1
|
Wang L, Wang Y, Hu M, Xi S, Liu R, Cheng M, Dong Y. Potential Universal Engineering Component: Tetracycline Response Nanoswitch Based on Triple Helix-Graphene Oxide. MICROMACHINES 2022; 13:2119. [PMID: 36557420 PMCID: PMC9784820 DOI: 10.3390/mi13122119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/19/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
The overuse of antibiotics can lead to the emergence of drug resistance, preventing many common diseases from being effectively treated. Therefore, based on the special composite platform of P1/graphene oxide (GO) and DNA triple helix, a programmable DNA nanoswitch for the quantitative detection of tetracycline (TC) was designed. The introduction of GO as a quenching agent can effectively reduce the background fluorescence; stabilizing the trigger strand with a triplex structure minimizes errors. It is worth mentioning that the designed model has been verified and analyzed by both computer simulation and biological experiments. NUPACK predicts the combined mode and yield of each strand, while visual DSD flexibly predicts the changes in components over time during the reaction. The feasibility analysis preliminarily confirmed the realizability of the designed model, and the optimal reaction conditions were obtained through optimization, which laid the foundation for the subsequent quantitative detection of TC, while the selective experiments in different systems fully demonstrated that the model had excellent specificity.
Collapse
Affiliation(s)
- Luhui Wang
- College of Life Science, Shaanxi Normal University, Xi’an 710119, China
| | - Yue Wang
- College of Computer Sciences, Shaanxi Normal University, Xi’an 710119, China
| | - Mengyang Hu
- College of Computer Sciences, Shaanxi Normal University, Xi’an 710119, China
| | - Sunfan Xi
- College of Life Science, Shaanxi Normal University, Xi’an 710119, China
| | - Rong Liu
- College of Computer Sciences, Shaanxi Normal University, Xi’an 710119, China
| | - Meng Cheng
- College of Life Science, Shaanxi Normal University, Xi’an 710119, China
| | - Yafei Dong
- College of Life Science, Shaanxi Normal University, Xi’an 710119, China
- College of Computer Sciences, Shaanxi Normal University, Xi’an 710119, China
| |
Collapse
|
2
|
Li Y, Syed J, Sugiyama H. RNA-DNA Triplex Formation by Long Noncoding RNAs. Cell Chem Biol 2016; 23:1325-1333. [DOI: 10.1016/j.chembiol.2016.09.011] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 08/29/2016] [Accepted: 09/26/2016] [Indexed: 01/06/2023]
|
3
|
Bahal R, Gupta A, Glazer PM. Precise Genome Modification Using Triplex Forming Oligonucleotides and Peptide Nucleic Acids. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016. [DOI: 10.1007/978-1-4939-3509-3_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
4
|
Mukherjee A, Vasquez KM. Triplex technology in studies of DNA damage, DNA repair, and mutagenesis. Biochimie 2011; 93:1197-208. [PMID: 21501652 DOI: 10.1016/j.biochi.2011.04.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 04/01/2011] [Indexed: 12/18/2022]
Abstract
Triplex-forming oligonucleotides (TFOs) can bind to the major groove of homopurine-homopyrimidine stretches of double-stranded DNA in a sequence-specific manner through Hoogsteen hydrogen bonding to form DNA triplexes. TFOs by themselves or conjugated to reactive molecules can be used to direct sequence-specific DNA damage, which in turn results in the induction of several DNA metabolic activities. Triplex technology is highly utilized as a tool to study gene regulation, molecular mechanisms of DNA repair, recombination, and mutagenesis. In addition, TFO targeting of specific genes has been exploited in the development of therapeutic strategies to modulate DNA structure and function. In this review, we discuss advances made in studies of DNA damage, DNA repair, recombination, and mutagenesis by using triplex technology to target specific DNA sequences.
Collapse
Affiliation(s)
- Anirban Mukherjee
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd., Austin, TX 78723, USA
| | | |
Collapse
|
5
|
Torigoe H, Sasaki K, Katayama T. Thermodynamic and Kinetic Effects of Morpholino Modification on Pyrimidine Motif Triplex Nucleic Acid Formation under Physiological Condition. J Biochem 2009; 146:173-83. [DOI: 10.1093/jb/mvp059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
6
|
Vekhoff P, Ceccaldi A, Polverari D, Pylouster J, Pisano C, Arimondo PB. Triplex formation on DNA targets: how to choose the oligonucleotide. Biochemistry 2009; 47:12277-89. [PMID: 18954091 DOI: 10.1021/bi801087g] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Triplex-forming oligonucleotides (TFOs) are sequence-specific DNA binders. TFOs provide a tool for controlling gene expression or, when attached to an appropriate chemical reagent, for directing DNA damage. Here, we report a set of rules for predicting the best out of five different triple-helical binding motifs (TM, UM, GA, GT, and GU, where M is 5-methyldeoxycytidine and U is deoxyuridine) by taking into consideration the sequence composition of the underlying duplex target. We tested 11 different triplex targets present in genes having an oncogenic role. The rules have predictive power and are very useful in the design of TFOs for antigene applications. Briefly, we retained motifs GU and TM, and when they do form a triplex, TFOs containing G and U are preferred over those containing T and M. In the case of the G-rich TFOs, triplex formation is principally dependent on the percentage of G and the length of the TFO. In the case of the pyrimidine motif, replacement of T with U is destabilizing; triplex formation is dependent on the percentage of T and destabilized by the presence of several contiguous M residues. An equation to choose between a GU and TM motif is given.
Collapse
Affiliation(s)
- Pierre Vekhoff
- UMR 5153 CNRS, Museum National d'Histoire Naturelle USM0503, 43 rue Cuvier, 75231 Paris cedex 05, France
| | | | | | | | | | | |
Collapse
|
7
|
Duca M, Vekhoff P, Oussedik K, Halby L, Arimondo PB. The triple helix: 50 years later, the outcome. Nucleic Acids Res 2008; 36:5123-38. [PMID: 18676453 PMCID: PMC2532714 DOI: 10.1093/nar/gkn493] [Citation(s) in RCA: 265] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Triplex-forming oligonucleotides constitute an interesting DNA sequence-specific tool that can be used to target cleaving or cross-linking agents, transcription factors or nucleases to a chosen site on the DNA. They are not only used as biotechnological tools but also to induce modifications on DNA with the aim to control gene expression, such as by site-directed mutagenesis or DNA recombination. Here, we report the state of art of the triplex-based anti-gene strategy 50 years after the discovery of such a structure, and we show the importance of the actual applications and the main challenges that we still have ahead of us.
Collapse
Affiliation(s)
- Maria Duca
- LCMBA CNRS UMR6001, University of Nice-Sophia Antipolis, Parc Valrose, 06108 NICE Cedex 2, France
| | | | | | | | | |
Collapse
|
8
|
Ye Z, Houssein HSH, Mahato RI. Bioconjugation of oligonucleotides for treating liver fibrosis. Oligonucleotides 2008; 17:349-404. [PMID: 18154454 DOI: 10.1089/oli.2007.0097] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Liver fibrosis results from chronic liver injury due to hepatitis B and C, excessive alcohol ingestion, and metal ion overload. Fibrosis culminates in cirrhosis and results in liver failure. Therefore, a potent antifibrotic therapy is urgently needed to reverse scarring and eliminate progression to cirrhosis. Although activated hepatic stellate cells (HSCs) remain the principle cell type responsible for liver fibrosis, perivascular fibroblasts of portal and central veins as well as periductular fibroblasts are other sources of fibrogenic cells. This review will critically discuss various treatment strategies for liver fibrosis, including prevention of liver injury, reduction of inflammation, inhibition of HSC activation, degradation of scar matrix, and inhibition of aberrant collagen synthesis. Oligonucleotides (ODNs) are short, single-stranded nucleic acids, which disrupt expression of target protein by binding to complementary mRNA or forming triplex with genomic DNA. Triplex forming oligonucleotides (TFOs) provide an attractive strategy for treating liver fibrosis. A series of TFOs have been developed for inhibiting the transcription of alpha1(I) collagen gene, which opens a new area for antifibrotic drugs. There will be in-depth discussion on the use of TFOs and how different bioconjugation strategies can be utilized for their site-specific delivery to HSCs or hepatocytes for enhanced antifibrotic activities. Various insights developed in individual strategy and the need for multipronged approaches will also be discussed.
Collapse
Affiliation(s)
- Zhaoyang Ye
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | | |
Collapse
|
9
|
Mahato RI, Cheng K, Guntaka RV. Modulation of gene expression by antisense and antigene oligodeoxynucleotides and small interfering RNA. Expert Opin Drug Deliv 2006; 2:3-28. [PMID: 16296732 DOI: 10.1517/17425247.2.1.3] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Antisense oligodeoxynucleotides, triplex-forming oligodeoxynucleotides and double-stranded small interfering RNAs have great potential for the treatment of many severe and debilitating diseases. Concerted efforts from both industry and academia have made significant progress in turning these nucleic acid drugs into therapeutics, and there is already one FDA-approved antisense drug in the clinic. Despite the success of one product and several other ongoing clinical trials, challenges still exist in their stability, cellular uptake, disposition, site-specific delivery and therapeutic efficacy. The principles, strategies and delivery consideration of these nucleic acids are reviewed. Furthermore, the ways to overcome the biological barriers are also discussed so that therapeutic concentrations at their target sites can be maintained for a desired period.
Collapse
MESH Headings
- Animals
- DNA/chemistry
- DNA/genetics
- DNA/metabolism
- Drug Carriers
- Gene Expression Regulation
- Gene Silencing
- Gene Targeting/methods
- Genetic Therapy/methods
- Humans
- Nucleic Acid Conformation/drug effects
- Oligonucleotides, Antisense/chemistry
- Oligonucleotides, Antisense/genetics
- Oligonucleotides, Antisense/metabolism
- Oligonucleotides, Antisense/pharmacology
- Protein Biosynthesis/drug effects
- RNA Interference
- RNA Splicing/drug effects
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/chemistry
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Transcription, Genetic/drug effects
Collapse
Affiliation(s)
- Ram I Mahato
- University of Tennessee Health Science Center, Department of Pharmaceutical Sciences, 26 South Dunlap Street, Feurt Bldg RM 406, Memphis, TN 38163, USA.
| | | | | |
Collapse
|
10
|
Torigoe H, Kawahashi K, Tamura Y. Promotion of pyrimidine motif triplex formation by morpholino modification of triplex-forming oligonucleotide: kinetic and thermodynamic studies. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2005; 24:1019-21. [PMID: 16248083 DOI: 10.1081/ncn-200060349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Hidetaka Torigoe
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Tokyo, Japan
| | | | | |
Collapse
|
11
|
Kalish JM, Seidman MM, Weeks DL, Glazer PM. Triplex-induced recombination and repair in the pyrimidine motif. Nucleic Acids Res 2005; 33:3492-502. [PMID: 15961731 PMCID: PMC1151591 DOI: 10.1093/nar/gki659] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Triplex-forming oligonucleotides (TFOs) bind DNA in a sequence-specific manner at polypurine/polypyrimidine sites and mediate targeted genome modification. Triplexes are formed by either pyrimidine TFOs, which bind parallel to the purine strand of the duplex (pyrimidine, parallel motif), or purine TFOs, which bind in an anti-parallel orientation (purine, anti-parallel motif). Both purine and pyrimidine TFOs, when linked to psoralen, have been shown to direct psoralen adduct formation in cells, leading to mutagenesis or recombination. However, only purine TFOs have been shown to mediate genome modification without the need for a targeted DNA-adduct. In this work, we report the ability of a series of pyrimidine TFOs, with selected chemical modifications, to induce repair and recombination in two distinct episomal targets in mammalian cells in the absence of any DNA-reactive conjugate. We find that TFOs containing N3′→P5′ phosphoramidate (amidate), 5-(1-propynyl)-2′-deoxyuridine (pdU), 2′-O-methyl-ribose (2′-O-Me), 2′-O-(2-aminoethyl)-ribose, or 2′-O, 4′-C-methylene bridged or locked nucleic acid (LNA)-modified nucleotides show substantially increased formation of non-covalent triplexes under physiological conditions compared with unmodified DNA TFOs. However, of these modified TFOs, only the amidate and pdU-modified TFOs mediate induced recombination in cells and stimulate repair in cell extracts, at levels comparable to those seen with purine TFOs in similar assays. These results show that amidate and pdU-modified TFOs can be used as reagents to stimulate site-specific gene targeting without the need for conjugation to DNA-reactive molecules. By demonstrating the potential for induced repair and recombination with appropriately modified pyrimidine TFOs, this work expands the options available for triplex-mediated gene targeting.
Collapse
Affiliation(s)
- Jennifer M. Kalish
- Department of Therapeutic Radiology, Yale University School of MedicinePO Box 208040, HRT 140, New Haven, CT 06520-8040, USA
- Department of Genetics, Yale University School of MedicinePO Box 208040, HRT 140, New Haven, CT 06520-8040, USA
| | - Michael M. Seidman
- National Institute on Aging, National Institutes of Health5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| | - Daniel L. Weeks
- Department of Biochemistry, University of IowaIowa City, IA 52242, USA
| | - Peter M. Glazer
- Department of Therapeutic Radiology, Yale University School of MedicinePO Box 208040, HRT 140, New Haven, CT 06520-8040, USA
- Department of Genetics, Yale University School of MedicinePO Box 208040, HRT 140, New Haven, CT 06520-8040, USA
- To whom correspondence should be addressed. Tel: +1 203 737 2788; Fax: +1 203 785 6309;
| |
Collapse
|
12
|
Keppler MD, James PL, Neidle S, Brown T, Fox KR. DNA sequence specificity of triplex-binding ligands. ACTA ACUST UNITED AC 2004; 270:4982-92. [PMID: 14653824 DOI: 10.1046/j.1432-1033.2003.03901.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have examined the ability of naphthylquinoline, a 2,7-disubstituted anthraquinone and BePI, a benzo[e]pyridoindole derivative, to stabilize parallel DNA triplexes of different base composition. Fluorescence melting studies, with both inter- and intramolecular triplexes, show that all three ligands stabilize triplexes that contain blocks of TAT triplets. Naphthylquinoline has no effect on triplexes formed with third strands composed of (TC)n or (CCT)n, but stabilizes triplexes that contain (TTC)n. In contrast, BePI slightly destabilizes the triplexes that are formed at (TC)n (CCT)n and (TTC)n. 2,7-Anthraquinone stabilizes (TC)n (CCT)n and (TTC)n, although it has the greatest effect on the latter. DNase I footprinting studies confirm that triplexes formed with (CCT)n are stabilized by the 2,7-disubstituted amidoanthraquinone but not by naphthylquinoline. Both ligands stabilize the triplex formed with (CCTT)n and neither affects the complex with (CT)n. We suggest that BePI and naphthylquinoline can only bind between adjacent TAT triplets, while the anthraquinone has a broader sequence of selectivity. These differences may be attributed to the presence (naphthylquinoline and BePI) or absence (anthraquinone) of a positive charge on the aromatic portion of the ligand, which prevents intercalation adjacent to C+GC triplets. The most stable structures are formed when the stacked rings (bases or ligand) alternate between charged and uncharged species. Triplexes containing alternating C+GC and TAT triplets are not stabilized by ligands as they would interrupt the alternating pattern of charged and uncharged residues.
Collapse
Affiliation(s)
- Melanie D Keppler
- Division of Biochemistry & Molecular Biology, School of Biological Sciences, University of Southampton, UK
| | | | | | | | | |
Collapse
|
13
|
Uil TG, Haisma HJ, Rots MG. Therapeutic modulation of endogenous gene function by agents with designed DNA-sequence specificities. Nucleic Acids Res 2003; 31:6064-78. [PMID: 14576293 PMCID: PMC275457 DOI: 10.1093/nar/gkg815] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Designer molecules that can specifically target pre-determined DNA sequences provide a means to modulate endogenous gene function. Different classes of sequence-specific DNA-binding agents have been developed, including triplex-forming molecules, synthetic polyamides and designer zinc finger proteins. These different types of designer molecules with their different principles of engineered sequence specificity are reviewed in this paper. Furthermore, we explore and discuss the potential of these molecules as therapeutic modulators of endogenous gene function, focusing on modulation by stable gene modification and by regulation of gene transcription.
Collapse
Affiliation(s)
- Taco G Uil
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | |
Collapse
|
14
|
Abstract
Triplex-forming oligonucleotides (TFOs) can bind to polypurine/polypyrimidine regions in DNA in a sequence-specific manner. The specificity of this binding raises the possibility of using triplex formation for directed genome modification, with the ultimate goal of repairing genetic defects in human cells. Several studies have demonstrated that treatment of mammalian cells with TFOs can provoke DNA repair and recombination, in a manner that can be exploited to introduce desired sequence changes. This review will summarize recent advances in this field while also highlighting major obstacles that remain to be overcome before the application of triplex technology to therapeutic gene repair can be achieved.
Collapse
Affiliation(s)
- Michael M Seidman
- Department of Therapeutic Radiology, Yale University School of Medicine, P.O. Box 208040, New Haven, Connecticut 06520-8040, USA
| | | |
Collapse
|
15
|
Guntaka RV, Varma BR, Weber KT. Triplex-forming oligonucleotides as modulators of gene expression. Int J Biochem Cell Biol 2003; 35:22-31. [PMID: 12467644 DOI: 10.1016/s1357-2725(02)00165-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Triplex-forming oligonucleotides (TFOs) have gained prominence in the recent years because of their potential applications in antigene therapy. In particular they have been used as (i) inducers of site-specific mutations, (ii) reagents that selectively and specifically cleave target DNA, and (iii) as modulators of gene expression. In this mini-review, we have made an attempt to highlight the characteristics of these TFOs and the effects of various modifications in the phosphate backbone as well as in the purine and pyrimidine moieties, which contribute to the stability and efficiency of triplex formation. Studies to explore the mechanism of down-regulation of transcription of various genes suggest that at least some TFOs exert their effect by inhibiting binding of specific transcription factors to their cognate cis-acting elements. Recent reports indicate the presence of these potential triplex-forming DNA structures in the genomes of prokaryotes and eukaryotes that may play a major role in target site selection and chromosome segregation as well as in the cause of heritable diseases. Finally, some potential problems in the development of these TFOs as antigene therapeutic agents have also been discussed.
Collapse
Affiliation(s)
- Ramareddy V Guntaka
- Department of Molecular Sciences, University of Tennessee Health Science Center, 858 Madison Ave., Memphis, TN 38163, USA.
| | | | | |
Collapse
|
16
|
Leumann L, Feldon J, Vollenweider FX, Ludewig K. Effects of typical and atypical antipsychotics on prepulse inhibition and latent inhibition in chronic schizophrenia. Biol Psychiatry 2002; 52:729-39. [PMID: 12372664 DOI: 10.1016/s0006-3223(02)01344-6] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Prepulse inhibition and latent inhibition are the two animal paradigms currently dominating neuropharmacological research on attentional deficits in schizophrenia. Both paradigms have been shown to have a reasonable amount of face, predictive, and construct validity, but responsiveness to typical and atypical antipsychotics differs between the two, as indicated by animal and human studies. The relationship between the paradigms in schizophrenic patients is still unclear. METHODS We tested prepulse inhibition and auditory latent inhibition in a sample of 33 chronic schizophrenic patients medicated either with atypical (n = 17) or typical (n = 16) antipsychotics. RESULTS Latent inhibition was found to be intact in both patient groups. Prepulse inhibition was intact in the group receiving atypicals, but deficient in the group receiving typicals (at 60 msec lead interval condition). CONCLUSIONS The direct comparison supports the hypothesis that atypical and typical antipsychotics have different effects on prepulse inhibition than on latent inhibition in schizophrenic patients; however, the results may also be explained by a greater sensitivity of the prepulse inhibition method. Because it is crucial to understand why there are considerable differences between the two paradigms and between human and animal studies, research should focus more strongly on comparative approaches.
Collapse
Affiliation(s)
- Lorenz Leumann
- Artificial Intelligence Laboratory, University of Zurich, Switzerland
| | | | | | | |
Collapse
|
17
|
Sun BW, Geinguenaud F, Taillandier E, Laurent M, Debart F, Vasseur JJ. FTIR and UV spectroscopy studies of triplex formation between pyrimidine methoxyethylphosphoramidates alpha-oligodeoxynucleotides and ds DNA targets. J Biomol Struct Dyn 2002; 19:1073-81. [PMID: 12023809 DOI: 10.1080/07391102.2002.10506810] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The ability of non-ionic methoxyethylphosphoramidate (PNHME) alpha-oligodeoxynucleotides (ODNs), alpha dT(15) and alpha dCT dodecamer, to form triplexes with their double-stranded DNA targets was evaluated. Thermal stability of the formed complexes was studied by UV thermal denaturation and the data showed that these PNHME alpha-ODNs formed much more stable triplexes than phosphodiester (PO) beta-ODNs did (Delta Tm = + 20 degrees C for alpha dCT PNHME). In addition, FTIR spectroscopy was used to determine the base pairing and the strand orientations of the triplexes formed by alpha dT(15) PNHME compared to phosphodiester ODNs with beta or alpha anomeric configuration. While beta dT(15) PO failed to form a triplex with a long beta dA(n) x beta dT(n) duplex, the Tm of the Hoogsteen part of the triplex formed by alpha dT(15) PNHME reached 40 degrees C. Moreover alpha dT(15) PNHME displaced the beta dT(15) strand of a shorter beta dA(15) x beta dT(15) duplex. The alpha dCT PNHME and alpha dT(15) PNHME third strands were found antiparallel in contrast to alpha dT(15) PO which is parallel to the purine strand of their duplex target. The uniform preferential Hoogsteen pairing of the nucleotides alpha dT and alpha dC combining both replacements might contribute to the improve stability of the triplexes.
Collapse
Affiliation(s)
- Bei-Wen Sun
- Laboratoire de Spectroscopie Biomoléculaire, UFR de Médecine, UMR 7033 CNRS, Université Paris-Nord, F-93017 Bobigny Cedex, France
| | | | | | | | | | | |
Collapse
|
18
|
Basye J, Trent JO, Gao D, Ebbinghaus SW. Triplex formation by morpholino oligodeoxyribonucleotides in the HER-2/neu promoter requires the pyrimidine motif. Nucleic Acids Res 2001; 29:4873-80. [PMID: 11726697 PMCID: PMC96684 DOI: 10.1093/nar/29.23.4873] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Triplex-forming oligonucleotides (TFOs) are good candidates to be used as site-specific DNA-binding agents. Two obstacles encountered with TFOs are susceptibility to nuclease activity and a requirement for magnesium for triplex formation. Morpholino oligonucleotides were shown in one study to form triplexes in the absence of magnesium. In the current study, we have compared phosphodiester and morpholino oligonucleotides targeting a homopurine-homopyrimidine region in the human HER2/neu promoter. Using gel mobility shift analysis, our data demonstrate that triplex formation by phosphodiester oligonucleotides at the HER-2/neu promoter target is possible with pyrimidine-parallel, purine-antiparallel and mixed sequence (GT)-antiparallel motifs. Only the pyrimidine-parallel motif morpholino TFO was capable of efficient triple helix formation, which required low pH. Triplex formation with the morpholino TFO was efficient in low or no magnesium. The pyrimidine motif TFOs with either a phosphodiester or morpholino backbone were able to form triple helices in the presence of potassium ions, but required low pH. We have rationalized the experimental observations with detailed molecular modeling studies. These data demonstrate the potential for the development of TFOs based on the morpholino backbone modification and demonstrate that the pyrimidine motif is the preferred motif for triple helix formation by morpholino oligonucleotides.
Collapse
Affiliation(s)
- J Basye
- Arizona Cancer Center, University of Arizona, 1515 North Campbell Avenue, Tucson, AZ 85724-5024, USA
| | | | | | | |
Collapse
|
19
|
Toulmé JJ, Di Primo C, Moreau S. Modulation of RNA function by oligonucleotides recognizing RNA structure. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2001; 69:1-46. [PMID: 11550792 DOI: 10.1016/s0079-6603(01)69043-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Numerous RNA structures are responsible for regulatory processes either because they constitute a signal, like the hairpins or pseudoknots involved in ribosomal frameshifting, or because they are binding sites for proteins such as the trans-activating responsive RNA element of the human immunodeficiency virus whose binding to the viral protein Tat and cellular proteins allows full-length transcription of the retroviral genome. Selective ligands able to bind with high affinity to such RNA motifs may serve as tools for dissecting the molecular mechanisms in which they are involved. Such ligands might also constitute prototypes of therapeutic agents when RNA structures play a role in the expression of dysfunctional genes or in the multiplication of pathogens. Different classes of ligands (aminoglycosides, interacalating agents, peptides) are of interest to this aim. However, oligonucleotides deserve particular consideration. They have been extensively used in the frame of the antisense strategy. The apparent simplicity of this rational approach is, at first sight, very attractive. Indeed, numerous successful studies have been published describing the efficient inhibition of translation, splicing, or reverse transcription in cell-free systems, in cultured cells, or in vivo by oligomers complementary to an RNA region. However, RNA structures restrict the access of the target site to the antisense sequence: The competition between the intramolecular association of RNA regions weakens or even abolishes the antisense effect. Various possibilities have been developed to circumvent this limitation. This includes both rational and combinatorial strategies. High-affinity oligomers were designed to invade the RNA structure. Alternatively, triplex-forming oligonucleotides (TFO) and aptamers may recognize the folded RNA motif. Whereas the use of TFOs is rather limited owing to the strong sequence constraints for triple-helix formation, in vitro selection offers a way to explore vast oligoribo or oligodeoxyribo libraries to identify strong, selective oligonucleotide binders. The candidates (aptamers) selected against the TAR RNA element of HIV-1, which form stable loop-loop (kissing) complexes with the target, provide interesting examples of oligonucleotides recognizing a functional RNA structure through an important contribution of tertiary interactions.
Collapse
Affiliation(s)
- J J Toulmé
- INSERM U 386, IFR Pathologies Infectieuses, Université Victor Segalen, Bordeaux, France.
| | | | | |
Collapse
|
20
|
Casey BP, Glazer PM. Gene targeting via triple-helix formation. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2001; 67:163-92. [PMID: 11525382 DOI: 10.1016/s0079-6603(01)67028-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A report on a recent workshop entitled "Gene-Targeted Drugs: Function and Delivery" conveys a justified optimism for the eventual feasibility and therapeutic benefit of gene-targeting strategies. Although multiple approaches are being explored, this chapter focuses primarily on the uses of triplex-forming oligonucleotides (TFOs). TFOs are molecules that bind in the major groove of duplex DNA and by so doing can produce triplex structures. They bind to the purine-rich strand of the duplex through Hoogsteen or reverse Hoogsteen hydrogen bonding. They exist in two sequence motifs, either pyrimidine or purine. Improvements in delivery of these TFOs are reducing the quantities required for an effective intracellular concentration. New TFO chemistries are increasing the half-life of these oligos and expanding the range of sequences that can be targeted. Alone or conjugated to active molecules, TFOs have proven to be versatile agents both in vitro and in vivo. Foremost, TFOs have been employed in antigene strategies as an alternative to antisense technology. Conversely, they are also being investigated as possible upregulators of transcription. TFOs have also been shown to produce mutagenic events, even in the absence of tethered mutagens. TFOs can increase rates of recombination between homologous sequences in close proximity. Directed sequence changes leading to gene correction have been achieved through the use of TFOs. Because it is theorized that these modifications are due to the instigation of DNA repair mechanisms, an important area of TFO research is the study of triple-helix recognition and repair.
Collapse
Affiliation(s)
- B P Casey
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | |
Collapse
|
21
|
Puri N, Majumdar A, Cuenoud B, Natt F, Martin P, Boyd A, Miller PS, Seidman MM. Targeted gene knockout by 2'-O-aminoethyl modified triplex forming oligonucleotides. J Biol Chem 2001; 276:28991-8. [PMID: 11389147 DOI: 10.1074/jbc.m103409200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Triplex forming oligonucleotides (TFOs) are of interest because of their potential for facile gene targeting. However, the failure of TFOs to bind target sequences at physiological pH and Mg(2+) concentration has limited their biological applications. Recently, pyrimidine TFOs with 2'-O-aminoethyl (AE) substitutions were shown to have enhanced kinetics and stability of triplex formation (Cuenoud, B., Casset, F., Husken, D., Natt, F., Wolf, R. M., Altmann, K. H., Martin, P., and Moser H. E. (1998) Angew. Chem. Int. Ed. 37, 1288--1291). We have prepared psoralen-linked TFOs with varying amounts of the AE-modified residues, and have characterized them in biochemical assays in vitro, and in stability and HPRT gene knockout assays in vivo. The AE TFOs showed higher affinity for the target in vitro than a TFO with uniform 2'-OMe substitution, with relatively little loss of affinity when the assay was performed in reduced Mg(2+). Once formed they were also more stable in "physiological" buffer, with the greatest affinity and stability displayed by the TFO with all but one residue in the AE format. However, TFOs with lesser amounts of the AE modification formed the most stable triplexes in vivo, and showed the highest HPRT gene knockout activity. We conclude that the AE modification can enhance the biological activity of pyrimidine TFOs, but that extensive substitution is deleterious.
Collapse
Affiliation(s)
- N Puri
- NIA, National Institutes of Health, Baltimore, Maryland 21224, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Lacroix L, Mergny JL. Chemical modification of pyrimidine TFOs: effect on i-motif and triple helix formation. Arch Biochem Biophys 2000; 381:153-63. [PMID: 11019831 DOI: 10.1006/abbi.2000.1934] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In order to form more stable triple helical structures or to prevent their degradation in cells, oligonucleotide analogs are routinely used, either in the backbone or among the bases. The target sequence chosen for this study is a 16-base-long oligopurine-oligopyrimidine region present in the human neurotrophin 4/5 gene. Seven different chemical modifications were tested for their effect on (i) triple helix formation and (ii) i-DNA stability. i-DNA is a tetrameric structure involving hemiprotonated C x C+ base pairs, which may act as a competing structure for triplex formation, especially in the case of a cytosine-rich third strand. At acid pH, oligophosphoramidates formed the most stable triple helix, whereas oligonucleotides including 5-propynyl-dU formed a stable i-motif which precluded triplex formation. Only two candidates stabilized triple helices at neutral pH: oligonucleotides with phosphoramidate linkage and phosphodiester oligonucleotides containing 5-methyl-dC and 5-propynyl-dU.
Collapse
Affiliation(s)
- L Lacroix
- Laboratoire de Biophysique, Muséum National d'Historie Naturelle, INSERM U201, CNRS UMR 8646, Paris, France
| | | |
Collapse
|
23
|
Abstract
The zebrafish has long been a favourite model for the study of vertebrate development. Here we provide an overview of the current state of knowledge and resources for the study of this fish, with comments on the future direction of zebrafish genomics from Professor Mark Fishman and Dr Stephen Wilson.
Collapse
Affiliation(s)
- J Wixon
- School of Biological Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|