1
|
Antonijevic M, Dallemagne P, Rochais C. Indirect influence on the BDNF/TrkB receptor signaling pathway via GPCRs, an emerging strategy in the treatment of neurodegenerative disorders. Med Res Rev 2025; 45:274-310. [PMID: 39180386 DOI: 10.1002/med.22075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/06/2022] [Accepted: 08/04/2024] [Indexed: 08/26/2024]
Abstract
Neuronal survival depends on neurotrophins and their receptors. There are two types of neurotrophin receptors: a nonenzymatic, trans-membrane protein of the tumor necrosis factor receptor (TNFR) family-p75 receptor and the tyrosine kinase receptors (TrkR) A, B, and C. Activation of the TrkBR by brain-derived neurotrophic factor (BDNF) or neurotrophin 4/5 (NT-4/5) promotes neuronal survival, differentiation, and synaptic function. It is shown that in the pathogenesis of several neurodegenerative conditions (Alzheimer's disease, Parkinson's disease, Huntington's disease) the BDNF/TrkBR signaling pathway is impaired. Since it is known that GPCRs and TrkR are regulating several cell functions by interacting with each other and generating a cross-communication in this review we have focused on the interaction between different GPCRs and their ligands on BDNF/TrkBR signaling pathway.
Collapse
|
2
|
Xu H, Wang Y, Geng D, Chen F, Chen Y, Niwenahisemo LC, Shi L, Du N, He Z, Xu X, Kuang L. Lycopene Alleviates Depression-Like Behavior in Chronic Social Defeat Stress-Induced Mice by Promoting Synaptic Plasticity via the BDNF-TrkB Pathway. Food Sci Nutr 2025; 13:e70003. [PMID: 39844795 PMCID: PMC11751711 DOI: 10.1002/fsn3.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/19/2024] [Accepted: 01/02/2025] [Indexed: 01/24/2025] Open
Abstract
Lycopene is a natural plant extract widely studied for its powerful antioxidant and neuroprotective effects. Emerging evidence suggests that it also possesses potential antidepressant properties. Compared to commonly used clinical antidepressants, lycopene offers higher safety; however, its underlying mechanisms remain unclear. Therefore, this study aims to explore the mechanisms through which lycopene exerts its antidepressant effects. We employed the chronic social defeat stress (CSDS) model to induce depressive-like behaviors in mice, followed by lycopene treatment (20 mg/kg). Based on previous research, we focused on synaptic plasticity by examining the expression of synaptic proteins in the hippocampus to uncover potential mechanisms. The results showed that CSDS induced synaptic plasticity impairments in the hippocampus but lycopene treatment significantly improved these synaptic deficits and reversed the depressive-like behaviors induced by CSDS. Moreover, lycopene treatment upregulated the expression of brain-derived neurotrophic factor (BDNF) and reduced the activity of BDNF-TrkB/pTrkB pathway in the hippocampus. These molecular changes were consistent with changes in synaptic-related proteins, suggesting that lycopene may enhance synaptic plasticity via the BDNF-TrkB/pTrkB signaling pathway. This study explored the mechanisms underlying depressive-like behaviors induced by CSDS in mice and provided preclinical evidence that lycopene may serve as a potential antidepressant. It offers an effective avenue for the development of novel antidepressant therapies.
Collapse
Affiliation(s)
- Heyan Xu
- Psychiatric CenterThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- Department of PsychiatryThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- Medical Sciences Research CenterUniversity‐Town Hospital of Chongqing Medical UniversityChongqingChina
| | - Yuna Wang
- Psychiatric CenterThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Dandan Geng
- Psychiatric CenterThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Fengming Chen
- Hubei University of Traditional Chinese Medicine Affiliated Shiyan HospitalShiyanChina
| | - Yujia Chen
- Psychiatric CenterThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | | | - Lei Shi
- Psychiatric CenterThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Ning Du
- Psychiatric CenterThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Ziqiang He
- School of Communications and Information EngineeringChongqing University of Posts and TelecommunicationsChongqingChina
| | - Xiaoming Xu
- Psychiatric CenterThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Li Kuang
- Psychiatric CenterThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| |
Collapse
|
3
|
Bregman-Yemini N, Nitzan K, Franko M, Doron R. Connecting the emotional-cognitive puzzle: The role of tyrosine kinase B (TrkB) receptor isoform imbalance in age-related emotional and cognitive impairments. Ageing Res Rev 2024; 99:102349. [PMID: 38823488 DOI: 10.1016/j.arr.2024.102349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/16/2024] [Accepted: 05/26/2024] [Indexed: 06/03/2024]
Abstract
Age-related cognitive and affective disorders pose significant public health challenges. Notably, emotional and cognitive symptoms co-occur across multiple age-associated conditions like normal aging, Alzheimer's disease (AD), and mood disorders such as depression and anxiety. While the intricate interplay underlying this relationship remains poorly understood, this article highlights the possibility that an imbalance between full-length (TrkB.FL) and truncated (TrkB.T1) isoforms of tyrosine kinase receptor TrkB in the neurotrophic system may significantly affect age-associated emotional and cognitive functions, by altering brain-derived neurotrophic factor (BDNF) signaling, integral to neuronal health, cognitive functions and mood regulation. While the contribution of this imbalance to pathogenesis awaits full elucidation, this review evaluates its potential mediating role, linking emotional and cognitive decline across age-related disorders The interplay between TrkB.T1 and TrkB.FL isoforms may be considered as a pivotal shared regulator underlying this complex relationship. The current review aims to synthesize current knowledge on TrkB isoform imbalance, specifically its contribution to age-related cognitive decline and mood disorders. By examining shared pathogenic pathways between aging, cognitive decline, and mood disorders through the lens of TrkB signaling, this review uncovers potential therapeutic targets not previously considered, offering a fresh perspective on combating age-related mental health issues as well as cognitive deficits.
Collapse
Affiliation(s)
- Noa Bregman-Yemini
- Department of Education and Psychology, The Open University, Israel; Department of Psychology, The Hebrew University, Israel
| | - Keren Nitzan
- Department of Education and Psychology, The Open University, Israel
| | - Motty Franko
- Department of Education and Psychology, The Open University, Israel; Department of Psychology, Ben-Gurion University, Israel
| | - Ravid Doron
- Department of Education and Psychology, The Open University, Israel.
| |
Collapse
|
4
|
Polishchuk A, Cilleros-Mañé V, Balanyà-Segura M, Just-Borràs L, Forniés-Mariné A, Silvera-Simón C, Tomàs M, Jami El Hirchi M, Hurtado E, Tomàs J, Lanuza MA. BDNF/TrkB signalling, in cooperation with muscarinic signalling, retrogradely regulates PKA pathway to phosphorylate SNAP-25 and Synapsin-1 at the neuromuscular junction. Cell Commun Signal 2024; 22:371. [PMID: 39044222 PMCID: PMC11265447 DOI: 10.1186/s12964-024-01735-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/04/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND Protein kinase A (PKA) enhances neurotransmission at the neuromuscular junction (NMJ), which is retrogradely regulated by nerve-induced muscle contraction to promote Acetylcholine (ACh) release through the phosphorylation of molecules involved in synaptic vesicle exocytosis (SNAP-25 and Synapsin-1). However, the molecular mechanism of the retrograde regulation of PKA subunits and its targets by BDNF/TrkB pathway and muscarinic signalling has not been demonstrated until now. At the NMJ, retrograde control is mainly associated with BDNF/TrkB signalling as muscle contraction enhances BDNF levels and controls specific kinases involved in the neurotransmission. Neurotransmission at the NMJ is also highly modulated by muscarinic receptors M1 and M2 (mAChRs), which are related to PKA and TrkB signallings. Here, we investigated the hypothesis that TrkB, in cooperation with mAChRs, regulates the activity-dependent dynamics of PKA subunits to phosphorylate SNAP-25 and Synapsin-1. METHODS To explore this, we stimulated the rat phrenic nerve at 1Hz (30 minutes), with or without subsequent contraction (abolished by µ-conotoxin GIIIB). Pharmacological treatments were conducted with the anti-TrkB antibody clone 47/TrkB for TrkB inhibition and exogenous h-BDNF; muscarinic inhibition with Pirenzepine-dihydrochloride and Methoctramine-tetrahydrochloride for M1 and M2 mAChRs, respectively. Diaphragm protein levels and phosphorylation' changes were detected by Western blotting. Location of the target proteins was demonstrated using immunohistochemistry. RESULTS While TrkB does not directly impact the levels of PKA catalytic subunits Cα and Cβ, it regulates PKA regulatory subunits RIα and RIIβ, facilitating the phosphorylation of critical exocytotic targets such as SNAP-25 and Synapsin-1. Furthermore, the muscarinic receptors pathway maintains a delicate balance in this regulatory process. These findings explain the dynamic interplay of PKA subunits influenced by BDNF/TrkB signalling, M1 and M2 mAChRs pathways, that are differently regulated by pre- and postsynaptic activity, demonstrating the specific roles of the BDNF/TrkB and muscarinic receptors pathway in retrograde regulation. CONCLUSION This complex molecular interplay has the relevance of interrelating two fundamental pathways in PKA-synaptic modulation: one retrograde (neurotrophic) and the other autocrine (muscarinic). This deepens the fundamental understanding of neuromuscular physiology of neurotransmission that gives plasticity to synapses and holds the potential for identifying therapeutic strategies in conditions characterized by impaired neuromuscular communication.
Collapse
Affiliation(s)
- Aleksandra Polishchuk
- Universitat Rovira i Virgili. Unitat d'Histologia i Neurobiologia (UHNeurob), Facultat de Medicina i Ciències de la Salut. c/ Sant Llorenç 21, Reus, 43201, Spain
- Unitat d'Histologia i Neurobiologia (UHNeurob), Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Víctor Cilleros-Mañé
- Universitat Rovira i Virgili. Unitat d'Histologia i Neurobiologia (UHNeurob), Facultat de Medicina i Ciències de la Salut. c/ Sant Llorenç 21, Reus, 43201, Spain
- Unitat d'Histologia i Neurobiologia (UHNeurob), Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Marta Balanyà-Segura
- Universitat Rovira i Virgili. Unitat d'Histologia i Neurobiologia (UHNeurob), Facultat de Medicina i Ciències de la Salut. c/ Sant Llorenç 21, Reus, 43201, Spain
- Unitat d'Histologia i Neurobiologia (UHNeurob), Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Laia Just-Borràs
- Universitat Rovira i Virgili. Unitat d'Histologia i Neurobiologia (UHNeurob), Facultat de Medicina i Ciències de la Salut. c/ Sant Llorenç 21, Reus, 43201, Spain
- Unitat d'Histologia i Neurobiologia (UHNeurob), Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Anton Forniés-Mariné
- Universitat Rovira i Virgili. Unitat d'Histologia i Neurobiologia (UHNeurob), Facultat de Medicina i Ciències de la Salut. c/ Sant Llorenç 21, Reus, 43201, Spain
| | - Carolina Silvera-Simón
- Universitat Rovira i Virgili. Unitat d'Histologia i Neurobiologia (UHNeurob), Facultat de Medicina i Ciències de la Salut. c/ Sant Llorenç 21, Reus, 43201, Spain
- Unitat d'Histologia i Neurobiologia (UHNeurob), Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Marta Tomàs
- Universitat Rovira i Virgili. Unitat d'Histologia i Neurobiologia (UHNeurob), Facultat de Medicina i Ciències de la Salut. c/ Sant Llorenç 21, Reus, 43201, Spain
- Unitat d'Histologia i Neurobiologia (UHNeurob), Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Meryem Jami El Hirchi
- Universitat Rovira i Virgili. Unitat d'Histologia i Neurobiologia (UHNeurob), Facultat de Medicina i Ciències de la Salut. c/ Sant Llorenç 21, Reus, 43201, Spain
- Unitat d'Histologia i Neurobiologia (UHNeurob), Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Erica Hurtado
- Universitat Rovira i Virgili. Unitat d'Histologia i Neurobiologia (UHNeurob), Facultat de Medicina i Ciències de la Salut. c/ Sant Llorenç 21, Reus, 43201, Spain
- Unitat d'Histologia i Neurobiologia (UHNeurob), Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Josep Tomàs
- Universitat Rovira i Virgili. Unitat d'Histologia i Neurobiologia (UHNeurob), Facultat de Medicina i Ciències de la Salut. c/ Sant Llorenç 21, Reus, 43201, Spain
- Unitat d'Histologia i Neurobiologia (UHNeurob), Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Maria A Lanuza
- Universitat Rovira i Virgili. Unitat d'Histologia i Neurobiologia (UHNeurob), Facultat de Medicina i Ciències de la Salut. c/ Sant Llorenç 21, Reus, 43201, Spain.
- Unitat d'Histologia i Neurobiologia (UHNeurob), Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain.
| |
Collapse
|
5
|
Balanyà-Segura M, Polishchuk A, Just-Borràs L, Cilleros-Mañé V, Silvera C, Ardévol A, Tomàs M, Lanuza MA, Hurtado E, Tomàs J. Molecular Adaptations of BDNF/NT-4 Neurotrophic and Muscarinic Pathways in Ageing Neuromuscular Synapses. Int J Mol Sci 2024; 25:8018. [PMID: 39125587 PMCID: PMC11311581 DOI: 10.3390/ijms25158018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 08/12/2024] Open
Abstract
Age-related conditions, such as sarcopenia, cause physical disabilities for an increasing section of society. At the neuromuscular junction, the postsynaptic-derived neurotrophic factors brain-derived neurotrophic factor (BDNF) and neurotrophin 4 (NT-4) have neuroprotective functions and contribute to the correct regulation of the exocytotic machinery. Similarly, presynaptic muscarinic signalling plays a fundamental modulatory function in this synapse. However, whether or not these signalling pathways are compromised in ageing neuromuscular system has not yet been analysed. The present study analyses, through Western blotting, the differences in expression and activation of the main key proteins of the BDNF/NT-4 and muscarinic pathways related to neurotransmission in young versus ageing Extensor digitorum longus (EDL) rat muscles. The main results show an imbalance in several sections of these pathways: (i) a change in the stoichiometry of BDNF/NT-4, (ii) an imbalance of Tropomyosin-related kinase B receptor (TrkB)-FL/TrkB-T1 and neurotrophic receptor p 75 (p75NTR), (iii) no changes in the cytosol/membrane distribution of phosphorylated downstream protein kinase C (PKC)βI and PKCε, (iv) a reduction in the M2-subtype muscarinic receptor and P/Q-subtype voltage-gated calcium channel, (v) an imbalance of phosphorylated mammalian uncoordinated-18-1 (Munc18-1) (S313) and synaptosomal-associated protein 25 (SNAP-25) (S187), and (vi) normal levels of molecules related to the management of acetylcholine (Ach). Based on this descriptive analysis, we hypothesise that these pathways can be adjusted to ensure neurotransmission rather than undergoing negative alterations caused by ageing. However, further studies are needed to assess this hypothetical suggestion. Our results contribute to the understanding of some previously described neuromuscular functional age-related impairments. Strategies to promote these signalling pathways could improve the neuromuscular physiology and quality of life of older people.
Collapse
Affiliation(s)
- Marta Balanyà-Segura
- Unitat d’Histologia i Neurobiologia (UHNeurob), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Spain; (M.B.-S.); (A.P.); (L.J.-B.); (V.C.-M.); (C.S.); (M.T.); (J.T.)
| | - Aleksandra Polishchuk
- Unitat d’Histologia i Neurobiologia (UHNeurob), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Spain; (M.B.-S.); (A.P.); (L.J.-B.); (V.C.-M.); (C.S.); (M.T.); (J.T.)
| | - Laia Just-Borràs
- Unitat d’Histologia i Neurobiologia (UHNeurob), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Spain; (M.B.-S.); (A.P.); (L.J.-B.); (V.C.-M.); (C.S.); (M.T.); (J.T.)
| | - Víctor Cilleros-Mañé
- Unitat d’Histologia i Neurobiologia (UHNeurob), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Spain; (M.B.-S.); (A.P.); (L.J.-B.); (V.C.-M.); (C.S.); (M.T.); (J.T.)
| | - Carolina Silvera
- Unitat d’Histologia i Neurobiologia (UHNeurob), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Spain; (M.B.-S.); (A.P.); (L.J.-B.); (V.C.-M.); (C.S.); (M.T.); (J.T.)
| | - Anna Ardévol
- MoBioFood Research Group, Campus Sescelades, Universitat Rovira i Virgili, Marcel.lí Domingo 1, 43007 Tarragona, Spain;
| | - Marta Tomàs
- Unitat d’Histologia i Neurobiologia (UHNeurob), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Spain; (M.B.-S.); (A.P.); (L.J.-B.); (V.C.-M.); (C.S.); (M.T.); (J.T.)
| | - Maria A. Lanuza
- Unitat d’Histologia i Neurobiologia (UHNeurob), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Spain; (M.B.-S.); (A.P.); (L.J.-B.); (V.C.-M.); (C.S.); (M.T.); (J.T.)
| | - Erica Hurtado
- Unitat d’Histologia i Neurobiologia (UHNeurob), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Spain; (M.B.-S.); (A.P.); (L.J.-B.); (V.C.-M.); (C.S.); (M.T.); (J.T.)
| | - Josep Tomàs
- Unitat d’Histologia i Neurobiologia (UHNeurob), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Spain; (M.B.-S.); (A.P.); (L.J.-B.); (V.C.-M.); (C.S.); (M.T.); (J.T.)
| |
Collapse
|
6
|
McPherson JI, Prakash Krishnan Muthaiah V, Kaliyappan K, Leddy JJ, Personius KE. Temporal expression of brainstem neurotrophic proteins following mild traumatic brain injury. Brain Res 2024; 1835:148908. [PMID: 38582416 DOI: 10.1016/j.brainres.2024.148908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/27/2024] [Accepted: 03/31/2024] [Indexed: 04/08/2024]
Abstract
BDNF, a neurotrophic factor, and its receptors have been implicated in the pathophysiology of mild traumatic brain injury (mTBI). The brainstem houses many vital functions, that are also associated with signs and symptoms of mTBI, but has been understudied in mTBI animal models. We determined the extent to which neurotrophic protein and associated receptor expression is affected within the brainstem of adult rats following mTBI. Their behavioral function was assessed and temporal expression of the 'negative' regulators of neuronal function (p75, t-TrkB, and pro-BDNF) and 'positive' neuroprotective (FL-TrkB and m-BDNF) protein isoforms were determined via western blot and immunohistochemistry at 1, 3, 7, and 14 post-injury days (PID) following mTBI or sham (control) procedure. Within the brainstem, p75 expression increased at PID 1 vs. sham animals. t-TrkB and pro-BDNF expression increased at PID 7 and 14. The 'positive' protein isoforms of FL-TrkB and m-BDNF expression were increased only at PID 7. The ratio of t-TrkB:FL-TrkB (negative:positive) was substantial across groups and time points, suggesting a negative impact of neurotrophic signaling on neuronal function. Additional NeuN experiments revealed cell death occurring within a subset of neurons within the medulla. While behavioral measures improved by PID 7-14, negative neurotrophic biochemical responses persisted. Despite the assertion that mTBI produces "mild" injury, evidence of cell death was observed in the medulla. Ratios of TrkB and BDNF isoforms with conflicting functions suggest that future work should specifically measure each subtype since they induce opposing downstream effects on neuronal function.
Collapse
Affiliation(s)
- Jacob I McPherson
- Department of Rehabilitation Science, School of Public Health and Health Professions, State University of New York at Buffalo, Buffalo, NY, United States.
| | - Vijaya Prakash Krishnan Muthaiah
- Department of Rehabilitation Science, School of Public Health and Health Professions, State University of New York at Buffalo, Buffalo, NY, United States
| | - Kathiravan Kaliyappan
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, United States
| | - John J Leddy
- Department of Orthopaedics and Sports Medicine, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, United States
| | - Kirkwood E Personius
- Department of Rehabilitation Science, School of Public Health and Health Professions, State University of New York at Buffalo, Buffalo, NY, United States
| |
Collapse
|
7
|
Ohira K. Localization of truncated TrkB and co-expression with full-length TrkB in the cerebral cortex of adult mice. Neuropeptides 2024; 104:102411. [PMID: 38335799 DOI: 10.1016/j.npep.2024.102411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/24/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024]
Abstract
Brain-derived neurotrophic factor (BDNF), one of the neurotrophins, and its specific receptor TrkB, are abundantly distributed in the central nervous system (CNS) and have a variety of biological effects, such as neural survival, neurite elongation, neural differentiation, and enhancing synaptic functions. Currently, there are two TrkB subtypes: full-length TrkB (TrkB-FL), which has a tyrosine kinase in the intracellular domain, and TrkB-T1, which is a tyrosine kinase-deficient form. While TrkB-FL is a typical tyrosine kinase receptor, TrkB-T1 is a main form expressed in the CNS of adult mammals, but its function is unknown. In this study, we performed fluorescent staining of the cerebral cortex of adult mice, by using TrkB-T1 antiserum and various antibodies of marker molecules for neurons and glial cells. We found that TrkB-T1 was expressed not only in neurons but also in astrocytes. In contrast, little expression of TrkB-T1 was found in oligodendrocytes and microglia. TrkB-T1 was expressed in almost all of the cells expressing TrkB-FL, indicating the direct interaction between TrkB subtypes. These findings suggest that a part of various functions of BDNF-TrkB signaling might be due to the interaction and cellular localization of TrkB subtypes in the cerebral cortex.
Collapse
Affiliation(s)
- Koji Ohira
- Laboratory of Nutritional Brain Science, Department of Food Science and Nutrition, 6-46 Ikebiraki, Nishinomiya, Hyogo 663-8558, Japan.
| |
Collapse
|
8
|
Iliev P, Jaworski C, Wängler C, Wängler B, Page BDG, Schirrmacher R, Bailey JJ. Type II & III inhibitors of tropomyosin receptor kinase (Trk): a 2020-2022 patent update. Expert Opin Ther Pat 2024; 34:231-244. [PMID: 38785069 DOI: 10.1080/13543776.2024.2358818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
INTRODUCTION The Trk family proteins are membrane-bound kinases predominantly expressed in neuronal tissues. Activated by neurotrophins, they regulate critical cellular processes through downstream signaling pathways. Dysregulation of Trk signaling can drive a range of diseases, making the design and study of Trk inhibitors a vital area of research. This review explores recent advances in the development of type II and III Trk inhibitors, with implications for various therapeutic applications. AREAS COVERED Patents covering type II and III inhibitors targeting the Trk family are discussed as a complement of the previous review, Type I inhibitors of tropomyosin receptor kinase (Trk): a 2020-2022 patent update. Relevant patents were identified using the Web of Science database, Google, and Google Patents. EXPERT OPINION While type II and III Trk inhibitor development has advanced more gradually compared to their type I counterparts, they hold significant promise in overcoming resistance mutations and achieving enhanced subtype selectivity - a critical factor in reducing adverse effects associated with pan-Trk inhibition. Recent interdisciplinary endeavors have marked substantial progress in the design of subtype selective Trk inhibitors, with impressive success heralded by the type III inhibitors. Notably, the emergence of mutant-selective Trk inhibitors introduces an intriguing dimension to the field, offering precise treatment possibilities.
Collapse
Affiliation(s)
- Petar Iliev
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada
| | | | - Carmen Wängler
- Biomedical Chemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Mannheim, Germany
| | - Björn Wängler
- Molecular Imaging and Radiochemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Mannheim, Germany
| | - Brent D G Page
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada
| | | | | |
Collapse
|
9
|
Deng C, Chen H. Brain-derived neurotrophic factor/tropomyosin receptor kinase B signaling in spinal muscular atrophy and amyotrophic lateral sclerosis. Neurobiol Dis 2024; 190:106377. [PMID: 38092270 DOI: 10.1016/j.nbd.2023.106377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/15/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023] Open
Abstract
Tropomyosin receptor kinase B (TrkB) and its primary ligand brain-derived neurotrophic factor (BDNF) are expressed in the neuromuscular system, where they affect neuronal survival, differentiation, and functions. Changes in BDNF levels and full-length TrkB (TrkB-FL) signaling have been revealed in spinal muscular atrophy (SMA) and amyotrophic lateral sclerosis (ALS), two common forms of motor neuron diseases that are characterized by defective neuromuscular junctions in early disease stages and subsequently progressive muscle weakness. This review summarizes the current understanding of BDNF/TrkB-FL-related research in SMA and ALS, with an emphasis on their alterations in the neuromuscular system and possible BDNF/TrkB-FL-targeting therapeutic strategies. The limitations of current studies and future directions are also discussed, giving the hope of discovering novel and effective treatments.
Collapse
Affiliation(s)
- Chunchu Deng
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Chen
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
10
|
Tessarollo L, Yanpallewar S. TrkB Truncated Isoform Receptors as Transducers and Determinants of BDNF Functions. Front Neurosci 2022; 16:847572. [PMID: 35321093 PMCID: PMC8934854 DOI: 10.3389/fnins.2022.847572] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 02/10/2022] [Indexed: 11/24/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) belongs to the neurotrophin family of secreted growth factors and binds with high affinity to the TrkB tyrosine kinase receptors. BDNF is a critical player in the development of the central (CNS) and peripheral (PNS) nervous system of vertebrates and its strong pro-survival function on neurons has attracted great interest as a potential therapeutic target for the management of neurodegenerative disorders such as Amyotrophic Lateral Sclerosis (ALS), Huntington, Parkinson's and Alzheimer's disease. The TrkB gene, in addition to the full-length receptor, encodes a number of isoforms, including some lacking the catalytic tyrosine kinase domain. Importantly, one of these truncated isoforms, namely TrkB.T1, is the most widely expressed TrkB receptor in the adult suggesting an important role in the regulation of BDNF signaling. Although some progress has been made, the mechanism of TrkB.T1 function is still largely unknown. Here we critically review the current knowledge on TrkB.T1 distribution and functions that may be helpful to our understanding of how it regulates and participates in BDNF signaling in normal physiological and pathological conditions.
Collapse
Affiliation(s)
- Lino Tessarollo
- Neural Development Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | | |
Collapse
|
11
|
Grayson M, Arris D, Wu P, Merlo J, Ibrahim T, Mei C, Valenzuela V, Ganatra S, Ruparel S. Oral squamous cell carcinoma-released brain-derived neurotrophic factor contributes to oral cancer pain by peripheral tropomyosin receptor kinase B activation. Pain 2022; 163:496-507. [PMID: 34321412 PMCID: PMC8678394 DOI: 10.1097/j.pain.0000000000002382] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/14/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Oral cancer pain is debilitating and understanding mechanisms for it is critical to develop novel treatment strategies treatment strategies. Brain-derived neurotrophic factor (BDNF) signaling is elevated in oral tumor biopsies and is involved with tumor progression. Whether BDNF signaling in oral tumors contributes to cancer-induced pain is not known. The current study evaluates a novel peripheral role of BDNF-tropomyosin receptor kinase B (TrkB) signaling in oral cancer pain. Using human oral squamous cell carcinoma (OSCC) cells and an orthotopic mouse tongue cancer pain model, we found that BDNF levels were upregulated in superfusates and lysates of tumor tongues and that BDNF was expressed by OSCC cells themselves. Moreover, neutralization of BDNF or inhibition of TrkB activity by ANA12, within the tumor-bearing tongue reversed tumor-induced pain-like behaviors in a sex-dependent manner. Oral squamous cell carcinoma conditioned media also produced pain-like behaviors in naïve male mice that was reversed by local injection of ANA12. On a physiological level, using single-fiber tongue-nerve electrophysiology, we found that acutely blocking TrkB receptors reversed tumor-induced mechanical sensitivity of A-slow high threshold mechanoreceptors. Furthermore, single-cell reverse transcription polymerase chain reaction data of retrogradely labeled lingual neurons demonstrated expression of full-form TrkB and truncated TrkB in distinct neuronal subtypes. Last but not the least, intra-TG siRNA for TrkB also reversed tumor-induced orofacial pain behaviors. Our data suggest that TrkB activities on lingual sensory afferents are partly controlled by local release of OSCC-derived BDNF, thereby contributing to oral cancer pain. This is a novel finding and the first demonstration of a peripheral role for BDNF signaling in oral cancer pain.
Collapse
Affiliation(s)
- Max Grayson
- Department of Endodontics, University of Texas Health San Antonio, Texas, USA
| | - Dominic Arris
- Department of Pharmacology and Physiology, University of Texas Health San Antonio, Texas, USA
| | - Ping Wu
- Department of Endodontics, University of Texas Health San Antonio, Texas, USA
| | - Jaclyn Merlo
- Department of Microbiology and Immunology, University of Texas Health San Antonio, Texas, USA
| | - Tarek Ibrahim
- Department of Endodontics, University of Texas Health San Antonio, Texas, USA
| | - Chang Mei
- Department of Endodontics, University of Texas Health San Antonio, Texas, USA
| | - Vanessa Valenzuela
- Department of Endodontics, University of Texas Health San Antonio, Texas, USA
| | - Shilpa Ganatra
- Department of Endodontics, University of Texas Health San Antonio, Texas, USA
| | - Shivani Ruparel
- Department of Endodontics, University of Texas Health San Antonio, Texas, USA
| |
Collapse
|
12
|
Sex-Based Differences in Cardiac Gene Expression and Function in BDNF Val66Met Mice. Int J Mol Sci 2021; 22:ijms22137002. [PMID: 34210092 PMCID: PMC8269163 DOI: 10.3390/ijms22137002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/10/2021] [Accepted: 06/17/2021] [Indexed: 12/19/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is a pleiotropic neuronal growth and survival factor that is indispensable in the brain, as well as in multiple other tissues and organs, including the cardiovascular system. In approximately 30% of the general population, BDNF harbors a nonsynonymous single nucleotide polymorphism that may be associated with cardiometabolic disorders, coronary artery disease, and Duchenne muscular dystrophy cardiomyopathy. We recently showed that transgenic mice with the human BDNF rs6265 polymorphism (Val66Met) exhibit altered cardiac function, and that cardiomyocytes isolated from these mice are also less contractile. To identify the underlying mechanisms involved, we compared cardiac function by echocardiography and performed deep sequencing of RNA extracted from whole hearts of all three genotypes (Val/Val, Val/Met, and Met/Met) of both male and female Val66Met mice. We found female-specific cardiac alterations in both heterozygous and homozygous carriers, including increased systolic (26.8%, p = 0.047) and diastolic diameters (14.9%, p = 0.022), increased systolic (57.9%, p = 0.039) and diastolic volumes (32.7%, p = 0.026), and increased stroke volume (25.9%, p = 0.033), with preserved ejection fraction and fractional shortening. Both males and females exhibited lower heart rates, but this change was more pronounced in female mice than in males. Consistent with phenotypic observations, the gene encoding SERCA2 (Atp2a2) was reduced in homozygous Met/Met mice but more profoundly in females compared to males. Enriched functions in females with the Met allele included cardiac hypertrophy in response to stress, with down-regulation of the gene encoding titin (Tcap) and upregulation of BNP (Nppb), in line with altered cardiac functional parameters. Homozygous male mice on the other hand exhibited an inflammatory profile characterized by interferon-γ (IFN-γ)-mediated Th1 immune responses. These results provide evidence for sex-based differences in how the BDNF polymorphism modifies cardiac physiology, including female-specific alterations of cardiac-specific transcripts and male-specific activation of inflammatory targets.
Collapse
|
13
|
Ayuso-Dolado S, Esteban-Ortega GM, Vidaurre ÓG, Díaz-Guerra M. A novel cell-penetrating peptide targeting calpain-cleavage of PSD-95 induced by excitotoxicity improves neurological outcome after stroke. Theranostics 2021; 11:6746-6765. [PMID: 34093851 PMCID: PMC8171078 DOI: 10.7150/thno.60701] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 04/02/2021] [Indexed: 01/11/2023] Open
Abstract
Postsynaptic density protein-95 (PSD-95) is a multidomain protein critical to the assembly of signaling complexes at excitatory synapses, required for neuronal survival and function. However, calpain-processing challenges PSD-95 function after overactivation of excitatory glutamate receptors (excitotoxicity) in stroke, a leading cause of death, disability and dementia in need of efficient pharmacological treatments. A promising strategy is neuroprotection of the infarct penumbra, a potentially recoverable area, by promotion of survival signaling. Interference of PSD-95 processing induced by excitotoxicity might thus be a therapeutic target for stroke and other excitotoxicity-associated pathologies. Methods: The nature and stability of PSD-95 calpain-fragments was analyzed using in vitro assays or excitotoxic conditions induced in rat primary neuronal cultures or a mouse model of stroke. We then sequenced PSD-95 cleavage-sites and rationally designed three cell-penetrating peptides (CPPs) containing these sequences. The peptides effects on PSD-95 stability and neuronal viability were investigated in the cultured neurons, subjected to acute or chronic excitotoxicity. We also analyzed the effect of one of these peptides in the mouse model of stroke by measuring infarct size and evaluating motor coordination and balance. Results: Calpain cleaves three interdomain linker regions in PSD-95 and produces stable fragments corresponding to previously described PSD-95 supramodules (PDZ1-2 and P-S-G) as well as a truncated form SH3-GK. Peptide TP95414, containing the cleavage site in the PDZ3-SH3 linker, is able to interfere PSD-95 downregulation and reduces neuronal death by excitotoxicity. Additionally, TP95414 is delivered to mice cortex and, in a severe model of permanent ischemia, significantly improves the neurological outcome after brain damage. Conclusions: Interference of excitotoxicity-induced PSD-95-processing with specific CPPs constitutes a novel and promising therapeutic approach for stroke treatment.
Collapse
|
14
|
Just-Borràs L, Cilleros-Mañé V, Hurtado E, Biondi O, Charbonnier F, Tomàs M, Garcia N, Tomàs J, Lanuza MA. Running and Swimming Differently Adapt the BDNF/TrkB Pathway to a Slow Molecular Pattern at the NMJ. Int J Mol Sci 2021; 22:4577. [PMID: 33925507 PMCID: PMC8123836 DOI: 10.3390/ijms22094577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/29/2022] Open
Abstract
Physical exercise improves motor control and related cognitive abilities and reinforces neuroprotective mechanisms in the nervous system. As peripheral nerves interact with skeletal muscles at the neuromuscular junction, modifications of this bidirectional communication by physical activity are positive to preserve this synapse as it increases quantal content and resistance to fatigue, acetylcholine receptors expansion, and myocytes' fast-to-slow functional transition. Here, we provide the intermediate step between physical activity and functional and morphological changes by analyzing the molecular adaptations in the skeletal muscle of the full BDNF/TrkB downstream signaling pathway, directly involved in acetylcholine release and synapse maintenance. After 45 days of training at different intensities, the BDNF/TrkB molecular phenotype of trained muscles from male B6SJLF1/J mice undergo a fast-to-slow transition without affecting motor neuron size. We provide further knowledge to understand how exercise induces muscle molecular adaptations towards a slower phenotype, resistant to prolonged trains of stimulation or activity that can be useful as therapeutic tools.
Collapse
Affiliation(s)
- Laia Just-Borràs
- Unitat d’Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, 43201 Reus, Spain; (L.J.-B.); (V.C.-M.); (E.H.); (M.T.); (N.G.)
| | - Víctor Cilleros-Mañé
- Unitat d’Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, 43201 Reus, Spain; (L.J.-B.); (V.C.-M.); (E.H.); (M.T.); (N.G.)
| | - Erica Hurtado
- Unitat d’Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, 43201 Reus, Spain; (L.J.-B.); (V.C.-M.); (E.H.); (M.T.); (N.G.)
| | - Olivier Biondi
- INSERM UMRS 1124, Université de Paris, CEDEX 06, F-75270 Paris, France; (O.B.); (F.C.)
| | - Frédéric Charbonnier
- INSERM UMRS 1124, Université de Paris, CEDEX 06, F-75270 Paris, France; (O.B.); (F.C.)
| | - Marta Tomàs
- Unitat d’Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, 43201 Reus, Spain; (L.J.-B.); (V.C.-M.); (E.H.); (M.T.); (N.G.)
| | - Neus Garcia
- Unitat d’Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, 43201 Reus, Spain; (L.J.-B.); (V.C.-M.); (E.H.); (M.T.); (N.G.)
| | - Josep Tomàs
- Unitat d’Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, 43201 Reus, Spain; (L.J.-B.); (V.C.-M.); (E.H.); (M.T.); (N.G.)
| | - Maria A. Lanuza
- Unitat d’Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, 43201 Reus, Spain; (L.J.-B.); (V.C.-M.); (E.H.); (M.T.); (N.G.)
| |
Collapse
|
15
|
Lesnikova A, Casarotto PC, Fred SM, Voipio M, Winkel F, Steinzeig A, Antila H, Umemori J, Biojone C, Castrén E. Chondroitinase and Antidepressants Promote Plasticity by Releasing TRKB from Dephosphorylating Control of PTPσ in Parvalbumin Neurons. J Neurosci 2021; 41:972-980. [PMID: 33293360 PMCID: PMC7880295 DOI: 10.1523/jneurosci.2228-20.2020] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/19/2020] [Accepted: 11/24/2020] [Indexed: 02/07/2023] Open
Abstract
Perineuronal nets (PNNs) are an extracellular matrix structure rich in chondroitin sulfate proteoglycans (CSPGs), which preferentially encase parvalbumin-containing (PV+) interneurons. PNNs restrict cortical network plasticity but the molecular mechanisms involved are unclear. We found that reactivation of ocular dominance plasticity in the adult visual cortex induced by chondroitinase ABC (chABC)-mediated PNN removal requires intact signaling by the neurotrophin receptor TRKB in PV+ neurons. Additionally, we demonstrate that chABC increases TRKB phosphorylation (pTRKB), while PNN component aggrecan attenuates brain-derived neurotrophic factor (BDNF)-induced pTRKB in cortical neurons in culture. We further found that protein tyrosine phosphatase σ (PTPσ, PTPRS), receptor for CSPGs, interacts with TRKB and restricts TRKB phosphorylation. PTPσ deletion increases phosphorylation of TRKB in vitro and in vivo in male and female mice, and juvenile-like plasticity is retained in the visual cortex of adult PTPσ-deficient mice (PTPσ+/-). The antidepressant drug fluoxetine, which is known to promote TRKB phosphorylation and reopen critical period-like plasticity in the adult brain, disrupts the interaction between TRKB and PTPσ by binding to the transmembrane domain of TRKB. We propose that both chABC and fluoxetine reopen critical period-like plasticity in the adult visual cortex by promoting TRKB signaling in PV+ neurons through inhibition of TRKB dephosphorylation by the PTPσ-CSPG complex.SIGNIFICANCE STATEMENT Critical period-like plasticity can be reactivated in the adult visual cortex through disruption of perineuronal nets (PNNs) by chondroitinase treatment, or by chronic antidepressant treatment. We now show that the effects of both chondroitinase and fluoxetine are mediated by the neurotrophin receptor TRKB in parvalbumin-containing (PV+) interneurons. We found that chondroitinase-induced visual cortical plasticity is dependent on TRKB in PV+ neurons. Protein tyrosine phosphatase σ (PTPσ, PTPRS), a receptor for PNNs, interacts with TRKB and inhibits its phosphorylation, and chondroitinase treatment or deletion of PTPσ increases TRKB phosphorylation. Antidepressant fluoxetine disrupts the interaction between TRKB and PTPσ, thereby increasing TRKB phosphorylation. Thus, juvenile-like plasticity induced by both chondroitinase and antidepressant treatment is mediated by TRKB activation in PV+ interneurons.
Collapse
Affiliation(s)
- Angelina Lesnikova
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki 00290, Finland
| | | | - Senem Merve Fred
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki 00290, Finland
| | - Mikko Voipio
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki 00290, Finland
| | - Frederike Winkel
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki 00290, Finland
| | - Anna Steinzeig
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki 00290, Finland
| | - Hanna Antila
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki 00290, Finland
| | - Juzoh Umemori
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki 00290, Finland
| | - Caroline Biojone
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki 00290, Finland
| | - Eero Castrén
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki 00290, Finland
| |
Collapse
|
16
|
Savvaki M, Kafetzis G, Kaplanis SI, Ktena N, Theodorakis K, Karagogeos D. Neuronal, but not glial, Contactin 2 negatively regulates axon regeneration in the injured adult optic nerve. Eur J Neurosci 2021; 53:1705-1721. [PMID: 33469963 DOI: 10.1111/ejn.15121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/26/2020] [Accepted: 01/17/2021] [Indexed: 01/09/2023]
Abstract
Mammalian adult neurons of the central nervous system (CNS) display limited ability to regrow axons after trauma. The developmental decline in their regenerative ability has been attributed to both intrinsic and extrinsic factors, including postnatal suppression of transcription factors and non-neuronal inhibitory components, respectively. The cell adhesion molecule Contactin 2 (CNTN2) is expressed in neurons and oligodendrocytes in the CNS. Neuronal CNTN2 is highly regulated during development and plays critical roles in axon growth and guidance and neuronal migration. On the other hand, CNTN2 expressed by oligodendrocytes interferes with the myelination process, with its ablation resulting in hypomyelination. In the current study, we investigate the role of CNTN2 in neuronal survival and axon regeneration after trauma, in the murine optic nerve crush (ONC) model. We unveil distinct roles for neuronal and glial CNTN2 in regenerative responses. Surprisingly, our data show a conflicting role of neuronal and glial CNTN2 in axon regeneration. Although glial CNTN2 as well as hypomyelination are dispensable for both neuronal survival and axon regeneration following ONC, the neuronal counterpart comprises a negative regulator of regeneration. Specifically, we reveal a novel mechanism of action for neuronal CNTN2, implicating the inhibition of Akt signalling pathway. The in vitro analysis indicates a BDNF-independent mode of action and biochemical data suggest the implication of the truncated form of TrkB neurotrophin receptor. In conclusion, CNTN2 expressed in CNS neurons serves as an inhibitor of axon regeneration after trauma and its mechanism of action involves the neutralization of Akt-mediated neuroprotective effects.
Collapse
Affiliation(s)
- Maria Savvaki
- Department of Basic Science, Faculty of Medicine, University of Crete, Crete, Greece.,Institute of Molecular Biology & Biotechnology - FoRTH, Heraklion, Crete, Greece
| | - George Kafetzis
- Department of Biology, University of Crete, Crete, Greece.,School of Life Sciences, University of Sussex, Brighton, UK
| | - Stefanos-Ioannis Kaplanis
- Department of Basic Science, Faculty of Medicine, University of Crete, Crete, Greece.,Institute of Molecular Biology & Biotechnology - FoRTH, Heraklion, Crete, Greece
| | - Niki Ktena
- Department of Basic Science, Faculty of Medicine, University of Crete, Crete, Greece.,Institute of Molecular Biology & Biotechnology - FoRTH, Heraklion, Crete, Greece
| | - Kostas Theodorakis
- Institute of Molecular Biology & Biotechnology - FoRTH, Heraklion, Crete, Greece
| | - Domna Karagogeos
- Department of Basic Science, Faculty of Medicine, University of Crete, Crete, Greece.,Institute of Molecular Biology & Biotechnology - FoRTH, Heraklion, Crete, Greece
| |
Collapse
|
17
|
Full-Length TrkB Variant in NSCLC Is Associated with Brain Metastasis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4193541. [PMID: 33294440 PMCID: PMC7688363 DOI: 10.1155/2020/4193541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 09/28/2020] [Accepted: 10/20/2020] [Indexed: 01/19/2023]
Abstract
Despite remarkable therapeutic advances have been made in the last few decades, non-small cell lung cancer (NSCLC) is still one of the leading causes of death worldwide. Brain metastases are a common complication of a wide range of human malignancies and in particular NSCLC. Brain-derived neurotrophic factor (BDNF), binding its high-affinity tyrosine kinase B receptor, has been shown to promote cancer progression and metastasis. We hereby investigated the expression of the BDNF and its TrkB receptor in its full-length and truncated isoform T1, in samples from primary adenocarcinomas (ADKs) of the lung and in their metastasis to evaluate if their expression was related to preferential tumor entry into the central nervous system (CNS). By immunohistochemistry, 80% of the ADKs that metastasize to central nervous system expressed TrkB receptor compared to 33% expressing of ADKs without CNS metastasis. Moreover, ADKs with CNS metastasis showed an elevated expression of the full-length TrkB receptor. The TrkB receptor FL/T1 ratio was statistically higher in primary ADKs with brain metastasis compared to ADKs without brain metastasis. Our data indicate that TrkB full-length isoform expression in primary ADK cells may be associated with higher risk to develop brain metastasis. Therefore, TrkB receptor may possess prognostic and therapeutic implications in lung ADK.
Collapse
|
18
|
Lee HW, Ahmad M, Wang HW, Leenen FHH. Effects of exercise on BDNF-TrkB signaling in the paraventricular nucleus and rostral ventrolateral medulla in rats post myocardial infarction. Neuropeptides 2020; 82:102058. [PMID: 32507324 DOI: 10.1016/j.npep.2020.102058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 02/07/2023]
Abstract
Brain-derived neurotrophic factor (BDNF)-tropomyosin-related kinase B (TrkB) signaling in the paraventricular nucleus (PVN) and rostral ventrolateral medulla (RVLM) is associated with cardiovascular regulation. Exercise increases plasma BDNF and attenuates activation of central pathways in the PVN and RVLM post myocardial infarction (MI). The present study assessed whether MI alters BDNF-TrkB signaling and intracellular factors Ca2+/calmodulin-dependent protein kinase II (CaMKII) and Akt in the PVN and RVLM of male Wistar rats with or without exercise or treatment with the TrkB blocker ANA-12. A 4-week period of treadmill exercise training was performed in MI rats. A separate experiment was conducted with 2.5 mg/kg ANA-12 in sedentary MI rats. At 5 weeks post MI, in both the PVN and RVLM, the ratio of full-length TrkB (TrkB.FL) and truncated TrkB (TrkB.T1) was decreased. 0.5 mg/kg ANA-12 did not affect BDNF-TrkB signaling and cardiac function post MI, but 2.5 mg/kg ANA-12 further decreased ejection fraction (EF). Exercise increased mature BDNF (mBDNF) and decreased Akt activity in the PVN, whereas in the RVLM, exercise did not affect mBDNF but lowered p-CaMKIIβ. ANA-12 prevented the exercise-induced increase in mBDNF in the PVN and decrease in p-CaMKIIβ in the RVLM. In conclusion, exercise decreases Akt activity in the PVN and decreases p-CaMKIIβ in the RVLM post MI. BDNF-TrkB signaling only mediates the decrease in p-CaMKIIβ in the RVLM. The exercise-induced decreases in Akt activity in the PVN and p-CaMKIIβ in the RVLM may contribute to the attenuation of the decrease in EF and sympathetic hyperactivity post MI.
Collapse
Affiliation(s)
- Heow Won Lee
- Brain and Heart Research Group, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Monir Ahmad
- Brain and Heart Research Group, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Hong-Wei Wang
- Brain and Heart Research Group, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Frans H H Leenen
- Brain and Heart Research Group, University of Ottawa Heart Institute, Ottawa, Ontario, Canada.
| |
Collapse
|
19
|
Hasegawa Y, Cheng C, Hayashi K, Takemoto Y, Kim-Mitsuyama S. Anti-apoptotic effects of BDNF-TrkB signaling in the treatment of hemorrhagic stroke. BRAIN HEMORRHAGES 2020. [DOI: 10.1016/j.hest.2020.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
20
|
Chen S, Zhu J, Li P, Xia Z, Tu M, Lin Z, Xu B, Fu X. 3'UTRs Regulate Mouse Ntrk2 mRNA Distribution in Cortical Neurons. J Mol Neurosci 2020; 70:1858-1870. [PMID: 32430868 PMCID: PMC7561570 DOI: 10.1007/s12031-020-01579-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/01/2020] [Indexed: 12/01/2022]
Abstract
There are two major isoforms of NTRK2 (neurotrophic receptor tyrosine kinase 2, or TrkB), full-length isoform with tyrosine kinase (TK) domain intact (+) and spliced isoform without tyrosine kinase domain (TK(−)). Within each isoform, there exist subtypes with minor modifications of the protein sequences. In human, the NTRK2 mRNA transcripts encoding TK(+) have same 3′UTRs, while the transcripts encoding subtypes of NTRK2 TK(−) have two completely different 3′UTRs. In mouse, the mRNA transcripts encoding same NTRK2 protein sequence for either TK(+) or TK(−) have long or short 3′UTRs, respectively. The physiological functions of these different 3′UTRs are still unknown. Pilocarpine stimulation increased Ntrk2 mRNA levels in soma, while the increase in synaptosome was smaller. FISH results further showed that mouse Ntrk2 transcripts with different 3′UTRs were distributed differently in cultured cortical neurons. The transcripts with long 3′UTR were distributed more in apical dendrites compared with transcripts with short 3′UTR. Our results provide evidence of non-coding 3′UTR function in regulating mRNA distribution in neurons.
Collapse
Affiliation(s)
- Shangqin Chen
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Jinjin Zhu
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Peijun Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Zhaonan Xia
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Mengjing Tu
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Zhenlang Lin
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Baoji Xu
- Department of Neuroscience, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL, 33458, USA
| | - Xiaoqin Fu
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| |
Collapse
|
21
|
Cao T, Matyas JJ, Renn CL, Faden AI, Dorsey SG, Wu J. Function and Mechanisms of Truncated BDNF Receptor TrkB.T1 in Neuropathic Pain. Cells 2020; 9:cells9051194. [PMID: 32403409 PMCID: PMC7290366 DOI: 10.3390/cells9051194] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/08/2020] [Accepted: 05/08/2020] [Indexed: 12/11/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF), a major focus for regenerative therapeutics, has been lauded for its pro-survival characteristics and involvement in both development and recovery of function within the central nervous system (CNS). However, studies of tyrosine receptor kinase B (TrkB), a major receptor for BDNF, indicate that certain effects of the TrkB receptor in response to disease or injury may be maladaptive. More specifically, imbalance among TrkB receptor isoforms appears to contribute to aberrant signaling and hyperpathic pain. A truncated isoform of the receptor, TrkB.T1, lacks the intracellular kinase domain of the full length receptor and is up-regulated in multiple CNS injury models. Such up-regulation is associated with hyperpathic pain, and TrkB.T1 inhibition reduces neuropathic pain in various experimental paradigms. Deletion of TrkB.T1 also limits astrocyte changes in vitro, including proliferation, migration, and activation. Mechanistically, TrkB.T1 is believed to act through release of intracellular calcium in astrocytes, as well as through interactions with neurotrophins, leading to cell cycle activation. Together, these studies support a potential role for astrocytic TrkB.T1 in hyperpathic pain and suggest that targeted strategies directed at this receptor may have therapeutic potential.
Collapse
Affiliation(s)
- Tuoxin Cao
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD 21201, USA; (T.C.); (J.J.M.); (A.I.F.)
| | - Jessica J. Matyas
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD 21201, USA; (T.C.); (J.J.M.); (A.I.F.)
| | - Cynthia L. Renn
- Department of Pain and Translational Symptom Science, University of Maryland School of Nursing, Baltimore, MD 21201, USA; (C.L.R.); (S.G.D.)
- Center to Advance Chronic Pain Research, University of Maryland, Baltimore, MD 21201, USA
| | - Alan I. Faden
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD 21201, USA; (T.C.); (J.J.M.); (A.I.F.)
- Center to Advance Chronic Pain Research, University of Maryland, Baltimore, MD 21201, USA
| | - Susan G. Dorsey
- Department of Pain and Translational Symptom Science, University of Maryland School of Nursing, Baltimore, MD 21201, USA; (C.L.R.); (S.G.D.)
- Center to Advance Chronic Pain Research, University of Maryland, Baltimore, MD 21201, USA
| | - Junfang Wu
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD 21201, USA; (T.C.); (J.J.M.); (A.I.F.)
- Center to Advance Chronic Pain Research, University of Maryland, Baltimore, MD 21201, USA
- Correspondence: ; Tel.: +1-410-706-5189
| |
Collapse
|
22
|
The Impact of Kinases in Amyotrophic Lateral Sclerosis at the Neuromuscular Synapse: Insights into BDNF/TrkB and PKC Signaling. Cells 2019; 8:cells8121578. [PMID: 31817487 PMCID: PMC6953086 DOI: 10.3390/cells8121578] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/19/2019] [Accepted: 12/03/2019] [Indexed: 12/14/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) promotes neuron survival in adulthood in the central nervous system. In the peripheral nervous system, BDNF is a contraction-inducible protein that, through its binding to tropomyosin-related kinase B receptor (TrkB), contributes to the retrograde neuroprotective control done by muscles, which is necessary for motor neuron function. BDNF/TrkB triggers downstream presynaptic pathways, involving protein kinase C, essential for synaptic function and maintenance. Undeniably, this reciprocally regulated system exemplifies the tight communication between nerve terminals and myocytes to promote synaptic function and reveals a new view about the complementary and essential role of pre and postsynaptic interplay in keeping the synapse healthy and strong. This signaling at the neuromuscular junction (NMJ) could establish new intervention targets across neuromuscular diseases characterized by deficits in presynaptic activity and muscle contractility and by the interruption of the connection between nervous and muscular tissues, such as amyotrophic lateral sclerosis (ALS). Indeed, exercise and other therapies that modulate kinases are effective at delaying ALS progression, preserving NMJs and maintaining motor function to increase the life quality of patients. Altogether, we review synaptic activity modulation of the BDNF/TrkB/PKC signaling to sustain NMJ function, its and other kinases’ disturbances in ALS and physical and molecular mechanisms to delay disease progression.
Collapse
|
23
|
Farrand AQ, Helke KL, Aponte-Cofresí L, Gooz MB, Gregory RA, Hinson VK, Boger HA. Effects of vagus nerve stimulation are mediated in part by TrkB in a parkinson's disease model. Behav Brain Res 2019; 373:112080. [PMID: 31301412 DOI: 10.1016/j.bbr.2019.112080] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/05/2019] [Accepted: 07/09/2019] [Indexed: 12/28/2022]
Abstract
Vagus nerve stimulation (VNS) is being explored as a potential therapeutic for Parkinson's disease (PD). VNS is less invasive than other surgical treatments and has beneficial effects on behavior and brain pathology. It has been suggested that VNS exerts these effects by increasing brain-derived neurotrophic factor (BDNF) to enhance pro-survival mechanisms of its receptor, tropomyosin receptor kinase-B (TrkB). We have previously shown that striatal BDNF is increased after VNS in a lesion model of PD. By chronically administering ANA-12, a TrkB-specific antagonist, we aimed to determine TrkB's role in beneficial VNS effects for a PD model. In this study, we administered a noradrenergic neurotoxin, DSP-4, intraperitoneally and one week later administered a bilateral intrastriatal dopaminergic neurotoxin, 6-OHDA. At this time, the left vagus nerve was cuffed for stimulation. Eleven days later, rats received VNS twice per day for ten days, with daily locomotor assessment. Daily ANA-12 injections were given one hour prior to the afternoon stimulation and concurrent locomotor session. Following the final VNS session, rats were euthanized, and left striatum, bilateral substantia nigra and locus coeruleus were sectioned for immunohistochemical detection of neurons, α-synuclein, astrocytes, and microglia. While ANA-12 did not avert behavioral improvements of VNS, and only partially prevented VNS-induced attenuation of neuronal loss in the locus coeruleus, it did stop neuronal and anti-inflammatory effects of VNS in the nigrostriatal system, indicating a role for TrkB in mediating VNS efficacy. However, our data also suggest that BDNF-TrkB is not the sole mechanism of action for VNS in PD.
Collapse
Affiliation(s)
- Ariana Q Farrand
- Dept of Neuroscience and Center on Aging, Medical University of South Carolina, 173 Ashley Ave, BSB 403, MSC 510, Charleston, SC, 29425, USA
| | - Kristi L Helke
- Dept of Comparative Medicine, Medical University of South Carolina, 114 Doughty St, STB 648, MSC 777, Charleston, SC, 29425, USA; Dept of Pathology and Laboratory Medicine, Medical University of South Carolina, 165 Ashley Ave, Children's Hospital 309, MSC 908, Charleston, SC, 29425, USA
| | - Luis Aponte-Cofresí
- Dept of Neuroscience and Center on Aging, Medical University of South Carolina, 173 Ashley Ave, BSB 403, MSC 510, Charleston, SC, 29425, USA
| | - Monika B Gooz
- Dept of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, 70 President St, DDB 507, MSC 139, Charleston, SC, 29425, USA
| | - Rebecca A Gregory
- Dept of Comparative Medicine, Medical University of South Carolina, 114 Doughty St, STB 648, MSC 777, Charleston, SC, 29425, USA
| | - Vanessa K Hinson
- Dept of Neurology, Medical University of South Carolina, 96 Jonathan Lucas St, CSB 309, MSC 606, Charleston, SC, 29425, USA
| | - Heather A Boger
- Dept of Neuroscience and Center on Aging, Medical University of South Carolina, 173 Ashley Ave, BSB 403, MSC 510, Charleston, SC, 29425, USA.
| |
Collapse
|
24
|
Tejeda GS, Esteban‐Ortega GM, San Antonio E, Vidaurre ÓG, Díaz‐Guerra M. Prevention of excitotoxicity-induced processing of BDNF receptor TrkB-FL leads to stroke neuroprotection. EMBO Mol Med 2019; 11:e9950. [PMID: 31273936 PMCID: PMC6609917 DOI: 10.15252/emmm.201809950] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 05/02/2019] [Accepted: 05/03/2019] [Indexed: 12/14/2022] Open
Abstract
Neuroprotective strategies aimed to pharmacologically treat stroke, a prominent cause of death, disability, and dementia, have remained elusive. A promising approach is restriction of excitotoxic neuronal death in the infarct penumbra through enhancement of survival pathways initiated by brain-derived neurotrophic factor (BDNF). However, boosting of neurotrophic signaling after ischemia is challenged by downregulation of BDNF high-affinity receptor, full-length tropomyosin-related kinase B (TrkB-FL), due to calpain-degradation, and, secondarily, regulated intramembrane proteolysis. Here, we have designed a blood-brain barrier (BBB) permeable peptide containing TrkB-FL sequences (TFL457 ) which prevents receptor disappearance from the neuronal surface, early induced after excitotoxicity. In this way, TFL457 interferes TrkB-FL cleavage by both proteolytic systems and increases neuronal viability via a PLCγ-dependent mechanism. By preserving downstream CREB and MEF2 promoter activities, TFL457 initiates a feedback mechanism favoring increased levels in excitotoxic neurons of critical prosurvival mRNAs and proteins. This neuroprotective peptide could be highly relevant for stroke therapy since, in a mouse ischemia model, it counteracts TrkB-FL downregulation in the infarcted brain, efficiently decreases infarct size, and improves neurological outcome.
Collapse
Affiliation(s)
- Gonzalo S Tejeda
- Instituto de Investigaciones Biomédicas “Alberto Sols”Consejo Superior de Investigaciones Científicas‐Universidad Autónoma de Madrid (CSIC‐UAM)MadridSpain
- Present address:
Gardiner LaboratoryInstitute of Cardiovascular and Medical SciencesCollege of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Gema M Esteban‐Ortega
- Instituto de Investigaciones Biomédicas “Alberto Sols”Consejo Superior de Investigaciones Científicas‐Universidad Autónoma de Madrid (CSIC‐UAM)MadridSpain
| | - Esther San Antonio
- Instituto de Investigaciones Biomédicas “Alberto Sols”Consejo Superior de Investigaciones Científicas‐Universidad Autónoma de Madrid (CSIC‐UAM)MadridSpain
| | - Óscar G Vidaurre
- Instituto de Investigaciones Biomédicas “Alberto Sols”Consejo Superior de Investigaciones Científicas‐Universidad Autónoma de Madrid (CSIC‐UAM)MadridSpain
| | - Margarita Díaz‐Guerra
- Instituto de Investigaciones Biomédicas “Alberto Sols”Consejo Superior de Investigaciones Científicas‐Universidad Autónoma de Madrid (CSIC‐UAM)MadridSpain
| |
Collapse
|
25
|
The effects of rotenone on TH, BDNF and BDNF-related proteins in the brain and periphery: Relevance to early Parkinson's disease. J Chem Neuroanat 2019; 97:23-32. [PMID: 30690135 DOI: 10.1016/j.jchemneu.2019.01.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 12/19/2018] [Accepted: 01/17/2019] [Indexed: 12/18/2022]
Abstract
Loss of dopaminergic neurons in the substantia nigra (SN) is one of the pathological hallmarks in Parkinson's disease (PD). This neuron loss is accompanied by reduced protein and activity levels of tyrosine hydroxylase (TH), the rate-limiting enzyme of catecholamine synthesis. Reduced nigral brain-derived neurotrophic factor (BDNF) has been postulated to contribute to the loss of nigral dopaminergic neurons in PD by causing a lack of trophic support. Prior to this nigral cell loss many patients develop non-motor symptoms such as hyposmia, constipation and orthostatic hypotension. We investigated how TH, BDNF and BDNF related receptors are altered in the SN, olfactory bulb, adrenal glands and colon (which are known to be affected in PD) using rotenone-treated rats. Rotenone was administered to Sprague-Dawley rats at a dose of 2.75 mg/kg, 5 days/week for 4 weeks, via intraperitoneal injections. Rats underwent behavioural testing, and tissues were collected for western blot and ELISA analysis. This rotenone treatment induced reduced rears and distance travelled in the rearing and open field test, respectively but caused no impairments in forced movement (rotarod test). The SN had changes consistent with a pro-apoptotic state, such as increased proBDNF but no change in TH; whereas, the colon had significantly reduced TH and increased sortilin. Thus, our results indicate further investigation is warranted for this rotenone-dosing paradigm's capacity for reproducing the early stage of PD, as we observed impairments in voluntary movement and pathology in the colon without overt motor symptoms or nigral dopaminergic loss.
Collapse
|
26
|
Sex-specific differences in corticosterone secretion, behavioral phenotypes and expression of TrkB.T1 and TrkB.FL receptor isoforms: Impact of systemic TrkB inhibition and combinatory stress exposure in adolescence. Prog Neuropsychopharmacol Biol Psychiatry 2018; 86:10-23. [PMID: 29753050 DOI: 10.1016/j.pnpbp.2018.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 04/04/2018] [Accepted: 05/08/2018] [Indexed: 12/12/2022]
Abstract
Stress exposure has been implicated in the development of mood disorders, although little is known about the lasting effects of repeated stress during the adolescent period on sex-specific differences in endocrine and plasticity-signaling responses in adulthood. Using a 10-day combinatory stress paradigm (postnatal day (PND) 26 to 35), we examined sex-specific impact of adolescent stress and inhibition of tyrosine-related kinase B (TrkB) receptor (ANA-12; 0.5 mg/kg, i.p.) on 1) adolescent blood corticosterone levels, 2) adult locomotion and anxiety-like behavior, and 3) region-specific differences in endogenous TrkB full-length (TrkB.FL) and truncated (TrkB.T1) receptor isoforms. Blood collected on days 1, 5 and 10 revealed elevated basal and stress-induced CORT secretion in females compared to males, while ANA-12 attenuated CORT elevations post stress in both sexes. As adults, all females exhibited higher locomotor and exploratory activity than males in the open field test and elevated plus maze, and differences were comparable in the forced swim within stress-naïve and stress groups. Biochemically, vehicle-treated males showed elevated TrkB.T1 and TrkB.FL compared to vehicle-treated females in the PFC, hippocampus and NAc, and levels were consistently attenuated by ANA-12 treatment in non-stress males. With regards to stress exposure, expression of both isoforms was strongly down-regulated in the NAc of males only and was associated with increased TrkB.T1 in the PFC. ANA-12 enhanced expression in females, independent of stress exposure, compared to vehicle-treated counterparts, expression being increased for TrkB.T1 versus TrkB.FL and magnitude of the changes being region-specific. In contrast, ANA-12 effects in stressed males were restricted to inhibition of both isoforms in the hippocampus. Together, our findings support that TrkB activation, contingent on stress exposure, differentially affects TrkB isoform regulation during adulthood. Sex-specific biochemical responses at delayed intervals following adolescent stress exposure further support the need to include the sex variable in animal models.
Collapse
|
27
|
Schaich CL, Wellman TL, Einwag Z, Dutko RA, Erdos B. Inhibition of BDNF signaling in the paraventricular nucleus of the hypothalamus lowers acute stress-induced pressor responses. J Neurophysiol 2018; 120:633-643. [PMID: 29694277 DOI: 10.1152/jn.00459.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) expression increases in the paraventricular nucleus of the hypothalamus (PVN) during stress, and our recent studies indicate that BDNF induces sympathoexcitatory and hypertensive responses when injected acutely or overexpressed chronically in the PVN. However, it remained to be investigated whether BDNF is involved in the mediation of stress-induced cardiovascular responses. Here we tested the hypothesis that inhibition of the high-affinity BDNF receptor TrkB in the PVN diminishes acute stress-induced cardiovascular responses. Male Sprague-Dawley rats were equipped with radiotelemetric transmitters for blood pressure measurement. BDNF-TrkB signaling was selectively inhibited by viral vector-mediated bilateral PVN overexpression of a dominant-negative truncated TrkB receptor (TrkB.T1, n = 7), while control animals ( n = 7) received green fluorescent protein (GFP)-expressing vector injections. Rats were subjected to acute water and restraint stress 3-4 wk after vector injections. We found that body weight, food intake, baseline mean arterial pressure (MAP), and heart rate were unaffected by TrkB.T1 overexpression. However, peak MAP increases were significantly reduced in the TrkB.T1 group compared with GFP both during water stress (GFP: 39 ± 2 mmHg, TrkB.T1: 27 ± 4 mmHg; P < 0.05) and restraint stress (GFP: 41 ± 3 mmHg, TrkB.T1: 34 ± 2 mmHg; P < 0.05). Average MAP elevations during the poststress period were also significantly reduced after both water and restraint stress in the TrkB.T1 group compared with GFP. In contrast, heart rate elevations to both stressors remained unaffected by TrkB.T1 overexpression. Our results demonstrate that activation of BDNF high-affinity TrkB receptors within the PVN is a major contributor to acute stress-induced blood pressure elevations. NEW & NOTEWORTHY We have shown that inhibition of the high-affinity brain-derived neurotrophic factor receptor TrkB in the paraventricular nucleus of the hypothalamus significantly reduces blood pressure elevations to acute stress without having a significant impact on resting blood pressure, body weight, and food intake.
Collapse
Affiliation(s)
- Chris L Schaich
- Department of Pharmacology, University of Vermont , Burlington, Vermont
| | - Theresa L Wellman
- Department of Pharmacology, University of Vermont , Burlington, Vermont
| | - Zachary Einwag
- Department of Pharmacology, University of Vermont , Burlington, Vermont
| | - Richard A Dutko
- Department of Pharmacology, University of Vermont , Burlington, Vermont
| | - Benedek Erdos
- Department of Pharmacology, University of Vermont , Burlington, Vermont
| |
Collapse
|
28
|
Pitts EG, Li DC, Gourley SL. Bidirectional coordination of actions and habits by TrkB in mice. Sci Rep 2018; 8:4495. [PMID: 29540698 PMCID: PMC5852142 DOI: 10.1038/s41598-018-22560-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 02/22/2018] [Indexed: 12/26/2022] Open
Abstract
Specific corticostriatal structures and circuits are important for flexibly shifting between goal-oriented versus habitual behaviors. For example, the orbitofrontal cortex and dorsomedial striatum are critical for goal-directed action, while the dorsolateral striatum supports habits. To determine the role of neurotrophin signaling, we overexpressed a truncated, inactive form of tropomyosin receptor kinase B [also called tyrosine receptor kinase B (TrkB)], the high-affinity receptor for Brain-derived Neurotrophic Factor, in the orbitofrontal cortex, dorsomedial striatum and dorsolateral striatum. Overexpression of truncated TrkB interfered with phosphorylation of full-length TrkB and ERK42/44, as expected. In the orbitofrontal cortex and dorsomedial striatum, truncated trkB overexpression also occluded the ability of mice to select actions based on the likelihood that they would be reinforced. Meanwhile, in the dorsolateral striatum, truncated trkB blocked the development of habits. Thus, corticostriatal TrkB-mediated plasticity appears necessary for balancing actions and habits.
Collapse
Affiliation(s)
- Elizabeth G Pitts
- Graduate Program in Neuroscience, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Departments of Pediatrics and Psychiatry and Behavioral Sciences, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Dan C Li
- Graduate Program in Neuroscience, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Departments of Pediatrics and Psychiatry and Behavioral Sciences, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Shannon L Gourley
- Graduate Program in Neuroscience, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA.
- Departments of Pediatrics and Psychiatry and Behavioral Sciences, Emory University School of Medicine, Emory University, Atlanta, GA, USA.
| |
Collapse
|
29
|
Weissleder C, Kondo MA, Yang C, Fung SJ, Rothmond DA, Wong MW, Halliday GM, Herman MM, Kleinman JE, Webster MJ, Shannon Weickert C. Early-life decline in neurogenesis markers and age-related changes of TrkB splice variant expression in the human subependymal zone. Eur J Neurosci 2017; 46:1768-1778. [PMID: 28612959 DOI: 10.1111/ejn.13623] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 05/26/2017] [Accepted: 06/05/2017] [Indexed: 11/28/2022]
Abstract
Neurogenesis in the subependymal zone (SEZ) declines across the human lifespan, and reduced local neurotrophic support is speculated to be a contributing factor. While tyrosine receptor kinase B (TrkB) signalling is critical for neuronal differentiation, maturation and survival, little is known about subependymal TrkB expression changes during postnatal human life. In this study, we used quantitative PCR and in situ hybridisation to determine expression of the cell proliferation marker Ki67, the immature neuron marker doublecortin (DCX) and both full-length (TrkB-TK+) and truncated TrkB receptors (TrkB-TK-) in the human SEZ from infancy to middle age (n = 26-35, 41 days to 43 years). We further measured TrkB-TK+ and TrkB-TK- mRNAs in the SEZ from young adulthood into ageing (n = 50, 21-103 years), and related their transcript levels to neurogenic and glial cell markers. Ki67, DCX and both TrkB splice variant mRNAs significantly decreased in the SEZ from infancy to middle age. In contrast, TrkB-TK- mRNA increased in the SEZ from young adulthood into ageing, whereas TrkB-TK+ mRNA remained stable. TrkB-TK- mRNA positively correlated with expression of neural precursor (glial fibrillary acidic protein delta and achaete-scute homolog 1) and glial cell markers (vimentin and pan glial fibrillary acidic protein). TrkB-TK+ mRNA positively correlated with expression of neuronal cell markers (DCX and tubulin beta 3 class III). Our results indicate that cells residing in the human SEZ maintain their responsiveness to neurotrophins; however, this capability may change across postnatal life. We suggest that TrkB splice variants may differentially influence neuronal and glial differentiation in the human SEZ.
Collapse
Affiliation(s)
- Christin Weissleder
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Margarete Ainsworth Building, 139 Barker Street, Randwick, NSW, 2031, Australia.,Schizophrenia Research Institute, Randwick, NSW, Australia.,Faculty of Medicine, School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - Mari A Kondo
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Margarete Ainsworth Building, 139 Barker Street, Randwick, NSW, 2031, Australia.,Schizophrenia Research Institute, Randwick, NSW, Australia.,Faculty of Medicine, School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - Chunhui Yang
- Section on Neuropathology, Clinical Brain Disorders Branch, Intramural Research Program, NIMH, NIH, Bethesda, MD, USA.,Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Samantha J Fung
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Margarete Ainsworth Building, 139 Barker Street, Randwick, NSW, 2031, Australia.,Schizophrenia Research Institute, Randwick, NSW, Australia.,Faculty of Medicine, School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - Debora A Rothmond
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Margarete Ainsworth Building, 139 Barker Street, Randwick, NSW, 2031, Australia.,Schizophrenia Research Institute, Randwick, NSW, Australia
| | - Matthew W Wong
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Margarete Ainsworth Building, 139 Barker Street, Randwick, NSW, 2031, Australia.,Schizophrenia Research Institute, Randwick, NSW, Australia.,Faculty of Medicine, School of Psychiatry, University of New South Wales, Sydney, NSW, Australia.,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Glenda M Halliday
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia.,Neuroscience Research Australia, Randwick, NSW, Australia
| | - Mary M Herman
- Section on Neuropathology, Clinical Brain Disorders Branch, Intramural Research Program, NIMH, NIH, Bethesda, MD, USA
| | - Joel E Kleinman
- Department of Psychiatry and Behavioral Sciences, Lieber Institute for Brain Development, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Maree J Webster
- Laboratory of Brain Research, Stanley Medical Research Institute, Chevy Chase, MD, USA
| | - Cynthia Shannon Weickert
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Margarete Ainsworth Building, 139 Barker Street, Randwick, NSW, 2031, Australia.,Schizophrenia Research Institute, Randwick, NSW, Australia.,Faculty of Medicine, School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
30
|
Hurtado E, Cilleros V, Nadal L, Simó A, Obis T, Garcia N, Santafé MM, Tomàs M, Halievski K, Jordan CL, Lanuza MA, Tomàs J. Muscle Contraction Regulates BDNF/TrkB Signaling to Modulate Synaptic Function through Presynaptic cPKCα and cPKCβI. Front Mol Neurosci 2017; 10:147. [PMID: 28572757 PMCID: PMC5436293 DOI: 10.3389/fnmol.2017.00147] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/01/2017] [Indexed: 01/09/2023] Open
Abstract
The neurotrophin brain-derived neurotrophic factor (BDNF) acts via tropomyosin-related kinase B receptor (TrkB) to regulate synapse maintenance and function in the neuromuscular system. The potentiation of acetylcholine (ACh) release by BDNF requires TrkB phosphorylation and Protein Kinase C (PKC) activation. BDNF is secreted in an activity-dependent manner but it is not known if pre- and/or postsynaptic activities enhance BDNF expression in vivo at the neuromuscular junction (NMJ). Here, we investigated whether nerve and muscle cell activities regulate presynaptic conventional PKC (cPKCα and βI) via BDNF/TrkB signaling to modulate synaptic strength at the NMJ. To differentiate the effects of presynaptic activity from that of muscle contraction, we stimulated the phrenic nerve of rat diaphragms (1 Hz, 30 min) with or without contraction (abolished by μ-conotoxin GIIIB). Then, we performed ELISA, Western blotting, qRT-PCR, immunofluorescence and electrophysiological techniques. We found that nerve-induced muscle contraction: (1) increases the levels of mature BDNF protein without affecting pro-BDNF protein or BDNF mRNA levels; (2) downregulates TrkB.T1 without affecting TrkB.FL or p75 neurotrophin receptor (p75) levels; (3) increases presynaptic cPKCα and cPKCβI protein level through TrkB signaling; and (4) enhances phosphorylation of cPKCα and cPKCβI. Furthermore, we demonstrate that cPKCβI, which is exclusively located in the motor nerve terminals, increases activity-induced acetylcholine release. Together, these results show that nerve-induced muscle contraction is a key regulator of BDNF/TrkB signaling pathway, retrogradely activating presynaptic cPKC isoforms (in particular cPKCβI) to modulate synaptic function. These results indicate that a decrease in neuromuscular activity, as occurs in several neuromuscular disorders, could affect the BDNF/TrkB/PKC pathway that links pre- and postsynaptic activity to maintain neuromuscular function.
Collapse
Affiliation(s)
- Erica Hurtado
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| | - Víctor Cilleros
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| | - Laura Nadal
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| | - Anna Simó
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| | - Teresa Obis
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| | - Neus Garcia
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| | - Manel M Santafé
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| | - Marta Tomàs
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| | | | - Cynthia L Jordan
- Neuroscience Program, Michigan State UniversityMichigan, MI, United States
| | - Maria A Lanuza
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| | - Josep Tomàs
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| |
Collapse
|
31
|
Tejeda GS, Díaz-Guerra M. Integral Characterization of Defective BDNF/TrkB Signalling in Neurological and Psychiatric Disorders Leads the Way to New Therapies. Int J Mol Sci 2017; 18:ijms18020268. [PMID: 28134845 PMCID: PMC5343804 DOI: 10.3390/ijms18020268] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 01/15/2017] [Accepted: 01/23/2017] [Indexed: 11/23/2022] Open
Abstract
Enhancement of brain-derived neurotrophic factor (BDNF) signalling has great potential in therapy for neurological and psychiatric disorders. This neurotrophin not only attenuates cell death but also promotes neuronal plasticity and function. However, an important challenge to this approach is the persistence of aberrant neurotrophic signalling due to a defective function of the BDNF high-affinity receptor, tropomyosin-related kinase B (TrkB), or downstream effectors. Such changes have been already described in several disorders, but their importance as pathological mechanisms has been frequently underestimated. This review highlights the relevance of an integrative characterization of aberrant BDNF/TrkB pathways for the rational design of therapies that by combining BDNF and TrkB targets could efficiently promote neurotrophic signalling.
Collapse
Affiliation(s)
- Gonzalo S Tejeda
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain.
| | - Margarita Díaz-Guerra
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain.
| |
Collapse
|
32
|
Mysona BA, Zhao J, Bollinger KE. Role of BDNF/TrkB pathway in the visual system: Therapeutic implications for glaucoma. EXPERT REVIEW OF OPHTHALMOLOGY 2016; 12:69-81. [PMID: 28751923 DOI: 10.1080/17469899.2017.1259566] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Neuroprotective therapeutics are needed to treat glaucoma, an optic neuropathy that results in death of retinal ganglion cells (RGCs). AREAS COVERED The BDNF/TrkB pathway is important for RGC survival. Temporal and spatial alterations in the BDNF/TrkB pathway occur in development and in response to acute optic nerve injury and to glaucoma. In animal models, BDNF supplementation is successful at slowing RGC death after acute optic nerve injury and in glaucoma, however, the BDNF/TrkB signaling is not the only pathway supporting long term RGC survival. EXPERT COMMENTARY Much remains to be discovered about the interaction between retrograde, anterograde, and retinal BDNF/TrkB signaling pathways in both neurons and glia. An ideal therapeutic agent for glaucoma likely has several modes of action that target multiple mechanisms of neurodegeneration including the BDNF/TrkB pathway.
Collapse
Affiliation(s)
- B A Mysona
- Augusta University Department of Cellular Biology and Anatomy, James and Jean Culver Vision Discovery Institute. Address: Augusta University Department of Cellular Biology and Anatomy, Health Sciences Campus, 1120 15th Street, Augusta, GA 30912, USA,
| | - J Zhao
- Medical College of Georgia, Department of Ophthalmology at Augusta University, James and Jean Culver Vision Discovery Institute. Address: Medical College of Georgia, Department of Ophthalmology at Augusta University, 1120 15th Street, Augusta, GA 30912, USA,
| | - K E Bollinger
- Medical College of Georgia, Department of Ophthalmology at Augusta University, Augusta University Department of Cellular Biology and Anatomy, James and Jean Culver Vision Discovery Institute. Address: Medical College of Georgia, Department of Ophthalmology at Augusta University, 1120 15th Street, Augusta, GA 30912, USA,
| |
Collapse
|
33
|
Abstract
The neurotrophin brain-derived neurotrophic factor (BDNF) has recently emerged as a possible molecular mediator of activity-dependent synaptic plasticity underlying learning and memory. Long-term potentiation (LTP) within the hippocampus and hippocampally dependent behaviors has been the primary model for examining the role of BDNF in learning and memory. However, these studies are limited by an incomplete understanding of the complex behavioral function of hippocampal circuitry, making it difficult to unravel the molecular machinery responsible for the formation and storage of these memories. In contrast, the amygdala and its role in Pavlovian fear conditioning promise to provide us with new insights into the mechanisms of BDNF-mediated synaptic plasticity during the learning and memory process. This article reviews the different levels of research on BDNF in learning and memory. The focus is primarily on the use of Pavlovian fear conditioning as a learning model that allows for the examination of the role of BDNF in the amygdala, following a single learning session and within a well-understood neural circuit.
Collapse
Affiliation(s)
- Lisa M Rattiner
- Emory University School of Medicine, Department of Psychiatry, Center for Behavioral Neuroscience, Atlanta, Georgia 30329, USA
| | | | | |
Collapse
|
34
|
Chronic intermittent hypoxia induces changes in expression of synaptic proteins in the nucleus of the solitary tract. Brain Res 2015; 1622:300-7. [DOI: 10.1016/j.brainres.2015.07.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 06/27/2015] [Accepted: 07/02/2015] [Indexed: 01/26/2023]
|
35
|
Piccini A, Perlini LE, Cancedda L, Benfenati F, Giovedì S. Phosphorylation by PKA and Cdk5 Mediates the Early Effects of Synapsin III in Neuronal Morphological Maturation. J Neurosci 2015; 35:13148-59. [PMID: 26400944 PMCID: PMC6605445 DOI: 10.1523/jneurosci.1379-15.2015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 08/13/2015] [Accepted: 08/19/2015] [Indexed: 12/27/2022] Open
Abstract
Synapsin III (SynIII) is a neuron-specific phosphoprotein that plays a unique role in neuronal development. SynIII is phosphorylated by cAMP-dependent protein kinase (PKA) at a highly conserved phosphorylation site and by cyclin-dependent kinase-5 (Cdk5) at a newly described site. Although SynIII is known to be involved in axon elongation in vitro, the role of its phosphorylation by PKA and Cdk5 in the modulation of this process is unknown. We expressed either wild-type (WT) or phosphorylation-site mutants of SynIII in primary SynIII knock-out (KO) mouse neurons at early stages of in vitro development. Whereas the neurite elongation phenotype of SynIII KO neurons was fully rescued by the expression of WT SynIII, the expression of nonphosphorylatable and pseudo-phosphorylated PKA mutants was ineffective. Also, the nonphosphorylatable Cdk5 mutant was unable to rescue the neurite elongation phenotype of SynIII KO neurons. By contrast, the pseudo-phosphorylated mutant rescued the delay in neuronal maturation and axonal elongation, revealing a Cdk5-dependent regulation of SynIII function. Interestingly, SynIII KO neurons also exhibited decreased survival that was fully rescued by the expression of WT SynIII, but not by its phosphorylation mutants, and was associated with increased activated caspase3 and altered tropomyosin receptor kinase B isoform expression. These results indicate that PKA and Cdk5 phosphorylation is required for the physiological action of SynIII on axon specification and neurite outgrowth and that the expression of a functional SynIII is crucial for cell survival. Significance statement: Synapsin III is an atypical member of the synapsin family of synaptic vesicle-associated phosphoproteins that is precociously expressed in neurons and is downregulated afterward. Although experimental evidence suggests a specific role for Synapsin III in neuronal development, the molecular mechanisms are still largely unknown. We found that Synapsin III plays a central role in early stages of neuronal development involving neuronal survival, polarization, and neuritic growth and that these effects are dependent on phosphorylation by cAMP-dependent protein kinase and cyclin-dependent protein kinase-5. These results explain the recently described neurodevelopmental defects in the migration and orientation of Synapsin III-depleted cortical neurons and support the potential association of Synapsin III with neurodevelopmental disorders such as schizophrenia.
Collapse
Affiliation(s)
- Alessandra Piccini
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy, and
| | - Laura E Perlini
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Laura Cancedda
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Fabio Benfenati
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy, and Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Silvia Giovedì
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy, and
| |
Collapse
|
36
|
Ciriello J, Moreau JM, McCoy AM, Jones DL. Leptin dependent changes in the expression of tropomyosin receptor kinase B protein in nucleus of the solitary tract to acute intermittent hypoxia. Neurosci Lett 2015; 602:115-9. [PMID: 26163463 DOI: 10.1016/j.neulet.2015.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 06/30/2015] [Accepted: 07/03/2015] [Indexed: 11/25/2022]
Abstract
To investigate the possibility that leptin exerts an effect in NTS by inducing changes in the expression of pre- and/or post-synaptic proteins, experiments were done in Sprague-Dawley wild-type rats (WT) rats and leptin-deficient rats (Lep(Δ151/Δ151); KILO rat) exposed to 8h of continuous intermittent hypoxia (IH) or normoxia. Protein was extracted from the caudal medial NTS and analyzed by western blot for the expression of brain-derived neurotrophic factor (BDNF), tropomyosin receptor kinase B (TrkB), synaptophysin, synaptopodin and growth-associated protein-43 (GAP-43). In WT rats, BDNF and GAP 43 protein expression levels were not altered after IH or normoxia, although there was a trend towards an increase in BDNF expression. On the other hand, after IH, protein expression of both isoforms of the BDNF receptor TrkB (gp95 and gp145) was higher. Furthermore, synaptophysin protein expression was lower compared to normoxic WT rats. In the KILO rat, no changes were observed in the protein expression of BDNF, TrkB, or GAP 43 after IH when compared to KILO normoxic controls. However, synaptophysin was lower in the IH exposed KILO rat compared to normoxic controls, as found in the WT rat. Expression of synaptopodin was not detected in NTS in either IH or normoxic animals of all groups. These results suggest that leptin released during IH may contribute to neurotrophic changes occurring within NTS and that these changes may be associated with altered chemoreceptor reflex function.
Collapse
Affiliation(s)
- John Ciriello
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada.
| | - Jason M Moreau
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Aaron M McCoy
- Sigma Advanced Genetic Engineering Laboratory, Sigma-ldrich Corp., St. Louis, MO 63146, USA
| | - Douglas L Jones
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada
| |
Collapse
|
37
|
Silva A, Naia L, Dominguez A, Ribeiro M, Rodrigues J, Vieira OV, Lessmann V, Rego AC. Overexpression of BDNF and Full-Length TrkB Receptor Ameliorate Striatal Neural Survival in Huntington's Disease. NEURODEGENER DIS 2015; 15:207-18. [PMID: 25896770 DOI: 10.1159/000375447] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 01/21/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Several cellular mechanisms have been proposed to explain the pathogenesis of Huntington's disease (HD), including the lack of striatal brain-derived neurotrophic factor (BDNF). Thus, by preferentially binding to tropomyosin receptor kinase B (TrkB) receptor, BDNF is an important neurotrophin implicated in striatal neuronal survival. OBJECTIVE To study the influence of BDNF and TrkB receptors in intracellular signaling pathways and caspase-3 activation in HD striatal cells. METHODS HD mutant knockin and wild-type striatal cells were transduced with preproBDNF or full-length TrkB receptors to analyze BDNF processing, AKT and extracellular signal-regulated kinase (ERK) activation and the activity of caspase-3 in the absence or presence of staurosporine (STS). RESULTS HD mutant cells transduced with preproBDNF-mCherry (mCh) expressed similar levels of pro- and mature BDNF compared to WT cells, but HD cells released lower levels of pro- and mature BDNF. Despite this, BDNF-mCh overexpression rescued decreased AKT phosphorylation and reduced the caspase-3 activation observed in HD cells. Activated ERK was also enhanced in HD BDNF-mCh/TrkB-eGFP receptor co-cultures. Of relevance, overexpression of TrkB-eGFP in HD cells decreased caspase-3 activation, and stimulation of TrkB-eGFP-transduced mutant cells with recombinant human BDNF reduced both basal and STS-induced caspase-3 activation. CONCLUSION The results highlight the importance of BDNF-induced TrkB receptor signaling in rescuing HD-mediated apoptotic features in striatal cells.
Collapse
Affiliation(s)
- Ana Silva
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Nicolini C, Ahn Y, Michalski B, Rho JM, Fahnestock M. Decreased mTOR signaling pathway in human idiopathic autism and in rats exposed to valproic acid. Acta Neuropathol Commun 2015; 3:3. [PMID: 25627160 PMCID: PMC4307681 DOI: 10.1186/s40478-015-0184-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 01/04/2015] [Indexed: 12/20/2022] Open
Abstract
Background The molecular mechanisms underlying autistic behaviors remain to be elucidated. Mutations in genes linked to autism adversely affect molecules regulating dendritic spine formation, function and plasticity, and some increase the mammalian target of rapamycin, mTOR, a regulator of protein synthesis at spines. Here, we investigated whether the Akt/mTOR pathway is disrupted in idiopathic autism and in rats exposed to valproic acid, an animal model exhibiting autistic-like behavior. Methods Components of the mTOR pathway were assayed by Western blotting in postmortem fusiform gyrus samples from 11 subjects with idiopathic autism and 13 controls and in valproic acid versus saline-exposed rat neocortex. Additionally, protein levels of brain-derived neurotrophic factor receptor (TrkB) isoforms and the postsynaptic organizing molecule PSD-95 were measured in autistic versus control subjects. Results Full-length TrkB, PI3K, Akt, phosphorylated and total mTOR, p70S6 kinase, eIF4B and PSD-95 were reduced in autistic versus control fusiform gyrus. Similarly, phosphorylated and total Akt, mTOR and 4E-BP1 and phosphorylated S6 protein were decreased in valproic acid- versus saline-exposed rats. However, no changes in 4E-BP1 or eIF4E were found in autistic brains. Conclusions In contrast to some monogenic disorders with high rates of autism, our data demonstrate down-regulation of the Akt/mTOR pathway, specifically via p70S6K/eIF4B, in idiopathic autism. These findings suggest that disruption of this pathway in either direction is widespread in autism and can have adverse consequences for synaptic function. The use of valproic acid, a histone deacetylase inhibitor, in rats successfully modeled these changes, implicating an epigenetic mechanism in these pathway disruptions.
Collapse
|
39
|
Tanaka K, Okugawa Y, Toiyama Y, Inoue Y, Saigusa S, Kawamura M, Araki T, Uchida K, Mohri Y, Kusunoki M. Brain-derived neurotrophic factor (BDNF)-induced tropomyosin-related kinase B (Trk B) signaling is a potential therapeutic target for peritoneal carcinomatosis arising from colorectal cancer. PLoS One 2014; 9:e96410. [PMID: 24801982 PMCID: PMC4011754 DOI: 10.1371/journal.pone.0096410] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 04/07/2014] [Indexed: 01/05/2023] Open
Abstract
Tropomyosin-related receptor kinase B (TrkB) signaling, stimulated by brain-derived neurotrophic factor (BDNF) ligand, promotes tumor progression, and is related to the poor prognosis of various malignancies. We sought to examine the clinical relevance of BDNF/TrkB expression in colorectal cancer (CRC) tissues, its prognostic value for CRC patients, and its therapeutic potential in vitro and in vivo. Two hundred and twenty-three CRC patient specimens were used to determine both BDNF and TrkB mRNA levels. The expression of these proteins in their primary and metastatic tumors was investigated by immunohistochemistry. CRC cell lines and recombinant BDNF and K252a (a selective pharmacological pan-Trk inhibitor) were used for in vitro cell viability, migration, invasion, anoikis resistance and in vivo peritoneal metastasis assays. Tissue BDNF mRNA was associated with liver and peritoneal metastasis. Tissue TrkB mRNA was also associated with lymph node metastasis. The co-expression of BDNF and TrkB was associated with liver and peritoneal metastasis. Patients with higher BDNF, TrkB, and co-expression of BDNF and TrkB had a significantly poor prognosis. BDNF increased tumor cell viability, migration, invasion and inhibited anoikis in the TrkB-expressing CRC cell lines. These effects were suppressed by K252a. In mice injected with DLD1 co-expressing BDNF and TrkB, and subsequently treated with K252a, peritoneal metastatic nodules was found to be reduced, as compared with control mice. BDNF/TrkB signaling may thus be a potential target for treating peritoneal carcinomatosis arising from colorectal cancer.
Collapse
Affiliation(s)
- Koji Tanaka
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
- * E-mail:
| | - Yoshinaga Okugawa
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Yuji Toiyama
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Yasuhiro Inoue
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Susumu Saigusa
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Mikio Kawamura
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Toshimitsu Araki
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Keiichi Uchida
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Yasuhiko Mohri
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Masato Kusunoki
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| |
Collapse
|
40
|
Expression of full-length and truncated trkB in human striatum and substantia nigra neurons: implications for Parkinson's disease. J Mol Histol 2013; 45:349-61. [PMID: 24374887 DOI: 10.1007/s10735-013-9562-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 12/17/2013] [Indexed: 12/20/2022]
Abstract
Brain derived neurotrophic factor (BDNF) is a potent mediator of cell survival and differentiation and can reverse neuronal injury associated with Parkinson's disease (PD). Tropomyosin receptor kinase B (trkB) is the high affinity receptor for BDNF. There are two major trkB isoforms, the full-length receptor (trkB.tk(+)) and the truncated receptor (trkB.t1), that mediate the diverse, region specific functions of BDNF. Both trkB isoforms are widely distributed throughout the brain, but the isoform specific distribution of trkB.t1 and trkB.tk(+) to human neurons is not well characterized. Therefore, we report the regional and neuronal distribution of trkB.tk(+) and trkB.t1 in the striatum and substantia nigra pars compacta (SNpc) of human autopsy tissues from control and PD cases. In both PD and control tissues, we found abundant, punctate distribution of trkB.tk(+) and trkB.t1 proteins in striatum and SNpc neurons. In PD, trkB.tk(+) is decreased in striatal neurites, increased in striatal somata, decreased in SNpc somata and dendrites, and increased in SNpc axons. TrkB.t1 is increased in striatal somata, decreased in striatal axons, and increased in SNpc distal dendrites. We believe changes in trkB isoform distribution and expression levels may be markers of pathology and affect the neuronal response to BDNF.
Collapse
|
41
|
DeNardo BD, Holloway MP, Ji Q, Nguyen KT, Cheng Y, Valentine MB, Salomon A, Altura RA. Quantitative phosphoproteomic analysis identifies activation of the RET and IGF-1R/IR signaling pathways in neuroblastoma. PLoS One 2013; 8:e82513. [PMID: 24349301 PMCID: PMC3859635 DOI: 10.1371/journal.pone.0082513] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 10/24/2013] [Indexed: 12/20/2022] Open
Abstract
Neuroblastoma is an embryonal tumor of childhood with a heterogenous clinical presentation that reflects differences in activation of complex biological signaling pathways. Protein phosphorylation is a key component of cellular signal transduction and plays a critical role in processes that control cancer cell growth and survival. We used shotgun LC/MS to compare phosphorylation between a human MYCN amplified neuroblastoma cell line (NB10), modeling a resistant tumor, and a human neural precursor cell line (NPC), modeling a normal baseline neural crest cell. 2181 unique phosphorylation sites representing 1171 proteins and 2598 phosphopeptides were found. Protein kinases accounted for 6% of the proteome, with a predominance of tyrosine kinases, supporting their prominent role in oncogenic signaling pathways. Highly abundant receptor tyrosine kinase (RTK) phosphopeptides in the NB10 cell line relative to the NPC cell line included RET, insulin-like growth factor 1 receptor/insulin receptor (IGF-1R/IR), and fibroblast growth factor receptor 1 (FGFR1). Multiple phosphorylated peptides from downstream mediators of the PI3K/AKT/mTOR and RAS pathways were also highly abundant in NB10 relative to NPC. Our analysis highlights the importance of RET, IGF-1R/IR and FGFR1 as RTKs in neuroblastoma and suggests a methodology that can be used to identify potential novel biological therapeutic targets. Furthermore, application of this previously unexploited technology in the clinic opens the possibility of providing a new wide-scale molecular signature to assess disease progression and prognosis.
Collapse
Affiliation(s)
- Bradley D. DeNardo
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, The Warren Albert School of Medicine at Brown University, Providence, Rhode Island, United States of America
| | - Michael P. Holloway
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, The Warren Albert School of Medicine at Brown University, Providence, Rhode Island, United States of America
| | - Qinqin Ji
- Department of Chemistry, Brown University, Providence, Rhode Island, United States of America
| | - Kevin T. Nguyen
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, The Warren Albert School of Medicine at Brown University, Providence, Rhode Island, United States of America
| | - Yan Cheng
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, The Warren Albert School of Medicine at Brown University, Providence, Rhode Island, United States of America
| | - Marcus B. Valentine
- St. Jude Comprehensive Cancer Center Cytogenetic Shared Resource, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Arthur Salomon
- Department of Molecular and Cellular Biochemistry, Brown University, Providence, Rhode Island, United States of America
| | - Rachel A. Altura
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, The Warren Albert School of Medicine at Brown University, Providence, Rhode Island, United States of America
| |
Collapse
|
42
|
Rostami E, Krueger F, Plantman S, Davidsson J, Agoston D, Grafman J, Risling M. Alteration in BDNF and its receptors, full-length and truncated TrkB and p75(NTR) following penetrating traumatic brain injury. Brain Res 2013; 1542:195-205. [PMID: 24192075 DOI: 10.1016/j.brainres.2013.10.047] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 10/16/2013] [Accepted: 10/24/2013] [Indexed: 01/03/2023]
Abstract
The evidence that BDNF is involved in neuroprotection, neuronal repair and recovery after traumatic brain injury (TBI) is substantial. We have previously shown that the polymorphism of the human BDNF gene predicts cognitive recovery and outcome following penetrating TBI. The distribution of expression of BDNF and its receptors after penetrating TBI has not been investigated. In this study we examined the expression of these genes in a rat model of penetrating TBI. The injury is produced by a controlled penetration of a 2mm thick needle-shaped object, which is accelerated with a pellet from an air gun. We used in situ hybridization and investigated the mRNA expression of BDNF and its receptors: the full-length and the truncated TrkB and p75(NTR), from 1 day to 8 weeks following penetrating TBI. In addition, the protein level of BDNF in frontal cortex and hippocampus was measured by reverse phase protein microarray (RPPM). The mRNA expression of BDNF and its receptors decreased in the hippocampus in the border zone ipsilateral to the injury while there was an increase in mRNA expression at the contralateral side. The increase in BDNF mRNA expression in the hippocampus was sustained for 2 weeks following injury, with the highest expression noted in the CA3 cell layer. Furthermore, the protein analysis by RPPM showed increased levels of BDNF in the frontal cortex and the hippocampus up to 2 weeks after TBI. At 8 weeks following injury there was an intense labeling of the truncated TrkB receptor and the p75(NTR) in the area surrounding the cavity. Our study is the first report on the expression of BDNF and its receptors following penetrating TBI and suggests that their expression is altered long after the acute phase of injury. Further studies are needed to investigate if the late expressions of these receptors are beneficial or deleterious. In either case it indicates the possibility to influence the recovery after brain injury during the chronic phase and the development of treatments that may improve the outcome of TBI patients.
Collapse
Affiliation(s)
- Elham Rostami
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, S-171 77 Stockholm, Sweden(1); Department of Neuroscience and Neurosurgery, Uppsala University Hospital, Uppsala, Sweden.
| | - Frank Krueger
- Department of Molecular Neuroscience, George Mason University, Fairfax, VA, USA; Department of Psychology, George Mason University, Fairfax, VA, USA
| | - Stefan Plantman
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, S-171 77 Stockholm, Sweden(1)
| | - Johan Davidsson
- Division of Vehicle Safety, Chalmers University of Technology, Gothenburg, Sweden
| | - Denes Agoston
- Department of Anatomy, Physiology and Genetics, Uniformed Services University, Bethesda, MD, USA
| | - Jordan Grafman
- Brain Injury Research, Cognitive Neuroscience Laboratory, Rehabilitation Institute of Chicago, IL, USA
| | - Mårten Risling
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, S-171 77 Stockholm, Sweden(1)
| |
Collapse
|
43
|
Bernard-Gauthier V, Boudjemeline M, Rosa-Neto P, Thiel A, Schirrmacher R. Towards tropomyosin-related kinase B (TrkB) receptor ligands for brain imaging with PET: radiosynthesis and evaluation of 2-(4-[(18)F]fluorophenyl)-7,8-dihydroxy-4H-chromen-4-one and 2-(4-([N-methyl-(11)C]-dimethylamino)phenyl)-7,8-dihydroxy-4H-chromen-4-one. Bioorg Med Chem 2013; 21:7816-29. [PMID: 24183588 DOI: 10.1016/j.bmc.2013.10.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 10/01/2013] [Accepted: 10/10/2013] [Indexed: 12/11/2022]
Abstract
The interaction of tropomyosin-related kinase B (TrkB) with the cognate ligand brain-derived neurotrophic factor (BDNF) mediates fundamental pathways in the development of the nervous system. TrkB signaling alterations are linked to numerous neurodegenerative diseases and conditions. Herein we report the synthesis, biological evaluation and radiosynthesis of the first TrkB radioligands based on the recently identified 7,8-dihydroxyflavone chemotype. 2-(4-[(18)F]fluorophenyl)-7,8-dihydroxy-4H-chromen-4-one ([(18)F]10b) was synthesized in high radiochemical yields via an efficient SNAr radiofluorination involving a para-Michael acceptor substituted aryl followed by BBr3-promoted double demethylation. Selective N-[(11)C]methylation afforded 2-(4-([N-methyl-(11)C]-dimethylamino)phenyl)-7,8-dihydroxy-4H-chromen-4-one ([(11)C]10c) from the fully deprotected catechol-bearing normethyl precursor 13 with [(11)C]MeOTf. In vitro autoradiography of [(18)F]10b with transverse rat brain sections revealed high specific binding in the cortex, striatum, hippocampus and thalamus in accordance with expected TrkB distribution. Blockade experiments with both 7,8-dihydroxyflavone (1a) and TrkB cognate ligand, BDNF, led to decreases of 80% and 85% of radioligand binding strongly supporting the hypothesis that 7,8-dihydroxyflavones exert their effect on TrkB phosphorylation via direct TrkB extracellular domain (ECD) binding. Positron emission tomography (PET) studies revealed that [(18)F]10b and [(11)C]10c brain uptake is minimal and that they are rapidly eliminated from the plasma (effective plasma half-life 5-10 min) via hepatic secretion. Nevertheless, the high specific binding and TrkB specificity derived from in vitro experiments suggests that the 7,8-disubstituted flavone chemotype represents a promising scaffold for the development of TrkB radiotracers for PET.
Collapse
Affiliation(s)
- Vadim Bernard-Gauthier
- Department of Chemistry, Université de Montréal, PO Box 6128, Station Downtown, QC H3C 3J7, Canada; McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada
| | | | | | | | | |
Collapse
|
44
|
Kim JI, Lee JW, Lee YA, Lee DH, Han NS, Choi YK, Hwang BR, Kim HJ, Han JS. Sexual activity counteracts the suppressive effects of chronic stress on adult hippocampal neurogenesis and recognition memory. Brain Res 2013; 1538:26-40. [PMID: 24041775 DOI: 10.1016/j.brainres.2013.09.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 08/18/2013] [Accepted: 09/09/2013] [Indexed: 01/19/2023]
Abstract
Adult neurogenesis can be influenced by a variety of factors. Stress is one of the most potent inhibitors of hippocampal neurogenesis. Stress effects on adult hippocampal neurogenesis are affected differently by environmental factors, including social interaction. Sexual behavior between males and females in a social context has been suggested to influence neurogenesis and enhance hippocampal cell proliferation. However, the mechanisms of action of sexual interaction, the possible changes relative to stress state, and its effects on learning and memory remain uncertain. The current study examined the influence of sexual interaction on neurological responses in adult male mice and the function of sexual interaction relative to recognition memory in stress states. Changes in the expression of neurotrophic and transcription factors were assessed in reference to stress and/or sexual behaviors. The survival of newly generated cells and their rate of differentiation into neurons were determined in the hippocampus of chronically stressed and/or sexually experienced mice. Finally, to evaluate whether sexual experience alters adult hippocampal function, we tested learning and memory in a recognition memory task. The results demonstrated that sexual activity increased the expression of brain-derived neurotrophic factor, tyrosine kinase B, and cAMP response element-binding factor. Furthermore, the results supported the view that sexual interaction could be helpful for buffering adult hippocampal neurogenesis and recognition memory function against the suppressive actions of chronic stress.
Collapse
Affiliation(s)
- Jong-In Kim
- Department of Laboratory Animal Medicine & Institute for the 3Rs, College of Veterinary Medicine, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul, 143-701, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Increased circulating levels of neurotrophins and elevated expression of their high-affinity receptors on skin and gut mast cells in mastocytosis. Blood 2013; 122:1779-88. [DOI: 10.1182/blood-2012-12-469882] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Key Points
Patients with mastocytosis feature increased NT serum levels and elevated expression of modified NT receptors on skin and gut MCs. NTs might contribute to mastocytosis via increased migration of MC progenitors, MC differentiation, proliferation, and/or survival.
Collapse
|
46
|
Wu Y, Hill R, Gogos A, van den Buuse M. Sex differences and the role of estrogen in animal models of schizophrenia: Interaction with BDNF. Neuroscience 2013; 239:67-83. [DOI: 10.1016/j.neuroscience.2012.10.024] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 10/08/2012] [Accepted: 10/09/2012] [Indexed: 01/24/2023]
|
47
|
Scharfman HE, MacLusky NJ. Differential regulation of BDNF, synaptic plasticity and sprouting in the hippocampal mossy fiber pathway of male and female rats. Neuropharmacology 2013; 76 Pt C:696-708. [PMID: 23660230 DOI: 10.1016/j.neuropharm.2013.04.029] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 04/10/2013] [Accepted: 04/15/2013] [Indexed: 10/26/2022]
Abstract
Many studies have described potent effects of BDNF, 17β-estradiol or androgen on hippocampal synapses and their plasticity. Far less information is available about the interactions between 17β-estradiol and BDNF in hippocampus, or interactions between androgen and BDNF in hippocampus. Here we review the regulation of BDNF in the mossy fiber pathway, a critical part of hippocampal circuitry. We discuss the emerging view that 17β-estradiol upregulates mossy fiber BDNF synthesis in the adult female rat, while testosterone exerts a tonic suppression of mossy fiber BDNF levels in the adult male rat. The consequences are interesting to consider: in females, increased excitability associated with high levels of BDNF in mossy fibers could improve normal functions of area CA3, such as the ability to perform pattern completion. However, memory retrieval may lead to anxiety if stressful events are recalled. Therefore, the actions of 17β-estradiol on the mossy fiber pathway in females may provide a potential explanation for the greater incidence of anxiety-related disorders and post-traumatic stress syndrome (PTSD) in women relative to men. In males, suppression of BDNF-dependent plasticity in the mossy fibers may be protective, but at the 'price' of reduced synaptic plasticity in CA3. This article is part of the Special Issue entitled 'BDNF Regulation of Synaptic Structure, Function, and Plasticity'.
Collapse
Affiliation(s)
- Helen E Scharfman
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Bldg. 35, Orangeburg, NY 10962, USA; Department of Child & Adolescent Psychiatry, New York University Langone Medical Center, New York, NY 10016, USA; Department of Physiology & Neuroscience, New York University Langone Medical Center, New York, NY 10016, USA; Department of Psychiatry, New York University Langone Medical Center, New York, NY 10016, USA.
| | | |
Collapse
|
48
|
A single Aplysia neurotrophin mediates synaptic facilitation via differentially processed isoforms. Cell Rep 2013; 3:1213-27. [PMID: 23562154 PMCID: PMC4045214 DOI: 10.1016/j.celrep.2013.03.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Revised: 12/28/2012] [Accepted: 03/06/2013] [Indexed: 11/22/2022] Open
Abstract
Neurotrophins control the development and adult plasticity of the vertebrate nervous system. Failure to identify invertebrate neurotrophin orthologs, however, has precluded studies in invertebrate models, limiting our understanding of fundamental aspects of neurotrophin biology and function. We identified a neurotrophin (ApNT) and Trk receptor (ApTrk) in the mollusk Aplysia and found that they play a central role in learning-related synaptic plasticity. Blocking ApTrk signaling impairs long-term facilitation, whereas augmenting ApNT expression enhances it and induces the growth of new synaptic varicosities at the monosynaptic connection between sensory and motor neurons of the gill-withdrawal reflex. Unlike vertebrate neurotrophins, ApNT has multiple coding exons and exerts distinct synaptic effects through differentially processed and secreted splice isoforms. Our findings demonstrate the existence of bona fide neurotrophin signaling in invertebrates and reveal a posttranscriptional mechanism that regulates neurotrophin processing and the release of proneurotrophins and mature neurotrophins that differentially modulate synaptic plasticity.
Collapse
|
49
|
Sakharnova TA, Vedunova MV, Mukhina IV. Brain-derived neurotrophic factor (BDNF) and its role in the functioning of the central nervous system. NEUROCHEM J+ 2012. [DOI: 10.1134/s1819712412030129] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
50
|
Gomes JR, Costa JT, Melo CV, Felizzi F, Monteiro P, Pinto MJ, Inácio AR, Wieloch T, Almeida RD, Grãos M, Duarte CB. Excitotoxicity downregulates TrkB.FL signaling and upregulates the neuroprotective truncated TrkB receptors in cultured hippocampal and striatal neurons. J Neurosci 2012; 32:4610-22. [PMID: 22457507 PMCID: PMC6622054 DOI: 10.1523/jneurosci.0374-12.2012] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 02/15/2012] [Accepted: 02/16/2012] [Indexed: 12/14/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) plays an important role in neuronal survival through activation of TrkB receptors. The trkB gene encodes a full-length receptor tyrosine kinase (TrkB.FL) and its truncated (T1/T2) isoforms. We investigated the changes in TrkB protein levels and signaling activity under excitotoxic conditions, which are characteristic of brain ischemia, traumatic brain injury, and neurodegenerative disorders. Excitotoxic stimulation of cultured rat hippocampal or striatal neurons downregulated TrkB.FL and upregulated a truncated form of the receptor (TrkB.T). Downregulation of TrkB.FL was mediated by calpains, whereas the increase in TrkB.T protein levels required transcription and translation activities. Downregulation of TrkB.FL receptors in hippocampal neurons correlated with a decrease in BDNF-induced activation of the Ras/ERK and PLCγ pathways. However, calpain inhibition, which prevents TrkB.FL degradation, did not preclude the decrease in signaling activity of these receptors. On the other hand, incubation with anisomycin, to prevent the upregulation of TrkB.T, protected to a large extent the TrkB.FL signaling activity, suggesting that truncated receptors may act as dominant-negatives. The upregulation of TrkB.T under excitotoxic conditions was correlated with an increase in BDNF-induced inhibition of RhoA, a mediator of excitotoxic neuronal death. BDNF fully protected hippocampal neurons transduced with TrkB.T when present during excitotoxic stimulation with glutamate, in contrast with the partial protection observed in cells overexpressing TrkB.FL or expressing GFP. These results indicate that BDNF protects hippocampal neurons by two distinct mechanisms: through the neurotrophic effects of TrkB.FL receptors and by activation of TrkB.T receptors coupled to inhibition of the excitotoxic signaling.
Collapse
Affiliation(s)
- João R. Gomes
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - João T. Costa
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Carlos V. Melo
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Federico Felizzi
- ETH Zurich, Department of Biosystems Science and Engineering (DBSSE), 4058 Basel, Switzerland
| | | | - Maria J. Pinto
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Ana R. Inácio
- Wallenberg Neuroscience Center, Lund University, 221 84 Lund, Sweden, and
| | - Tadeusz Wieloch
- Wallenberg Neuroscience Center, Lund University, 221 84 Lund, Sweden, and
| | - Ramiro D. Almeida
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | | | - Carlos B. Duarte
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
- Biocant, 3060-197 Cantanhede, Portugal
- Department of Life Sciences, University of Coimbra, 3004-517 Coimbra, Portugal
| |
Collapse
|