1
|
Sphingosine 1-Phosphate Receptor 5 (S1P5) Deficiency Promotes Proliferation and Immortalization of Mouse Embryonic Fibroblasts. Cancers (Basel) 2022; 14:cancers14071661. [PMID: 35406433 PMCID: PMC8996878 DOI: 10.3390/cancers14071661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary Sphingosine 1-phosphate (S1P) is a lipid metabolite involved in cell proliferation, survival or migration. S1P is a ligand for five high-affinity G protein-coupled receptors (S1P1-5), which differ in their tissue distribution, and the specific effects of S1P depend on the suite of S1P receptor subtypes expressed. To date, information regarding the role of S1P5 in cell proliferation is limited and ambiguous. Our results suggest that, unlike other S1P receptors, the S1P5 receptor has an anti-proliferative function. We found that S1P5 deficiency promotes cell immortalization and proliferation by controlling the spatial activation of ERK. Abstract Sphingosine 1-phosphate (S1P), a bioactive lipid, interacts with five widely expressed G protein-coupled receptors (S1P1-5), regulating a variety of downstream signaling pathways with overlapping but also opposing functions. To date, data regarding the role of S1P5 in cell proliferation are ambiguous, and its role in controlling the growth of untransformed cells remains to be fully elucidated. In this study, we examined the effects of S1P5 deficiency on mouse embryonic fibroblasts (MEFs). Our results indicate that lack of S1P5 expression profoundly affects cell morphology and proliferation. First, S1P5 deficiency reduces cellular senescence and promotes MEF immortalization. Second, it decreases cell size and leads to cell elongation, which is accompanied by decreased cell spreading and migration. Third, it increases proliferation rate, a phenotype rescued by the reintroduction of exogenous S1P5. Mechanistically, S1P5 promotes the activation of FAK, controlling cell spreading and adhesion while the anti-proliferative function of the S1P/S1P5 signaling is associated with reduced nuclear accumulation of activated ERK. Our results suggest that S1P5 opposes the growth-promoting function of S1P1-3 through spatial control of ERK activation and provides new insights into the anti-proliferative function of S1P5.
Collapse
|
2
|
Mascarenhas JB, Gaber AA, Larrinaga TM, Mayfield R, Novak S, Camp SM, Gregorio C, Jacobson JR, Cress AE, Dudek SM, Garcia JGN. EVL is a novel focal adhesion protein involved in the regulation of cytoskeletal dynamics and vascular permeability. Pulm Circ 2021; 11:20458940211049002. [PMID: 34631011 PMCID: PMC8493322 DOI: 10.1177/20458940211049002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/07/2021] [Indexed: 11/17/2022] Open
Abstract
Increases in lung vascular permeability is a cardinal feature of inflammatory disease and represents an imbalance in vascular contractile forces and barrier-restorative forces, with both forces highly dependent upon the actin cytoskeleton. The current study investigates the role of Ena-VASP-like (EVL), a member of the Ena-VASP family known to regulate the actin cytoskeleton, in regulating vascular permeability responses and lung endothelial cell barrier integrity. Utilizing changes in transendothelial electricial resistance (TEER) to measure endothelial cell barrier responses, we demonstrate that EVL expression regulates endothelial cell responses to both sphingosine-1-phospate (S1P), a vascular barrier-enhancing agonist, and to thrombin, a barrier-disrupting stimulus. Total internal reflection fluorescence demonstrates that EVL is present in endothelial cell focal adhesions and impacts focal adhesion size, distribution, and the number of focal adhesions generated in response to S1P and thrombin challenge, with the focal adhesion kinase (FAK) a key contributor in S1P-stimulated EVL-transduced endothelial cell but a limited role in thrombin-induced focal adhesion rearrangements. In summary, these data indicate that EVL is a focal adhesion protein intimately involved in regulation of cytoskeletal responses to endothelial cell barrier-altering stimuli. Keywords: cytoskeleton, vascular barrier, sphingosine-1-phosphate, thrombin, focal adhesion kinase (FAK), Ena-VASP like protein (EVL), cytoskeletal regulatory protein
Collapse
Affiliation(s)
| | - Amir A Gaber
- Department of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Tania M Larrinaga
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, USA
| | - Rachel Mayfield
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, USA
| | - Stefanie Novak
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, USA
| | - Sara M Camp
- Department of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Carol Gregorio
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, USA
| | - Jeffrey R Jacobson
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Anne E Cress
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, USA
| | - Steven M Dudek
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Joe G N Garcia
- Department of Medicine, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
3
|
Abstract
The pulmonary endothelial cell forms a critical semi-permeable barrier between the vascular and interstitial space. As part of the blood-gas barrier in the lung, the endothelium plays a key role in normal physiologic function and pathologic disease. Changes in endothelial cell shape, defined by its plasma membrane, determine barrier integrity. A number of key cytoskeletal regulatory and effector proteins including non-muscle myosin light chain kinase, cortactin, and Arp 2/3 mediate actin rearrangements to form cortical and membrane associated structures in response to barrier enhancing stimuli. These actin formations support and interact with junctional complexes and exert forces to protrude the lipid membrane to and close gaps between individual cells. The current knowledge of these cytoskeletal processes and regulatory proteins are the subject of this review. In addition, we explore novel advancements in cellular imaging that are poised to shed light on the complex nature of pulmonary endothelial permeability.
Collapse
|
4
|
Xu Y, Xiao YJ, Baudhuin LM, Schwartz BM. The Role and Clinical Applications of Bioactive Lysolipids in Ovarian Cancer. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/107155760100800101] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Yan Xu
- Department of Cancer Biology Lerner Research Institute and the Department of Gynecology and Obstetrics Cleveland Clinic Foundation; Department of Chemistry, Cleveland State University, Cleveland, Ohio; Department of Cancer Biology, Cleveland Clinic Foundation, 9500 Euclid Ave., Cleveland, OH 44195
| | | | | | - Benjamin M. Schwartz
- Department of Cancer Biology Lerner Research Institute and the Department of Gynecology and Obstetrics Cleveland Clinic Foundation; Department of Chemistry, Cleveland State University, Cleveland, Ohio
| |
Collapse
|
5
|
Salama MF, Carroll B, Adada M, Pulkoski-Gross M, Hannun YA, Obeid LM. A novel role of sphingosine kinase-1 in the invasion and angiogenesis of VHL mutant clear cell renal cell carcinoma. FASEB J 2015; 29:2803-13. [PMID: 25805832 DOI: 10.1096/fj.15-270413] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 02/25/2015] [Indexed: 12/12/2022]
Abstract
Sphingosine kinase 1 (SK1), the enzyme responsible for sphingosine 1-phosphate (S1P) production, is overexpressed in many human solid tumors. However, its role in clear cell renal cell carcinoma (ccRCC) has not been described previously. ccRCC cases are usually associated with mutations in von Hippel-Lindau (VHL) and subsequent normoxic stabilization of hypoxia-inducible factor (HIF). We previously showed that HIF-2α up-regulates SK1 expression during hypoxia in glioma cells. Therefore, we hypothesized that the stabilized HIF in ccRCC cells will be associated with increased SK1 expression. Here, we demonstrate that SK1 is overexpressed in 786-0 renal carcinoma cells lacking functional VHL, with concomitant high S1P levels that appear to be HIF-2α mediated. Moreover, examining the TCGA RNA seq database shows that SK1 expression was ∼2.7-fold higher in solid tumor tissue from ccRCC patients, and this was associated with less survival. Knockdown of SK1 in 786-0 ccRCC cells had no effect on cell proliferation. On the other hand, this knockdown resulted in an ∼3.5-fold decrease in invasion, less phosphorylation of focal adhesion kinase (FAK), and an ∼2-fold decrease in angiogenesis. Moreover, S1P treatment of SK1 knockdown cells resulted in phosphorylation of FAK and invasion, and this was mediated by S1P receptor 2. These results suggest that higher SK1 and S1P levels in VHL-defective ccRCC could induce invasion in an autocrine manner and angiogenesis in a paracrine manner. Accordingly, targeting SK1 could reduce both the invasion and angiogenesis of ccRCC and therefore improve the survival rate of patients.
Collapse
Affiliation(s)
- Mohamed F Salama
- *Stony Brook Cancer Center and the Department of Medicine, Stony Brook University, Health Sciences Center, Stony Brook, New York, USA; Department of Biochemistry, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt; and Northport Veterans Affairs Medical Center, Northport, New York, USA
| | - Brittany Carroll
- *Stony Brook Cancer Center and the Department of Medicine, Stony Brook University, Health Sciences Center, Stony Brook, New York, USA; Department of Biochemistry, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt; and Northport Veterans Affairs Medical Center, Northport, New York, USA
| | - Mohamad Adada
- *Stony Brook Cancer Center and the Department of Medicine, Stony Brook University, Health Sciences Center, Stony Brook, New York, USA; Department of Biochemistry, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt; and Northport Veterans Affairs Medical Center, Northport, New York, USA
| | - Michael Pulkoski-Gross
- *Stony Brook Cancer Center and the Department of Medicine, Stony Brook University, Health Sciences Center, Stony Brook, New York, USA; Department of Biochemistry, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt; and Northport Veterans Affairs Medical Center, Northport, New York, USA
| | - Yusuf A Hannun
- *Stony Brook Cancer Center and the Department of Medicine, Stony Brook University, Health Sciences Center, Stony Brook, New York, USA; Department of Biochemistry, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt; and Northport Veterans Affairs Medical Center, Northport, New York, USA
| | - Lina M Obeid
- *Stony Brook Cancer Center and the Department of Medicine, Stony Brook University, Health Sciences Center, Stony Brook, New York, USA; Department of Biochemistry, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt; and Northport Veterans Affairs Medical Center, Northport, New York, USA
| |
Collapse
|
6
|
Chavez A, Schmidt TT, Yazbeck P, Rajput C, Desai B, Sukriti S, Giantsos-Adams K, Knezevic N, Malik AB, Mehta D. S1PR1 Tyr143 phosphorylation downregulates endothelial cell surface S1PR1 expression and responsiveness. J Cell Sci 2015; 128:878-87. [PMID: 25588843 DOI: 10.1242/jcs.154476] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Activation of sphingosine-1-phosphate receptor 1 (S1PR1) plays a key role in repairing endothelial barrier function. We addressed the role of phosphorylation of the three intracellular tyrosine residues of S1PR1 in endothelial cells in regulating the receptor responsiveness and endothelial barrier function regulated by sphingosine 1-phosphate (S1P)-mediated activation of S1PR1. We demonstrated that phosphorylation of only Y143 site was required for S1PR1 internalization in response to S1P. Maximal S1PR1 internalization was seen in 20 min but S1PR1 returned to the cell surface within 1 h accompanied by Y143-dephosphorylation. Cell surface S1PR1 loss paralleled defective endothelial barrier enhancement induced by S1P. Expression of phospho-defective (Y143F) or phospho-mimicking (Y143D) mutants, respectively, failed to internalize or showed unusually high receptor internalization, consistent with the requirement of Y143 in regulating cell surface S1PR1 expression. Phosphorylation of the five S1PR1 C-terminal serine residues did not affect the role of Y143 phosphorylation in signaling S1PR1 internalization. Thus, rapid reduction of endothelial cell surface expression of S1PR1 subsequent to Y143 phosphorylation is a crucial mechanism of modulating S1PR1 signaling, and hence the endothelial barrier repair function of S1P.
Collapse
Affiliation(s)
- Alejandra Chavez
- Department of Pharmacology and Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Tracy Thennes Schmidt
- Department of Pharmacology and Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Pascal Yazbeck
- Department of Pharmacology and Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Charu Rajput
- Department of Pharmacology and Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Bhushan Desai
- Department of Pharmacology and Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Sukriti Sukriti
- Department of Pharmacology and Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Kristina Giantsos-Adams
- Department of Pharmacology and Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Nebojsa Knezevic
- Department of Pharmacology and Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Asrar B Malik
- Department of Pharmacology and Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Dolly Mehta
- Department of Pharmacology and Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| |
Collapse
|
7
|
Liu SQ, Su YJ, Qin MB, Mao YB, Huang JA, Tang GD. Sphingosine kinase 1 promotes tumor progression and confers malignancy phenotypes of colon cancer by regulating the focal adhesion kinase pathway and adhesion molecules. Int J Oncol 2012; 42:617-26. [PMID: 23232649 DOI: 10.3892/ijo.2012.1733] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 11/16/2012] [Indexed: 12/16/2022] Open
Abstract
Studies suggest a tumor-promoting function of sphingosine kinase 1 (SphK1) in some types of human tumors, however, its effect on colon cancer is still unclear. The aims of this study were to investigate the roles of SphK1 in the progression and tumor cell phenotypic changes in colon cancer. Moreover, the focal adhesion kinase (FAK) pathway and the expression of intercellular adhesion molecule‑1 (ICAM‑1) and vascular cell adhesion molecule‑1 (VCAM‑1) were detected to explore the mechanisms of SphK1 action. In this study, the expression of SphK1, FAK and phospho-FAK (p-FAK) was analyzed in 66 surgical specimens of primary colon cancer and matched adjacent normal tissues by immunohistochemistry and western blotting. In addition, N,N-dimethylsphingosine (DMS), SphK1 DNA and shRNA transfection were used to regulate the expression and activity of SphK1 in the LOVO colon cancer cell line. Tumor cell phenotypic changes were analyzed by cell viability, invasion and apoptosis assays. Results showed that the expression of SphK1, FAK and p-FAK in colon cancer tissues were significantly stronger compared to those in matched normal tissues. There was a close correlation between the expression of SphK1 and FAK or p-FAK and the co-expression of SphK1, FAK and p-FAK significantly associated with histological grade, Dukes' stage, lymph node metastasis and distant metastasis. Overexpression of SphK1 after DNA transfection enhanced tumor cell viability and invasiveness, but suppressed cell apoptosis. In contrast, suppression of SphK1 by DMS and shRNA reduced tumor cell viability and invasiveness, but promoted cell apoptosis. The expression of FAK, p-FAK, ICAM-1 and VCAM-1 in LOVO cells were increased with the overexpression of SphK1 but decreased with the suppression of SphK1. These findings indicate that SphK1 regulates tumor cell proliferation, apoptosis and invasion, which ultimately contributes to tumor progression and malignancy phenotype in colon cancer. FAK pathway, ICAM-1 and VCAM-1 may play critical roles in this SphK1‑mediated effect.
Collapse
Affiliation(s)
- Shi-Quan Liu
- Department of Gastroenterology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Autonomous Region 530021, P.R. China
| | | | | | | | | | | |
Collapse
|
8
|
Mechanisms of human smooth muscle cell proliferation and transplant vasculopathy induced by HLA class I antibodies: In vitro and in vivo studies. Hum Immunol 2012; 73:1253-60. [DOI: 10.1016/j.humimm.2012.06.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 05/04/2012] [Accepted: 06/29/2012] [Indexed: 11/17/2022]
|
9
|
Infusino GA, Jacobson JR. Endothelial FAK as a therapeutic target in disease. Microvasc Res 2011; 83:89-96. [PMID: 22008516 DOI: 10.1016/j.mvr.2011.09.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 09/28/2011] [Accepted: 09/29/2011] [Indexed: 01/14/2023]
Abstract
Focal adhesions (FA) are important mediators of endothelial cytoskeletal interactions with the extracellular matrix (ECM) via transmembrane receptors, integrins and integrin-associated intracellular proteins. This communication is essential for a variety of cell processes including EC barrier regulation and is mediated by the non-receptor protein tyrosine kinase, focal adhesion kinase (FAK). As FA mediate the basic response of EC to a variety of stimuli and FAK is essential to these responses, the idea of targeting EC FAK as a therapeutic strategy for an assortment of diseases is highly promising. In particular, inhibition of FAK could prove beneficial in a variety of cancers via effects on EC proliferation and angiogenesis, in acute lung injury (ALI) via the attenuation of lung vascular permeability, and in rheumatoid arthritis via reductions in synovial angiogenesis. In addition, there are potential therapeutic benefits of FAK inhibition in cardiovascular disease and diabetic nephropathy as well. Several drugs that target EC FAK are now in existence and include agents currently under investigation in preclinical models as well as drugs that are readily available such as the sphingolipid analog FTY720 and statins. As the role of EC FAK in the pathogenesis of a variety of diseases continues to be explored and new insights are revealed, drug targeting of FAK will continue to be an important area of investigation and may ultimately lead to highly novel and effective strategies to treat these diseases.
Collapse
Affiliation(s)
- Giovanni A Infusino
- Institute for Personalized Respiratory Medicine, Section of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | | |
Collapse
|
10
|
Belvitch P, Dudek SM. Role of FAK in S1P-regulated endothelial permeability. Microvasc Res 2011; 83:22-30. [PMID: 21925517 DOI: 10.1016/j.mvr.2011.08.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 07/28/2011] [Accepted: 08/29/2011] [Indexed: 01/11/2023]
Abstract
The vascular endothelium serves as a semi-selective barrier between the circulating contents of the blood and the tissues through which they flow. Disruption of this barrier results in significant organ dysfunction during devastating inflammatory syndromes such as sepsis and acute lung injury (ALI). Sphingosine 1-phosphate (S1P) is an endogenous lipid regulator of endothelial permeability that produces potent barrier enhancement via actin and junctional protein rearrangement and resultant cytoskeletal changes. A key effector protein in this S1P response is focal adhesion kinase (FAK), a highly conserved cytoplasmic tyrosine kinase involved in the engagement of integrins and assembly of focal adhesions (FA) through the catalysis of multiple downstream signals. After stimulation by S1P, endothelial FAK undergoes specific tyrosine phosphorylation that results in activation of the kinase and dynamic interactions with other effector molecules to improve the endothelial barrier. FAK participates in peripheral actin cytoskeletal rearrangement as well as cell-matrix (FA) and cell-cell (adherens junction) junctional complex strengthening that combine to decrease vascular permeability. This review summarizes the current knowledge of the role of FAK in mediating enhanced endothelial barrier function by S1P.
Collapse
Affiliation(s)
- Patrick Belvitch
- Institute for Personalized Respiratory Medicine, Section of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | | |
Collapse
|
11
|
Thennes T, Mehta D. Heterotrimeric G proteins, focal adhesion kinase, and endothelial barrier function. Microvasc Res 2011; 83:31-44. [PMID: 21640127 DOI: 10.1016/j.mvr.2011.05.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 05/04/2011] [Accepted: 05/12/2011] [Indexed: 12/18/2022]
Abstract
Ligands by binding to G protein coupled receptors (GPCRs) stimulate dissociation of heterotrimeric G proteins into Gα and Gβγ subunits. Released Gα and Gβγ subunits induce discrete signaling cues that differentially regulate focal adhesion kinase (FAK) activity and endothelial barrier function. Activation of G proteins downstream of receptors such as protease activated receptor 1 (PAR1) and histamine receptors rapidly increases endothelial permeability which reverses naturally within the following 1-2 h. However, activation of G proteins coupled to the sphingosine-1-phosphate receptor 1 (S1P1) signal cues that enhance basal barrier endothelial function and restore endothelial barrier function following the increase in endothelial permeability by edemagenic agents. Intriguingly, both PAR1 and S1P1 activation stimulates FAK activity, which associates with alteration in endothelial barrier function by these agonists. In this review, we focus on the role of the G protein subunits downstream of PAR1 and S1P1 in regulating FAK activity and endothelial barrier function.
Collapse
Affiliation(s)
- Tracy Thennes
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | |
Collapse
|
12
|
Argraves KM, Wilkerson BA, Argraves WS. Sphingosine-1-phosphate signaling in vasculogenesis and angiogenesis. World J Biol Chem 2010; 1:291-7. [PMID: 21537462 PMCID: PMC3083932 DOI: 10.4331/wjbc.v1.i10.291] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 08/29/2010] [Accepted: 09/05/2010] [Indexed: 02/05/2023] Open
Abstract
Blood vessels either form de novo through the process of vasculogenesis or through angiogenesis that involves the sprouting and proliferation of endothelial cells in pre-existing blood vessels. A complex interactive network of signaling cascades downstream from at least three of the nine known G-protein-coupled sphingosine-1-phosphate (S1P) receptors act as a prime effector of neovascularization that occurs in embryonic development and in association with various pathologies. This review focuses on the current knowledge of the roles of S1P signaling in vasculogenesis and angiogenesis, with particular emphasis on vascular cell adhesion and motility responses.
Collapse
Affiliation(s)
- Kelley M Argraves
- Kelley M Argraves, Brent A Wilkerson, W Scott Argraves, Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, United States
| | | | | |
Collapse
|
13
|
Qi X, Okamoto Y, Murakawa T, Wang F, Oyama O, Ohkawa R, Yoshioka K, Du W, Sugimoto N, Yatomi Y, Takuwa N, Takuwa Y. Sustained delivery of sphingosine-1-phosphate using poly(lactic-co-glycolic acid)-based microparticles stimulates Akt/ERK-eNOS mediated angiogenesis and vascular maturation restoring blood flow in ischemic limbs of mice. Eur J Pharmacol 2010; 634:121-31. [DOI: 10.1016/j.ejphar.2010.02.038] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 01/25/2010] [Accepted: 02/14/2010] [Indexed: 10/19/2022]
|
14
|
Kreitzer FR, Stella N. The therapeutic potential of novel cannabinoid receptors. Pharmacol Ther 2009; 122:83-96. [PMID: 19248809 DOI: 10.1016/j.pharmthera.2009.01.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Accepted: 01/21/2009] [Indexed: 12/20/2022]
Abstract
Cannabinoids produce a plethora of biological effects, including the modulation of neuronal activity through the activation of CB(1) receptors and of immune responses through the activation of CB(2) receptors. The selective targeting of either of these two receptor subtypes has clear therapeutic value. Recent evidence indicates that some of the cannabinomimetic effects previously thought to be produced through CB(1) and/or CB(2) receptors, be they on neuronal activity, on the vasculature tone or immune responses, still persist despite the pharmacological blockade or genetic ablation of CB(1) and/or CB(2) receptors. This suggests that additional cannabinoid and cannabinoid-like receptors exist. Here we will review this evidence in the context of their therapeutic value and discuss their true belonging to the endocannabinoid signaling system.
Collapse
Affiliation(s)
- Faith R Kreitzer
- Department of Pharmacology, University of Washington, Seattle, WA 98115-7280, USA
| | | |
Collapse
|
15
|
Lee CH, Lee MS, Kim SJ, Je YT, Ryu SH, Lee T. Identification of novel synthetic peptide showing angiogenic activity in human endothelial cells. Peptides 2009; 30:409-18. [PMID: 18992291 DOI: 10.1016/j.peptides.2008.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Revised: 09/30/2008] [Accepted: 10/01/2008] [Indexed: 11/16/2022]
Abstract
A novel synthetic hexapeptide (SFKLRY-NH(2)) that displays angiogenic activity has been identified by positional scanning of a synthetic peptide combinatorial library (PS-SPCL). The peptide induced proliferation, migration, and capillary-like tube formation in primary cultured HUVECs, and augmented vessel sprouting ex vivo while attenuated by the treatment with pertussis toxin (PTX) or U73122 (PLC-inhibitor) suggesting the influence of PTX-sensitive G-proteins and PLC. In addition, SFKLRY-NH(2) up-regulated the expression of VEGF-A in HUVECs and the neutralizing antibody against VEGF suppressed SFKLRY-NH(2)-induced tube formation activity. Taken together, these results suggest that SFKLRY-NH(2) may induce blood vessel formation by PTX-sensitive G protein-coupled receptor-PLC-Ca(2+) signaling cascade leading into VEGF-A expression in HUVECs.
Collapse
Affiliation(s)
- Chang Hee Lee
- SIGMOL Institute of Molecular Medicine, SIGMOL Inc., 790-834 Pohang, South Korea
| | | | | | | | | | | |
Collapse
|
16
|
Sphingosine-1-phosphate promotes lymphangiogenesis by stimulating S1P1/Gi/PLC/Ca2+ signaling pathways. Blood 2008; 112:1129-38. [PMID: 18541717 DOI: 10.1182/blood-2007-11-125203] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The lymphatic system plays pivotal roles in mediating tissue fluid homeostasis and immunity, and excessive lymphatic vessel formation is implicated in many pathological conditions, which include inflammation and tumor metastasis. However, the molecular mechanisms that regulate lymphatic vessel formation remain poorly characterized. Sphingosine-1-phosphate (S1P) is a potent bioactive lipid that is implicated in a variety of biologic processes such as inflammatory responses and angiogenesis. Here, we first report that S1P acts as a lymphangiogenic mediator. S1P induced migration, capillary-like tube formation, and intracellular Ca(2+) mobilization, but not proliferation, in human lymphatic endothelial cells (HLECs) in vitro. Moreover, a Matrigel plug assay demonstrated that S1P promoted the outgrowth of new lymphatic vessels in vivo. HLECs expressed S1P1 and S1P3, and both RNA interference-mediated down-regulation of S1P1 and an S1P1 antagonist significantly blocked S1P-mediated lymphangiogenesis. Furthermore, pertussis toxin, U73122, and BAPTA-AM efficiently blocked S1P-induced in vitro lymphangiogenesis and intracellular Ca(2+) mobilization of HLECs, indicating that S1P promotes lymphangiogenesis by stimulating S1P1/G(i)/phospholipase C/Ca(2+) signaling pathways. Our results suggest that S1P is the first lymphangiogenic bioactive lipid to be identified, and that S1P and its receptors might serve as new therapeutic targets against inflammatory diseases and lymphatic metastasis in tumors.
Collapse
|
17
|
Hashimoto M, Wang X, Mao L, Kobayashi T, Kawasaki S, Mori N, Toews ML, Kim HJ, Cerutis DR, Liu X, Rennard SI. Sphingosine 1-phosphate potentiates human lung fibroblast chemotaxis through the S1P2 receptor. Am J Respir Cell Mol Biol 2008; 39:356-63. [PMID: 18367729 DOI: 10.1165/rcmb.2006-0427oc] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Migration of fibroblasts plays an essential role in tissue repair after injury. Sphingosine 1-phosphate (S1P) is a multifunctional mediator released by many cells that can be released in inflammation and after injury. This study evaluated the effect of S1P on fibroblast chemotaxis toward fibronectin. S1P alone did not affect fibroblast migration, but S1P enhanced fibronectin-directed chemotaxis in a concentration-dependent manner. The effect of S1P was not mimicked by dihydro (dh) S1P or the S1P(1) receptor agonist SEW2871. S1P augmentation of fibroblast chemotaxis, however, was completely blocked by JTE-013, an S1P(2) antagonist, but not by suramin, an S1P(3) antagonist. Suppression of the S1P(2) receptor by small interfering (si)RNA also completely blocked S1P augmentation of fibroblast chemotaxis to fibronectin. S1P stimulated Rho activation and focal adhesion kinase (FAK) phosphorylation, and these were also significantly inhibited by the S1P(2) receptor antagonist (JTE-013) or by S1P(2) siRNA. Further, the potentiation of S1P signaling was blocked by the Rho-kinase inhibitor Y-27632 in a concentration-dependent manner. Inhibition of FAK with siRNA reduced basal chemotaxis toward fibronectin slightly but significantly, and almost completely blocked S1P augmented chemotaxis. These results suggest that S1P-augmented fibroblast chemotaxis toward fibronectin depends on the S1P(2) receptor and requires Rho and Rho-kinase, and FAK phosphorylation. By augmenting fibroblast recruitment, S1P has the potential to modulate tissue repair after injury. The pathways by which S1P mediates this effect, therefore, represent a potential therapeutic target to affect tissue repair and remodeling.
Collapse
Affiliation(s)
- Mitsu Hashimoto
- Department of Pathology, Nagoya University School of Medicine, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Gorshkova I, He D, Berdyshev E, Usatuyk P, Burns M, Kalari S, Zhao Y, Pendyala S, Garcia JGN, Pyne NJ, Brindley DN, Natarajan V. Protein kinase C-epsilon regulates sphingosine 1-phosphate-mediated migration of human lung endothelial cells through activation of phospholipase D2, protein kinase C-zeta, and Rac1. J Biol Chem 2008; 283:11794-806. [PMID: 18296444 DOI: 10.1074/jbc.m800250200] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The signaling pathways by which sphingosine 1-phosphate (S1P) potently stimulates endothelial cell migration and angiogenesis are not yet fully defined. We, therefore, investigated the role of protein kinase C (PKC) isoforms, phospholipase D (PLD), and Rac in S1P-induced migration of human pulmonary artery endothelial cells (HPAECs). S1P-induced migration was sensitive to S1P(1) small interfering RNA (siRNA) and pertussis toxin, demonstrating coupling of S1P(1) to G(i). Overexpression of dominant negative (dn) PKC-epsilon or -zeta, but not PKC-alpha or -delta, blocked S1P-induced migration. Although S1P activated both PLD1 and PLD2, S1P-induced migration was attenuated by knocking down PLD2 or expressing dnPLD2 but not PLD1. Blocking PKC-epsilon, but not PKC-zeta, activity attenuated S1P-mediated PLD stimulation, demonstrating that PKC-epsilon, but not PKC-zeta, was upstream of PLD. Transfection of HPAECs with dnRac1 or Rac1 siRNA attenuated S1P-induced migration. Furthermore, transfection with PLD2 siRNA, infection of HPAECs with dnPKC-zeta, or treatment with myristoylated PKC-zeta peptide inhibitor abrogated S1P-induced Rac1 activation. These results establish that S1P signals through S1P(1) and G(i) to activate PKC-epsilon and, subsequently, a PLD2-PKC-zeta-Rac1 cascade. Activation of this pathway is necessary to stimulate the migration of lung endothelial cells, a key component of the angiogenic process.
Collapse
Affiliation(s)
- Irina Gorshkova
- Department of Medicine, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Morishita R, Ueda H, Ito H, Takasaki J, Nagata KI, Asano T. Involvement of Gq/11 in both integrin signal-dependent and -independent pathways regulating endothelin-induced neural progenitor proliferation. Neurosci Res 2007; 59:205-14. [PMID: 17707940 DOI: 10.1016/j.neures.2007.06.1478] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Revised: 06/04/2007] [Accepted: 06/27/2007] [Indexed: 12/28/2022]
Abstract
We have previously shown that endothelin-B receptor stimulation increases neural progenitor proliferation, partly in G(i) and extracellular matrix molecule-dependent manner. In the present study, we investigated whether G(q/11) is also involved in this response and how G(i) and G(q/11) might regulate the extracellular signal-regulated kinase (ERK) pathway and integrin signaling. Endothelin-induced ERK phosphorylation was independent of integrin ligands, and an inhibitor of G(q/11), YM-254890, as well as pertussis toxin, partially inhibited endothelin-stimulated phosphorylation of Raf-1 and ERK. Endothelin-stimulated protein kinase C (PKC) was partially inhibited by both YM-254890 and pertussis toxin, while only pertussis toxin attenuated endothelin-induced Ras activation. In contrast, endothelin increased tyrosine phosphorylation of focal adhesion kinase (FAK) and paxillin in an integrin ligand-dependent manner. Both YM-254890 and pertussis toxin partially inhibited endothelin-stimulated phosphorylation of these proteins. A PKC inhibitor and down-regulation of PKC prevented endothelin-induced phosphorylation of paxillin and ERK. In addition, endothelin-induced proliferation and DNA synthesis were partially inhibited by YM-254890 and pertussis toxin. Taken together, the results indicate that endothelin activates PKC via G(q/11) and G(i), and consequently stimulates the ERK cascade in cooperation with Ras signaling stimulated by G(i). PKC appears to increase tyrosine phosphorylation of paxillin to enhance integrin signaling, which further increases DNA synthesis and proliferation.
Collapse
Affiliation(s)
- Rika Morishita
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center, Kamiya-cho, Kasugai, Aichi 480-0392, Japan
| | | | | | | | | | | |
Collapse
|
20
|
Kou R, Michel T. Epinephrine regulation of the endothelial nitric-oxide synthase: roles of RAC1 and beta3-adrenergic receptors in endothelial NO signaling. J Biol Chem 2007; 282:32719-29. [PMID: 17855349 DOI: 10.1074/jbc.m706815200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
beta-Adrenergic receptors (betaAR) play an important role in vasodilation, but the mechanisms whereby adrenergic pathways regulate the endothelial isoform of nitric-oxide synthase (eNOS) are incompletely understood. We found that epinephrine significantly increases eNOS activity in cultured bovine aortic endothelial cells (BAEC). Epinephrine-dependent eNOS activation was accompanied by an increase in phosphorylation of eNOS at Ser(1179) and with decreased eNOS phosphorylation at the inhibitory phosphoresidues Ser(116) and Thr(497). Epinephrine promoted activation of the small G protein Rac1 and also led to the activation of protein kinase A. All of these responses to epinephrine in BAEC were blocked by the beta(3)AR blocker SR59230A. We transfected and validated duplex small interfering RNA (siRNA) constructs to selectively "knock down" specific signaling proteins in BAEC. siRNA-mediated knockdown of Rac1 completely blocked all beta(3)AR signaling to eNOS and also abrogated epinephrine-dependent cAMP-dependent protein kinase (PKA) and Akt activation. However, siRNA-mediated knockdown of PKA did not affect Rac1 activation by epinephrine but did attenuate Akt activation by epinephrine. These findings indicate that Rac1 is an upstream regulator of beta(3)AR signaling to PKA and to eNOS and identify a novel beta(3)AR --> Rac1 --> PKA --> Akt pathway in endothelium. We exploited the p21-activated kinase pulldown assay to identify proteins associated with activated Rac1 and found that epinephrine stimulated the association of eNOS with Rac1; epinephrine-stimulated eNOS-Rac1 interactions were blocked by the beta(3)AR antagonist SR59230A. Co-transfection of eNOS cDNA with constitutively active Rac1 enhanced beta(3)AR-promoted eNOS-Rac1 association; co-transfection of eNOS with dominant negative Rac1 completely blocked the eNOS-Rac1 association. We also found that epinephrine-induced Rac1 --> PKA --> Akt pathway mediates beta(3)AR-mediated endothelial cell migration. Taken together, our data establish that the small G protein Rac1 is a key regulator of beta(3)AR signaling in cultured aortic endothelial cells with potentially important implications for the pathways involved in adrenergic modulation of eNOS pathways in the vascular wall.
Collapse
Affiliation(s)
- Ruqin Kou
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | | |
Collapse
|
21
|
Wacker BK, Alford SK, Scott EA, Das Thakur M, Longmore GD, Elbert DL. Endothelial cell migration on RGD-peptide-containing PEG hydrogels in the presence of sphingosine 1-phosphate. Biophys J 2007; 94:273-85. [PMID: 17827231 PMCID: PMC2134859 DOI: 10.1529/biophysj.107.109074] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Sphingosine 1-phosphate (S1P) is a potent chemokinetic agent for endothelial cells that is released by activated platelets. We previously developed Arg-Gly-Asp (RGD)-containing polyethylene glycol biomaterials for the controlled delivery of S1P to promote endothelialization. Here, we studied the effects of cell adhesion strength on S1P-stimulated endothelial cell migration in the presence of arterial levels of fluid shear stress, since an upward shift in optimal cell adhesion strengths may be beneficial for promoting long-term cell adhesion to materials. Two RGD peptides with different integrin-binding specificities were added to the polyethylene glycol hydrogels. A linear RGD bound primarily to beta(3) integrins, whereas a cyclic RGD bound through both beta(1) and beta(3) integrins. We observed increased focal adhesion formation and better long-term adhesion in flow with endothelial cells on linear RGD peptide, versus cyclic RGD, even though initial adhesion strengths were higher for cells on cyclic RGD. Addition of 100 nM S1P increased cell speed and random motility coefficients on both RGD peptides, with the largest increases found on cyclic RGD. For both peptides, much of the increase in cell migration speed was found for smaller cells (<1522 microm(2) projected area), although the large increases on cyclic RGD were also due to medium-sized cells (2288-3519 microm(2)). Overall, a compromise between high cell migration rates and long-term adhesion will be important in the design of materials that endothelialize after implantation.
Collapse
Affiliation(s)
- Bradley K Wacker
- Department of Biomedical Engineering and Center for Materials Innovation, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| | | | | | | | | | | |
Collapse
|
22
|
Birukova AA, Chatchavalvanich S, Oskolkova O, Bochkov VN, Birukov KG. Signaling pathways involved in OxPAPC-induced pulmonary endothelial barrier protection. Microvasc Res 2007; 73:173-81. [PMID: 17292425 PMCID: PMC1934559 DOI: 10.1016/j.mvr.2006.12.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2006] [Accepted: 12/20/2006] [Indexed: 11/27/2022]
Abstract
Increased tissue or serum levels of oxidized phospholipids have been detected in a variety of chronic and acute pathological conditions such as hyperlipidemia, atherosclerosis, heart attack, cell apoptosis, acute inflammation and injury. We have recently described signaling cascades activated by oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (OxPAPC)in the human pulmonary artery endothelial cells (EC) and reported potent barrier-protective effects of OxPAPC, which were mediated by small GTPases Rac and Cdc42. In this study we have further characterized signal transduction pathways involved in the OxPAPC-mediated endothelial barrier protection. Inhibitors of small GTPases, protein kinase A (PKA), protein kinase C (PKC), Src family kinases and general inhibitors of tyrosine kinases attenuated OxPAPC-induced barrier-protective response and EC cytoskeletal remodeling. In contrast, small GTPase Rho, Rho kinase, Erk-1,2 MAP kinase and p38 MAP kinase and PI3-kinase were not involved in the barrier-protective effects of OxPAPC. Inhibitors of PKA, PKC, tyrosine kinases and small GTPase inhibitor toxin B suppressed OxPAPC-induced Rac activation and decreased phosphorylation of focal adhesion kinase (FAK) and paxillin. Barrier-protective effects of OxPAPC were not reproduced by platelet activating factor (PAF), which at high concentrations induced barrier dysfunction, but were partially attenuated by PAF receptor antagonist A85783. These results demonstrate for the first time upstream signaling cascades involved in the OxPAPC-induced Rac activation, cytoskeletal remodeling and barrier regulation and suggest PAF receptor-independent mechanisms of OxPAPC-mediated endothelial barrier protection.
Collapse
Affiliation(s)
- Anna A Birukova
- Section of Pulmonary and Critical Medicine, Department of Medicine, Division of Biomedical Sciences, University of Chicago, 929 East 57th Street, CIS Bldg., W410, Chicago, IL 60637, USA
| | | | | | | | | |
Collapse
|
23
|
Smicun Y, Reierstad S, Wang FQ, Lee C, Fishman DA. S1P regulation of ovarian carcinoma invasiveness. Gynecol Oncol 2006; 103:952-9. [PMID: 16956652 DOI: 10.1016/j.ygyno.2006.06.036] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2006] [Revised: 05/03/2006] [Accepted: 06/01/2006] [Indexed: 01/24/2023]
Abstract
OBJECTIVES Within the tumor microenvironment the invasiveness of epithelial ovarian carcinoma (EOC) cells is stimulated by biologically active lipids such as lysophosphatidic acid (LPA). We tested the in vitro effect of another bioactive lysophospholipid, sphingosine-1-phosphate (S1P), on the invasiveness of EOC cells. METHODS Dov13 EOC cells were tested for invasion through matrigel-coated chambers and for gelatinase activity using a fluorogenic assay. cDNA was analyzed through real-time PCR. Cell surface proteins, isolated through biotinylation and affinity purification, were analyzed by Western blots. RESULTS Invasion of Dov13 cells was enhanced by low (0.5 microM) and inhibited by high (20 microM) concentrations of S1P, which correlated with increased and reduced gelatinase activity in conditioned media. Low and high S1P dose also differently affected the presentation of surface S1P receptors; low S1P dose increased S1P1 and decreased S1P2, while high S1P increased S1P3. LPA and S1P differently altered transcript levels of their respective and reciprocal receptors; receptors that were upregulated by one lysophospholipid (S1P2,3 and LPA1 by LPA, LPA3,4 and S1P1,4,5 by S1P) were downregulated or unchanged by the other. CONCLUSIONS The dual effect of high and low S1P concentration on invasion was probably caused by the diverse changes to the presentation of surface S1P receptors. The opposite effect of S1P and LPA on expression of each receptor suggests a homeostatic transcriptional mechanism that abrogates the effects of LPA and S1P on EOC cells. Altogether this study demonstrates a complex role of S1P in EOC cell invasion, a process highly balanced and regulated by LPA and S1P within the tumor microenvironment.
Collapse
Affiliation(s)
- Yoel Smicun
- Department of Obstetrics and Gynecology, New York University School of Medicine, 550 First Avenue, NB-9N28, New York, NY 10016, USA
| | | | | | | | | |
Collapse
|
24
|
Abstract
The microvascular endothelial cell monolayer localized at the critical interface between the blood and vessel wall has the vital functions of regulating tissue fluid balance and supplying the essential nutrients needed for the survival of the organism. The endothelial cell is an exquisite “sensor” that responds to diverse signals generated in the blood, subendothelium, and interacting cells. The endothelial cell is able to dynamically regulate its paracellular and transcellular pathways for transport of plasma proteins, solutes, and liquid. The semipermeable characteristic of the endothelium (which distinguishes it from the epithelium) is crucial for establishing the transendothelial protein gradient (the colloid osmotic gradient) required for tissue fluid homeostasis. Interendothelial junctions comprise a complex array of proteins in series with the extracellular matrix constituents and serve to limit the transport of albumin and other plasma proteins by the paracellular pathway. This pathway is highly regulated by the activation of specific extrinsic and intrinsic signaling pathways. Recent evidence has also highlighted the importance of the heretofore enigmatic transcellular pathway in mediating albumin transport via transcytosis. Caveolae, the vesicular carriers filled with receptor-bound and unbound free solutes, have been shown to shuttle between the vascular and extravascular spaces depositing their contents outside the cell. This review summarizes and analyzes the recent data from genetic, physiological, cellular, and morphological studies that have addressed the signaling mechanisms involved in the regulation of both the paracellular and transcellular transport pathways.
Collapse
Affiliation(s)
- Dolly Mehta
- Center of Lung and Vascular Biology, Dept. of Pharmacology (M/C 868), University of Illinois, 835 S. Wolcott Avenue, Chicago, IL 60612, USA
| | | |
Collapse
|
25
|
Lee SJ, Kim KM, Namkoong S, Kim CK, Kang YC, Lee H, Ha KS, Han JA, Chung HT, Kwon YG, Kim YM. Nitric Oxide Inhibition of Homocysteine-induced Human Endothelial Cell Apoptosis by Down-regulation of p53-dependent Noxa Expression through the Formation of S-Nitrosohomocysteine. J Biol Chem 2005; 280:5781-8. [PMID: 15561702 DOI: 10.1074/jbc.m411224200] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Hyperhomocysteinemia is believed to induce endothelial dysfunction and promote atherosclerosis; however, the pathogenic mechanism has not been clearly elucidated. In this study, we examined the molecular mechanism by which homocysteine (HCy) causes endothelial cell apoptosis and by which nitric oxide (NO) affects HCy-induced apoptosis. Our data demonstrated that HCy caused caspase-dependent apoptosis in cultured human umbilical vein endothelial cells, as determined by cell viability, nuclear condensation, and caspase-3 activation and activity. These apoptotic characteristics were correlated with reactive oxygen species (ROS) production, lipid peroxidation, p53 and Noxa expression, and mitochondrial cytochrome c release following HCy treatment. HCy also induced p53 and Noxa expression and apoptosis in endothelial cells from wild type mice but not in the p53-deficient cells. The NO donor S-nitroso-N-acetylpenicillamine, adenoviral transfer of inducible NO synthase gene, and antioxidants (alpha-tocopherol and superoxide dismutase plus catalase) but not oxidized SNAP, 8-Br-cGMP, nitrite, and nitrate, suppressed ROS production, p53-dependent Noxa expression, and apoptosis induced by HCy. The cytotoxic effect of HCy was decreased by small interfering RNA-mediated suppression of Noxa expression, indicating that Noxa up-regulation plays an important role in HCy-induced endothelial cell apoptosis. Overexpression of inducible NO synthase increased the formation of S-nitroso-HCy, which was inhibited by the NO synthase inhibitor N-monomethyl-l-arginine. Moreover, S-nitroso-HCy did not increase ROS generation, p53-dependent Noxa expression, and apoptosis. These results suggest that up-regulation of p53-dependent Noxa expression may play an important role in the pathogenesis of atherosclerosis induced by HCy and that an increase in vascular NO production may prevent HCy-induced endothelial dysfunction by S-nitrosylation.
Collapse
Affiliation(s)
- Seon-Jin Lee
- Vascular System Research Center and Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chunchon, Kangwon-do 200-701, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Lee H, Lin CI, Liao JJ, Lee YW, Yang HY, Lee CY, Hsu HY, Wu HL. Lysophospholipids increase ICAM-1 expression in HUVEC through a Gi- and NF-kappaB-dependent mechanism. Am J Physiol Cell Physiol 2004; 287:C1657-66. [PMID: 15294853 DOI: 10.1152/ajpcell.00172.2004] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S-1-P) are both low molecular weight lysophospholipid (LPL) ligands that are recognized by the Edg family of G protein-coupled receptors. In endothelial cells, these two ligands activate Edg receptors, resulting in cell proliferation and cell migration. The intercellular adhesion molecule-1 (ICAM-1, CD54) is one of many cell adhesion molecules belonging to the immunoglobulin superfamily. This study showed that LPA and S-1-P enhance ICAM-1 expression at both the mRNA and protein levels in human umbilical cord vein endothelial cells (HUVECs). This enhanced ICAM-1 expression in HUVECs was first observed at 2 h postligand treatment. Maximal expression appeared at 8 h postligand treatment, as detected by flow cytometry and Western blotting. Furthermore, the effects of S-1-P on ICAM-1 expression were shown to be concentration dependent. Prior treatment of HUVECs with pertussis toxin, a specific inhibitor of G(i), ammonium pyrrolidinedithiocarbamate and BAY 11-7082, inhibitors of the nuclear factor (NF)-kappaB pathway, or Clostridium difficile toxin B, an inhibitor of Rac, prevented the enhanced effect of LPL-induced ICAM-1 expression. However, pretreatment of HUVECs with exoC3, an inhibitor of Rho, had no effect on S-1-P-enhanced ICAM-1 expression. In a static cell-cell adhesion assay system, pretreatment of LPL enhanced the adhesion between HUVECs and U-937 cells, a human mononucleated cell line. The enhanced adhesion effect could be prevented by preincubation with a functional blocking antibody against human ICAM-1. These results suggest that LPLs released by activated platelets might enhance interactions of leukocytes with the endothelium through a G(i)-, NF-kappaB-, and possibly Rac-dependent mechanism, thus facilitating wound healing and inflammation processes.
Collapse
Affiliation(s)
- Hsinyu Lee
- Department of Life Science and Institute of Zoology, National Taiwan University, Taipei, Taiwan 106, ROC.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Sauer B, Vogler R, von Wenckstern H, Fujii M, Anzano MB, Glick AB, Schäfer-Korting M, Roberts AB, Kleuser B. Involvement of Smad signaling in sphingosine 1-phosphate-mediated biological responses of keratinocytes. J Biol Chem 2004; 279:38471-9. [PMID: 15247277 DOI: 10.1074/jbc.m313557200] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The lysophospholipid sphingosine 1-phosphate and the cytokine-transforming growth factor beta are both released from degranulating platelets at wound sites, suggesting a broad spectrum of effects involved in wound healing. Interestingly, both of these molecules have been previously shown to induce chemotaxis but to strongly inhibit the growth of keratinocytes, while stimulating the proliferation of fibroblasts. In contrast to sphingosine 1-phosphate, the signaling cascade of the growth factor has been extensively examined. Specifically, Smad3 has been shown to be an essential mediator of transforming growth factor beta-dependent chemotaxis of keratinocytes and mediates, in part, its growth-inhibitory effect. Here we show that sphingosine 1-phosphate, independently of transforming growth factor beta secretion, induces a rapid phosphorylation of Smad3 on its C-terminal serine motif and induces its partnering with Smad4 and the translocation of the complex into the nucleus. Moreover, sphingosine 1-phosphate fails to induce chemotaxis or inhibit the growth of Smad3-deficient keratinocytes, suggesting that Smad3 plays an unexpected functional role as a new target in sphingosine 1-phosphate signaling. Both sphingosine 1-phosphate receptors and the transforming growth factor beta-type I receptor serine/threonine kinase are essential for activation of Smad3 by this lysophospholipid and the dependent biological responses, indicating a novel cross-talk between serine/threonine kinase receptors and G-protein coupled receptors.
Collapse
Affiliation(s)
- Bettina Sauer
- Institute of Pharmacy, Pharmacology and Toxicology, Free University Berlin, Königin-Luise-Strasse 2+4, D-14195 Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Shimamura K, Takashiro Y, Akiyama N, Hirabayashi T, Murayama T. Expression of adhesion molecules by sphingosine 1-phosphate and histamine in endothelial cells. Eur J Pharmacol 2004; 486:141-50. [PMID: 14975703 DOI: 10.1016/j.ejphar.2003.12.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2003] [Accepted: 12/10/2003] [Indexed: 11/25/2022]
Abstract
We investigated the effects of sphingosine 1-phosphate and histamine on the expression of vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1) and E-selectin, and their signaling pathways in human umbilical vein endothelial cells. Sphingosine 1-phosphate increased the mRNA and protein level of VCAM-1, and the mRNAs of E-selectin and ICAM-1. The effects of sphingosine 1-phosphate were inhibited by the pertussis toxin and the respective inhibitors (10 microM 1-[6-[[(17beta)-3-methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-1H-pyrrole-2,5-dione (U73122) for phosphoinositide-specific phospholipase C; 10 microM 4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)-1H-imidazole (SB203580) for p38 mitogen-activated protein kinase (MAPK); 1 microM 12-(2-cyanoethyl)-6,7,12,13-tetrahydro-13-methyl-5-oxo-5H-indolo(2,3-a)pyrrolo(3,4-c)-carbazole (Gö6976) for the alpha form of protein kinase C (PKC-alpha)), but not by a PKC-delta inhibitor (1 microM rottlerin). Histamine, which alone showed no effect, enhanced the sphingosine 1-phosphate-induced expressions via histamine H(1) receptor. The histamine response decreased by U73122 and rottlerin, but not by SB203580 and Gö6976. The effects of sphingosine 1-phosphate with and without histamine were abolished by the higher concentrations of PKC inhibitors and in the PKC-depleted cells. Sphingosine 1-phosphate and histamine alone stimulated phosphorylation of p38 MAPK in a phosphoinositide-specific phospholipase C-dependent but not in a PKCs-independent manner. These findings suggest that sphingosine 1-phosphate-induced expression of adhesion molecules was mediated by phosphoinositide-specific phospholipase C and preferentially by PKC-alpha and p38 MAPK, and the histamine response was mediated by phosphoinositide-specific phospholipase C and PKC-delta in human umbilical vein endothelial cells.
Collapse
Affiliation(s)
- Ken Shimamura
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 263-8522, Japan
| | | | | | | | | |
Collapse
|
29
|
Abstract
Sphingosine-1-phosphate (SIP) is a bioactive sphingolipid metabolite that regulates diverse cellular responses including, growth, survival, cytoskeleton rearrangements and movement. SIP plays an important role during development, particularly in vascular maturation and has been implicated in pathophysiology of cancer, wound healing, and atherosclerosis. This review summarizes the evidence showing that signaling induced by SIP is complex and involves both intracellular and extracellular actions. The intracellular effects of SIP remain speculative awaiting the identification of specific targets whereas the extracellular effects of SIP are clearly mediated through the activation of five specific G protein coupled receptors, called S1P1-5. Recent studies demonstrate that intracellular generated SIP can act in a paracrine or autocrine manner to activate its cell surface receptors.
Collapse
Affiliation(s)
- Kenneth Watterson
- Department of Biochemistry, Medical College of Virginia Campus, Virginia Commonwealth University, Tichmond, VA 23298, USA
| | | | | | | |
Collapse
|
30
|
Wang L, Cummings R, Usatyuk P, Morris A, Irani K, Natarajan V. Involvement of phospholipases D1 and D2 in sphingosine 1-phosphate-induced ERK (extracellular-signal-regulated kinase) activation and interleukin-8 secretion in human bronchial epithelial cells. Biochem J 2002; 367:751-60. [PMID: 12149127 PMCID: PMC1222936 DOI: 10.1042/bj20020586] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2002] [Revised: 07/29/2002] [Accepted: 07/30/2002] [Indexed: 11/17/2022]
Abstract
Sphingosine 1-phosphate (S1P), a metabolite of sphingomyelin degradation, stimulates interleukin-8 (IL-8) secretion in human bronchial epithelial (Beas-2B) cells. The molecular mechanisms regulating S1P-mediated IL-8 secretion are yet to be completely defined. Here we provide evidence that activation of phospholipases D1 and D2 (PLD1 and PLD2) by S1P regulates the phosphorylation of extracellular-signal-regulated kinase (ERK) and IL-8 secretion in Beas-2B cells. S1P, in a time- and dose-dependent manner, enhanced the threonine/tyrosine phosphorylation of ERK. The inhibition of S1P-induced ERK phosphorylation by pertussis toxin and PD 98059 indicated coupling of S1P receptors to G(i) and the ERK signalling cascade respectively. Treatment of Beas-2B cells with butan-1-ol, but not butan-3-ol, abrogated the S1P-induced phosphorylation of Raf-1 and ERK, suggesting that PLD is involved in this activation. The roles of PLD1 and PLD2 in ERK activation and IL-8 secretion activated by S1P were investigated by infecting cells with adenoviral constructs of wild-type and catalytically inactive mutants of PLD1 and PLD2. Infection of Beas-2B cells with the wild-type constructs resulted in the activation of PLD1 and PLD2 by S1P and PMA. Also, the enhanced production of [(32)P]phosphatidic acid and [(32)P]phosphatidylbutanol in the presence of butan-1-ol and the increased phosphorylation of ERK by S1P were blocked by the catalytically inactive mutants hPLD1-K898R and mPLD2-K758R. Transient transfection of Beas-2B cells with human PLD1 and mouse PLD2 cDNAs potentiated S1P-mediated IL-8 secretion compared with vector controls. In addition, PD 98059 attenuated IL-8 secretion induced by S1P in a dose-dependent fashion. These results demonstrate that both PLD1 and PLD2 participate in S1P stimulation of ERK phosphorylation and IL-8 secretion in bronchial epithelial cells.
Collapse
Affiliation(s)
- Lixin Wang
- Department of Medicine, Division of Pulmonary and Critical Care, Johns Hopkins University, Baltimore, MD 21224, USA
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
Endothelial permeability depends on the integrity of intercellular junctions as well as actomyosin-based cell contractility. Rho GTPases have been implicated in signalling by many vasoactive substances including thrombin, tumour necrosis factor alpha (TNF-alpha), bradykinin, histamine, lysophosphatidic acid (LPA), vascular endothelial growth factor (VEGF), and hepatocyte growth factor (HGF). Two Rho family GTPases, Rho and Rac, have emerged as key regulators acting antagonistically to regulate endothelial barrier function: Rho increases actomyosin contractility, which facilitates breakdown of intercellular junctions, whereas Rac stabilizes endothelial junctions and counteracts the effects of Rho. In this review, we present evidence for the opposing effects of these two regulatory proteins and discuss links between them and other key signalling molecules such as cyclic AMP (cAMP), cyclic GMP (cGMP), phosphatidylinositide 3-kinases (PI3Ks), mitogen-activated protein kinases (MAPKs), and protein kinases C (PKCs). We also discuss strategies for targeting Rho GTPase signalling in therapies for diseases involving altered endothelial permeability.
Collapse
Affiliation(s)
- Beata Wojciak-Stothard
- Ludwig Institute for Cancer Research, Royal Free and University College School of Medicine Branch, 91 Riding House Street, London W1W 7BS, UK.
| | | |
Collapse
|
32
|
Kim YM, Kim YM, Lee YM, Kim HS, Kim JD, Choi Y, Kim KW, Lee SY, Kwon YG. TNF-related activation-induced cytokine (TRANCE) induces angiogenesis through the activation of Src and phospholipase C (PLC) in human endothelial cells. J Biol Chem 2002; 277:6799-805. [PMID: 11741951 DOI: 10.1074/jbc.m109434200] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Angiogenesis is an essential step for many physiological and pathological processes. Tumor necrosis factor (TNF) superfamily cytokines are increasingly recognized as key modulators of angiogenesis. In this study, we tested whether TNF-related activation-induced cytokine (TRANCE), a new member of the TNF superfamily, possesses angiogenic activity in vitro and in vivo. TRANCE stimulated DNA synthesis, chemotactic motility, and capillary-like tube formation in primary cultured human umbilical vein endothelial cells (HUVECs). Both Matrigel plug assay in mice and chick chorioallantoic membrane assay revealed that TRANCE potently induced neovascularization in vivo. TRANCE had no effect on vascular endothelial growth factor (VEGF) expression in HUVECs and TRANCE-induced angiogenic activity was not suppressed by VEGF-neutralizing antibody, implying that TRANCE-induced angiogenesis may be the result of its direct action on endothelial cells. TRANCE evoked a time- and dose-dependent activation of the mitogen-activated protein kinases ERK1/2 and focal adhesion kinase p125(FAK) in HUVECs, which are closely linked to angiogenesis. These signaling events were blocked by the Src inhibitor PP1 or the phospholipase C (PLC) inhibitor. Furthermore, these inhibitors and the Ca(2+) chelator BAPTA-AM suppressed TRANCE-induced HUVEC migration. These results indicate that the angiogenic activity of TRANCE is mediated through the Src-PLC-Ca(2+) signaling cascade upon receptor engagement in endothelial cells, suggesting the role of TRANCE in neovessel formation under physiological and pathological conditions.
Collapse
Affiliation(s)
- Young-Mi Kim
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chunchon, Kangwon-Do 200-701, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Rosenfeldt HM, Hobson JP, Maceyka M, Olivera A, Nava VE, Milstien S, Spiegel S. EDG-1 links the PDGF receptor to Src and focal adhesion kinase activation leading to lamellipodia formation and cell migration. FASEB J 2001; 15:2649-59. [PMID: 11726541 DOI: 10.1096/fj.01-0523com] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Sphingosine-1-phosphate (SPP), formed by sphingosine kinase, is the ligand for EDG-1, a GPCR important for cell migration and vascular maturation. Here we show that cytoskeletal rearrangements, lamellipodia extensions, and cell motility induced by platelet-derived growth factor (PDGF) are abrogated in EDG-1 null fibroblasts. However, EDG-1 appears to be dispensable for mitogenicity and survival effects, even those induced by its ligand SPP and by PDGF. Furthermore, PDGF induced focal adhesion formation and activation of FAK, Src, and stress-activated protein kinase 2, p38, were dysregulated in the absence of EDG-1. In contrast, tyrosine phosphorylation of the PDGFR and activation of extracellular signal regulated kinase (ERK1/2), important for growth and survival, were unaltered. Our results suggest that EDG-1 functions as an integrator linking the PDGFR to lamellipodia extension and cell migration. PDGF, which stimulates sphingosine kinase, leading to increased SPP levels in many cell types, also induces translocation of sphingosine kinase to membrane ruffles. Hence, recruitment of sphingosine kinase to the cell's leading edge and localized formation of SPP may spatially and temporally stimulate EDG-1, resulting in activation and integration of downstream signals important for directional movement toward chemoattractants, such as PDGF. These results may also shed light on the vital role of EDG-1 in vascular maturation.
Collapse
MESH Headings
- 3T3 Cells
- Animals
- Apoptosis/drug effects
- Biological Transport/drug effects
- Cell Division/drug effects
- Cell Movement/physiology
- Cells, Cultured
- Chemotaxis/drug effects
- Cytoskeleton/drug effects
- DNA/biosynthesis
- DNA/drug effects
- Embryo, Mammalian/cytology
- Embryo, Mammalian/metabolism
- Enzyme Activation
- Fibroblasts/cytology
- Fibroblasts/drug effects
- Fibroblasts/metabolism
- Focal Adhesion Kinase 1
- Focal Adhesion Protein-Tyrosine Kinases
- Genotype
- Green Fluorescent Proteins
- Immediate-Early Proteins/genetics
- Immediate-Early Proteins/physiology
- Luminescent Proteins/drug effects
- Luminescent Proteins/genetics
- Luminescent Proteins/metabolism
- Lysophospholipids
- Mice
- Mice, Knockout
- Microscopy, Confocal
- Phosphorylation
- Phosphotransferases (Alcohol Group Acceptor)/drug effects
- Phosphotransferases (Alcohol Group Acceptor)/genetics
- Phosphotransferases (Alcohol Group Acceptor)/metabolism
- Platelet-Derived Growth Factor/pharmacology
- Protein-Tyrosine Kinases/metabolism
- Pseudopodia/physiology
- Receptors, Cell Surface
- Receptors, G-Protein-Coupled
- Receptors, Lysophospholipid
- Receptors, Platelet-Derived Growth Factor/metabolism
- Receptors, Platelet-Derived Growth Factor/physiology
- Recombinant Fusion Proteins/drug effects
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Signal Transduction
- Sphingosine/analogs & derivatives
- Sphingosine/pharmacology
- Time Factors
- src-Family Kinases/metabolism
Collapse
Affiliation(s)
- H M Rosenfeldt
- Department of Biochemistry and Molecular Biology, Georgetown University Medical Center, Washington, D.C. 20007, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Levade T, Augé N, Veldman RJ, Cuvillier O, Nègre-Salvayre A, Salvayre R. Sphingolipid mediators in cardiovascular cell biology and pathology. Circ Res 2001; 89:957-68. [PMID: 11717151 DOI: 10.1161/hh2301.100350] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Sphingolipids have emerged as a new class of lipid mediators. In response to various extracellular stimuli, sphingolipid turnover can be stimulated in vascular cells and cardiac myocytes. Subsequent generation of sphingolipid molecules such as ceramide, sphingosine, and sphingosine-1-phosphate, is followed by regulation of ion fluxes and activation of various signaling pathways leading to smooth muscle cell proliferation, endothelial cell differentiation or apoptotic cell death, cell contraction, retraction, or migration. The importance of sphingolipids in cardiovascular signaling is illustrated by recent observations implicating them in physiological processes such as vasculogenesis as well as in frequent pathological conditions, including atherosclerosis and its complications.
Collapse
Affiliation(s)
- T Levade
- INSERM U466, CHU Rangueil, Toulouse, France.
| | | | | | | | | | | |
Collapse
|
35
|
Garcia JG, Liu F, Verin AD, Birukova A, Dechert MA, Gerthoffer WT, Bamberg JR, English D. Sphingosine 1-phosphate promotes endothelial cell barrier integrity by Edg-dependent cytoskeletal rearrangement. J Clin Invest 2001; 108:689-701. [PMID: 11544274 PMCID: PMC209379 DOI: 10.1172/jci12450] [Citation(s) in RCA: 686] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Substances released by platelets during blood clotting are essential participants in events that link hemostasis and angiogenesis and ensure adequate wound healing and tissue injury repair. We assessed the participation of sphingosine 1-phosphate (Sph-1-P), a biologically active phosphorylated lipid growth factor released from activated platelets, in the regulation of endothelial monolayer barrier integrity, which is key to both angiogenesis and vascular homeostasis. Sph-1-P produced rapid, sustained, and dose-dependent increases in transmonolayer electrical resistance (TER) across both human and bovine pulmonary artery and lung microvascular endothelial cells. This substance also reversed barrier dysfunction elicited by the edemagenic agent thrombin. Sph-1-P-mediated barrier enhancement was dependent upon G(ialpha)-receptor coupling to specific members of the endothelial differentiation gene (Edg) family of receptors (Edg-1 and Edg-3), Rho kinase and tyrosine kinase-dependent activation, and actin filament rearrangement. Sph-1-P-enhanced TER occurred in conjunction with Rac GTPase- and p21-associated kinase-dependent endothelial cortical actin assembly with recruitment of the actin filament regulatory protein, cofilin. Platelet-released Sph-1-P, linked to Rac- and Rho-dependent cytoskeletal rearrangement, may act late in angiogenesis to stabilize newly formed vessels, which often display abnormally increased vascular permeability.
Collapse
Affiliation(s)
- J G Garcia
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21224, USA.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Shinohara Y, Nakajima Y, Nakanishi S. Glutamate induces focal adhesion kinase tyrosine phosphorylation and actin rearrangement in heterologous mGluR1-expressing CHO cells via calcium/calmodulin signaling. J Neurochem 2001; 78:365-73. [PMID: 11461972 DOI: 10.1046/j.1471-4159.2001.00415.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Group 1 metabotropic glutamate receptors (mGluR1 and mGluR5) stimulate phospholipase C (PLC) and lead to mobilization of intracellular Ca(2+) and activation of protein kinase C (PKC). In this investigation, using heterologous receptor-expressing Chinese hamster ovary (CHO) cells, we showed that stimulation of mGluR1 or mGluR5 with glutamate rapidly increases tyrosine phosphorylation of focal adhesion kinase (FAK) (maximum at 1-3 min) in a dose-dependent manner (half-maximal responses at approximately 2 microM). In mGluR1-expressing cells, the glutamate-induced increase of FAK tyrosine phosphorylation was blocked by not only the PLC inhibitor, U73122, but also depletion of intracellular Ca(2+) and effectively abrogated by calmodulin (CaM) inhibitors, calmidazolium and fluphenazine. However, neither the PKC inhibitor, GF109203X, nor the CaM kinase II inhibitor, KN-62, inhibited glutamate-stimulated FAK tyrosine phosphorylation. Stimulation of mGluR1 caused a marked increase in actin stress fiber formation. Importantly, this actin rearrangement was prevented by the CaM inhibitor, but not by the PKC inhibitor and is thus in a good agreement with the signaling cascade of the mGluR1-FAK pathway. These results suggest that the Ca(2+)/CaM signaling and its downstream FAK tyrosine phosphorylation play an important role in cellular function of mGluR1.
Collapse
Affiliation(s)
- Y Shinohara
- Department of Biological Sciences, Faculty of Medicine, Kyoto University, Yoshida, Sakyo-ku, Kyoto, Japan
| | | | | |
Collapse
|
37
|
Kwon YG, Min JK, Kim KM, Lee DJ, Billiar TR, Kim YM. Sphingosine 1-phosphate protects human umbilical vein endothelial cells from serum-deprived apoptosis by nitric oxide production. J Biol Chem 2001; 276:10627-33. [PMID: 11134047 DOI: 10.1074/jbc.m011449200] [Citation(s) in RCA: 157] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Sphingosine 1-phosphate (S1P) can prevent endothelial cell apoptosis. We investigated the molecular mechanisms and signaling pathways by which S1P protects endothelial cells from serum deprivation-induced apoptosis. We show here that human umbilical vein endothelial cells (HUVECs) undergo apoptosis associated with increased DEVDase activity, caspase-3 activation, cytochrome c release, and DNA fragmentation after 24 h of serum deprivation. These apoptotic markers were suppressed by the addition of S1P, the NO donor S-nitroso-N-acetylpenicillamine (100 micrometer), or caspase-3 inhibitor z-VAD-fmk. The protective effects of S1P were reversed by the nitric-oxide synthase (NOS) inhibitor N-monomethyl-l-arginine, but not by the soluble guanylyl cyclase inhibitor 1H-(1,2,4)oxadiazolo[4,3-a]-quanoxaline-1-one, suggesting that NO, but not cGMP, is responsible for S1P protection from apoptosis. Furthermore, S1P increased NO production by enhancing Ca(2+)-sensitive NOS activity without changes in the eNOS protein level. S1P-mediated cell survival and NO production were suppressed significantly by pretreatment with antisense oligonucleotide of EDG-1 and partially by EDG-3 antisense. S1P-mediated NO production was suppressed by the addition of pertussis toxin, an inhibitor of G(i) proteins, the specific inhibitor of phospholipase C (PLC), and the Ca(2+) chelator BAPTA-AM. These findings indicate that S1P protects HUVECs from apoptosis through the activation of eNOS activity mainly through an EDG-1 and -3/G(i)/PLC/Ca(2+) signaling pathway.
Collapse
Affiliation(s)
- Y G Kwon
- Department of Biochemistry, College of Natural Sciences, Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chunchon, Kangwon-do 200-701, Korea.
| | | | | | | | | | | |
Collapse
|
38
|
Yatomi Y, Ozaki Y, Ohmori T, Igarashi Y. Sphingosine 1-phosphate: synthesis and release. Prostaglandins Other Lipid Mediat 2001; 64:107-22. [PMID: 11324700 DOI: 10.1016/s0090-6980(01)00103-4] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sphingosine 1-phosphate (Sph-1-P) is a bioactive sphingolipid, acting both as an intracellular second messenger and extracellular mediator, in mammalian cells. In cell types where Sph-1-P acts as an intracellular messenger, stimulation-dependent synthesis of Sph-1-P, possibly resulting from sphingosine (Sph) kinase activation, is essential. Since this important kinase has recently been cloned, precise regulation of intracellular Sph-1-P synthesis will be clarified in the near future. As an intercellular mediator, elucidation of sources for extracellular Sph-1-P is important, in addition to identification of the cell surface receptors for this phospholipid. Blood platelets are very unique in that they store Sph-1-P abundantly (possibly due to the existence of highly active Sph kinase and a lack of Sph-1-P lyase) and release this bioactive lipid extracellularly upon stimulation. It is likely that platelets are an important source for extracellular Sph-1-P, especially for plasma and serum Sph-1-P. Platelet-derived Sph-1-P seems to play an important role in vascular biology.
Collapse
Affiliation(s)
- Y Yatomi
- Department of Laboratory Medicine, Yamanashi Medical University, Japan.
| | | | | | | |
Collapse
|
39
|
Sphingosine 1-phosphate as a major bioactive lysophospholipid that is released from platelets and interacts with endothelial cells. Blood 2000. [DOI: 10.1182/blood.v96.10.3431.h8003431_3431_3438] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The serum-borne lysophospholipid mediators sphingosine 1-phosphate (Sph-1-P) and lysophosphatidic acid (LPA) have been shown to be released from activated platelets and to act on endothelial cells. In this study, we employed the repeated lipid extraction (under alkaline and acidic conditions), capable of detecting Sph-1-P, LPA, and possibly structurally similar lysophospholipids, whereby a marked formation of [32P]Sph-1-P, but not [32P]LPA, was observed in [32P]orthophosphate-labeled platelets. Platelet Sph-1-P release, possibly mediated by protein kinase C, was greatly enhanced in the presence of albumin, which formed a complex with Sph-1-P. This finding suggests that platelet Sph-1-P may become accessible to depletion by albumin when its transbilayer movement (flipping) across the plasma membrane is enhanced by protein kinase C. Although human umbilical vein endothelial cells expressed receptors for both Sph-1-P and LPA, Sph-1-P acted much more potently than LPA on the cells in terms of intracellular Ca++ mobilization, cytoskeletal reorganization, and migration. The results suggest that Sph-1-P, rather than LPA, is a major bioactive lysophospholipid that is released from platelets and interacts with endothelial cells, under the conditions in which critical platelet-endothelial interactions (including thrombosis, angiogenesis, and atherosclerosis) occur. Furthermore, albumin-bound Sph-1-P may account for at least some of the serum biological activities on endothelial cells, which have been ascribed to the effects of albumin-bound LPA, based on the similarities between LPA and serum effects.
Collapse
|
40
|
Sphingosine 1-phosphate as a major bioactive lysophospholipid that is released from platelets and interacts with endothelial cells. Blood 2000. [DOI: 10.1182/blood.v96.10.3431] [Citation(s) in RCA: 168] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractThe serum-borne lysophospholipid mediators sphingosine 1-phosphate (Sph-1-P) and lysophosphatidic acid (LPA) have been shown to be released from activated platelets and to act on endothelial cells. In this study, we employed the repeated lipid extraction (under alkaline and acidic conditions), capable of detecting Sph-1-P, LPA, and possibly structurally similar lysophospholipids, whereby a marked formation of [32P]Sph-1-P, but not [32P]LPA, was observed in [32P]orthophosphate-labeled platelets. Platelet Sph-1-P release, possibly mediated by protein kinase C, was greatly enhanced in the presence of albumin, which formed a complex with Sph-1-P. This finding suggests that platelet Sph-1-P may become accessible to depletion by albumin when its transbilayer movement (flipping) across the plasma membrane is enhanced by protein kinase C. Although human umbilical vein endothelial cells expressed receptors for both Sph-1-P and LPA, Sph-1-P acted much more potently than LPA on the cells in terms of intracellular Ca++ mobilization, cytoskeletal reorganization, and migration. The results suggest that Sph-1-P, rather than LPA, is a major bioactive lysophospholipid that is released from platelets and interacts with endothelial cells, under the conditions in which critical platelet-endothelial interactions (including thrombosis, angiogenesis, and atherosclerosis) occur. Furthermore, albumin-bound Sph-1-P may account for at least some of the serum biological activities on endothelial cells, which have been ascribed to the effects of albumin-bound LPA, based on the similarities between LPA and serum effects.
Collapse
|
41
|
Racké K, Hammermann R, Juergens UR. Potential role of EDG receptors and lysophospholipids as their endogenous ligands in the respiratory tract. Pulm Pharmacol Ther 2000; 13:99-114. [PMID: 10873548 DOI: 10.1006/pupt.2000.0241] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The role of lipid mediators derived from membrane glycerophospholipids and sphingolipids as intracellular messenger has been studied intensively during the last two decades, but with the recent discovery of high affinity G-protein coupled receptors for the lysophospholipids lysophosphatidic acid (LPA), sphingosine-1-phosphate (S1P) and sphingosylphosphorylcholine (SPC), increasing attention has been paid to the role of these lipid mediators as extracellular mediators. This review will summarize the biosynthesis and metabolism of lysophospholipids and describe the family of endothelial differentiation gene (EDG) receptors as high affinity receptors for lysophospholipids. Furthermore, an overview of the numerous biological effects of lysophospholipids which might be mediated by EDG receptors will be given together with an outlook on the potential role of such mechanisms in pulmonary physiology and pathophysiology.
Collapse
Affiliation(s)
- K Racké
- Institute of Pharmacology & Toxicology, University of Bonn, Reuterstrabetae 2b, Bonn, D-53113, Germany.
| | | | | |
Collapse
|