1
|
Back LS, Manso IS, Sordi MB, Magrin GL, Aragonês Á, Magini RDS, Gruber R, Cruz ACC. Evaluating Bioassays for the Determination of Simvastatin's Osteogenic Activity: A Systematic Review. J Funct Biomater 2025; 16:61. [PMID: 39997596 PMCID: PMC11855937 DOI: 10.3390/jfb16020061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/26/2025] Open
Abstract
OBJECTIVE Osteogenic differentiation is a complex process, and its analysis requires several biomarkers. Allied with this, there are no standardized bioassays to monitor the activity of simvastatin in osteogenesis in vitro. Therefore, identifying the most efficient and sensitive bioassays may enhance the quality of in vitro studies, bridging the gap with in vivo findings, saving time and resources, and benefiting the community. This systematic review aimed to determine the most efficient bioassay for simvastatin's osteogenic activity in vitro, in terms of sensitivity. MATERIALS AND METHODS In vitro studies evaluating undifferentiated mesenchymal cells treated with simvastatin were considered eligible. References were selected in a two-phase process. Electronic databases and the grey literature were screened up to September 2023. The Office of Health Assessment and Translation (OHAT) tool was used to assess the risk of bias. Certainty in cumulative evidence was evaluated using the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) criteria. Data were analyzed considering extracellular matrix mineralization, alkaline phosphatase, and the expression of potential target genes, such as bone morphogenetic protein-2 (BMP-2), collagen type I, Runt-related transcription factor 2, osterix, osteocalcin, and osteopontin. RESULTS Fourteen studies were included. A "probably low" or a "definitely low" risk of bias was assigned to the included studies. The simvastatin concentration ranged from 0.1 nM to 10 µM. Considering a minimum 4-fold increase, simvastatin caused robust mineralization of the extracellular matrix in four studies (4.0-, 4.4-, 5.0-, and 39.5-fold). Moreover, simvastatin substantially increased BMP-2 expression in mesenchymal cells in three studies (4-, 11-, and 19-fold). CONCLUSION Therefore, mineralization of the extracellular matrix and BMP-2 expression in mesenchymal cells are the most efficient bioassays for determining the osteogenic activity of simvastatin in vitro (high certainty level). These findings provide a standardized approach that can enhance the reliability and comparability of in vitro studies, bridging the gap with in vivo research and optimizing resources in the field of bone regeneration.
Collapse
Affiliation(s)
- Lara Steiner Back
- Post-Graduation Program of Dentistry, Center for Education and Research on Dental Implants, Federal University of Santa Catarina, Florianópolis 88053-701, Brazil; (L.S.B.); (I.S.M.); (M.B.S.); (G.L.M.); (Á.A.); (R.d.S.M.)
| | - Isabella Schönhofen Manso
- Post-Graduation Program of Dentistry, Center for Education and Research on Dental Implants, Federal University of Santa Catarina, Florianópolis 88053-701, Brazil; (L.S.B.); (I.S.M.); (M.B.S.); (G.L.M.); (Á.A.); (R.d.S.M.)
| | - Mariane Beatriz Sordi
- Post-Graduation Program of Dentistry, Center for Education and Research on Dental Implants, Federal University of Santa Catarina, Florianópolis 88053-701, Brazil; (L.S.B.); (I.S.M.); (M.B.S.); (G.L.M.); (Á.A.); (R.d.S.M.)
| | - Gabriel Leonardo Magrin
- Post-Graduation Program of Dentistry, Center for Education and Research on Dental Implants, Federal University of Santa Catarina, Florianópolis 88053-701, Brazil; (L.S.B.); (I.S.M.); (M.B.S.); (G.L.M.); (Á.A.); (R.d.S.M.)
| | - Águedo Aragonês
- Post-Graduation Program of Dentistry, Center for Education and Research on Dental Implants, Federal University of Santa Catarina, Florianópolis 88053-701, Brazil; (L.S.B.); (I.S.M.); (M.B.S.); (G.L.M.); (Á.A.); (R.d.S.M.)
| | - Ricardo de Souza Magini
- Post-Graduation Program of Dentistry, Center for Education and Research on Dental Implants, Federal University of Santa Catarina, Florianópolis 88053-701, Brazil; (L.S.B.); (I.S.M.); (M.B.S.); (G.L.M.); (Á.A.); (R.d.S.M.)
| | - Reinhard Gruber
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
| | - Ariadne Cristiane Cabral Cruz
- Post-Graduation Program of Dentistry, Center for Education and Research on Dental Implants, Federal University of Santa Catarina, Florianópolis 88053-701, Brazil; (L.S.B.); (I.S.M.); (M.B.S.); (G.L.M.); (Á.A.); (R.d.S.M.)
- Applied Virology Laboratory, Federal University of Santa Catarina, Florianópolis 88053-701, Brazil
| |
Collapse
|
2
|
Braszak-Cymerman A, Walczak MK, Oduah MT, Ludziejewska A, Bryl W. Comparison of the pleiotropic effect of atorvastatin and rosuvastatin on postmenopausal changes in bone turnover: A randomized comparative study. Medicine (Baltimore) 2024; 103:e38122. [PMID: 38728464 PMCID: PMC11081583 DOI: 10.1097/md.0000000000038122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 04/12/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Statins are the first-line treatment for dyslipidemia, which is a major modifiable risk factor for atherosclerotic cardiovascular disease. Studies have shown that in addition to the beneficial lipid-lowering effect, statins also exhibit a number of pleiotropic effects that may find application in other diseases, including osteoporosis. This study aimed to assess the effect of statins on bone turnover, as measured by the concentration of bone turnover markers, and to compare the effect of atorvastatin as a lipophilic statin and rosuvastatin as a hydrophilic statin. METHODS This study included 34 postmenopausal women aged < 65 years with newly diagnosed dyslipidemia requiring statin therapy. Patients were randomly assigned to receive a statin drug. Statins were initiated at standard doses of 5 to 10 mg of rosuvastatin and 20 mg of atorvastatin. The levels of C-terminal telopeptide of type I collagen as a bone resorption marker and N-terminal propeptide of procollagen type I as a marker of bone formation, lipid concentrations and other biochemical parameters were assessed at baseline and after 6 and twelve months of treatment. RESULTS There were no statistically significant differences between the levels of bone turnover markers before and 6 months after statin implementation (P > .05) - for all patients or subgroups according to statin use. Analysis of the results showed that after 12 months, there was a statistically significant decrease in N-terminal propeptide of procollagen type I concentration in all subjects (P = .004). By statin subgroup, a statistically significant decrease in N-terminal propeptide of procollagen type I was observed only in patients receiving rosuvastatin (P = .012) and not in those receiving atorvastatin (P = .25). Moreover, changes in bone turnover markers did not correlate with changes in lipid concentrations. CONCLUSIONS These results may indicate the superiority of atorvastatin over rosuvastatin in inhibiting adverse changes in bone turnover in postmenopausal women. Confirmed by studies involving a larger population, the observed differences might find particular applications in clinical practice, and the choice of atorvastatin over rosuvastatin for women could be considered in the early postmenopausal period to reduce the risk of osteoporosis and subsequent osteoporotic fractures.
Collapse
Affiliation(s)
- Anna Braszak-Cymerman
- Department of Internal Diseases, Metabolic Disorders, and Hypertension, Poznań University of Medical Sciences, Poznań, Poland
| | - Marta K. Walczak
- Department of Internal Diseases, Metabolic Disorders, and Hypertension, Poznań University of Medical Sciences, Poznań, Poland
| | - Mary-Tiffany Oduah
- Department of Internal Medicine, Mayo Clinic School of Graduate Medical Education, Rochester, Minnesota, USA
| | | | - Wiesław Bryl
- Department of Internal Diseases, Metabolic Disorders, and Hypertension, Poznań University of Medical Sciences, Poznań, Poland
| |
Collapse
|
3
|
Peng Y, Zhong Z, Huang C, Wang W. The effects of popular diets on bone health in the past decade: a narrative review. Front Endocrinol (Lausanne) 2024; 14:1287140. [PMID: 38665424 PMCID: PMC11044027 DOI: 10.3389/fendo.2023.1287140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/14/2023] [Indexed: 04/28/2024] Open
Abstract
Bone health encompasses not only bone mineral density but also bone architecture and mechanical properties that can impact bone strength. While specific dietary interventions have been proposed to treat various diseases such as obesity and diabetes, their effects on bone health remain unclear. The aim of this review is to examine literature published in the past decade, summarize the effects of currently popular diets on bone health, elucidate underlying mechanisms, and provide solutions to neutralize the side effects. The diets discussed in this review include a ketogenic diet (KD), a Mediterranean diet (MD), caloric restriction (CR), a high-protein diet (HP), and intermittent fasting (IF). Although detrimental effects on bone health have been noticed in the KD and CR diets, it is still controversial, while the MD and HP diets have shown protective effects, and the effects of IF diets are still uncertain. The mechanism of these effects and the attenuation methods have gained attention and have been discussed in recent years: the KD diet interrupts energy balance and calcium metabolism, which reduces bone quality. Ginsenoside-Rb2, metformin, and simvastatin have been shown to attenuate bone loss during KD. The CR diet influences energy imbalance, glucocorticoid levels, and adipose tissue, causing bone loss. Adequate vitamin D and calcium supplementation and exercise training can attenuate these effects. The olive oil in the MD may be an effective component that protects bone health. HP diets also have components that protect bone health, but their mechanism requires further investigation. In IF, animal studies have shown detrimental effects on bone health, while human studies have not. Therefore, the effects of diets on bone health vary accordingly.
Collapse
Affiliation(s)
- Yue Peng
- China Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zikang Zhong
- China Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Cheng Huang
- Department of Orthopaedic Surgery, China Japan Friendship Hospital, Beijing, China
| | - Weiguo Wang
- Department of Orthopaedic Surgery, China Japan Friendship Hospital, Beijing, China
| |
Collapse
|
4
|
Raggi P, Takyar FM, Gadiyaram V, Zhang C, Stillman AE, Davarpanah AH. Differential effect of atorvastatin and pravastatin on thoracic spine attenuation: A sub-analysis of a randomized clinical trial. Atherosclerosis 2024; 388:117425. [PMID: 38109819 DOI: 10.1016/j.atherosclerosis.2023.117425] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 11/29/2023] [Accepted: 12/07/2023] [Indexed: 12/20/2023]
Abstract
BACKGROUND Statins reduce cardiovascular events and may improve bone mineral density. METHODS We conducted a sub-analysis of a randomized clinical trial that investigated the differential effect of moderate vs intensive low-density lipoprotein cholesterol (LDL-C) lowering therapies on coronary artery calcium (CAC) scores, and used the acquired images to assess the change in radiological attenuation of selected thoracic vertebrae. Baseline and 12-month unenhanced chest CT scans were performed in 420 hyperlipidemic, postmenopausal women randomized to atorvastatin (ATV) 80 mg/day or pravastatin (PRV) 40 mg/day in the Beyond Endorsed Lipid Lowering with Electron Beam Tomography Scanning (BELLES) trial. Bone attenuation was measured in three contiguous thoracic vertebrae at baseline and 12 months. RESULTS There were no differences in baseline demographic and clinical characteristics between treatment arms. The median percent lowering (interquartile range) in LDL-C was significantly greater with ATV than PRV [-53 (-69 to 20)% vs -28 (-55 to 74)%, p < 0.001], although the CAC score change was similar [12 (-63 to 208)% vs 13 (-75 to 358)%; p = 0.44]. At follow-up, the median bone attenuation loss was significantly greater with PRV than with ATV [-2.6 (-27 to 11)% vs 0 (-11 to 25)%; p < 0.001]. The attenuation loss in the PRV group was comparable to that of a historical untreated general population sample. In the entire cohort, the changes in LDL-C and total cholesterol were inversely correlated with bone attenuation change (p < 0.01). In adjusted multivariable linear regression analyses, race and percent change in LDL-C were independent predictors of bone attenuation change. Age, body mass index, history of smoking, diabetes mellitus, hypertension, peripheral vascular disease, or hormone replacement therapy did not affect percent change in BMD. CONCLUSIONS These findings support the hypothesis that there is an interaction between bone and cardiometabolic health and that intensive lipid lowering has a beneficial effect on bone health.
Collapse
Affiliation(s)
- Paolo Raggi
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.
| | - Farzin M Takyar
- Endocrine Research Center, Research Institute for Endocrine Sciences, Tehran, Iran
| | - Varuna Gadiyaram
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Chao Zhang
- Pediatric Biostatistics Core, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA; General Dynamics Information Technology, Falls Church, VA, USA
| | - Arthur E Stillman
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Amir H Davarpanah
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
5
|
Xu X, Jia Z, Chen N, Lele SM, Arash S, Reinhardt RA, Killeen AC, Wang D. The Development of Thermoresponsive Polymeric Simvastatin Prodrug for the Treatment of Experimental Periodontitis in Rats. Mol Pharm 2023; 20:5631-5645. [PMID: 37772991 DOI: 10.1021/acs.molpharmaceut.3c00508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Periodontitis (PD) is a severe inflammatory gum pathology that damages the periodontal soft tissue and bone. It is highly prevalent in the US, affecting more than 47% of adults. Besides routine scaling and root planing, there are few effective treatments for PD. Developed as an effective treatment for hyperlipidemia, simvastatin (SIM) is also known for its well-established anti-inflammatory and osteogenic properties, suggesting its potential utility in treating PD. Its clinical translation, however, has been impeded by its poor water-solubility, lack of osteotropicity, and side effects (e.g., hepatoxicity) associated with systemic exposure. To address these challenges, an N-(2-hydroxypropyl) methacrylamide (HPMA) copolymer-based thermoresponsive polymeric prodrug of SIM (ProGel-SIM) was developed as a local therapy for PD. Its aqueous solution is free-flowing at 4 °C and transitions into a hydrogel at ∼30 °C, allowing for easy local application and retention. After a thorough characterization of its physicochemical properties, ProGel-SIM was administered weekly into the periodontal pocket of an experimental rat model of PD. At 3 weeks post initiation of the treatment, the animals were euthanized with palate isolated for μ-CT and histological analyses. When compared to dose equivalent simvastatin acid (SMA, active form of SIM) treatment, the rats in the ProGel-SIM treated group showed significantly higher periodontal bone volume (0.34 mm3 vs 0.20 mm3, P = 0.0161) and less neutrophil (PMN) infiltration (P < 0.0001) and IL-1β secretion (P = 0.0036). No measurable side effect was observed. Collectively, these results suggest that ProGel-SIM may be developed as a promising drug candidate for the effective clinical treatment of PD.
Collapse
|
6
|
Mai TP, Park JB, Nguyen HD, Min KA, Moon C. Current application of dexamethasone-incorporated drug delivery systems for enhancing bone formation. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2023; 53:643-665. [DOI: 10.1007/s40005-023-00629-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/31/2023] [Indexed: 03/10/2025]
|
7
|
Wang L, Chen Z, Chen D, Kan B, He Y, Cai H. Farnesyl diphosphate synthase promotes cell proliferation by regulating gene expression and alternative splicing profiles in HeLa cells. Oncol Lett 2023; 25:145. [PMID: 36936029 PMCID: PMC10018273 DOI: 10.3892/ol.2023.13731] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 02/10/2023] [Indexed: 03/04/2023] Open
Abstract
Farnesyl diphosphate synthase (FDPS), an essential enzyme involved in the mevalonate pathway, is implicated in various diseases, including multiple types of cancer. As an RNA-binding protein (RBP), FDPS is also involved in transcriptional and post-transcriptional regulation. However, to the best of our knowledge, transcriptome-wide targets of FDPS still remain unknown. In the present study, FDPS expression patterns in pan-cancer were analyzed. In addition, it was investigated how FDPS overexpression (FDPS-OE) regulates the transcriptome in HeLa cells. FDPS-OE increased the proliferation rate in HeLa cells by MTT assay. Using transcriptome-wide high throughput sequencing and bioinformatics analysis, it was found that FDPS upregulated the expression levels of genes enriched in cell proliferation and extracellular matrix organization, including the laminin subunit γ2, interferon-induced proteins with tetratricopeptide repeats 2 and matrix metallopeptidase 19 genes. According to alternative splicing (AS) analysis, FDPS modulated the splicing patterns of the bone morphogenic protein 1, semaphorin 4D, annexin A2 and sirtuin 2 genes, which are enriched in the cell cycle and DNA repair, and are related to cell proliferation. To corroborate the FDPS-regulated transcriptome findings, FDPS was overexpressed in human osteosarcoma cells. Differentially expressed genes and regulated AS genes in the cells were both validated by reverse transcription-quantitative PCR. The results suggested that, as an emerging RBP, FDPS may serve an important role in transcriptome profiles by altering gene expression and regulating AS. FDPS also affected the cell proliferation rate. These findings broaden the understanding of the molecular functions of FDPS, and the potential of FDPS as a target in therapy should be investigated.
Collapse
Affiliation(s)
- Lijuan Wang
- Department of Endocrinology, The Second Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Zhigang Chen
- ABLife BioBigData Institute, Wuhan, Hubei 430075, P.R. China
| | - Dong Chen
- ABLife BioBigData Institute, Wuhan, Hubei 430075, P.R. China
| | - Bo Kan
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yangfang He
- Department of Endocrinology, The Second Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Hanqing Cai
- Department of Endocrinology, The Second Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
- Correspondence to: Dr Hanqing Cai, Department of Endocrinology, The Second Hospital of Jilin University, 218 Ziqiang Street, Nanguan, Changchun, Jilin 130021, P.R. China, E-mail:
| |
Collapse
|
8
|
Wang M, Li H, Tang J, Xi Y, Chen S, Liu M. Effect of simvastatin on osteogenesis of the extremity bones in aging rats. Connect Tissue Res 2023; 64:64-74. [PMID: 35816110 DOI: 10.1080/03008207.2022.2094790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE Simvastatin is a prodrug of the potent 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor. The main purpose of the current study is to assess the accurate function of simvastatin on osteoporosis of extremity bones in aging rats. MATERIALS AND METHODS Fifty 15-month-old SD rats were divided into five groups (four simvastatin groups and one control group). The rats in four simvastatin groups were fed with different doses of simvastatin (5, 10, 20, and 40 mg/kg/d, respectively) for 3 months, whereas the rats in control group were fed the equal physiological saline. Calcium (Ca), phosphorus (P), and the lipid spectrum in serum were measured. Biochemical markers of bone metabolism, osteocalcin (OC), and tartrate-resistant acid phosphatase (Trap-5b), were analyzed using ELISA. The content of adipocytes in bone marrow was analyzed by histological staining. Finally, the bone quality of the femur and tibia were evaluated using dual-energy X-ray absorptiometry (DEXA), peri-quantity CT (pQCT), and the 3-point bending biomechanical test. RESULTS Simvastatin reduced serum triglycerides (TG), and 10 mg/kg/d of simvastatin significantly reduced the content of adipocytes in bone marrow compared to the control group. However, statistically significant differences between the simvastatin groups and the control group were not found in the CA, P, OC, Trap-5b, or the evaluation indexes of bone quality from DEXA, pQCT, and biomechanical tests. CONCLUSION Simvastatin could not prevent osteoporosis of the extremity bones in aging rats.
Collapse
Affiliation(s)
- Mengran Wang
- Department of Orthopedics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Haowei Li
- Department of Orthopedics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiaxin Tang
- Department of Orthopedics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yue Xi
- Department of Orthopedics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shiyi Chen
- Department of Orthopedics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ming Liu
- Department of Orthopedics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
9
|
Patel KK, Sehgal VS, Kashfi K. Molecular targets of statins and their potential side effects: Not all the glitter is gold. Eur J Pharmacol 2022; 922:174906. [PMID: 35321818 PMCID: PMC9007885 DOI: 10.1016/j.ejphar.2022.174906] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/12/2022] [Accepted: 03/17/2022] [Indexed: 12/11/2022]
Abstract
Statins are a class of drugs widely used worldwide to manage hypercholesterolemia and the prevention of secondary heart attacks. Currently, available statins vary in terms of their pharmacokinetic and pharmacodynamic profiles. Although the primary target of statins is the inhibition of HMG-CoA reductase (HMGR), the rate-limiting enzyme in cholesterol biosynthesis, statins exhibit many pleiotropic effects downstream of the mevalonate pathway. These pleiotropic effects include the ability to reduce myocardial fibrosis, pathologic cardiac disease states, hypertension, promote bone differentiation, anti-inflammatory, and antitumor effects through multiple mechanisms. Although these pleiotropic effects of statins may be a cause for enthusiasm, there are many adverse effects that, for the most part, are unappreciated and need to be highlighted. These adverse effects include myopathy, new-onset type 2 diabetes, renal and hepatic dysfunction. Although these adverse effects may be relatively uncommon, considering the number of people worldwide who use statins daily, the actual number of people affected becomes quite large. Also, co-administration of statins with several other medications, herbal agents, and foods, which interact through common enzymatic pathways, can have untoward clinical consequences. In this review, we address these concerns.
Collapse
Affiliation(s)
- Kush K Patel
- Department of Molecular, Cellular, and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, USA
| | - Viren S Sehgal
- Department of Molecular, Cellular, and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, USA
| | - Khosrow Kashfi
- Department of Molecular, Cellular, and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, USA; Graduate Program in Biology, City University of New York Graduate Center, New York, USA.
| |
Collapse
|
10
|
The associations of statin intake and the trabecular bone score and bone mineral density status in elderly Iranian individuals: a cross-sectional analysis of the Bushehr Elderly Health (BEH) program. Arch Osteoporos 2021; 16:144. [PMID: 34570258 DOI: 10.1007/s11657-021-00991-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 08/16/2021] [Indexed: 02/03/2023]
Abstract
UNLABELLED In recent years, a growing interest on the impact of statin intake on bone health has emerged, although the reported results are controversial. The results of this study revealed that BMD at lumbar spine has a significant association with statin intake. However, such association appears to be weaker regarding TBS values compared to BMD. This study was performed with the aim of evaluating associations of statin intake with BMD and TBS using data from 2426 individuals aged ≥ 60 years from the second phase of the Bushehr Elderly Health (BEH) program. We found a positive association between statin and BMD at lumbar spine, whereas association between statin and TBS was detected only in the men in the final model. INTRODUCTION In recent years, a growing interest has been established to evaluate the impact of statin intake on bone health, although the reported results are controversial. This study aimed to evaluate the association of statin intake with bone health status according to BMD and TBS. METHODS This cross-sectional analysis used data from the elderly Iranian individuals who participated in the Bushehr Elderly Health (BEH) program. Dual x-ray absorptiometry (DXA) device was used to evaluate the BMD at lumbar spine (L1-L4), femoral neck, and total hip, as well as TBS at lumbar spine. RESULTS Among 2426 (1260 women and 1166 men) study participants, 778 were statin users. A positive significant association, irrespective of sex, was observed between statin intake and BMD at L1-L4, even after controlling for potential variables in total population (β = 0.016, p = 0.013). The mean TBS values at L1-L4 were negatively associated with statin intake in total population (β = - 0.009, p = 0.001), while in the full adjusted model, significant positive association between TBS and statin intake was detected only in men (β = 0.013, p = 0.02). CONCLUSION The results of this study revealed that BMD at lumbar spine has a significant association with statin intake. However, such an association appears to be weaker regarding TBS values compared to BMD.
Collapse
|
11
|
Chamani S, Liberale L, Mobasheri L, Montecucco F, Al-Rasadi K, Jamialahmadi T, Sahebkar A. The role of statins in the differentiation and function of bone cells. Eur J Clin Invest 2021; 51:e13534. [PMID: 33656763 DOI: 10.1111/eci.13534] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/09/2021] [Accepted: 02/27/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Statins are 3-Hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors blocking cholesterol biosynthesis in hepatic cells, thereby causing an increase in low-density lipoprotein (LDL) receptors resulting in enhanced uptake and clearance of atherogenic LDL-cholesterol (LDL-C) from the blood. Accordingly, statins decrease the risk of developing atherosclerosis and its acute complications, such as acute myocardial infarction and ischaemic stroke. Besides the LDL-C-lowering impact, statins also have other so-called pleiotropic effects. Among them, the ability to modulate differentiation and function of bone cells and exert direct effects on osteosynthesis factors. Specifically, earlier studies have shown that statins cause in vitro and in vivo osteogenic differentiation. DESIGN The most relevant papers on the bone-related 'pleiotropic' effects of statins were selected following literature search in databases and were reveiwed. RESULTS Statins increase the expression of many mediators involved in bone metabolism including bone morphogenetic protein-2 (BMP-2), glucocorticoids, transforming growth factor-beta (TGF-β), alkaline phosphatase (ALP), type I collagen and collagenase-1. As a result, they enhance bone formation and improve bone mineral density by modulating osteoblast and osteoclast differentiation. CONCLUSION This review summarizes the literature exploring bone-related 'pleiotropic' effects of statins and suggests an anabolic role in the bone tissue for this drug class. Accordingly, current knowledge encourages further clinical trials to assess the therapeutic potential of statins in the treatment of bone disorders, such as arthritis and osteoporosis.
Collapse
Affiliation(s)
- Sajad Chamani
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran.,Department of Immunology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Luca Liberale
- Center for Molecular Cardiology, University of Zürich, Schlieren, Switzerland.,First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Leila Mobasheri
- Department of Pharmacology, Faculty of medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino Genoa - Italian Cardiovascular Network, Genoa, Italy
| | | | - Tannaz Jamialahmadi
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran.,Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
12
|
Terauchi M, Tamura A, Arisaka Y, Masuda H, Yoda T, Yui N. Cyclodextrin-Based Supramolecular Complexes of Osteoinductive Agents for Dental Tissue Regeneration. Pharmaceutics 2021; 13:136. [PMID: 33494320 PMCID: PMC7911178 DOI: 10.3390/pharmaceutics13020136] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 12/16/2022] Open
Abstract
Oral tissue regeneration has received growing attention for improving the quality of life of patients. Regeneration of oral tissues such as alveolar bone and widely defected bone has been extensively investigated, including regenerative treatment of oral tissues using therapeutic cells and growth factors. Additionally, small-molecule drugs that promote bone formation have been identified and tested as new regenerative treatment. However, treatments need to progress to realize successful regeneration of oral functions. In this review, we describe recent progress in development of regenerative treatment of oral tissues. In particular, we focus on cyclodextrin (CD)-based pharmaceutics and polyelectrolyte complexation of growth factors to enhance their solubility, stability, and bioactivity. CDs can encapsulate hydrophobic small-molecule drugs into their cavities, resulting in inclusion complexes. The inclusion complexation of osteoinductive small-molecule drugs improves solubility of the drugs in aqueous solutions and increases in vitro osteogenic differentiation efficiency. Additionally, various anionic polymers such as heparin and its mimetic polymers have been developed to improve stability and bioactivity of growth factors. These polymers protect growth factors from deactivation and degradation by complex formation through electrostatic interaction, leading to potentiation of bone formation ability. These approaches using an inclusion complex and polyelectrolyte complexes have great potential in the regeneration of oral tissues.
Collapse
Affiliation(s)
- Masahiko Terauchi
- Department of Maxillofacial Surgery, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo, Tokyo 113-8549, Japan; (M.T.); (H.M.); (T.Y.)
| | - Atsushi Tamura
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan; (Y.A.); (N.Y.)
| | - Yoshinori Arisaka
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan; (Y.A.); (N.Y.)
| | - Hiroki Masuda
- Department of Maxillofacial Surgery, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo, Tokyo 113-8549, Japan; (M.T.); (H.M.); (T.Y.)
| | - Tetsuya Yoda
- Department of Maxillofacial Surgery, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo, Tokyo 113-8549, Japan; (M.T.); (H.M.); (T.Y.)
| | - Nobuhiko Yui
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan; (Y.A.); (N.Y.)
| |
Collapse
|
13
|
Yu KE, Alder KD, Morris MT, Munger AM, Lee I, Cahill SV, Kwon HK, Back J, Lee FY. Re-appraising the potential of naringin for natural, novel orthopedic biotherapies. Ther Adv Musculoskelet Dis 2020; 12:1759720X20966135. [PMID: 33343723 PMCID: PMC7727086 DOI: 10.1177/1759720x20966135] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/22/2020] [Indexed: 01/03/2023] Open
Abstract
Naringin is a naturally occurring flavonoid found in plants of the Citrus genus that has historically been used in traditional Chinese medical regimens for the treatment of osteoporosis. Naringin modulates signaling through numerous molecular pathways critical to musculoskeletal development, cellular differentiation, and inflammation. Administration of naringin increases in vitro expression of bone morphogenetic proteins (BMPs) and activation of the Wnt/β-catenin and extracellular signal-related kinase (Erk) pathways, thereby promoting osteoblastic proliferation and differentiation from stem cell precursors for bone formation. Naringin also inhibits osteoclastogenesis by both modifying RANK/RANKL interactions and inducing apoptosis in osteoclasts in vitro. In addition, naringin acts on the estrogen receptor in bone to mimic the native bone-preserving effects of estrogen, with few systemic side effects on other estrogen-sensitive tissues. The efficacy of naringin therapy in reducing the osteolysis characteristic of common musculoskeletal pathologies such as osteoporosis, degenerative joint disease, and osteomyelitis, as well as inflammatory conditions affecting bone such as diabetes mellitus, has been extensively demonstrated in vitro and in animal models. Naringin thus represents a naturally abundant, cost-efficient agent whose potential for use in novel musculoskeletal biotherapies warrants re-visiting and further exploration through human studies. Here, we review the cellular mechanisms of action that have been elucidated regarding the action of naringin on bone resident cells and the bone microenvironment, in vivo evidence of naringin’s osteostimulative and chondroprotective properties in the setting of osteolytic bone disease, and current limitations in the development of naringin-containing translational therapies for common musculoskeletal conditions.
Collapse
Affiliation(s)
- Kristin E Yu
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, 330 Cedar St, TMP 523 PO Box 208071, New Haven, CT 06520-8071, USA
| | - Kareme D Alder
- Department of Orthopædics & Rehabilitation, Yale University, School of Medicine, New Haven, CT, USA
| | - Montana T Morris
- Department of Orthopædics & Rehabilitation, Yale University, School of Medicine, New Haven, CT, USA
| | - Alana M Munger
- Department of Orthopædics & Rehabilitation, Yale University, School of Medicine, New Haven, CT, USA
| | - Inkyu Lee
- Department of Orthopædics & Rehabilitation, Yale University, School of Medicine, New Haven, CT, USA; Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Sean V Cahill
- Department of Orthopædics & Rehabilitation, Yale University, School of Medicine, New Haven, CT, USA
| | - Hyuk-Kwon Kwon
- Department of Orthopædics & Rehabilitation, Yale University, School of Medicine, New Haven, CT, USA
| | - JungHo Back
- Department of Orthopædics & Rehabilitation, Yale University, School of Medicine, New Haven, CT, USA
| | - Francis Y Lee
- Department of Orthopædics & Rehabilitation, Yale University, School of Medicine, New Haven, CT, USA
| |
Collapse
|
14
|
Water/pH dual responsive in situ calcium supplement collaborates simvastatin for osteoblast promotion mediated osteoporosis therapy via oral medication. J Control Release 2020; 329:121-135. [PMID: 33279604 DOI: 10.1016/j.jconrel.2020.11.059] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/22/2020] [Accepted: 11/29/2020] [Indexed: 12/20/2022]
Abstract
Calcium supplement is the most commonly adopted treatment for osteoporosis but usually requires high dose and frequency. The modality of calcium supplement is therefore overlooked by current nanomedicine-based osteoporosis therapies without proper oral formulations. Herein, we proposed a tetracycline (Tc) modified and monostearin (MS) coated amorphous calcium carbonate (ACC) platform (TMA) as oral bone targeted and osteoporosis microenvironment (water/pH) responsive carrier for in situ calcium supplement. Moreover, current osteoporosis therapies also fall short of finding suitable molecular target and effective therapeutic regimen to further increase the therapeutic efficacy over available treatment means. As a result, the simvastatin (Sim) was loaded into TMA to construct drug delivery system (TMA/Sim) capable of synergistically activating the bone morphogenetic proteins (BMPs)-Smad pathway to provide a novel therapeutic regimen for osteoblast promotion mediated osteoporosis therapy. Our results revealed that optimized TMA showed high accessibility and oral availability with targeted drug delivery to bone tissue. Most importantly, benefit from the effective in situ calcium supplement and targeted Sim delivery, this therapeutic regime (TMA/Sim) achieved better synergetic effects than conventional combination strategies with promising osteoporosis reversion performance under low calcium dosage (1/10 of commercial calcium carbonate tablet) and significantly attenuated side effects.
Collapse
|
15
|
Elsayed I, El-Dahmy RM, El-Emam SZ, Elshafeey AH, El Gawad NAA, El-Gazayerly ON. Response surface optimization of biocompatible elastic nanovesicles loaded with rosuvastatin calcium: enhanced bioavailability and anticancer efficacy. Drug Deliv Transl Res 2020; 10:1459-1475. [PMID: 32394333 DOI: 10.1007/s13346-020-00761-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Statins are mainly used for the treatment of hyperlipidemia, but recently, their anticancer role was extremely investigated. The goal of this study was to statistically optimize novel elastic nanovesicles containing rosuvastatin calcium to improve its transdermal permeability, bioavailability, and anticancer effect. The elastic nanovesicles were composed of Tween® 80, cetyl alcohol, and clove oil. The nanodispersions were investigated for their entrapment efficiency, particle size, zeta potential, polydispersity index, and elasticity. The optimized elastic nanovesicular dispersion is composed of 20% cetyl alcohol, 53.47% Tween 80, and 26.53% clove oil. Carboxy methylcellulose was utilized to convert the optimized elastic nanovesicular dispersion into elastic nanovesicular gels. Both the optimized dispersion and the optimized gel (containing 2% w/v carboxymethylcellulose) were subjected to in vitro release study, scanning and transmission electron microscopy, histopathological evaluation, and ex vivo permeation. The cell viability assay of the optimized gel on MCF-7 and Hela cell lines showed significant antiproliferative and potent cytotoxic effects when compared to the drug gel. Moreover, the optimized gel accomplished a significant increase in rosuvastatin bioavailability upon comparison with the drug gel. The optimized gel could be considered as a promising nanocarrier for statins transdermal delivery to increase their systemic bioavailability and anticancer effect. Graphical abstract.
Collapse
|
16
|
Ion R, Necula MG, Mazare A, Mitran V, Neacsu P, Schmuki P, Cimpean A. Drug Delivery Systems Based on Titania Nanotubes and Active Agents for Enhanced Osseointegration of Bone Implants. Curr Med Chem 2020; 27:854-902. [PMID: 31362646 DOI: 10.2174/0929867326666190726123229] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 01/16/2019] [Accepted: 05/04/2019] [Indexed: 12/31/2022]
Abstract
TiO2 nanotubes (TNTs) are attractive nanostructures for localized drug delivery. Owing to their excellent biocompatibility and physicochemical properties, numerous functionalizations of TNTs have been attempted for their use as therapeutic agent delivery platforms. In this review, we discuss the current advances in the applications of TNT-based delivery systems with an emphasis on the various functionalizations of TNTs for enhancing osteogenesis at the bone-implant interface and for preventing implant-related infection. Innovation of therapies for enhancing osteogenesis still represents a critical challenge in regeneration of bone defects. The overall concept focuses on the use of osteoconductive materials in combination with the use of osteoinductive or osteopromotive factors. In this context, we highlight the strategies for improving the functionality of TNTs, using five classes of bioactive agents: growth factors (GFs), statins, plant derived molecules, inorganic therapeutic ions/nanoparticles (NPs) and antimicrobial compounds.
Collapse
Affiliation(s)
- Raluca Ion
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Madalina Georgiana Necula
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Anca Mazare
- University of Erlangen-Nuremberg, Department of Materials Science, Erlangen, Germany
| | - Valentina Mitran
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Patricia Neacsu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Patrik Schmuki
- University of Erlangen-Nuremberg, Department of Materials Science, Erlangen, Germany
| | - Anisoara Cimpean
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| |
Collapse
|
17
|
Tran NMP, Dang NTN, Nguyen NTP, Nguyen LVH, Quyen TN, Tran PA, Lee BT, Hiep NT. Fabrication of injectable bone substitute loading porous simvastatin-loaded poly(lactic- co-glycolic acid) microspheres. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2019.1566726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Nam Minh-Phuong Tran
- Tissue Engineering and Regenerative Medicine Laboratory, Department of Biomedical Engineering, International University, Vietnam National University- Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, Vietnam
| | - Nhi Thao-Ngoc Dang
- Tissue Engineering and Regenerative Medicine Laboratory, Department of Biomedical Engineering, International University, Vietnam National University- Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, Vietnam
| | - Nghi Thi-Phuong Nguyen
- Tissue Engineering and Regenerative Medicine Laboratory, Department of Biomedical Engineering, International University, Vietnam National University- Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, Vietnam
| | - Long Vuong-Hoang Nguyen
- Tissue Engineering and Regenerative Medicine Laboratory, Department of Biomedical Engineering, International University, Vietnam National University- Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, Vietnam
| | - Tran Ngoc Quyen
- Institute of Applied Materials Science, Vietnam Academy Science and Technology, Ho Chi Minh City, Vietnam
- Graduate University of Science and Technology Viet Nam, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
| | - Phong A. Tran
- Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Byong-Taek Lee
- Department of Biomedical Engineering and Materials, College of Medicine, Soonchunhyang University, Cheonan, Korea
| | - Nguyen Thi Hiep
- Tissue Engineering and Regenerative Medicine Laboratory, Department of Biomedical Engineering, International University, Vietnam National University- Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, Vietnam
| |
Collapse
|
18
|
Abstract
In this issue of Cell Chemical Biology, Cook et al. (2019) report a new small-molecule activator that enhances osteogenesis and skeletal regeneration in developmental and adult animal models, respectively. This discovery has therapeutic potential for healing following traumatic bone injury, as well as bone remodeling in response to osteoporosis.
Collapse
Affiliation(s)
- Jae Won Chang
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA; Institute for Genomics and Systems Biology, University of Chicago, IL 60637, USA
| | - Raymond E Moellering
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA; Institute for Genomics and Systems Biology, University of Chicago, IL 60637, USA.
| |
Collapse
|
19
|
Wan Hasan WN, Chin KY, Abd Ghafar N, Soelaiman IN. Annatto-Derived Tocotrienol Promotes Mineralization of MC3T3-E1 Cells by Enhancing BMP-2 Protein Expression via Inhibiting RhoA Activation and HMG-CoA Reductase Gene Expression. Drug Des Devel Ther 2020; 14:969-976. [PMID: 32184566 PMCID: PMC7060796 DOI: 10.2147/dddt.s224941] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 02/14/2020] [Indexed: 12/14/2022] Open
Abstract
PURPOSE Annatto-derived tocotrienol (AnTT) has been shown to improve bone formation in animal models of osteoporosis and promote differentiation of pre-osteoblastic cells. However, the mechanism of action of AnTT in achieving these effects is unclear. This study aims to investigate the mechanism of action of AnTT on MC3T3-E1 pre-osteoblasts via the mevalonate pathway. METHODS Murine pre-osteoblastic cells, MC3T3-E1, were cultured with the density of 1 × 104 cells/mL and treated with 4 concentrations of AnTT (0.001-1 µg/mL). Expression of HMG-CoA reductase (HMGR) gene was carried out using qPCR after treatment with AnTT for 21 days. RhoA activation and bone morphogenetic protein-2 (BMP-2) were measured using immunoassay after 9 and 15 days of AnTT treatment. Lovastatin was used as the positive control. Mineralized nodules were detected using Von Kossa staining after 21 days of AnTT treatment. RESULTS The results showed that HMGR was up-regulated in the lovastatin group on day 9 and 21 compared to the control. Lovastatin also inhibited RhoA activation (day 9 and 15) and increased BMP-2 protein (day 15). On the other hand, AnTT at 0.001 μg/mL (day 3) and 0.1 μg/mL (day 21) significantly down-regulated HMGR gene expression compared to the control. On day 21, HMGR gene expression was significantly reduced in all groups compared to day 15. AnTT at 0.1 μg/mL significantly decreased RhoA activation on day 9 compared to the control. AnTT at 1 μg/mL significantly increased BMP-2 protein on day 15 compared to the control (P<0.05). Mineralized calcium nodules were more abundant in AnTT treated groups compared to the control on day 21. CONCLUSION AnTT suppresses the mevalonate pathway by downregulating HMGR gene expression and inhibiting RhoA activation, leading to increased BMP-2 protein in MC3T3-E1 cells. This explains the stimulating effects of AnTT on osteoblast mineralization.
Collapse
Affiliation(s)
- Wan Nuraini Wan Hasan
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, UKM Medical Centre (UKMMC), Kuala Lumpur56000, Malaysia
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, UKM Medical Centre (UKMMC), Kuala Lumpur56000, Malaysia
| | - Norzana Abd Ghafar
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, UKM Medical Centre (UKMMC), Kuala Lumpur56000, Malaysia
| | - Ima Nirwana Soelaiman
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, UKM Medical Centre (UKMMC), Kuala Lumpur56000, Malaysia
| |
Collapse
|
20
|
Jain P, Mirza MA, Talegaonkar S, Nandy S, Dudeja M, Sharma N, Anwer MK, Alshahrani SM, Iqbal Z. Design and in vitro/ in vivo evaluations of a multiple-drug-containing gingiva disc for periodontotherapy. RSC Adv 2020; 10:8530-8538. [PMID: 35497829 PMCID: PMC9049995 DOI: 10.1039/c9ra09569a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 02/10/2020] [Indexed: 11/21/2022] Open
Abstract
In the current work, we set out to develop and evaluate a gingiva disc of cellulose acetate phthalate and poloxamer F-127 for the simultaneous delivery of multiple drugs, namely minocycline, celecoxib, doxycycline hyclate, and simvastatin, to abolish infection, impede inflammation, avert collagen destruction, and promote alveolar bone regeneration, respectively. In vitro release studies revealed the sustained release profiles of the drugs for 12 h and that they were active against Staphylococcus aureus, Escherichia coli and Streptococcus mutans. The in vivo bioactivity levels of these drugs were assessed by comparing the number of colony forming units during different phases of a study on Wistar rats, and the results showed a reduction in the number of bacterial colonies with the applied formulation. A mucosal irritation study conducted on Wistar rat gingiva confirmed the non-irritancy of the optimal gingiva disc. Hence, this customized, non-invasive polymeric gingiva disc displaying a sustained release of drugs can be a useful tool to treat acute to moderate stages of periodontitis.
Collapse
Affiliation(s)
- Pooja Jain
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard New Delhi 110062 India +91-9811733016 +91-9213378765
| | - Mohd Aamir Mirza
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard New Delhi 110062 India +91-9811733016 +91-9213378765
| | - Sushama Talegaonkar
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, Govt. of NCT of Delhi New Delhi India
| | - Shyamasree Nandy
- Department of Microbiology, Hamdard Institute of Medical Sciences and Research New Delhi India
| | - Mridu Dudeja
- Department of Microbiology, Hamdard Institute of Medical Sciences and Research New Delhi India
| | - Nilima Sharma
- Department of Dentistry, Hamdard Institute of Medical Sciences and Research & HAH Centenary Hospital, Jamia Hamdard New Delhi India
| | - Md Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University Al-kharj 11942 Saudi Arabia
| | - Saad M Alshahrani
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University Al-kharj 11942 Saudi Arabia
| | - Zeenat Iqbal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard New Delhi 110062 India +91-9811733016 +91-9213378765
| |
Collapse
|
21
|
Leutner M, Matzhold C, Bellach L, Deischinger C, Harreiter J, Thurner S, Klimek P, Kautzky-Willer A. Diagnosis of osteoporosis in statin-treated patients is dose-dependent. Ann Rheum Dis 2019; 78:1706-1711. [PMID: 31558481 PMCID: PMC6900255 DOI: 10.1136/annrheumdis-2019-215714] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/27/2019] [Accepted: 09/12/2019] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Whether HMG-CoA-reductase inhibition, the main mechanism of statins, plays a role in the pathogenesis of osteoporosis, is not entirely known so far. Consequently, this study was set out to investigate the relationship of different kinds and dosages of statins with osteoporosis, hypothesising that the inhibition of the synthesis of cholesterol could influence sex-hormones and therefore the diagnosis of osteoporosis. METHODS Medical claims data of all Austrians from 2006 to 2007 was used to identify all patients treated with statins to compute their daily defined dose averages of six different types of statins. We applied multiple logistic regression to analyse the dose-dependent risks of being diagnosed with osteoporosis for each statin individually. RESULTS In the general study population, statin treatment was associated with an overrepresentation of diagnosed osteoporosis compared with controls (OR: 3.62, 95% CI 3.55 to 3.69, p<0.01). There was a highly non-trivial dependence of statin dosage with the ORs of osteoporosis. Osteoporosis was underrepresented in low-dose statin treatment (0-10 mg per day), including lovastatin (OR: 0.39, CI 0.18 to 0.84, p<0.05), pravastatin (OR: 0.68, 95% CI 0.52 to 0.89, p<0.01), simvastatin (OR: 0.70, 95% CI 0.56 to 0.86, p<0.01) and rosuvastatin (OR: 0.69, 95% CI 0.55 to 0.87, p<0.01). However, the exceeding of the 40 mg threshold for simvastatin (OR: 1.64, 95% CI 1.31 to 2.07, p<0.01), and the exceeding of a 20 mg threshold for atorvastatin (OR: 1.78, 95% CI 1.41 to 2.23, p<0.01) and for rosuvastatin (OR: 2.04, 95% CI 1.31 to 3.18, p<0.01) was related to an overrepresentation of osteoporosis. CONCLUSION Our results show that the diagnosis of osteoporosis in statin-treated patients is dose-dependent. Thus, osteoporosis is underrepresented in low-dose and overrepresented in high-dose statin treatment, demonstrating the importance of future studies' taking dose-dependency into account when investigating the relationship between statins and osteoporosis.
Collapse
Affiliation(s)
- Michael Leutner
- Department of Internal Medicine III, Clinical Division of Endocrinology and Metabolism, Unit of Gender Medicine, Medical University of Vienna, Vienna, Austria
| | - Caspar Matzhold
- Section for Science of Complex Systems, CeMSIIS, Medical University of Vienna, Vienna, Austria
- Complexity Science Hub Vienna, Vienna, Austria
| | - Luise Bellach
- Department of Internal Medicine III, Clinical Division of Endocrinology and Metabolism, Unit of Gender Medicine, Medical University of Vienna, Vienna, Austria
| | - Carola Deischinger
- Department of Internal Medicine III, Clinical Division of Endocrinology and Metabolism, Unit of Gender Medicine, Medical University of Vienna, Vienna, Austria
| | - Jürgen Harreiter
- Department of Internal Medicine III, Clinical Division of Endocrinology and Metabolism, Unit of Gender Medicine, Medical University of Vienna, Vienna, Austria
| | - Stefan Thurner
- Section for Science of Complex Systems, CeMSIIS, Medical University of Vienna, Vienna, Austria
- Complexity Science Hub Vienna, Vienna, Austria
- Santa Fe Institute, Santa Fe, New Mexico, USA
- IIASA, Laxenburg, Austria
| | - Peter Klimek
- Section for Science of Complex Systems, CeMSIIS, Medical University of Vienna, Vienna, Austria
- Complexity Science Hub Vienna, Vienna, Austria
| | - Alexandra Kautzky-Willer
- Department of Internal Medicine III, Clinical Division of Endocrinology and Metabolism, Unit of Gender Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
22
|
Shah AK, Yeganehjoo H. The stimulatory impact of d-δ-Tocotrienol on the differentiation of murine MC3T3-E1 preosteoblasts. Mol Cell Biochem 2019; 462:173-183. [PMID: 31620952 DOI: 10.1007/s11010-019-03620-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/24/2019] [Indexed: 02/06/2023]
Abstract
Osteoblasts and osteoclasts play essential and opposite roles in maintaining bone homeostasis. Osteoblasts fill cavities excavated by osteoclasts. The mevalonate pathway provides essential prenyl pyrophosphates for the activities of GTPases that promote differentiation of osteoclasts but suppress that of osteoblasts. Preclinical and clinical studies suggest that mevalonate suppressors such as statins increase bone mineral density and reduce risk of bone fracture. Tocotrienols down-regulate 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase, the rate-limiting enzyme in the mevalonate pathway. In vivo studies have shown the bone-protective activity of tocotrienols. We hypothesize that d-δ-tocotrienol, a mevalonate suppressor, induces differentiation of murine MC3T3-E1 preosteoblasts. Alizarin staining showed that d-δ-tocotrienol (0-25 μmol/L) induced mineralized nodule formation in a concentration-dependent manner in MC3T3-E1 preosteoblasts. d-δ-Tocotrienol (0-25 μmol/L), but not D-α-tocopherol (25 μmol/L), significantly induced alkaline phosphatase activity, an indicator of preosteoblast differentiation. The expression of differentiation marker genes including BMP-2 and VEGFα was stimulated dose dependently by d-δ-tocotrienol (0-25 μmol/L). Concomitantly, Western blot analysis showed that d-δ-tocotrienol down-regulated HMG CoA reductase. d-δ-Tocotrienol (0-25 μmol/L) had no impact on the viability of MC3T3-E1 preosteoblasts following 48-h incubation, suggesting lack of cytotoxicity at these doses. Tocotrienols and other mevalonate suppressors have potential in maintaining bone health.
Collapse
Affiliation(s)
- Anureet Kaur Shah
- Department of Nutrition and Food Science, Texas Woman's University, Denton, TX, USA. .,Department of Kinesiology and Nutritional Science, California State University, Los Angeles, USA. .,School of Kinesiology and Nutritional Science, California State University, Los Angeles, USA.
| | - Hoda Yeganehjoo
- Department of Nutrition and Food Science, Texas Woman's University, Denton, TX, USA.,Department of Clinical Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
23
|
Shao PL, Wu SC, Lin ZY, Ho ML, Chen CH, Wang CZ. Alpha-5 Integrin Mediates Simvastatin-Induced Osteogenesis of Bone Marrow Mesenchymal Stem Cells. Int J Mol Sci 2019; 20:ijms20030506. [PMID: 30682874 PMCID: PMC6387019 DOI: 10.3390/ijms20030506] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/17/2019] [Accepted: 01/20/2019] [Indexed: 11/16/2022] Open
Abstract
Simvastatin (SVS) promotes the osteogenic differentiation of mesenchymal stem cells (MSCs) and has been studied for MSC-based bone regeneration. However, the mechanism underlying SVS-induced osteogenesis is not well understood. We hypothesize that α5 integrin mediates SVS-induced osteogenic differentiation. Bone marrow MSCs (BMSCs) derived from BALB/C mice, referred to as D1 cells, were used. Alizarin red S (calcium deposition) and alkaline phosphatase (ALP) staining were used to evaluate SVS-induced osteogenesis of D1 cells. The mRNA expression levels of α5 integrin and osteogenic marker genes (bone morphogenetic protein-2 (BMP-2), runt-related transcription factor 2 (Runx2), collagen type I, ALP and osteocalcin (OC)) were detected using quantitative real-time PCR. Surface-expressed α5 integrin was detected using flow cytometry analysis. Protein expression levels of α5 integrin and phosphorylated focal adhesion kinase (p-FAK), which is downstream of α5 integrin, were detected using Western blotting. siRNA was used to deplete the expression of α5 integrin in D1 cells. The results showed that SVS dose-dependently enhanced the gene expression levels of osteogenic marker genes as well as subsequent ALP activity and calcium deposition in D1 cells. Upregulated p-FAK was accompanied by an increased protein expression level of α5 integrin after SVS treatment. Surface-expressed α5 integrin was also upregulated after SVS treatment. Depletion of α5 integrin expression significantly suppressed SVS-induced osteogenic gene expression levels, ALP activity, and calcium deposition in D1 cells. These results identify a critical role of α5 integrin in SVS-induced osteogenic differentiation of BMSCs, which may suggest a therapeutic strategy to modulate α5 integrin/FAK signaling to promote MSC-based bone regeneration.
Collapse
Affiliation(s)
- Pei-Lin Shao
- Department of Nursing, Asia University, Taichung 413, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University,Taichung 404, Taiwan.
| | - Shun-Cheng Wu
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Zih-Yin Lin
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Mei-Ling Ho
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan.
| | - Chung-Hwan Chen
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung 801, Taiwan.
- Division of Adult Reconstruction Surgery, Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Chau-Zen Wang
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan.
| |
Collapse
|
24
|
Encarnação IC, Sordi MB, Aragones Á, Müller CMO, Moreira AC, Fernandes CP, Ramos JV, Cordeiro MMR, Fredel MC, Magini RS. Release of simvastatin from scaffolds of poly(lactic‐co‐glycolic) acid and biphasic ceramic designed for bone tissue regeneration. J Biomed Mater Res B Appl Biomater 2019; 107:2152-2164. [DOI: 10.1002/jbm.b.34311] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/16/2018] [Accepted: 12/19/2018] [Indexed: 11/12/2022]
Affiliation(s)
- Isis C. Encarnação
- Center for Research on Dental Implants (CEPID), Department of DentistryFederal University of Santa Catarina Florianópolis Brazil
| | - Mariane B. Sordi
- Center for Research on Dental Implants (CEPID), Department of DentistryFederal University of Santa Catarina Florianópolis Brazil
| | - Águedo Aragones
- Center for Research on Dental Implants (CEPID), Department of DentistryFederal University of Santa Catarina Florianópolis Brazil
- Ceramic & Composite Materials Research Laboratories (CERMAT), Department of Mechanical EngineeringFederal University of Santa Catarina Florianópolis Brazil
| | | | - Anderson C. Moreira
- Laboratory of Porous Media and Thermophysical Properties (LMPT)Department of Mechanical Engineering, Federal University of Santa Catarina Florianópolis Brazil
| | - Celso P. Fernandes
- Laboratory of Porous Media and Thermophysical Properties (LMPT)Department of Mechanical Engineering, Federal University of Santa Catarina Florianópolis Brazil
| | - Jeferson V. Ramos
- Laboratory of Porous Media and Thermophysical Properties (LMPT)Department of Mechanical Engineering, Federal University of Santa Catarina Florianópolis Brazil
| | - Mabel M. R. Cordeiro
- Center for Research on Dental Implants (CEPID), Department of DentistryFederal University of Santa Catarina Florianópolis Brazil
| | - Márcio C. Fredel
- Ceramic & Composite Materials Research Laboratories (CERMAT), Department of Mechanical EngineeringFederal University of Santa Catarina Florianópolis Brazil
| | - Ricardo S. Magini
- Center for Research on Dental Implants (CEPID), Department of DentistryFederal University of Santa Catarina Florianópolis Brazil
| |
Collapse
|
25
|
Kalani MM, Nourmohammadi J, Negahdari B. Osteogenic potential of Rosuvastatin immobilized on silk fibroin nanofibers using argon plasma treatment. Biomed Mater 2018; 14:025002. [DOI: 10.1088/1748-605x/aaec26] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
26
|
Cytotoxic Activity and Kinetic Release Study of Lovastatin-Loaded Ph-Sensitive Polymersomes. Pharm Chem J 2018. [DOI: 10.1007/s11094-018-1888-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
27
|
Cheng X, Wan Q, Pei X. Graphene Family Materials in Bone Tissue Regeneration: Perspectives and Challenges. NANOSCALE RESEARCH LETTERS 2018; 13:289. [PMID: 30229504 PMCID: PMC6143492 DOI: 10.1186/s11671-018-2694-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 08/28/2018] [Indexed: 02/05/2023]
Abstract
We have witnessed abundant breakthroughs in research on the bio-applications of graphene family materials in current years. Owing to their nanoscale size, large specific surface area, photoluminescence properties, and antibacterial activity, graphene family materials possess huge potential for bone tissue engineering, drug/gene delivery, and biological sensing/imaging applications. In this review, we retrospect recent progress and achievements in graphene research, as well as critically analyze and discuss the bio-safety and feasibility of various biomedical applications of graphene family materials for bone tissue regeneration.
Collapse
Affiliation(s)
- Xinting Cheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu, 610041 China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu, 610041 China
| | - Qianbing Wan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu, 610041 China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu, 610041 China
| | - Xibo Pei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu, 610041 China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu, 610041 China
| |
Collapse
|
28
|
Eskinazi-Budge A, Manickavasagam D, Czech T, Novak K, Kunzler J, Oyewumi MO. Preparation of emulsifying wax/glyceryl monooleate nanoparticles and evaluation as a delivery system for repurposing simvastatin in bone regeneration. Drug Dev Ind Pharm 2018; 44:1583-1590. [DOI: 10.1080/03639045.2018.1483381] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Aaron Eskinazi-Budge
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Dharani Manickavasagam
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH, USA
- Department of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Tori Czech
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Kimberly Novak
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH, USA
| | - James Kunzler
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Moses O. Oyewumi
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH, USA
- Department of Biomedical Sciences, Kent State University, Kent, OH, USA
| |
Collapse
|
29
|
AlSwafeeri H, ElKenany W, Mowafy M, Karam S. Effect of local administration of simvastatin on postorthodontic relapse in a rabbit model. Am J Orthod Dentofacial Orthop 2018; 153:861-871. [PMID: 29853244 DOI: 10.1016/j.ajodo.2017.10.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 10/01/2017] [Accepted: 10/01/2017] [Indexed: 01/14/2023]
Abstract
INTRODUCTION Posttreatment relapse is a major challenging clinical issue. The objective of this study was to evaluate the effect of local administration of simvastatin on posttreatment relapse. METHODS Orthodontic tooth movement was induced in 10 white New Zealand rabbits. After 21 days of active tooth movement, the orthodontic appliances were removed, and the experimental teeth were allowed to relapse for 21 days. During the relapse phase, 1 mandibular quadrant received local simvastatin administration, and the other received the control vehicle solution on a weekly basis. Three-dimensional models of the experimental teeth were created to allow the measurement of experimental tooth movement and posttreatment relapse. The animals were killed at the end of the relapse phase for histomorphometric analysis of alveolar bone remodeling. RESULTS The mean relapse percentages were 75.83% in the quadrant receiving the control vehicle solution and 62.01% in the quadrant receiving simvastatin. Neither the relapse magnitude nor the relapse percentage showed a significant difference between the 2 quadrants. Histomorphometric analyses showed that local simvastatin administration yielded a significant reduction in the area of active bone-resorptive lacunae and a significant increase in newly formed bone area. CONCLUSIONS Although local administration of simvastatin aids in bone remodeling associated with posttreatment relapse by reducing the area of active bone resorption and upregulating bone formation, it did not significantly minimize posttreatment relapse.
Collapse
Affiliation(s)
- Hani AlSwafeeri
- Department of Orthodontics, Faculty of Dentistry, Pharos University, Alexandria, Egypt.
| | - Walid ElKenany
- Department of Orthodontics, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Mohamed Mowafy
- Department of Orthodontics, Faculty of Dentistry, Alexandria University, Egypt
| | - Sahar Karam
- Department of Oral Biology, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| |
Collapse
|
30
|
Abstract
Bone morphogenetic proteins (BMPs) constitute the largest subdivision of the transforming growth factor (TGF)-β family of ligands and exert most of their effects through the canonical effectors Smad1, 5, and 8. Appropriate regulation of BMP signaling is critical for the development and homeostasis of numerous human organ systems. Aberrations in BMP pathways or their regulation are increasingly associated with diverse human pathologies, and there is an urgent and growing need to develop effective approaches to modulate BMP signaling in the clinic. In this review, we provide a wide perspective on diseases and/or conditions associated with dysregulated BMP signal transduction, outline the current strategies available to modulate BMP pathways, highlight emerging second-generation technologies, and postulate prospective avenues for future investigation.
Collapse
Affiliation(s)
- Jonathan W Lowery
- Division of Biomedical Science, Marian University College of Osteopathic Medicine, Indianapolis, Indiana 46222
| | - Vicki Rosen
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts 02115
| |
Collapse
|
31
|
Gouda A, Helal E, Ali S, Bakry S, Yassin S. Maxillary sinus lift using osteoinductive simvastatin combined with β-TCP versus β-TCP - a comparative pilot study to evaluate simvastatin enhanced and accelerated bone formation. Acta Odontol Scand 2018; 76:39-47. [PMID: 28952824 DOI: 10.1080/00016357.2017.1381345] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
PURPOSE The aim of this study was to evaluate available bone quality and quantity after performing sinus augmentation using simvastatin/β-TCP combination versus β-TCP alone. MATERIALS AND METHODS This study included eight sinus lift procedures conducted on six patients. The sinuses were divided into two equal groups. The patients were recalled one, two weeks two, five, nine months post-operatively for post-operative evaluation. Radiographic evaluation involved cone beam computed tomography (CBCT) radiographs taken for every patient one week and nine months post-operatively to evaluate the changes in bone height, while histomorphometric evaluation involved transcortical bone biopsies taken after nine months during the second-stage surgery for implant placement. RESULTS The histomorphometric results showed that the amount of newly formed bone was higher in the simvastatin group when compared to the β-TCP group nine months after the surgery; the difference between the two groups was statistically significant. On the other hand, the radiographic evaluation showed that the rate of resorption of the simvastatin group was found to be higher than the control group; however, the difference between both groups was statistically insignificant. CONCLUSION These results showed that Simvastatin is safe to be used in sinus lift with promising osteoinductive capacity, yet further studies using larger sample size is needed.
Collapse
Affiliation(s)
- Ayman Gouda
- Oral and Maxillofacial Surgery Department, Cairo University, Cairo, Egypt
| | - Eman Helal
- Fixed and Removable Prosthodontics Department, National Research Center, Cairo, Egypt
| | - Sherif Ali
- Oral and Maxillofacial Surgery Department, Cairo University, Cairo, Egypt
| | - Saleh Bakry
- Oral and Maxillofacial Surgery Department, Cairo University, Cairo, Egypt
| | - Salah Yassin
- Oral and Maxillofacial Surgery Department, Cairo University, Cairo, Egypt
| |
Collapse
|
32
|
Both T, van de Peppel HJ, Zillikens MC, Koedam M, van Leeuwen JPTM, van Hagen PM, van Daele PLA, van der Eerden BCJ. Hydroxychloroquine decreases human MSC-derived osteoblast differentiation and mineralization in vitro. J Cell Mol Med 2017; 22:873-882. [PMID: 28975700 PMCID: PMC5783866 DOI: 10.1111/jcmm.13373] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 08/09/2017] [Indexed: 01/03/2023] Open
Abstract
We recently showed that patients with primary Sjögren Syndrome (pSS) have significantly higher bone mineral density (BMD) compared to healthy controls. The majority of those patients (69%) was using hydroxychloroquine (HCQ), which may have favourable effects on BMD. To study the direct effects of HCQ on human MSC‐derived osteoblast activity. Osteoblasts were cultured from human mesenchymal stromal cells (hMSCs). Cultures were treated with different HCQ doses (control, 1 and 5 µg/ml). Alkaline phosphatase activity and calcium measurements were performed to evaluate osteoblast differentiation and activity, respectively. Detailed microarray analysis was performed in 5 µg/ml HCQ‐treated cells and controls followed by qPCR validation. Additional cultures were performed using the cholesterol synthesis inhibitor simvastatin (SIM) to evaluate a potential mechanism of action. We showed that HCQ inhibits both MSC‐derived osteoblast differentiation and mineralization in vitro. Microarray analysis and additional PCR validation revealed a highly significant up‐regulation of the cholesterol biosynthesis, lysosomal and extracellular matrix pathways in the 5 µg/ml HCQ‐treated cells compared to controls. Besides, we demonstrated that 1 µM SIM also decreases MSC‐derived osteoblast differentiation and mineralization compared to controls. It appears that the positive effect of HCQ on BMD cannot be explained by a stimulating effect on the MSC‐derived osteoblast. The discrepancy between high BMD and decreased MSC‐derived osteoblast function due to HCQ treatment might be caused by systemic factors that stimulate bone formation and/or local factors that reduce bone resorption, which is lacking in cell cultures.
Collapse
Affiliation(s)
- Tim Both
- Department of Internal Medicine, Division of Clinical Immunology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - H Jeroen van de Peppel
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - M Carola Zillikens
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Marijke Koedam
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Johannes P T M van Leeuwen
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - P Martin van Hagen
- Department of Internal Medicine, Division of Clinical Immunology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Paul L A van Daele
- Department of Internal Medicine, Division of Clinical Immunology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Bram C J van der Eerden
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
33
|
Ishihara T, Miyazaki M, Notani N, Kanezaki S, Kawano M, Tsumura H. Locally Applied Simvastatin Promotes Bone Formation in a Rat Model of Spinal Fusion. J Orthop Res 2017; 35:1942-1948. [PMID: 27862237 DOI: 10.1002/jor.23479] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 11/07/2016] [Indexed: 02/04/2023]
Abstract
Simvastatin, an inexpensive lipid-lowering drug widely used to prevent cardiovascular disorders, is known to increase osteoblastic activity, inhibit osteoclastic activity, and stimulate osteoblastic production of bone morphogenetic protein 2. Furthermore, local simvastatin application increased bone formation in animal models of fracture or bone defects. We investigated the effect of locally applied simvastatin in a rat model of spinal fusion. We performed posterolateral lumbar fusion surgery with iliac crest autograft in 36 rats divided into group I (n = 17; implanted with a gelatin scaffold) and group II (n = 19; implanted with a gelatin scaffold infused with 0.5 mg simvastatin). The rats were euthanized at 6 or 12 weeks postoperatively, and the spines were explanted and assessed. The fusion rates in group II (16.7%: 6 weeks, 30%: 12 weeks) were considerably higher than those in groups I (0%: 6 weeks, 0%: 12 weeks). The 6- and 12-week radiographic scores were significantly higher in group II than in group I. High-resolution micro-computerized tomography revealed that the tissue and bone volumes of the callus tended to be higher in group II than in group I. Histologic analysis of the spines explanted after 12 weeks demonstrated new bone formation between the transverse processes in group II, but thicker and wider individual trabeculae with fibrotic tissue and muscle fiber between the transverse processes in group I. Locally applied simvastatin was efficacious in accelerating bone formation in our rat model of spinal fusion, supporting its potential clinical application as a promoter of bone morphogenesis in spinal fusion. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1942-1948, 2017.
Collapse
Affiliation(s)
- Toshinobu Ishihara
- Faculty of Medicine, Department of Orthopaedic Surgery, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu-shi, Oita 879-5593, Japan
| | - Masashi Miyazaki
- Faculty of Medicine, Department of Orthopaedic Surgery, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu-shi, Oita 879-5593, Japan
| | - Naoki Notani
- Faculty of Medicine, Department of Orthopaedic Surgery, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu-shi, Oita 879-5593, Japan
| | - Shozo Kanezaki
- Faculty of Medicine, Department of Orthopaedic Surgery, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu-shi, Oita 879-5593, Japan
| | - Masanori Kawano
- Faculty of Medicine, Department of Orthopaedic Surgery, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu-shi, Oita 879-5593, Japan
| | - Hiroshi Tsumura
- Faculty of Medicine, Department of Orthopaedic Surgery, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu-shi, Oita 879-5593, Japan
| |
Collapse
|
34
|
Ungaro F, Catanzano O, d'Angelo I, Diaz-Gomez L, Concheiro A, Miro A, Alvarez-Lorenzo C, Quaglia F. Microparticle-embedded fibroin/alginate beads for prolonged local release of simvastatin hydroxyacid to mesenchymal stem cells. Carbohydr Polym 2017; 175:645-653. [PMID: 28917913 DOI: 10.1016/j.carbpol.2017.08.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/31/2017] [Accepted: 08/09/2017] [Indexed: 12/21/2022]
Abstract
In the present work, we propose silk fibroin/alginate (SF/Alg) beads embedding simvastatin-loaded biodegradable microparticles as a versatile platform capable of tuning SVA release and in so doing osteogenic effects. In a first part of the study, microparticles of poly(lactic-co-glycolic) acid incorporating simvastatin either as lactone (SVL) or as hydroxyacid form (SVA) were prepared by spray-drying. While SVA-loaded microparticles released the drug in three days, long-term release of SVA could be obtained from SVL-loaded microparticles. In this latter case, SVL was promptly transformed to the osteogenic active SVA during release. When tested on mesenchymal stem cells, a time- and dose-dependent effect of SVL-loaded microparticles on cell proliferation and alkaline phosphatase (ALP) activity was found. Thereafter, SVL-loaded microparticles were embedded in SF/Alg beads to limit the initial simvastatin burst and to achieve easier implantation as well. Microparticle-embedded beads showed no cytotoxicity while ALP activity increased. If correctly exploited, the developed system may be suitable as osteogenic polymer scaffolds releasing correct amount of the drug locally for long time-frames.
Collapse
Affiliation(s)
- F Ungaro
- Drug Delivery Laboratory, Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - O Catanzano
- Drug Delivery Laboratory, Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - I d'Angelo
- Di.S.T.A.B.i.F., University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
| | - L Diaz-Gomez
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, R+D Pharma Group (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - A Concheiro
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, R+D Pharma Group (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - A Miro
- Drug Delivery Laboratory, Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy.
| | - C Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, R+D Pharma Group (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - F Quaglia
- Drug Delivery Laboratory, Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| |
Collapse
|
35
|
Ranjan R, Patil SR, H R V. Effect of in-situ application of simvastatin gel in surgical management of osseous defects in chronic periodontitis-A randomized clinical trial. J Oral Biol Craniofac Res 2017; 7:113-118. [PMID: 28706785 DOI: 10.1016/j.jobcr.2017.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 05/16/2017] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND The present randomized controlled clinical study was designed to investigate the effect of in situ application of 1.2 mg Simvastatin (SV) gel in the surgical management of Intrabony defects in chronic periodontitis patients. METHODOLOGY 20 patients contributing 40 sites were categorized into two treatment groups: Open flap debridement plus 1.2 mg SV gel (Group 1) and Open flap debridement plus Placebo gel (Group 2). Gingival index (GI), Plaque index (PI), Pocket depth (PD) and clinical attachment level (CAL) were recorded at baseline, 3 months, 6 months and 9 months. At baseline and at the end of 6 and 9 months Radiographic evaluation of Intrabony defect fill was done using Image j software. RESULTS Significant reduction of GI, PD and gain in CAL was observed at the end of 9 months in both groups. Amount of bone fill and percentage of original defect fill in Group 1 was statistically highly significant than Group 2 at the end of 6 and 9 months. CONCLUSION Higher amount of decrease in GI and PD along with more amount of CAL gain was observed in treatment group than control group. Radiological assessment confirmed that significant intrabony defect fill and percentage fill of original defect in treatment group than controlled group.
Collapse
Affiliation(s)
- Rajeev Ranjan
- Department of Periodontics and Oral Implantology, Kalinga Institute of Dental Sciences, Campus 5, KIIT University, Patia, Bhubaneswar, Odisha, 751024, India
| | - Sudhir R Patil
- Department of Periodontics, K.L.E Society's Institute of Dental Sciences, Number 20, Tumkur Road, Yeshavanthpur Suburbs, suburb Bangalore, 560022, India
| | - Veena H R
- Department of Periodontics, K.L.E Society's Institute of Dental Sciences, Number 20, Tumkur Road, Yeshavanthpur Suburbs, suburb Bangalore, 560022, India
| |
Collapse
|
36
|
Saifi AM, Giraddi GB, Ahmed N. Healing of extraction socket following local application of simvastatin: A split mouth prospective study. J Oral Biol Craniofac Res 2017; 7:106-112. [PMID: 28706784 DOI: 10.1016/j.jobcr.2017.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 04/02/2017] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The role of simvastatin in lowering serum cholesterol level is well described. However, recent findings suggest they have a role in bone formation as well. AIM AND OBJECTIVES The present prospective study was conducted to evaluate the efficacy of simvastatin on bone formation in extraction sockets. MATERIALS AND METHODS 15 patients undergoing all four first premolar extraction were selected based on inclusion and exclusion criteria. Extraction sockets of left premolars (24 and 34) were considered as cases and right premolars (14 and 44) as controls. Overall 30 extraction sites were assigned to each group. Atraumatic extraction was done in all cases following which simvastatin mixed with gelatin sponge was placed in extraction socket of 24 and 34 while only gelatin sponge was placed in 14 and 44. All sockets were then closed with 3-0 vicryl. The patients were kept on follow-up and complications such as dry socket, pain, and swelling were recorded. Intra oral peri apical radiographs were taken immediately after extraction and at 2nd month and 4th month to record changes in the density of alveolar bone. The radiographic measurements were compared and the differences were statistically analyzed. RESULT Percent increase in bone density at the end of 8th week and 16th week was significantly high in case as compared to the control group. CONCLUSION Local application of simvastatin induces bone formation in extraction sockets. Application is very simple and provides a very cost effective way of faster bone regeneration following tooth extraction.
Collapse
Affiliation(s)
- Aamir Malick Saifi
- Department of Oral & Maxillofacial Surgery, Government Dental College & Research Institute, Bangalore, India
| | - Girish B Giraddi
- Department of Oral & Maxillofacial Surgery, Government Dental College & Research Institute, Bangalore, India
| | - Nausheer Ahmed
- Department of Orthodontics, Government Dental College & Research Institute, Bangalore, India
| |
Collapse
|
37
|
Rajendran S, Kumar KS, Ramesh S, Rao SR. Thermoreversible in situ gel for subgingival delivery of simvastatin for treatment of periodontal disease. Int J Pharm Investig 2017; 7:101-106. [PMID: 28929053 PMCID: PMC5553261 DOI: 10.4103/jphi.jphi_26_17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVE The aim of this in vitro study was to formulate an in situ thermoreversible injectable gel with poloxamer (PM) and methylcellulose (MC) to deliver simvastatin (SMV) in a controlled manner. SUBJECTS AND METHODS Preformulation studies (Fourier transform infrared and differential scanning calorimetry) to assess the interaction between SMV and MC and PM were performed before gel formulation. Keeping the concentration of SMV at 2.2%, the concentration of PM and MC was altered to formulate in situ thermosensitive gel at 37°C. Rheological studies were carried to analyze the physical property of the various formulations. Drug release profile and stability studies were done for the selected formulation. The in vitro drug release profile was carried out for using open end tube method and ultraviolet spectroscopy. RESULTS The preformulation studies showed that there is no interaction between the polymer and drug based on the rheological studies of different formulation, the formulation. F8 gels at 37°C and attains a viscosity of 4150 cps. CONCLUSIONS PM 25% and MC 5% formed an ideal thermosensitive injectable gel at 37°C for subgingival delivery of SMV and also show controlled drug release for the period of 10 days in vitro.
Collapse
Affiliation(s)
- Swaminathan Rajendran
- Department of Periodontology, Faculty of Dental Sciences, Sri Ramachandra University, Chennai, Tamil Nadu, India
| | - K. Sathesh Kumar
- Department of Pharmaceutics, Faculty of Pharmacy, Sri Ramachandra University, Chennai, Tamil Nadu, India
| | - S. Ramesh
- Department of Pharmaceutics, Faculty of Pharmacy, Sri Ramachandra University, Chennai, Tamil Nadu, India
| | - Suresh Ranga Rao
- Department of Periodontology, Faculty of Dental Sciences, Sri Ramachandra University, Chennai, Tamil Nadu, India
| |
Collapse
|
38
|
Terauchi M, Inada T, Tonegawa A, Tamura A, Yamaguchi S, Harada K, Yui N. Supramolecular inclusion complexation of simvastatin with methylated β-cyclodextrins for promoting osteogenic differentiation. Int J Biol Macromol 2016; 93:1492-1498. [DOI: 10.1016/j.ijbiomac.2016.01.114] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 01/26/2016] [Accepted: 01/29/2016] [Indexed: 10/22/2022]
|
39
|
Long T, Tang T, Hao Y, Zhu Z, Shao L, Liu M. Effect of simvastatin on osteogenesis of the lumbar vertebrae in ovariectomized rats. Exp Ther Med 2016; 12:3951-3957. [PMID: 28105128 PMCID: PMC5228519 DOI: 10.3892/etm.2016.3904] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 08/05/2016] [Indexed: 02/06/2023] Open
Abstract
The aim of the present study was to assess the role of simvastatin on osteoporosis of the vertebrae by examining the effect of simvastatin on the osteogenesis of the lumbar vertebra in ovariectomized (OVX) rats. A total of 60 6-month-old female Sprague Dawley rats were divided into one sham group and five ovariectomized groups, consisting of four simvastatin groups and one control group. Four dosages of simvastatin (5, 10, 20 and 40 mg/kg/d) were administered by gavage for three months. L4 vertebrae were examined by dual-energy X-ray absorptiometry (DEXA) and peripheral quantitative computed tomography (pQCT) to determine the mineral apposition rate (MAR). L5 vertebrae were examined using a compression biomechanical test. Although the measurements from DEXA, pQCT and MAR, and the biomechanical parameters in the OVX + simvastatin rats were higher than those for the OVX + vehicle group, no significant differences were detected. Therefore, simvastatin may not improve osteogenesis of the lumbar vertebra in OVX rats or prevent osteoporosis of the spinal vertebrae.
Collapse
Affiliation(s)
- Teng Long
- Orthopedic Implant Central Lab, Orthopedic Department, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200011, P.R. China
| | - Tingting Tang
- Orthopedic Implant Central Lab, Orthopedic Department, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200011, P.R. China
| | - Yongqiang Hao
- Orthopedic Implant Central Lab, Orthopedic Department, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200011, P.R. China
| | - Zhenan Zhu
- Orthopedic Implant Central Lab, Orthopedic Department, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200011, P.R. China
| | - Litian Shao
- School of Mathematics and Information Science, Shanghai Lixin University of Commerce, Shanghai 201620, P.R. China
| | - Ming Liu
- Orthopedic Implant Central Lab, Orthopedic Department, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200011, P.R. China
| |
Collapse
|
40
|
Yin H, Yuan Z, Wang D. Multiple drilling combined with simvastatin versus multiple drilling alone for the treatment of avascular osteonecrosis of the femoral head: 3-year follow-up study. BMC Musculoskelet Disord 2016; 17:344. [PMID: 27528281 PMCID: PMC4986261 DOI: 10.1186/s12891-016-1199-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 08/03/2016] [Indexed: 12/15/2022] Open
Abstract
Background Multiple small drilling for core decompression is widely used to preserve the femoral head in patients with avascular necrosis of the femoral head (ANFH). Nevertheless, the clinical outcome remains controversial. Simvastatin has been demonstrated to promote bone formation and reduce bone adsorption. The purpose of this study was to determine whether simvastatin enhanced the effect of multiple decompressions in preventing progression of ANFH and to identify independent risk factors associated with poor results. Methods We retrospectively analyzed 58 hips in 36 patients, with a follow-up of 36 months. 20 patients (32 hips) underwent multiple drilling combined with simvastatin treatment (SIM group); 16 patients (26 hips) underwent multiple drilling alone (MD group). We defined clinical failure as a requirement for subsequent hip surgery or Harris Hip Score < 75. New occurrence of collapse or increased collapse > 2 mm on plain radiographs was defined as radiological failure. Results Successful clinical results were achieved in 27 of 32 hips (84 %) in the SIM group compared with 15 of 26 hips (58 %) in the MD group (OR = 0.2, CI (0.1, 0.6.), P = 0.032). Successful radiological results were achieved in 27 of 32 hips (84 %) in the SIM group and in 16 of 26 hips (61.5 %) in the MD group (P = 0.048). Body mass index, disease stage and location of lesion were independent prognostic factors for overall survival. Conclusions We believe that simvastatin could enhance the effects of multiple decompressions in preventing progression of ANFH and reducing the risk of femoral head collapse.
Collapse
Affiliation(s)
- Han Yin
- Department of Orthopaedics, Liaocheng People's Hospital and Liaocheng Clinical School of Taishan Medical University, No. 67, Dongchang Road, Liaocheng, Shandong, China
| | - Zhenfeng Yuan
- Department of Orthopaedics, Liaocheng People's Hospital and Liaocheng Clinical School of Taishan Medical University, No. 67, Dongchang Road, Liaocheng, Shandong, China.
| | - Dawei Wang
- Department of Orthopaedics, Liaocheng People's Hospital and Liaocheng Clinical School of Taishan Medical University, No. 67, Dongchang Road, Liaocheng, Shandong, China
| |
Collapse
|
41
|
A Survey of Strategies to Modulate the Bone Morphogenetic Protein Signaling Pathway: Current and Future Perspectives. Stem Cells Int 2016; 2016:7290686. [PMID: 27433166 PMCID: PMC4940573 DOI: 10.1155/2016/7290686] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/24/2016] [Indexed: 12/14/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) constitute the largest subdivision of the TGF-β family of ligands and are unequivocally involved in regulating stem cell behavior. Appropriate regulation of canonical BMP signaling is critical for the development and homeostasis of numerous human organ systems, as aberrations in the BMP pathway or its regulation are increasingly associated with diverse human pathologies. In this review, we provide a wide-perspective on strategies that increase or decrease BMP signaling. We briefly outline the current FDA-approved approaches, highlight emerging next-generation technologies, and postulate prospective avenues for future investigation. We also detail how activating other pathways may indirectly modulate BMP signaling, with a particular emphasis on the relationship between the BMP and Activin/TGF-β pathways.
Collapse
|
42
|
Monteiro LO, Macedo AP, Shimano RC, Shimano AC, Yanagihara GR, Ramos J, Paulini MR, Tocchini de Figueiredo FA, Gonzaga MG, Issa JPM. Effect of treatment with simvastatin on bone microarchitecture of the femoral head in an osteoporosis animal model. Microsc Res Tech 2016; 79:684-90. [PMID: 27186631 DOI: 10.1002/jemt.22682] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 04/01/2016] [Accepted: 04/24/2016] [Indexed: 11/07/2022]
Abstract
The objective of this study was to evaluate the microarchitecture and trabecular bone strength at the distal region of the femur, and its biomechanical properties with simvastatin administration with two different doses in ovariectomized (OVX) rats. Ninety rats were divided into six groups to evaluate treatment with the simvastatin drug (n = 15): SH (Sham surgery), SH-5 (5 mg simvastatin), SH-20 (20 mg simvastatin), OVX, OVX-5, and OVX-20. Euthanasia was performed at three different times, five animals per period: 7, 14, and 28 days. The effectiveness of the treatments was evaluated by mechanical testing and histomorphometric analysis of the femurs. The results of analysis by the linear model of mixed effects showed 20 mg of simvastatin results in increased trabecular bone after 14 days (P = 0.039) of ingestion in ovariectomized animals. However, ingestion of 5 mg of simvastatin is able to sensitize the trabecular bone only at 28 days (P = 0.005) of ingestion. In the mechanical tests stiffness improves within 28 days (P = 0.003). Regarding maximum strength, no statistical differences were observed. According to these results, it can be concluded that for a decrease in oral intake, longer treatment times are required. Microsc. Res. Tech. 79:684-690, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lucas Oliveira Monteiro
- Department of Morphology, Physiology, and Basic Pathology, School of Dentistry of Ribeirão Preto, University of São Paulo, Av. Café S/N, Monte Alegre 14040-904, Ribeirão Preto, São Paulo, Brazil
| | - Ana Paula Macedo
- Bioengineering Laboratory, Department of Biomechanics, Medicine and Rehabilitation of the Locomotor System, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, Monte Alegre, 14049-900, Ribeirão Preto, São Paulo, Brazil
| | - Roberta Carminati Shimano
- Bioengineering Laboratory, Department of Biomechanics, Medicine and Rehabilitation of the Locomotor System, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, Monte Alegre, 14049-900, Ribeirão Preto, São Paulo, Brazil
| | - Antônio Carlos Shimano
- Bioengineering Laboratory, Department of Biomechanics, Medicine and Rehabilitation of the Locomotor System, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, Monte Alegre, 14049-900, Ribeirão Preto, São Paulo, Brazil
| | - Gabriela Rezende Yanagihara
- Bioengineering Laboratory, Department of Biomechanics, Medicine and Rehabilitation of the Locomotor System, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, Monte Alegre, 14049-900, Ribeirão Preto, São Paulo, Brazil
| | - Junia Ramos
- Department of Morphology, Physiology, and Basic Pathology, School of Dentistry of Ribeirão Preto, University of São Paulo, Av. Café S/N, Monte Alegre 14040-904, Ribeirão Preto, São Paulo, Brazil
| | - Marina Ribeiro Paulini
- Department of Morphology, Physiology, and Basic Pathology, School of Dentistry of Ribeirão Preto, University of São Paulo, Av. Café S/N, Monte Alegre 14040-904, Ribeirão Preto, São Paulo, Brazil
| | - Fellipe Augusto Tocchini de Figueiredo
- Bioengineering Laboratory, Department of Biomechanics, Medicine and Rehabilitation of the Locomotor System, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, Monte Alegre, 14049-900, Ribeirão Preto, São Paulo, Brazil
| | - Miliane Gonçalves Gonzaga
- Bioengineering Laboratory, Department of Biomechanics, Medicine and Rehabilitation of the Locomotor System, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, Monte Alegre, 14049-900, Ribeirão Preto, São Paulo, Brazil
| | - João Paulo Mardegan Issa
- Department of Morphology, Physiology, and Basic Pathology, School of Dentistry of Ribeirão Preto, University of São Paulo, Av. Café S/N, Monte Alegre 14040-904, Ribeirão Preto, São Paulo, Brazil.,Bioengineering Laboratory, Department of Biomechanics, Medicine and Rehabilitation of the Locomotor System, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, Monte Alegre, 14049-900, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
43
|
Takeno A, Kanazawa I, Tanaka KI, Notsu M, Yokomoto-Umakoshi M, Sugimoto T. Simvastatin rescues homocysteine-induced apoptosis of osteocytic MLO-Y4 cells by decreasing the expressions of NADPH oxidase 1 and 2. Endocr J 2016; 63:389-95. [PMID: 26842590 DOI: 10.1507/endocrj.ej15-0480] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Clinical studies have shown that hyperhomocysteinemia is associated with bone fragility. Homocysteine (Hcy) induces apoptosis of osteoblastic cell lineage by increasing oxidative stress, which may contribute to Hcy-induced bone fragility. Statins, 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors, ameliorate oxidative stress by regulating oxidant and anti-oxidant enzymes. However, the effects of statins on Hcy-induced apoptosis of osteocytes are unknown. This study was thus aimed to investigate whether or not statins prevent Hcy-induced apoptosis of osteocytic MLO-Y4 cells and regulate NADPH oxidase (Nox) expression. TUNEL staining showed that 5 mM Hcy induced apoptosis of MLO-Y4 cells, and that co-incubation of 10(-9) or 10(-8) M simvastatin significantly suppressed the apoptotic effect. Moreover, we confirmed the beneficial effect of simvastatin against Hcy's apoptotic effect by using a DNA fragment ELISA assay. However, TUNEL staining showed no significant effects of pravastatin, a hydrophilic statin, on the Hcy-induced apoptosis. Real-time PCR showed that Hcy increased the mRNA expressions of Nox1 and Nox2, whereas simvastatin inhibited the stimulation of Nox1 and Nox2 expressions by Hcy. In contrast, neither Hcy nor simvastatin had any effect on Nox4 expression. These findings indicate that simvastatin prevents the detrimental effects of Hcy on the apoptosis of osteocytes by regulating the expressions of Nox1 and Nox2, suggesting that statins may be beneficial for preventing Hcy-induced osteocyte apoptosis and the resulting bone fragility.
Collapse
Affiliation(s)
- Ayumu Takeno
- Department of Internal Medicine 1, Shimane University Faculty of Medicine, Izumo 693-8501, Japan
| | | | | | | | | | | |
Collapse
|
44
|
Arévalo-Lorido JC, Carretero-Gómez J, García-Sánchez F, Maciá-Botejara E, Ramiro-Lozano JM, Masero-Carretero A, Robles NR, Bureo-Dacal JC. Secondary hyperparathyroidism prevalence and profile, between diabetic and non-diabetic patients with stage 3 to 4 chronic kidney disease attended in internal medicine wards. MiPTH study. Diabetes Metab Syndr 2016; 10:S16-S21. [PMID: 26916015 DOI: 10.1016/j.dsx.2016.01.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 01/09/2016] [Indexed: 11/25/2022]
Abstract
AIMS Secondary hyperparathyroidism (SHPTH) is a leading cause of renal osteodystrophy, and an independent risk factor for all-cause and cardiovascular mortality. Our aim is to establish differences in prevalence and profile of SHPTH, regarding diabetics or non-diabetics with chronic kidney disease (CKD). METHODS Cross-sectional multicenter study which included patients with stages 3 to 4 CKD. SHPTH was considered when the intact PTH levels (iPTH) were equal or higher than 70pg/ml. We divided the sample into two groups (diabetics and non-diabetics). We used robust statistical methods. RESULTS 409 patients (214 diabetics) were studied. HPTH was found in 60.4% of diabetics vs 65% of non-diabetics (P=0.42). Diabetics with HPTH were younger (79.5 vs 82.3 years-old, P=0.005), and had more hypertension (P=0.0014), dyslipidemia (P=0.0001) and comorbidities. In multivariate analysis, we found a significant relationship in case of diabetics, with age (OR: 1.04, 95%CI 1.005-1.09 P=0.02 ), and with statins treatment (OR 2.3, 95%CI 1.17-4.54, P=0.01). DISCUSSION The prevalence of SHPTH between the groups was similar, however, diabetics had more presence of hypertension and dyslipidemia, and SHPTH in this case was also related with moderate microalbuminuria and lower levels of vitamin D. An association with statins was also found in this group.
Collapse
|
45
|
Ibrahim HK, Fahmy RH. Localized rosuvastatin via implantable bioerodible sponge and its potential role in augmenting bone healing and regeneration. Drug Deliv 2016; 23:3181-3192. [PMID: 26942653 DOI: 10.3109/10717544.2016.1160458] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE Statins proved potential bone healing properties. Rosuvastatin is a synthetic, hydrophilic, potent and highly efficacious statin. In the current work, an attempt was investigated to develop, evaluate various bioerodible composite sponges enclosing rosuvastatin and explore their potential in augmenting bone healing and regeneration. METHOD Twelve lyophilized sponge formulae were prepared adapting a 41.31 full factorial design. Xanthan gum, polycarbophil, Carbopol® and sodium alginate were investigated as anionic polymers, each at three chitosan:anionic polymer ratios (1:3, 1:1, 3:1). The formula of choice was implanted in fractured rat femora. RESULTS Visual and microscopic examination showed flexible homogenous porous structures with considerable bending ability. Polyelectrolyte complex formation was proved by DSC and FT-IR for all chitosan/anionic combinations except with xanthan gum where chitosan probably bound to the drug rather than xanthan gum. Statistical analysis proved that anionic polymer type and chitosan: polymer ratio, as well as, their interactions, exhibited significant effects on the release parameters at p ≤ 0.05. The optimum chitosan/anionic polymer complexation ratios were 3:1 for polycarbophil and 1:1 for Carbopol and alginate. The release at these ratios followed Fiction diffusion while other ratios had anomalous diffusion. Imwitor® 900K and HPMC K100M were added as release retarardants for further release optimization. The formula of choice was implanted in fractured rat femora. Histopathological examination revealed advanced stages of healing in treated femora compared to control ones. CONCLUSION Biodegradable sponges for local rosuvastatin delivery proved significantly enhanced wound healing and regeneration properties to fractured bones.
Collapse
Affiliation(s)
- Howida Kamal Ibrahim
- a Department of Pharmaceutics and Industrial Pharmacy , Faculty of Pharmacy, Cairo University , Cairo , Egypt and
| | - Rania Hassan Fahmy
- a Department of Pharmaceutics and Industrial Pharmacy , Faculty of Pharmacy, Cairo University , Cairo , Egypt and.,b Department of Pharmaceutics , Faculty of Pharmacy, Ahram Canadian University , Cairo , Egypt
| |
Collapse
|
46
|
Cao X, Lin W, Liang C, Zhang D, Yang F, Zhang Y, Zhang X, Feng J, Chen C. Naringin rescued the TNF-α-induced inhibition of osteogenesis of bone marrow-derived mesenchymal stem cells by depressing the activation of NF-кB signaling pathway. Immunol Res 2016; 62:357-67. [PMID: 26032685 DOI: 10.1007/s12026-015-8665-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Naringin exhibits antiinflammatory activity and is shown to induce bone formation. Yet the impact of naringin on inflammation-affected bone marrow-derived mesenchymal stem cell (BM-MSC), a promising tool for the regenerative treatment of bone injury, remained to be investigated. We first cultured and characterized the BM-MSCs in vitro and observe the effects of treatments of TNF-α, naringin, or the combination of both on osteogenic differentiation. TNF-α administered at the concentration of 20 ng/ml results in significant reductions in MSC's cell survival, alkaline phosphatase activity and expressions of two osteogenic genes, Runx2 and Osx. Simultaneous treatment of both TNF-α and naringin is able to rescue such reductions. Further mechanistic studies indicate that TNF-α treatment activates the NF-кB signaling pathway, evidenced by elevated p-IкBα level as well as the increased nuclear fraction of NF-кB subunit, p65. Finally, treatment with both TNF-α and naringin decreases expressions of p-IкBα and nuclear p65, and thus represses NF-кB pathway activated by sole TNF-α treatment. Our findings provide a molecular basis by which naringin restores the TNF-α-induced damage in MSCs and provide novel insights into the application of naringin in the MSC-based treatments for inflammation-induced bone injury.
Collapse
Affiliation(s)
- Xvhai Cao
- Department of Orthopaedics, Hua Dong Hospital Affiliated to Fudan University, Shanghai, 200040, China
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Montazerolghaem M, Ning Y, Engqvist H, Karlsson Ott M, Tenje M, Mestres G. Simvastatin and zinc synergistically enhance osteoblasts activity and decrease the acute response of inflammatory cells. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2016; 27:23. [PMID: 26704540 DOI: 10.1007/s10856-015-5639-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 11/27/2015] [Indexed: 06/05/2023]
Abstract
Several ceramic biomaterials have been suggested as promising alternatives to autologous bone to replace or restore bone after trauma or disease. The osteoinductive potential of most scaffolds is often rather low by themselves and for this reason growth factors or drugs have been supplemented to these synthetic materials. Although some growth factors show good osteoinductive potential their drawback is their high cost and potential severe side effects. In this work the combination of the well-known drug simvastatin (SVA) and the inorganic element Zinc (Zn) is suggested as a potential additive to bone grafts in order to increase their bone regeneration/formation. MC3T3-E1 cells were cultured with Zn (10 and 25 µM) and SVA (0.25 and 0.4 µM) for 10 days to evaluate proliferation and differentiation, and for 22 days to evaluate secretion of calcium deposits. The combination of Zn (10 µM) and SVA (0.25 µM) significantly enhanced cell differentiation and mineralization in a synergetic manner. In addition, the release of reactive oxygen species (ROS) from primary human monocytes in contact with the same concentrations of Zn and SVA was evaluated by chemiluminescence. The combination of the additives decreased the release of ROS, although Zn and SVA separately caused opposite effects. This work shows that a new combination of additives can be used to increase the osteoinductive capacity of porous bioceramics.
Collapse
Affiliation(s)
| | - Yi Ning
- Department Engineering Sciences, Uppsala University, Uppsala, Sweden
| | - Håkan Engqvist
- Department Engineering Sciences, Uppsala University, Uppsala, Sweden
| | - Marjam Karlsson Ott
- Department Engineering Sciences, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory, Uppsala, Sweden
| | - Maria Tenje
- Department Engineering Sciences, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory, Uppsala, Sweden
- Department Biomedical Engineering, Lund University, Lund, Sweden
| | - Gemma Mestres
- Department Engineering Sciences, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
48
|
Dai L, Xu M, Wu H, Xue L, Yuan D, Wang Y, Shen Z, Zhao H, Hu M. The functional mechanism of simvastatin in experimental osteoporosis. J Bone Miner Metab 2016; 34:23-32. [PMID: 25511080 DOI: 10.1007/s00774-014-0638-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 10/02/2014] [Indexed: 12/21/2022]
Abstract
Osteoporosis is a systemic and metabolic bone disease. New drugs with good curative effect, fewer side effects, and high safety need to be developed urgently. Recently, simvastatin has been used to treat osteoporosis more frequently; however, its clinical effect and treatment mechanism are still unknown. With the use of animal models, the treatment effectiveness of simvastatin on experimental osteoporosis was investigated and the functional mechanism was preliminarily explored. The results show that simvastatin significantly increased the mechanical parameters such as maximum load, stiffness, and energy-absorbing capacity, and improved the microarchitecture. They indicated that the antiosteoporosis activity of simvastatin may be due to the promotion of proliferation and differentiation of osteoblasts. Simvastatin was effective in treating experimental osteoporosis. This study provides necessary experimental evidence for the clinical application of simvastatin in osteoporosis treatment.
Collapse
Affiliation(s)
- Lifen Dai
- Kunming Research Center for Molecular Medicine, Kunming University, Kunming, 650214, People's Republic of China
- Department of Endocrinology, Second Affiliated Hospital of Kunming Medical University, Kunming, 650500, People's Republic of China
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, People's Republic of China
| | - Ming Xu
- Kunming Research Center for Molecular Medicine, Kunming University, Kunming, 650214, People's Republic of China
| | - Haiying Wu
- Department of Emergency Medicine and Intensive Care Unit, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, People's Republic of China
| | - Lanjie Xue
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Dekai Yuan
- Kunming Research Center for Molecular Medicine, Kunming University, Kunming, 650214, People's Republic of China
| | - Yuan Wang
- Kunming Research Center for Molecular Medicine, Kunming University, Kunming, 650214, People's Republic of China
| | - Zhiqiang Shen
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, People's Republic of China
| | - Hongbin Zhao
- Department of Emergency Medicine and Intensive Care Unit, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, People's Republic of China.
| | - Min Hu
- Kunming Research Center for Molecular Medicine, Kunming University, Kunming, 650214, People's Republic of China.
- Department of Endocrinology, Second Affiliated Hospital of Kunming Medical University, Kunming, 650500, People's Republic of China.
| |
Collapse
|
49
|
Vieira GM, Chaves SB, Ferreira VMM, Freitas KMSD, Amorim RFB. The effect of simvastatin on relapse of tooth movement and bone mineral density in rats measured by a new method using microtomography. Acta Cir Bras 2015; 30:319-27. [PMID: 26016931 DOI: 10.1590/s0102-865020150050000003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 04/18/2015] [Indexed: 11/22/2022] Open
Abstract
PURPOSE To evaluate the effect of simvastatin on relapse of tooth movement in rats using microtomography (micro CT), as well as the correlation of bone density with the orthodontic relapse. METHODS Twenty-five adult male Wistar rats, divided into two groups, had stainless steel springs installed on left maxillary first molar. The molars were moved for 18 days, and after removing the springs, were applied by oral gavage, 5mg/kg of simvastatin in the experimental group for 20 days. Tooth relapse was assessed with a micro CT scanner, and the images chosen through the Data Viewer software 1.5.0.0 had their measurement guides made and checked by the software Image ProR plus 5.1, and compared by Mann-Whitney test. After rats were sacrificed, bone mineral density was evaluated by micro CT through the software CT Analyzer 1.13 and compared by independent T-test, as well as by Spearman correlation test. RESULTS Relapse and bone mineral density (BMD) was lower in the experimental group than in the control group, however without a statistically significant difference. CONCLUSION Simvastatin did not inhibit the relapse of tooth movement in rats, and there was no correlation between bone density and orthodontic relapse.
Collapse
|
50
|
Issa JPM, Ingraci de Lucia C, Dos Santos Kotake BG, Gonçalves Gonzaga M, Tocchini de Figueiredo FA, Mizusaki Iyomasa D, Macedo AP, Ervolino E. The effect of simvastatin treatment on bone repair of femoral fracture in animal model. Growth Factors 2015; 33:139-48. [PMID: 25798995 DOI: 10.3109/08977194.2015.1011270] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The aim of this research was to evaluate the fracture healing area in osteoporotic femur of female rats restrained by stainless steel wire by statin administration in two different doses (5 mg and 20 mg). Ninety female rats were divided into six groups (n = 15): SH, SH-5 mg, SH-20 mg, OVX, OVX-5 mg, and OVX-20 mg. The surgery consisted of the fracture of the left femur bone and stabilization by K-wire and the administration was restricted and weekly controlled in the drinking water. The euthanasia was conducted at three different moments, five animals per period: 7 d, 14 d, and 28 d. Densitometry, zymography, and histological analyses showed a significant difference between some groups. According to these findings, simvastatin promoted a positive action for bone repair, especially in the osteometabolic group treated with 20 mg of the drug.
Collapse
Affiliation(s)
- João Paulo Mardegan Issa
- School of Dentistry of Ribeirao Preto, University of Sao Paulo , Ribeirao Preto, Sao Paulo , Brazil and
| | | | | | | | | | | | | | | |
Collapse
|