties of the overall substrate, especially by increasing the reactivity of this functionalized carbonyl group toward nucleophiles. The main application of these peptidyl α-fluorinated ketones in medicinal chemistry relies in their ability to strongly and selectively inhibit serine and cysteine proteases. These compounds can be used as probes to study the proteolytic activity of the aforementioned proteases and to elucidate their role in the insurgence and progress on several diseases. Likewise, if the fluorinated methyl ketone moiety is suitably connected to a peptidic backbone, it may confer to the resulting structure an excellent substrate peculiarity and the possibility of being recognized by a specific subclass of human or pathogenic proteases. Therefore, peptidyl fluoromethyl ketones are also currently highly exploited for the target-based design of compounds for the treatment of topical diseases such as various types of cancer and viral infections.
Collapse
|
4
|
Chronic mild hypoxia accelerates recovery from preexisting EAE by enhancing vascular integrity and apoptosis of infiltrated monocytes. Proc Natl Acad Sci U S A 2020; 117:11126-11135. [PMID: 32371484 DOI: 10.1073/pnas.1920935117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
While several studies have shown that hypoxic preconditioning suppresses development of the experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis (MS), no one has yet examined the important clinically relevant question of whether mild hypoxia can impact the progression of preexisting disease. Using a relapsing-remitting model of EAE, here we demonstrate that when applied to preexisting disease, chronic mild hypoxia (CMH, 10% O2) markedly accelerates clinical recovery, leading to long-term stable reductions in clinical score. At the histological level, CMH led to significant reductions in vascular disruption, leukocyte accumulation, and demyelination. Spinal cord blood vessels of CMH-treated mice showed reduced expression of the endothelial activation molecule VCAM-1 but increased expression of the endothelial tight junction proteins ZO-1 and occludin, key mechanisms underlying vascular integrity. Interestingly, while equal numbers of inflammatory leukocytes were present in the spinal cord at peak disease (day 14 postimmunization; i.e., 3 d after CMH started), apoptotic removal of infiltrated leukocytes during the remission phase was markedly accelerated in CMH-treated mice, as determined by increased numbers of monocytes positive for TUNEL and cleaved caspase-3. The enhanced monocyte apoptosis in CMH-treated mice was paralleled by increased numbers of HIF-1α+ monocytes, suggesting that CMH enhances monocyte removal by amplifying the hypoxic stress manifest within monocytes in acute inflammatory lesions. These data demonstrate that mild hypoxia promotes recovery from preexisting inflammatory demyelinating disease and suggest that this protection is primarily the result of enhanced vascular integrity and accelerated apoptosis of infiltrated monocytes.
Collapse
|
5
|
Aurora kinase a regulates m1 macrophage polarization and plays a role in experimental autoimmune encephalomyelitis. Inflammation 2015; 38:800-11. [PMID: 25227280 DOI: 10.1007/s10753-014-9990-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Macrophage polarization is a dynamic and integral process of tissue inflammation and remodeling. Here we demonstrate an important role of Aurora kinase A in the regulation of inflammatory M1 macrophage polarization. We found that there was an elevated expression of Aurora-A in M1 macrophages and inhibition of Aurora-A by small molecules or specific siRNA selectively led to the suppression of M1 polarization, sparing over the M2 macrophage differentiation. At the molecular level, we found that the effects of Aurora-A in M1 macrophages were mediated through the down-regulation of NF-κB pathway and subsequent IRF5 expression. In an autoimmune disease model, experimental autoimmune encephalitis (EAE), treatment with Aurora kinase inhibitor blocked the disease development and shifted the macrophage phenotype from inflammatory M1 to anti-inflammatory M2. Thus, this study reveals a novel function of Aurora-A in controlling the polarization of macrophages, and modification of Aurora-A activity may lead to a new therapeutic approach for chronic inflammatory diseases.
Collapse
|
6
|
Xiao J, Liu W, Chen Y, Deng W. Recombinant human PDCD5 (rhPDCD5) protein is protective in a mouse model of multiple sclerosis. J Neuroinflammation 2015; 12:117. [PMID: 26068104 PMCID: PMC4474568 DOI: 10.1186/s12974-015-0338-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 06/04/2015] [Indexed: 12/21/2022] Open
Abstract
Background In multiple sclerosis (MS) and its widely used animal model, experimental autoimmune encephalomyelitis (EAE), autoreactive T cells contribute importantly to central nervous system (CNS) tissue damage and disease progression. Promoting apoptosis of autoreactive T cells may help eliminate cells responsible for inflammation and may delay disease progression and decrease the frequency and severity of relapse. Programmed cell death 5 (PDCD5) is a protein known to accelerate apoptosis in response to various stimuli. However, the effects of recombinant human PDCD5 (rhPDCD5) on encephalitogenic T cell-mediated inflammation remain unknown. Methods We examined the effects of intraperitoneal injection of rhPDCD5 (10 mg/kg) on EAE both prophylactically (started on day 0 post-EAE induction) and therapeutically (started on the onset of EAE disease at day 8), with both of the treatment paradigms being given every other day until day 25. Repeated measures two-way analysis of variance was used for statistical analysis. Results We showed that the anti-inflammatory effects of rhPDCD5 were due to a decrease in Th1/Th17 cell frequency, accompanied by a reduction of proinflammatory cytokines, including IFN-γ and IL-17A, and were observed in both prophylactic and therapeutic regimens of rhPDCD5 treatment in EAE mice. Moreover, rhPDCD5-induced apoptosis of myelin-reactive CD4+ T cells, along with the upregulation of Bax and downregulation of Bcl-2, and with activated caspase 3. Conclusions Our data demonstrate that rhPDCD5 ameliorates the autoimmune CNS disease by inhibiting Th1/Th17 differentiation and inducing apoptosis of predominantly pathogenic T cells. This study provides a novel mechanism to explain the effects of rhPDCD5 on neural inflammation. The work represents a translational demonstration that rhPDCD5 has prophylactic and therapeutic properties in a model of multiple sclerosis.
Collapse
Affiliation(s)
- Juan Xiao
- Medical College, Hubei University of Arts and Science, Xiangyang, 441053, China. .,Department of Immunology, Peking University School of Basic Medical Sciences, Peking University Center for Human Disease Genomics, 38 Xueyuan Road, Beijing, 100191, China. .,Department of Biochemistry and Molecular Medicine, School of Medicine, University of California-Davis, 2425 Stockton Boulevard, Sacramento, CA, 95817, USA.
| | - Wenwei Liu
- Medical College, Hubei University of Arts and Science, Xiangyang, 441053, China.
| | - Yingyu Chen
- Department of Immunology, Peking University School of Basic Medical Sciences, Peking University Center for Human Disease Genomics, 38 Xueyuan Road, Beijing, 100191, China.
| | - Wenbin Deng
- Medical College, Hubei University of Arts and Science, Xiangyang, 441053, China. .,Department of Biochemistry and Molecular Medicine, School of Medicine, University of California-Davis, 2425 Stockton Boulevard, Sacramento, CA, 95817, USA.
| |
Collapse
|
7
|
Kirenol attenuates experimental autoimmune encephalomyelitis by inhibiting differentiation of Th1 and th17 cells and inducing apoptosis of effector T cells. Sci Rep 2015; 5:9022. [PMID: 25762107 PMCID: PMC4356981 DOI: 10.1038/srep09022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 02/12/2015] [Indexed: 01/08/2023] Open
Abstract
Experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis (MS), is characterized by CNS demyelination mediated by autoreactive T cells. Kirenol, a biologically active substance isolated from Herba Siegesbeckiae, has potent anti-inflammatory activities. Here we investigated effects of kirenol on EAE. Kirenol treatment markedly delayed onset of disease and reduced clinical scores in EAE mice. Kirenol treatment reduced expression of IFN-γ and IL-17A in the serum and proportion of Th1 and Th17 cells in draining lymph nodes. Priming of lymphocytes was reduced and apoptosis of MOG-activated CD4+ T cells was increased in kirenol treated EAE mice. Kirenol treatment of healthy animals did not affect the lymphocytes in these non-immunized mice. Further in vitro studies showed that kirenol inhibited viability of MOG-specific lymphocytes and induced apoptosis of MOG-specific CD4+ T cells in a dose- and time-dependent manner. Kirenol treatment upregulated Bax,downregulated Bcl-2,and increased activation of caspase-3 and release of cytochrome c, indicating that a mitochondrial pathway was involved in kirenol induced apoptosis. Moreover, pretreatment with either a pan-caspase inhibitor z-VAD-fmk or a more specific caspase 3 inhibitor Ac-DEVD-CHO in lymphocytes reduced kirenol induced apoptosis. Our findings implicate kirenol as a useful agent for the treatment of MS.
Collapse
|
8
|
Ferrandi C, Richard F, Tavano P, Hauben E, Barbié V, Gotteland JP, Greco B, Fortunato M, Mariani MF, Furlan R, Comi G, Martino G, Zaratin PF. Characterization of immune cell subsets during the active phase of multiple sclerosis reveals disease and c-Jun N-terminal kinase pathway biomarkers. Mult Scler 2010; 17:43-56. [PMID: 20855355 DOI: 10.1177/1352458510381258] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Autoimmune activation and deregulated apoptosis of T lymphocytes are involved in multiple sclerosis (MS). c-Jun N-terminal kinase (JNK) plays a role in T-cell survival and apoptosis. OBJECTIVES The aim of this work was to investigate the role of the JNK-dependent apoptosis pathway in relapsing-remitting MS (RRMS). METHODS The immunomodulatory effect of AS602801, a JNK inhibitor, was firstly evaluated on activated peripheral blood mononuclear cells (PBMCs) from healthy volunteers (HVs) and secondly in unstimulated purified CD4+, CD8+ and CD11b+ cells from RRMS patients and HVs. Moreover JNK/inflammation/apoptosis related genes were investigated in RRMS and HV samples. RESULTS In activated PBMCs from HVs, we showed that AS602801 blocked T-lymphocyte proliferation and induced apoptosis. In RRMS CD4+ and CD8+ cells, AS602801 induced apoptosis genes and expression of surface markers, while in RRMS CD11b+ cells it induced expression of innate immunity receptors and co-stimulatory molecules. Untreated cells from RRMS active-phase patients significantly released interleukin-23 (IL-23) and interferon-gamma (IFN-γ) and expressed less apoptosis markers compared to the cells of HVs. Moreover, gene expression was significantly different in cells from RRMS active-phase patients vs. HVs. By comparing RRMS PBMCs in the active and stable phases, a specific genomic signature for RRMS was indentified. Additionally, CASP8AP2, CD36, ITGAL, NUMB, OLR1, PIAS-1, RNASEL, RTN4RL2 and THBS1 were identified for the first time as being associated to the active phase of RRMS. CONCLUSIONS The analysis of the JNK-dependent apoptosis pathway can provide biomarkers for activated lymphocytes in the active phase of RRMS and a gene expression signature for disease status. The reported results might be useful to stratify patients, thereby supporting the development of novel therapies.
Collapse
|
9
|
McGargill MA, Choy C, Wen BG, Hedrick SM. Drak2 regulates the survival of activated T cells and is required for organ-specific autoimmune disease. THE JOURNAL OF IMMUNOLOGY 2008; 181:7593-605. [PMID: 19017948 DOI: 10.4049/jimmunol.181.11.7593] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Drak2 is a serine/threonine kinase expressed in T and B cells. The absence of Drak2 renders T cells hypersensitive to suboptimal stimulation, yet Drak2(-/-) mice are enigmatically resistant to experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis. We show in this study that Drak2(-/-) mice were also completely resistant to type 1 diabetes when bred to the NOD strain of mice that spontaneously develop autoimmune diabetes. However, there was not a generalized suppression of the immune system, because Drak2(-/-) mice remained susceptible to other models of autoimmunity. Adoptive transfer experiments revealed that resistance to disease was intrinsic to the T cells and was due to a loss of T cell survival under conditions of chronic autoimmune stimulation. Importantly, the absence of Drak2 did not alter the survival of naive T cells, memory T cells, or T cells responding to an acute viral infection. These experiments reveal a distinction between the immune response to persistent self-encoded molecules and transiently present infectious agents. We present a model whereby T cell survival depends on a balance of TCR and costimulatory signals to explain how the absence of Drak2 affects autoimmune disease without generalized suppression of the immune system.
Collapse
Affiliation(s)
- Maureen A McGargill
- Department of Cellular and Molecular Medicine, Division of Biological Sciences, Molecular Biology Section, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | |
Collapse
|
10
|
Neuroprotective effects of Ac.YVAD.cmk on experimental spinal cord injury in rats. ACTA ACUST UNITED AC 2008; 69:561-7. [PMID: 18262241 DOI: 10.1016/j.surneu.2007.03.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Accepted: 03/12/2007] [Indexed: 11/23/2022]
Abstract
BACKGROUND Apoptosis as a cell death mechanism is important in numerous diseases, including traumatic SCI. We evaluated the neuroprotective effects of Ac.YVAD.cmk and functional outcomes in a rat SCI model. METHODS Thirty rats were randomized into 3 groups of 10: sham-operated, trauma only, and trauma plus Ac.YVAD.cmk treatment. Trauma was produced in the thoracic region by a weight-drop technique. Group 3 rats received Ac.YVAD.cmk (1 mg/kg, ip) 1 minute after trauma. The rats were killed at 24 hours and 5 days after injury. Efficacy was evaluated with light microscopy and TUNEL staining. Functional outcomes were assessed with the inclined plane technique and a modified version of the Tarlov grading system. RESULTS At 24 hours postinjury, the respective mean number of apoptotic cells in groups 1, 2, and 3 were 0, 5.26 +/- 0.19, and 0.97 +/- 0.15. Microscopic examination of group 2 tissues showed widespread hemorrhage, edema, necrosis, and polymorphic nuclear leukocyte infiltration and vascular thrombi. Group 3 tissues revealed similar features, but cavitation and demyelination were less prominent than those in group 2 samples at this period. At 5 days postinjury, the respective mean inclined plane angles in groups 1, 2, and 3 were 65.5 +/- 2.09, 42.00 +/- 2.74, and 52.5 +/- 1.77. Motor grading of animals revealed a similar trend. These differences were statistically significant (P < .05). CONCLUSIONS Ac.YVAD.cmk inhibited posttraumatic apoptosis in a rat SCI model. This may provide the basis for development of new therapeutic strategies for the treatment of SCI.
Collapse
|
11
|
Moore CS, Hebb ALO, Robertson GS. Inhibitor of apoptosis protein (IAP) profiling in experimental autoimmune encephalomyelitis (EAE) implicates increased XIAP in T lymphocytes. J Neuroimmunol 2007; 193:94-105. [PMID: 18055022 DOI: 10.1016/j.jneuroim.2007.10.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2007] [Revised: 10/19/2007] [Accepted: 10/24/2007] [Indexed: 11/16/2022]
Abstract
In multiple sclerosis (MS) and its widely accepted animal model, experimental autoimmune encephalomyelitis (EAE), the failure of autoreactive immune cells to undergo apoptosis is thought to contribute to CNS tissue damage and disease progression. Promoting apoptosis of myelin-reactive immune cells in diseases such as MS, may delay disease progression and decrease the frequency and severity of relapses. X-linked inhibitor of apoptosis (XIAP) is a potent anti-apoptotic protein that inhibits intrinsic, extrinsic, and c-Jun amino-terminal kinase mediated apoptosis and was the only member of the inhibitor of apoptosis (IAP) family upregulated in whole blood from EAE mice. Similar increases in XIAP were also observed in both peripheral and encephalitogenic T lymphocytes. Increased XIAP expression in T cells within areas of demyelination in the CNS suggests that XIAP may be enhancing cell survival and thereby contributing to disease pathology.
Collapse
Affiliation(s)
- Craig S Moore
- Department of Pharmacology, Dalhousie University, Faculty of Medicine, Sir Charles Tupper Building, 5850 College Street, Halifax NS Canada B3H 1X5
| | | | | |
Collapse
|
12
|
Wang Z, Hong J, Sun W, Xu G, Li N, Chen X, Liu A, Xu L, Sun B, Zhang JZ. Role of IFN-gamma in induction of Foxp3 and conversion of CD4+ CD25- T cells to CD4+ Tregs. J Clin Invest 2006; 116:2434-41. [PMID: 16906223 PMCID: PMC1533873 DOI: 10.1172/jci25826] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2005] [Accepted: 06/13/2006] [Indexed: 01/07/2023] Open
Abstract
IFN-gamma is an important Th1 proinflammatory cytokine and has a paradoxical effect on EAE in which disease susceptibility is unexpectedly heightened in IFN-gamma-deficient mice. In this study, we provide what we believe is new evidence indicating that IFN-gamma is critically required for the conversion of CD4+ CD25- T cells to CD4+ Tregs during EAE. In our study, the added severity of EAE in IFN-gamma knockout mice was directly associated with altered encephalitogenic T cell responses, which correlated with reduced frequency and function of CD4+ CD25+ Foxp3+ Tregs when compared with those of WT mice. It was demonstrated in both human and mouse systems that in vitro IFN-gamma treatment of CD4+ CD25- T cells led to conversion of CD4+ Tregs as characterized by increased expression of Foxp3 and enhanced regulatory function. Mouse CD4+ CD25- T cells, when treated in vitro with IFN-gamma, acquired marked regulatory properties as evidenced by suppression of EAE by adoptive transfer. These findings have important implications for the understanding of the complex role of IFN-gamma in both induction and self regulation of inflammatory processes.
Collapse
Affiliation(s)
- Zhaojun Wang
- Joint Immunology Laboratory of Institute of Health Sciences, Shanghai JiaoTong University School of Medicine, and Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Okuda Y, Apatoff BR, Posnett DN. Apoptosis of T cells in peripheral blood and cerebrospinal fluid is associated with disease activity of multiple sclerosis. J Neuroimmunol 2006; 171:163-70. [PMID: 16290072 DOI: 10.1016/j.jneuroim.2005.09.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2005] [Accepted: 09/30/2005] [Indexed: 12/20/2022]
Abstract
Apoptotic elimination of pathogenic T cells is considered to be one of regulatory mechanisms in multiple sclerosis (MS). To explore the potential relationship between Fas-mediated apoptosis and the disease course of MS, we examined apoptosis, defined by annexin V (AV) binding, and Fas (CD95) expression in CD4+ and in CD8+ T cells in MS patients by using five-color flow cytometry. The percentage of AV+CD4+CD3+ cells and CD95+AV+CD4+CD3+ cells in peripheral blood and cerebrospinal fluid (CSF) were significantly decreased in active MS patients compared with inactive MS patients. A significantly lower proportion of CD95+AV+CD8+CD3+ cells in CSF was observed in active MS patients compared with inactive MS patients, but not in peripheral blood. These results indicate that the resistance of T cells to Fas-mediated apoptosis is involved in exacerbation of MS and/or that Fas-mediated apoptosis of T cells is associated with remission of MS.
Collapse
Affiliation(s)
- Yoshinobu Okuda
- Department of Medicine, Division of Hematology-Oncology, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021, USA.
| | | | | |
Collapse
|
14
|
Scheller C, Riederer P, Gerlach M, Koutsilieri E. Apoptosis inhibition in T cells triggers the expression of proinflammatory cytokines--implications for the CNS. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2006:45-51. [PMID: 17447415 DOI: 10.1007/978-3-211-33328-0_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Stimulation of death receptors such as CD95 or TNF-R1 results in rapid onset of apoptosis. Here we show that inhibition of death receptor-induced apoptosis by the broad range caspase inhibitor ZVAD causes a switch from apoptotic to proinflammatory signaling. In previous studies we have reported that caspase inhibitors induce expression of various proinflammatory cytokines in CD95-stimulated primary T cells, such as TNF-alpha, IFN-gamma and GM-CSF. In this study we provide further evidence for the proinflammatory activity of CD95. Stimulation of CD95 by agonistic antibodies (7C11) resulted in expression of IL-2 in primary T cells, which was further enhanced when caspase activity was blocked by ZVAD. Moreover, CD95 triggered expression of IL-4 and IL-8 when caspase activity was inhibited, but not in the absence of ZVAD. Our findings are of significant importance for the CNS as changes in the cytokine pattern in the periphery affects the entry of various immune cells into the brain. Moreover, invading activated T cells can also directly influence the cytokine profile within the brain, triggering signaling cascades that eventually lead to neuronal cell death. The use of caspase inhibitors to prevent apoptotic cell death should be carefully evaluated in the management of systemic and CNS diseases.
Collapse
Affiliation(s)
- C Scheller
- Institute of Virology and Immunobiology, Würzburg, Germany.
| | | | | | | |
Collapse
|
15
|
Abstract
The role of p53, a pro-apoptotic protein, in experimental autoimmune encephalomyelitis (EAE) was investigated using p53-deficient C57BL/6J mice. p53-deficient mice immunised with myelin oligodendrocyte glycoprotein (MOG) exhibited a more severe clinical course of EAE with more severe inflammation in the central nervous system (CNS) compared to wild-type littermates. While T and B cell responses of p53-deficient mice to MOG were comparable to those of wild-type littermates, significantly higher production of IL-6, granulocyte macrophage colony-stimulating factor and IL-10 was observed in lymphocytes exposed to MOG from p53-deficient mice than those from wild-type littermates. Furthermore, a flow cytometric analysis of Annexin V staining showed that apoptosis of CNS-infiltrating cells was less in p53-deficient mice with EAE compared to wild-type littermates. These results suggest that p53 may be involved in the regulatory process of EAE through the control of cytokine production and/or the apoptotic elimination of inflammatory cells.
Collapse
Affiliation(s)
- Yoshinobu Okuda
- Neuroimmunology Laboratory, Department of Biochemistry, La Trobe University, Bundoora, Victoria 3083, Australia.
| | | | | |
Collapse
|
16
|
Agnello D, Bigini P, Villa P, Mennini T, Cerami A, Brines ML, Ghezzi P. Erythropoietin exerts an anti-inflammatory effect on the CNS in a model of experimental autoimmune encephalomyelitis. Brain Res 2002; 952:128-34. [PMID: 12363412 DOI: 10.1016/s0006-8993(02)03239-0] [Citation(s) in RCA: 245] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In recent work we reported that systemically administered erythropoietin (EPO) crosses the blood-brain barrier and has protective effects in animal models of cerebral ischemia, brain trauma and in a rat model of experimental autoimmune encephalomyelitis (EAE). Here we characterize the effect of systemic EPO on the inflammatory component of actively induced, acute EAE in Lewis rats. Administration of EPO at doses of 500-5000 U/kg bw i.p., daily from day 3 after immunization with myelin basic protein (MBP), delayed the onset of EAE and decreased its clinical score at peak time (days 12-13). Immunohistochemical analysis of the spinal cord using anti-glial fibrillary acidic protein (GFAP) and anti-CD11b antibodies showed that EPO markedly diminished inflammation and glial activation/proliferation. EAE induced significant levels of TNF and IL-6 in the spinal cord, where IL-6 was maximum at the onset of the disease (day 10) and TNF at its peak (day 12). EPO delayed the increase of TNF levels, without altering their peak levels, and markedly reduced those of IL-6 suggesting that the decreased inflammation and clinical score may be in part upon attenuation of IL-6. On the other hand, EPO was without effect in a model of adjuvant-induced arthritis in Lewis rats, suggesting a specificity towards autoimmune demyelinating diseases. These data suggest that EPO might act as a protective cytokine in inflammatory pathologies of the CNS.
Collapse
Affiliation(s)
- Davide Agnello
- Department of Biochemistry, 'Mario Negri' Institute of Pharmacological Research, 20157, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
17
|
Okuda Y, Okuda M, Bernard CCA. The suppression of T cell apoptosis influences the severity of disease during the chronic phase but not the recovery from the acute phase of experimental autoimmune encephalomyelitis in mice. J Neuroimmunol 2002; 131:115-25. [PMID: 12458043 DOI: 10.1016/s0165-5728(02)00267-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The elimination of T cells by apoptosis is considered to be one of the regulatory factors in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. To address further the role of apoptotic T cell death in EAE, we investigated myelin oligodendrocyte glycoprotein (MOG)-induced EAE in transgenic mice overexpressing the anti-apoptotic gene, bcl-2, in T cells. During the acute phase of EAE, no significant difference was observed in the clinical course, pathology and T cell response to MOG between bcl-2 transgenic mice and wild-type littermates. While the recovery from the first attack of EAE was not impaired in the bcl-2 transgenic mice, a more severe disease was observed during the chronic phase of the disease even though T and B cell responses to MOG were comparable to those of wild-type littermates. A flow cytometric analysis by Annexin V showed a significant decrease of apoptotic T cells in the central nervous system (CNS) of the bcl-2 transgenic mice with EAE compared with controls during the chronic as well as the acute phase of disease. These results suggest that while T cell apoptosis in the CNS may play a regulatory role in EAE, the spontaneous recovery from acute EAE cannot solely be explained by T cell apoptosis.
Collapse
MESH Headings
- Acute Disease
- Animals
- Apoptosis
- Cells, Cultured
- Chronic Disease
- Cytokines/biosynthesis
- Disease Progression
- Encephalomyelitis, Autoimmune, Experimental/diagnosis
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Genes, bcl-2
- Humans
- Lymphocyte Activation
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Myelin Proteins
- Myelin-Associated Glycoprotein/immunology
- Myelin-Oligodendrocyte Glycoprotein
- Nitrites/analysis
- Spinal Cord/pathology
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- Yoshinobu Okuda
- Neuroimmunology Laboratory, Department of Biochemistry, La Trobe University, Bundoora, Victoria 3083, Australia.
| | | | | |
Collapse
|
18
|
Semra YK, Seidi OA, Sharief MK. Disease activity in multiple sclerosis correlates with T lymphocyte expression of the inhibitor of apoptosis proteins. J Neuroimmunol 2002; 122:159-66. [PMID: 11777555 DOI: 10.1016/s0165-5728(01)00464-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The pathogenesis of multiple sclerosis (MS) is thought to involve failure of programmed cell death (apoptosis) to eliminate potentially pathogenic, autoreactive T lymphocytes. This failure may be caused by multiple abnormalities of the cell death machinery. The inhibitors of apoptosis (IAP) proteins are central regulators of cell death that inhibit apoptosis induced by a variety of stimuli. In this study, we investigated the dynamics of cellular IAP-1, IAP-2, and X-linked IAP, in resting and mitogen stimulated T lymphocytes from MS patients and relevant controls. The expression of IAP proteins was significantly higher in mitogen stimulated T lymphocytes from patients with clinically active MS when compared to corresponding expressions from patients with stable MS or from other controls. Heightened expression of IAP proteins in patients with active MS correlated with clinical features of disease activity, and with T lymphocyte resistance to apoptosis. In contrast, cellular expression of the anti-apoptosis protein Bcl-2 did not differ between active and stable MS, and was relatively similar between MS patients and controls. These findings suggest that overexpression of IAP proteins in stimulated T lymphocytes is a feature of clinically active multiple sclerosis.
Collapse
Affiliation(s)
- Y K Semra
- Department of Neuroimmunology, Guy's, King's and St. Thomas' School of Medicine, Hodgkin Building, Guy's Hospital, SE1 9RT, London, UK
| | | | | |
Collapse
|
19
|
Abstract
Apoptosis is a complex process that removes aging or injured cells from the body and occurs in a wide variety of organisms. Cell death has always been an integral aspect of the study of pathology, but only over the last 30 years or so has the interest in apoptosis gained appreciation in this field. This review analyzes pertinent aspects of apoptosis, from Virchow's initial descriptions of necrobiosis to more modern research, and reviews some of the key events and molecules involved in the process. Finally, the role of apoptosis in certain diseases and its importance in the clinical setting is addressed.
Collapse
Affiliation(s)
- F J Geske
- Department of Pediatrics, National Jewish Medical and Research Center, Denver, CO 80206, USA
| | | |
Collapse
|
20
|
Okuda Y, Sakoda S, Fujimura H, Nagata S, Yanagihara T, Bernard CC. Intrathecal administration of neutralizing antibody against Fas ligand suppresses the progression of experimental autoimmune encephalomyelitis. Biochem Biophys Res Commun 2000; 275:164-8. [PMID: 10944459 DOI: 10.1006/bbrc.2000.3279] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A therapy aimed at blocking the Fas/Fas ligand (FasL) system was investigated using a relapsing form of experimental autoimmune encephalomyelitis (EAE) in mice, an animal model of multiple sclerosis (MS). Intracisternal administration of neutralizing antibody against FasL during the progression phase of EAE significantly reduced the severity of the disease with milder inflammation and myelin breakdown in the central nervous system (CNS). These results raised the possibility that the Fas/FasL system might contribute to tissue destruction in the CNS in the acute phase of EAE and that the intrathecal administration of neutralizing antibody against FasL may be beneficial for suppression of the acute phase of MS.
Collapse
MESH Headings
- Acute Disease
- Animals
- Antibodies/administration & dosage
- Antibodies/immunology
- Antibodies/pharmacology
- Antibodies/therapeutic use
- Central Nervous System/drug effects
- Central Nervous System/immunology
- Central Nervous System/metabolism
- Central Nervous System/pathology
- DNA Fragmentation
- Disease Models, Animal
- Disease Progression
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/therapy
- Fas Ligand Protein
- Female
- Histocytochemistry
- In Situ Nick-End Labeling
- Inflammation/immunology
- Injections, Spinal
- Membrane Glycoproteins/antagonists & inhibitors
- Membrane Glycoproteins/immunology
- Membrane Glycoproteins/physiology
- Mice
- Mice, Inbred Strains
- Multiple Sclerosis/immunology
- Multiple Sclerosis/metabolism
- Multiple Sclerosis/pathology
- Multiple Sclerosis/therapy
- Myelin Basic Protein/immunology
- Myelin Sheath/immunology
- Myelin Sheath/metabolism
Collapse
Affiliation(s)
- Y Okuda
- Neuroimmunology Laboratory, La Trobe University, Bundoora, Victoria, 3083, Australia.
| | | | | | | | | | | |
Collapse
|