1
|
C subunit of the ATP synthase is an amyloidogenic calcium dependent channel-forming peptide with possible implications in mitochondrial permeability transition. Sci Rep 2021; 11:8744. [PMID: 33888826 PMCID: PMC8062469 DOI: 10.1038/s41598-021-88157-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 04/06/2021] [Indexed: 01/18/2023] Open
Abstract
The c subunit is an inner mitochondrial membrane (IMM) protein encoded by three nuclear genes. Best known as an integral part of the F0 complex of the ATP synthase, the c subunit is also present in other cytoplasmic compartments in ceroid lipofuscinoses. Under physiological conditions, this 75 residue-long peptide folds into an α-helical hairpin and forms oligomers spanning the lipid bilayer. In addition to its physiological role, the c subunit has been proposed as a key participant in stress-induced IMM permeabilization by the mechanism of calcium-induced permeability transition. However, the molecular mechanism of the c subunit participation in IMM permeabilization is not completely understood. Here we used fluorescence spectroscopy, atomic force microscopy and black lipid membrane methods to gain insights into the structural and functional properties of unmodified c subunit protein that might make it relevant to mitochondrial toxicity. We discovered that c subunit is an amyloidogenic peptide that can spontaneously fold into β-sheets and self-assemble into fibrils and oligomers in a Ca2+-dependent manner. C subunit oligomers exhibited ion channel activity in lipid membranes. We propose that the toxic effects of c subunit might be linked to its amyloidogenic properties and are driven by mechanisms similar to those of neurodegenerative polypeptides such as Aβ and α-synuclein.
Collapse
|
2
|
Carraro M, Checchetto V, Szabó I, Bernardi P. F‐ATPsynthase and the permeability transition pore: fewer doubts, more certainties. FEBS Lett 2019; 593:1542-1553. [DOI: 10.1002/1873-3468.13485] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 06/09/2019] [Accepted: 06/10/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Michela Carraro
- Department of Biomedical Sciences University of Padova Italy
| | | | - Ildikó Szabó
- Department of Biology University of Padova Italy
| | - Paolo Bernardi
- Department of Biomedical Sciences University of Padova Italy
| |
Collapse
|
3
|
Nesci S, Trombetti F, Ventrella V, Pagliarani A. From the Ca 2+-activated F 1F O-ATPase to the mitochondrial permeability transition pore: an overview. Biochimie 2018; 152:85-93. [PMID: 29964086 DOI: 10.1016/j.biochi.2018.06.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 06/26/2018] [Indexed: 01/02/2023]
Abstract
Based on recent advances on the Ca2+-activated F1FO-ATPase features, a novel multistep mechanism involving the mitochondrial F1FO complex in the formation and opening of the still enigmatic mitochondrial permeability transition pore (MPTP), is proposed. MPTP opening makes the inner mitochondrial membrane (IMM) permeable to ions and solutes and, through cascade events, addresses cell fate to death. Since MPTP forms when matrix Ca2+ concentration rises and ATP is hydrolyzed by the F1FO-ATPase, conformational changes, triggered by Ca2+ insertion in F1, may be transmitted to FO and locally modify the IMM curvature. These events would cause F1FO-ATPase dimer dissociation and MPTP opening.
Collapse
Affiliation(s)
- Salvatore Nesci
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064, Ozzano Emilia, BO, Italy
| | - Fabiana Trombetti
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064, Ozzano Emilia, BO, Italy
| | - Vittoria Ventrella
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064, Ozzano Emilia, BO, Italy
| | - Alessandra Pagliarani
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064, Ozzano Emilia, BO, Italy.
| |
Collapse
|
4
|
Abstract
Mitochondrial ATP generation by oxidative phosphorylation combines the stepwise oxidation by the electron transport chain (ETC) of the reducing equivalents NADH and FADH2 with the generation of ATP by the ATP synthase. Recent studies show that the ATP synthase is not only essential for the generation of ATP but may also contribute to the formation of the mitochondrial permeability transition pore (PTP). We present a model, in which the PTP is located within the c-subunit ring in the Fo subunit of the ATP synthase. Opening of the PTP was long associated with uncoupling of the ETC and the initiation of programmed cell death. More recently, it was shown that PTP opening may serve a physiologic role: it can transiently open to regulate mitochondrial signaling in mature cells, and it is open in the embryonic mouse heart. This review will discuss how the ATP synthase paradoxically lies at the center of both ATP generation and cell death.
Collapse
|
5
|
Abstract
Current models theorizing on what the mitochondrial permeability transition (mPT) pore is made of, implicate the c-subunit rings of ATP synthase complex. However, two very recent studies, one on atomistic simulations and in the other disrupting all genes coding for the c subunit disproved those models. As a consequence of this, the structural elements of the pore remain unknown. The purpose of the present short-review is to (i) briefly review the latest findings, (ii) serve as an index for more comprehensive reviews regarding mPT specifics, (iii) reiterate on the potential pitfalls while investigating mPT in conjunction to bioenergetics, and most importantly (iv) suggest to those in search of mPT pore identity, to also look elsewhere.
Collapse
Affiliation(s)
- Christos Chinopoulos
- Department of Medical Biochemistry, Semmelweis University, Budapest 1094, Hungary; MTA-SE Lendület Neurobiochemistry Research Group, Hungary.
| |
Collapse
|
6
|
Giorgio V, Burchell V, Schiavone M, Bassot C, Minervini G, Petronilli V, Argenton F, Forte M, Tosatto S, Lippe G, Bernardi P. Ca 2+ binding to F-ATP synthase β subunit triggers the mitochondrial permeability transition. EMBO Rep 2017; 18:1065-1076. [PMID: 28507163 DOI: 10.15252/embr.201643354] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 04/02/2017] [Accepted: 04/05/2017] [Indexed: 01/28/2023] Open
Abstract
F-ATP synthases convert the electrochemical energy of the H+ gradient into the chemical energy of ATP with remarkable efficiency. Mitochondrial F-ATP synthases can also undergo a Ca2+-dependent transformation to form channels with properties matching those of the permeability transition pore (PTP), a key player in cell death. The Ca2+ binding site and the mechanism(s) through which Ca2+ can transform the energy-conserving enzyme into a dissipative structure promoting cell death remain unknown. Through in vitro, in vivo and in silico studies we (i) pinpoint the "Ca2+-trigger site" of the PTP to the catalytic site of the F-ATP synthase β subunit and (ii) define a conformational change that propagates from the catalytic site through OSCP and the lateral stalk to the inner membrane. T163S mutants of the β subunit, which show a selective decrease in Ca2+-ATP hydrolysis, confer resistance to Ca2+-induced, PTP-dependent death in cells and developing zebrafish embryos. These findings are a major advance in the molecular definition of the transition of F-ATP synthase to a channel and of its role in cell death.
Collapse
Affiliation(s)
- Valentina Giorgio
- Department of Biomedical Sciences, University of Padova, Padova, Italy .,Consiglio Nazionale delle Ricerche Neuroscience Institute, Padova, Italy
| | - Victoria Burchell
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Marco Schiavone
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Claudio Bassot
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | | - Valeria Petronilli
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,Consiglio Nazionale delle Ricerche Neuroscience Institute, Padova, Italy
| | | | - Michael Forte
- Vollum Institute, Oregon Health and Sciences University, Portland, OR, USA
| | - Silvio Tosatto
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,Consiglio Nazionale delle Ricerche Neuroscience Institute, Padova, Italy
| | - Giovanna Lippe
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Paolo Bernardi
- Department of Biomedical Sciences, University of Padova, Padova, Italy .,Consiglio Nazionale delle Ricerche Neuroscience Institute, Padova, Italy
| |
Collapse
|
7
|
Giorgio V, Guo L, Bassot C, Petronilli V, Bernardi P. Calcium and regulation of the mitochondrial permeability transition. Cell Calcium 2017; 70:56-63. [PMID: 28522037 DOI: 10.1016/j.ceca.2017.05.004] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 05/05/2017] [Accepted: 05/05/2017] [Indexed: 12/11/2022]
Abstract
Recent years have seen renewed interest in the permeability transition pore, a high conductance channel responsible for permeabilization of the inner mitochondrial membrane, a process that leads to depolarization and Ca2+ release. Transient openings may be involved in physiological Ca2+ homeostasis while long-lasting openings may trigger and/or execute cell death. In this review we specifically focus (i) on the hypothesis that the PTP forms from the F-ATP synthase and (ii) on the mechanisms through which Ca2+ can reversibly switch this energy-conserving nanomachine into an energy-dissipating device.
Collapse
Affiliation(s)
- Valentina Giorgio
- Department of Biomedical Sciences and CNR Neuroscience Institute, University of Padova, Italy
| | - Lishu Guo
- Department of Biomedical Sciences and CNR Neuroscience Institute, University of Padova, Italy
| | - Claudio Bassot
- Department of Biomedical Sciences and CNR Neuroscience Institute, University of Padova, Italy
| | - Valeria Petronilli
- Department of Biomedical Sciences and CNR Neuroscience Institute, University of Padova, Italy
| | - Paolo Bernardi
- Department of Biomedical Sciences and CNR Neuroscience Institute, University of Padova, Italy.
| |
Collapse
|
8
|
Mnatsakanyan N, Beutner G, Porter GA, Alavian KN, Jonas EA. Physiological roles of the mitochondrial permeability transition pore. J Bioenerg Biomembr 2017; 49:13-25. [PMID: 26868013 PMCID: PMC4981558 DOI: 10.1007/s10863-016-9652-1] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 02/04/2016] [Indexed: 01/01/2023]
Abstract
Neurons experience high metabolic demand during such processes as synaptic vesicle recycling, membrane potential maintenance and Ca2+ exchange/extrusion. The energy needs of these events are met in large part by mitochondrial production of ATP through the process of oxidative phosphorylation. The job of ATP production by the mitochondria is performed by the F1FO ATP synthase, a multi-protein enzyme that contains a membrane-inserted portion, an extra-membranous enzymatic portion and an extensive regulatory complex. Although required for ATP production by mitochondria, recent findings have confirmed that the membrane-confined portion of the c-subunit of the ATP synthase also houses a large conductance uncoupling channel, the mitochondrial permeability transition pore (mPTP), the persistent opening of which produces osmotic dysregulation of the inner mitochondrial membrane, uncoupling of oxidative phosphorylation and cell death. Recent advances in understanding the molecular components of mPTP and its regulatory mechanisms have determined that decreased uncoupling occurs in states of enhanced mitochondrial efficiency; relative closure of mPTP therefore contributes to cellular functions as diverse as cardiac development and synaptic efficacy.
Collapse
Affiliation(s)
- Nelli Mnatsakanyan
- Department Internal Medicine, Section of Endocrinology, Yale University, New Haven, CT, USA
| | - Gisela Beutner
- Department of Pediatrics (Cardiology), University of Rochester Medical Center, Rochester, NY, USA
| | - George A Porter
- Department of Pediatrics (Cardiology), University of Rochester Medical Center, Rochester, NY, USA
| | - Kambiz N Alavian
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - Elizabeth A Jonas
- Department Internal Medicine, Section of Endocrinology, Yale University, New Haven, CT, USA.
| |
Collapse
|
9
|
Biasutto L, Azzolini M, Szabò I, Zoratti M. The mitochondrial permeability transition pore in AD 2016: An update. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1863:2515-30. [PMID: 26902508 DOI: 10.1016/j.bbamcr.2016.02.012] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 02/04/2016] [Accepted: 02/05/2016] [Indexed: 12/13/2022]
Abstract
Over the past 30years the mitochondrial permeability transition - the permeabilization of the inner mitochondrial membrane due to the opening of a wide pore - has progressed from being considered a curious artifact induced in isolated mitochondria by Ca(2+) and phosphate to a key cell-death-inducing process in several major pathologies. Its relevance is by now universally acknowledged and a pharmacology targeting the phenomenon is being developed. The molecular nature of the pore remains to this day uncertain, but progress has recently been made with the identification of the FOF1 ATP synthase as the probable proteic substrate. Researchers sharing this conviction are however divided into two camps: these believing that only the ATP synthase dimers or oligomers can form the pore, presumably in the contact region between monomers, and those who consider that the ring-forming c subunits in the FO sector actually constitute the walls of the pore. The latest development is the emergence of a new candidate: Spastic Paraplegia 7 (SPG7), a mitochondrial AAA-type membrane protease which forms a 6-stave barrel. This review summarizes recent developments of research on the pathophysiological relevance and on the molecular nature of the mitochondrial permeability transition pore. This article is part of a Special Issue entitled: Mitochondrial Channels edited by Pierre Sonveaux, Pierre Maechler and Jean-Claude Martinou.
Collapse
Affiliation(s)
- Lucia Biasutto
- CNR Neuroscience Institute, Viale G. Colombo 3, 35121 Padova, Italy; University of Padova, Department of Biomedical Sciences, Viale G. Colombo 3, 35121 Padova, Italy
| | - Michele Azzolini
- CNR Neuroscience Institute, Viale G. Colombo 3, 35121 Padova, Italy; University of Padova, Department of Biomedical Sciences, Viale G. Colombo 3, 35121 Padova, Italy
| | - Ildikò Szabò
- CNR Neuroscience Institute, Viale G. Colombo 3, 35121 Padova, Italy; University of Padova, Department of Biology, Viale G. Colombo 3, 35121 Padova, Italy
| | - Mario Zoratti
- CNR Neuroscience Institute, Viale G. Colombo 3, 35121 Padova, Italy; University of Padova, Department of Biomedical Sciences, Viale G. Colombo 3, 35121 Padova, Italy.
| |
Collapse
|
10
|
Bernardi P, Rasola A, Forte M, Lippe G. The Mitochondrial Permeability Transition Pore: Channel Formation by F-ATP Synthase, Integration in Signal Transduction, and Role in Pathophysiology. Physiol Rev 2015; 95:1111-55. [PMID: 26269524 DOI: 10.1152/physrev.00001.2015] [Citation(s) in RCA: 439] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The mitochondrial permeability transition (PT) is a permeability increase of the inner mitochondrial membrane mediated by a channel, the permeability transition pore (PTP). After a brief historical introduction, we cover the key regulatory features of the PTP and provide a critical assessment of putative protein components that have been tested by genetic analysis. The discovery that under conditions of oxidative stress the F-ATP synthases of mammals, yeast, and Drosophila can be turned into Ca(2+)-dependent channels, whose electrophysiological properties match those of the corresponding PTPs, opens new perspectives to the field. We discuss structural and functional features of F-ATP synthases that may provide clues to its transition from an energy-conserving into an energy-dissipating device as well as recent advances on signal transduction to the PTP and on its role in cellular pathophysiology.
Collapse
Affiliation(s)
- Paolo Bernardi
- Department of Biomedical Sciences and Consiglio Nazionale delle Ricerche Neuroscience Institute, University of Padova, Padova, Italy; Vollum Institute, Oregon Health and Sciences University, Portland, Oregon; and Department of Food Science, University of Udine, Udine, Italy
| | - Andrea Rasola
- Department of Biomedical Sciences and Consiglio Nazionale delle Ricerche Neuroscience Institute, University of Padova, Padova, Italy; Vollum Institute, Oregon Health and Sciences University, Portland, Oregon; and Department of Food Science, University of Udine, Udine, Italy
| | - Michael Forte
- Department of Biomedical Sciences and Consiglio Nazionale delle Ricerche Neuroscience Institute, University of Padova, Padova, Italy; Vollum Institute, Oregon Health and Sciences University, Portland, Oregon; and Department of Food Science, University of Udine, Udine, Italy
| | - Giovanna Lippe
- Department of Biomedical Sciences and Consiglio Nazionale delle Ricerche Neuroscience Institute, University of Padova, Padova, Italy; Vollum Institute, Oregon Health and Sciences University, Portland, Oregon; and Department of Food Science, University of Udine, Udine, Italy
| |
Collapse
|
11
|
Bernardi P, Di Lisa F, Fogolari F, Lippe G. From ATP to PTP and Back: A Dual Function for the Mitochondrial ATP Synthase. Circ Res 2015; 116:1850-62. [PMID: 25999424 DOI: 10.1161/circresaha.115.306557] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mitochondria not only play a fundamental role in heart physiology but are also key effectors of dysfunction and death. This dual role assumes a new meaning after recent advances on the nature and regulation of the permeability transition pore, an inner membrane channel whose opening requires matrix Ca(2+) and is modulated by many effectors including reactive oxygen species, matrix cyclophilin D, Pi (inorganic phosphate), and matrix pH. The recent demonstration that the F-ATP synthase can reversibly undergo a Ca(2+)-dependent transition to form a channel that mediates the permeability transition opens new perspectives to the field. These findings demand a reassessment of the modifications of F-ATP synthase that take place in the heart under pathological conditions and of their potential role in determining the transition of F-ATP synthase from and energy-conserving into an energy-dissipating device.
Collapse
Affiliation(s)
- Paolo Bernardi
- From the Department of Biomedical Sciences, University of Padova, Italy (P.B., F.D.L.); and Department of Medical and Biological Sciences (F.F) and Department of Food Science (G.L.), University of Udine, Udine, Italy.
| | - Fabio Di Lisa
- From the Department of Biomedical Sciences, University of Padova, Italy (P.B., F.D.L.); and Department of Medical and Biological Sciences (F.F) and Department of Food Science (G.L.), University of Udine, Udine, Italy
| | - Federico Fogolari
- From the Department of Biomedical Sciences, University of Padova, Italy (P.B., F.D.L.); and Department of Medical and Biological Sciences (F.F) and Department of Food Science (G.L.), University of Udine, Udine, Italy
| | - Giovanna Lippe
- From the Department of Biomedical Sciences, University of Padova, Italy (P.B., F.D.L.); and Department of Medical and Biological Sciences (F.F) and Department of Food Science (G.L.), University of Udine, Udine, Italy
| |
Collapse
|
12
|
Rasola A, Bernardi P. Reprint of "The mitochondrial permeability transition pore and its adaptive responses in tumor cells". Cell Calcium 2015; 58:18-26. [PMID: 25828565 DOI: 10.1016/j.ceca.2015.03.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 10/06/2014] [Accepted: 10/07/2014] [Indexed: 02/07/2023]
Abstract
This review covers recent progress on the nature of the mitochondrial permeability transition pore (PTP) – a key effector in the mitochondrial pathways to cell death – and on the adaptive responses of tumor cells that desensitize the PTP to Ca(2+) and reactive oxygen species (ROS), thereby playing an important role in the resistance of tumors to cell death. The discovery that the PTP forms from dimers of F-ATP synthase; and the definition of the Ca(2+)- and ROS-dependent signaling pathways affecting the transition of the F-ATP synthase from an energy-conserving to an energy-dissipating device open new perspectives for therapeutic intervention in cancer cells.
Collapse
Affiliation(s)
- Andrea Rasola
- Department of Biomedical Sciences and CNR Neuroscience Institute, University of Padova, Italy.
| | - Paolo Bernardi
- Department of Biomedical Sciences and CNR Neuroscience Institute, University of Padova, Italy.
| |
Collapse
|
13
|
Bernardi P, Di Lisa F. The mitochondrial permeability transition pore: molecular nature and role as a target in cardioprotection. J Mol Cell Cardiol 2015; 78:100-6. [PMID: 25268651 PMCID: PMC4294587 DOI: 10.1016/j.yjmcc.2014.09.023] [Citation(s) in RCA: 369] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 09/15/2014] [Accepted: 09/19/2014] [Indexed: 12/18/2022]
Abstract
The mitochondrial permeability transition (PT) - an abrupt increase permeability of the inner membrane to solutes - is a causative event in ischemia-reperfusion injury of the heart, and the focus of intense research in cardioprotection. The PT is due to opening of the PT pore (PTP), a high conductance channel that is critically regulated by a variety of pathophysiological effectors. Very recent work indicates that the PTP forms from the F-ATP synthase, which would switch from an energy-conserving to an energy-dissipating device. This review provides an update on the current debate on how this transition is achieved, and on the PTP as a target for therapeutic intervention. This article is part of a Special Issue entitled "Mitochondria: from basic mitochondrial biology to cardiovascular disease".
Collapse
Affiliation(s)
- Paolo Bernardi
- Department of Biomedical Sciences, University of Padova, 35121 Padova, Italy; Consiglio Nazionale delle Ricerche Neuroscience Institute, University of Padova, 35121 Padova, Italy.
| | - Fabio Di Lisa
- Department of Biomedical Sciences, University of Padova, 35121 Padova, Italy; Consiglio Nazionale delle Ricerche Neuroscience Institute, University of Padova, 35121 Padova, Italy.
| |
Collapse
|
14
|
von Stockum S, Giorgio V, Trevisan E, Lippe G, Glick GD, Forte MA, Da-Rè C, Checchetto V, Mazzotta G, Costa R, Szabò I, Bernardi P. F-ATPase of Drosophila melanogaster forms 53-picosiemen (53-pS) channels responsible for mitochondrial Ca2+-induced Ca2+ release. J Biol Chem 2014; 290:4537-4544. [PMID: 25550160 DOI: 10.1074/jbc.c114.629766] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitochondria of Drosophila melanogaster undergo Ca(2+)-induced Ca(2+) release through a putative channel (mCrC) that has several regulatory features of the permeability transition pore (PTP). The PTP is an inner membrane channel that forms from F-ATPase, possessing a conductance of 500 picosiemens (pS) in mammals and of 300 pS in yeast. In contrast to the PTP, the mCrC of Drosophila is not permeable to sucrose and appears to be selective for Ca(2+) and H(+). We show (i) that like the PTP, the mCrC is affected by the sense of rotation of F-ATPase, by Bz-423, and by Mg(2+)/ADP; (ii) that expression of human cyclophilin D in mitochondria of Drosophila S2R(+) cells sensitizes the mCrC to Ca(2+) but does not increase its apparent size; and (iii) that purified dimers of D. melanogaster F-ATPase reconstituted into lipid bilayers form 53-pS channels activated by Ca(2+) and thiol oxidants and inhibited by Mg(2+)/γ-imino ATP. These findings indicate that the mCrC is the PTP of D. melanogaster and that the signature conductance of F-ATPase channels depends on unique structural features that may underscore specific roles in different species.
Collapse
Affiliation(s)
| | | | | | - Giovanna Lippe
- the Department of Food Science, University of Udine, I-33100 Udine, Italy
| | - Gary D Glick
- the Department of Chemistry, Graduate Program in Immunology, University of Michigan, Ann Arbor, Michigan 48109, and
| | - Michael A Forte
- the Vollum Institute, Oregon Health and Sciences University, Portland, Oregon 97239
| | - Caterina Da-Rè
- Biology, University of Padova and Consiglio Nazionale delle Ricerche Neuroscience Institute, I-35131 Padova, Italy
| | - Vanessa Checchetto
- Biology, University of Padova and Consiglio Nazionale delle Ricerche Neuroscience Institute, I-35131 Padova, Italy
| | - Gabriella Mazzotta
- Biology, University of Padova and Consiglio Nazionale delle Ricerche Neuroscience Institute, I-35131 Padova, Italy
| | - Rodolfo Costa
- Biology, University of Padova and Consiglio Nazionale delle Ricerche Neuroscience Institute, I-35131 Padova, Italy
| | - Ildikò Szabò
- Biology, University of Padova and Consiglio Nazionale delle Ricerche Neuroscience Institute, I-35131 Padova, Italy
| | | |
Collapse
|
15
|
Rasola A, Bernardi P. The mitochondrial permeability transition pore and its adaptive responses in tumor cells. Cell Calcium 2014; 56:437-45. [PMID: 25454774 PMCID: PMC4274314 DOI: 10.1016/j.ceca.2014.10.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 10/06/2014] [Accepted: 10/07/2014] [Indexed: 01/12/2023]
Abstract
This review covers recent progress on the nature of the mitochondrial permeability transition pore (PTP) - a key effector in the mitochondrial pathways to cell death - and on the adaptive responses of tumor cells that desensitize the PTP to Ca(2+) and reactive oxygen species (ROS), thereby playing an important role in the resistance of tumors to cell death. The discovery that the PTP forms from dimers of F-ATP synthase; and the definition of the Ca(2+)- and ROS-dependent signaling pathways affecting the transition of the F-ATP synthase from an energy-conserving to an energy-dissipating device open new perspectives for therapeutic intervention in cancer cells.
Collapse
Affiliation(s)
- Andrea Rasola
- Department of Biomedical Sciences and CNR Neuroscience Institute, University of Padova, Italy.
| | - Paolo Bernardi
- Department of Biomedical Sciences and CNR Neuroscience Institute, University of Padova, Italy.
| |
Collapse
|
16
|
Chinopoulos C, Szabadkai G. What Makes You Can also Break You, Part III: Mitochondrial Permeability Transition Pore Formation by an Uncoupling Channel within the C-Subunit Ring of the F1FO ATP Synthase? Front Oncol 2014; 4:235. [PMID: 25232534 PMCID: PMC4153043 DOI: 10.3389/fonc.2014.00235] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 08/11/2014] [Indexed: 11/13/2022] Open
Affiliation(s)
| | - Gyorgy Szabadkai
- Department of Cell and Developmental Biology, Consortium for Mitochondrial Research, University College London , London , UK ; Department of Biomedical Sciences, University of Padua , Padua , Italy
| |
Collapse
|
17
|
Grubman A, James SA, James J, Duncan C, Volitakis I, Hickey JL, Crouch PJ, Donnelly PS, Kanninen KM, Liddell JR, Cotman SL, de Jonge, White AR. X-ray fluorescence imaging reveals subcellular biometal disturbances in a childhood neurodegenerative disorder. Chem Sci 2014; 5:2503-2516. [PMID: 24976945 PMCID: PMC4070600 DOI: 10.1039/c4sc00316k] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Biometals such as zinc, iron, copper and calcium play key roles in diverse physiological processes in the brain, but can be toxic in excess. A hallmark of neurodegeneration is a failure of homeostatic mechanisms controlling the concentration and distribution of these elements, resulting in overload, deficiency or mislocalization. A major roadblock to understanding the impact of altered biometal homeostasis in neurodegenerative disease is the lack of rapid, specific and sensitive techniques capable of providing quantitative subcellular information on biometal homeostasis in situ. Recent advances in X-ray fluorescence detectors have provided an opportunity to rapidly measure biometal content at subcellular resolution in cell populations using X-ray Fluorescence Microscopy (XFM). We applied this approach to investigate subcellular biometal homeostasis in a cerebellar cell line isolated from a natural mouse model of a childhood neurodegenerative disorder, the CLN6 form of neuronal ceroid lipofuscinosis, commonly known as Batten disease. Despite no global changes to whole cell concentrations of zinc or calcium, XFM revealed significant subcellular mislocalization of these important biological second messengers in cerebellar Cln6nclf (CbCln6nclf ) cells. XFM revealed that nuclear-to-cytoplasmic trafficking of zinc was severely perturbed in diseased cells and the subcellular distribution of calcium was drastically altered in CbCln6nclf cells. Subtle differences in the zinc K-edge X-ray Absorption Near Edge Structure (XANES) spectra of control and CbCln6nclf cells suggested that impaired zinc homeostasis may be associated with an altered ligand set in CbCln6nclf cells. Importantly, a zinc-complex, ZnII(atsm), restored the nuclear-to-cytoplasmic zinc ratios in CbCln6nclf cells via nuclear zinc delivery, and restored the relationship between subcellular zinc and calcium levels to that observed in healthy control cells. ZnII(atsm) treatment also resulted in a reduction in the number of calcium-rich puncta observed in CbCln6nclf cells. This study highlights the complementarities of bulk and single cell analysis of metal content for understanding disease states. We demonstrate the utility and broad applicability of XFM for subcellular analysis of perturbed biometal metabolism and mechanism of action studies for novel therapeutics to target neurodegeneration.
Collapse
Affiliation(s)
- A Grubman
- Department of Pathology, University of Melbourne, Parkville 3010, Australia
| | - S A James
- Australian Synchrotron, Clayton 3168, Australia ; Materials Science and Engineering and the Preventative Health Flagship, CSIRO, Clayton 3168, Australia
| | - J James
- Department of Pathology, University of Melbourne, Parkville 3010, Australia
| | - C Duncan
- Department of Pathology, University of Melbourne, Parkville 3010, Australia
| | - I Volitakis
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, Australia
| | - J L Hickey
- School of Chemistry and Bio21 Institute for Molecular Science and Biotechnology, The University of Melbourne, Parkville 3010, Australia
| | - P J Crouch
- Department of Pathology, University of Melbourne, Parkville 3010, Australia
| | - P S Donnelly
- School of Chemistry and Bio21 Institute for Molecular Science and Biotechnology, The University of Melbourne, Parkville 3010, Australia
| | - K M Kanninen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, FI-70211, Finland
| | - J R Liddell
- Department of Pathology, University of Melbourne, Parkville 3010, Australia
| | - S L Cotman
- Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - de Jonge
- Australian Synchrotron, Clayton 3168, Australia
| | - A R White
- Department of Pathology, University of Melbourne, Parkville 3010, Australia
| |
Collapse
|
18
|
Potential role of subunit c of F0F1-ATPase and subunit c of storage body in the mitochondrial permeability transition. Effect of the phosphorylation status of subunit c on pore opening. Cell Calcium 2014; 55:69-77. [DOI: 10.1016/j.ceca.2013.12.002] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 11/25/2013] [Accepted: 12/08/2013] [Indexed: 01/27/2023]
|
19
|
Chinopoulos C, Szabadkai G. What makes you can also break you: mitochondrial permeability transition pore formation by the c subunit of the F(1)F(0) ATP-synthase? Front Oncol 2013; 3:25. [PMID: 23424713 PMCID: PMC3575606 DOI: 10.3389/fonc.2013.00025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 02/01/2013] [Indexed: 11/26/2022] Open
|
20
|
Fox DA, Poblenz AT, He L, Harris JB, Medrano CJ. Pharmacological strategies to block rod photoreceptor apoptosis caused by calcium overload: a mechanistic target-site approach to neuroprotection. Eur J Ophthalmol 2003; 13 Suppl 3:S44-56. [PMID: 12749677 DOI: 10.1177/112067210301303s08] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PURPOSE Photoreceptor apoptosis and resultant visual deficits occur in humans and animals with inherited, and disease-, injury- and chemical-induced retinal degeneration. Our aims were three-fold: 1) to determine the kinetics of rod apoptosis and Ca2+ overload in Pde6b9rd1) mice and developmentally lead-exposed rats, 2) to establish a pathophysiologically-relevant model of Ca2+ overload/rod-selective apoptosis in isolated rat retina and 3) to examine different mechanistic based neuroprotective strategies that would abrogate or mollify rod Ca2+ overload/apoptosis. METHODS Retinal morphometry and elemental calcium content ([Ca]) determined the kinetics of rod apoptosis and Ca2+ overload. A multiparametric analysis of apoptosis including rod [Ca], a live/dead assay, rod oxygen consumption, cytochrome c immunoblots and caspase assays was combined with pharmacological studies of an isolated rat retinal model of rod-selective Ca2+ overload/apoptosis. RESULTS Ca2+ overload preceded rod apoptosis in mice and rats, although the extent and kinetics in each differed significantly. The isolated rat model of rod Ca2+ overload/apoptosis showed that blockade of Ca2+ entry through rod cGMP-activated channels with L-cis diltiazem was partially neuroprotective, whereas blockade of Ca2+ entry into rods through L-type Ca2+ channels with D-cis diltiazem or verapamil provided no protection. Inhibition of the mitochondrial Na+/Ca2+ exchanger with D-cis diltiazem provided no protection. CsA and NIM811, mitochondrial permeability transition pore (mPTP) inhibitors, blocked all Ca(2+)-induced apoptosis, whereas the caspase-3 inhibitor DEVD-fmk only blocked the downstream cytochrome c-induced apoptosis. CONCLUSIONS The successful pharmacological neuroprotective strategies for rod Ca2+ overload/apoptosis targeted the rod cGMP-activated channels or mPTP, but not the rod L-type Ca2+ channels.
Collapse
Affiliation(s)
- D A Fox
- College of Optometry , University of Houston, Houston, Texas 77204-2020, USA.
| | | | | | | | | |
Collapse
|
21
|
Abstract
Proton channels exist in a wide variety of membrane proteins where they transport protons rapidly and efficiently. Usually the proton pathway is formed mainly by water molecules present in the protein, but its function is regulated by titratable groups on critical amino acid residues in the pathway. All proton channels conduct protons by a hydrogen-bonded chain mechanism in which the proton hops from one water or titratable group to the next. Voltage-gated proton channels represent a specific subset of proton channels that have voltage- and time-dependent gating like other ion channels. However, they differ from most ion channels in their extraordinarily high selectivity, tiny conductance, strong temperature and deuterium isotope effects on conductance and gating kinetics, and insensitivity to block by steric occlusion. Gating of H(+) channels is regulated tightly by pH and voltage, ensuring that they open only when the electrochemical gradient is outward. Thus they function to extrude acid from cells. H(+) channels are expressed in many cells. During the respiratory burst in phagocytes, H(+) current compensates for electron extrusion by NADPH oxidase. Most evidence indicates that the H(+) channel is not part of the NADPH oxidase complex, but rather is a distinct and as yet unidentified molecule.
Collapse
Affiliation(s)
- Thomas E Decoursey
- Department of Molecular Biophysics and Physiology, Rush Presbyterian St. Luke's Medical Center, Chicago, Illinois 60612, USA.
| |
Collapse
|
22
|
Azarashvili TS, Tyynelä J, Odinokova IV, Grigorjev PA, Baumann M, Evtodienko YV, Saris NEL. Phosphorylation of a peptide related to subunit c of the F0F1-ATPase/ATP synthase and relationship to permeability transition pore opening in mitochondria. J Bioenerg Biomembr 2002; 34:279-84. [PMID: 12392191 DOI: 10.1023/a:1020204518513] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A phosphorylated polypeptide (ScIRP) from the inner membrane of rat liver mitochondria with an apparent molecular mass of 3.5 kDa was found to be immunoreactive with specific antibodies against subunit c of F0F1-ATPase/ATP synthase (Azarashvily, T. S., Tyynelä, J., Baumann, M., Evtodienko, Yu. V., and Saris, N.-E. L. (2000). Biochem. Biophys. Res. Commun. 270, 741-744. In the present paper we show that the dephosphorylation of ScIRP was promoted by the Ca2+-induced mitochondrial permeability transition (MPT) and prevented by cyclosporin A. Preincubation of ScIRP isolated in its dephosphorylated form with the mitochondrial suspension decreased the membrane potential (delta psiM) and the Ca2+-uptake capacity by promoting MPT. Incorporation of ScIRP into black-lipid membranes increased the membrane conductivity by inducing channel formation that was also suppressed by antibodies to subunit c. These data indicate that the phosphorylation level of ScIRP is influenced by the MPT pore state, presumably by stimulation of calcineurin phosphatase by the Ca2+ used to induce MPT. The possibility of ScIRP being part of the MPT pore assembly is discussed in view of its capability to induced channel activity.
Collapse
Affiliation(s)
- Tamara S Azarashvili
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region
| | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
The lysosomal disease concept was developed by Hers in 1963. At the time, few could have imagined the breadth and depth of knowledge about cell biology that these disorders would reveal. With a collective hindsight of nearly four decades, it is fair to say that we have learned more about the lysosomal system of cells through the study of these rare diseases than by any other means. Given the advancements of the past year, it is apparent that some of the most significant insights are yet to come, as we delineate the last remaining and most enigmatic of these diseases.
Collapse
Affiliation(s)
- S U Walkley
- Sidney Weisner Laboratory of Genetic Neurological Disease, Department of Neuroscience, Rose F. Kennedy Center for Research in Mental Retardation and Human Development, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
24
|
McGeoch JE, Guidotti G. Batten disease and the control of the Fo subunit c pore by cGMP and calcium. Eur J Paediatr Neurol 2001; 5 Suppl A:147-50. [PMID: 11588987 DOI: 10.1053/ejpn.2000.0452] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Subunit c of ATP synthase functions as a high conductance ion channel, tightly regulated by calcium. We have suggested that the pathogenesis of Batten syndromes involving overaccumulation of subunit c are linked to the protein's ion channel function. In normal electrically excitable tissue the channel could act as a pacer setting nodal voltage via control of cation entry. The channel conductance is controlled by voltage, calcium, cyclic nucleotides and polyamines. We discuss the pathogenic role that subunit c could play in the electrically excitable tissues of retina, brain and heart where Batten neurodegeneration is seen. Focus is given to potential links between subunit c and the known mutant gene products in the Batten diseases, the process of apoptosis, and the requirement of the growing brain for gradients of cGMP, a ligand of the subunit c channel.
Collapse
Affiliation(s)
- J E McGeoch
- Department of Molecular and Cellular Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA.
| | | |
Collapse
|