1
|
Eppich S, Kuhn C, Schmoeckel E, Mayr D, Mahner S, Jeschke U, Gallwas J, Heidegger HH. MSX1-expression during the different phases in healthy human endometrium. Arch Gynecol Obstet 2023; 308:273-279. [PMID: 37101223 DOI: 10.1007/s00404-023-07033-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/27/2023] [Indexed: 04/28/2023]
Abstract
PURPOSE The human endometrium consists of different layers (basalis and functionalis) and undergoes different phases throughout the menstrual cycle. In a former paper, our research group was able to describe MSX1 as a positive prognosticator in endometrial carcinomas. The aim of this study was to examine the MSX1 expression in healthy endometrial tissue throughout the different phases to gain more insight on the mechanics of MSX-regulation in the female reproductive system. MATERIALS AND METHODS In this retrospective study, we investigated a total of 17 normal endometrial tissues (six during proliferative phase and five during early and six during late secretory phase). We used immunohistochemical staining and an immunoreactive score (IRS) to evaluate MSX1 expression. We also investigated correlations with other proteins, that have already been examined in our research group using the same patient collective. RESULTS MSX1 is expressed in glandular cells during the proliferative phase and downregulated at early and late secretory phase (p = 0.011). Also, a positive correlation between MSX1 and the progesterone-receptor A (PR-A) (correlation coefficient (cc) = 0.0671; p = 0.024), and the progesterone receptor B (PR-B) (cc = 0.0691; p = 0.018) was found. A trend towards negative correlation was recognized between MSX1 and Inhibin Beta-C-expression in glandular cells (cc = - 0.583; p-value = 0.060). CONCLUSION MSX1 is known as a member of the muscle segment homeobox gene family. MSX1 is a p53-interacting protein and overexpression of homeobox MSX1 induced apoptosis of cancer cells. Here we show that MSX1 is expressed especially in the proliferative phase of glandular epithelial tissue of the normal endometrium. The found positive correlation between MSX1 and progesterone receptors A and B confirms the results of a previous study on cancer tissue by our research group. Because MSX1 is known to be downregulated by progesterone, the found correlation of MSX1 and both PR-A and -B may represent a direct regulation of the MSX1 gene by a PR-response element. Here further investigation would be of interest.
Collapse
Affiliation(s)
- Simon Eppich
- Department of Obstetrics and Gynecology, University Hospital, Ludwig Maximilians University (LMU), Marchioninistraße 15, 81377, Munich, Germany
| | - Christina Kuhn
- Department of Obstetrics and Gynecology, University Hospital, Ludwig Maximilians University (LMU), Marchioninistraße 15, 81377, Munich, Germany
- Department of Obstetrics and Gynecology, University Hospital Augsburg, Stenglinstr. 2, 86156, Augsburg, Germany
| | - Elisa Schmoeckel
- Department of Pathology, LMU Munich, Thalkirchner Str. 56, 80337, Munich, Germany
| | - Doris Mayr
- Department of Pathology, LMU Munich, Thalkirchner Str. 56, 80337, Munich, Germany
| | - Sven Mahner
- Department of Obstetrics and Gynecology, University Hospital, Ludwig Maximilians University (LMU), Marchioninistraße 15, 81377, Munich, Germany
| | - Udo Jeschke
- Department of Obstetrics and Gynecology, University Hospital, Ludwig Maximilians University (LMU), Marchioninistraße 15, 81377, Munich, Germany.
- Department of Obstetrics and Gynecology, University Hospital Augsburg, Stenglinstr. 2, 86156, Augsburg, Germany.
| | - Julia Gallwas
- Department of Obstetrics and Gynecology, University Hospital, Ludwig Maximilians University (LMU), Marchioninistraße 15, 81377, Munich, Germany
- Department of Gynecology and Obstetrics, Georg August University Göttingen, University Medicine, Göttingen, Germany
| | - Helene Hildegard Heidegger
- Department of Obstetrics and Gynecology, University Hospital, Ludwig Maximilians University (LMU), Marchioninistraße 15, 81377, Munich, Germany
| |
Collapse
|
2
|
West J, Rathinasabapathy A, Chen X, Shay S, Gladson S, Talati M. Overexpression of Msx1 in Mouse Lung Leads to Loss of Pulmonary Vessels Following Vascular Hypoxic Injury. Cells 2021; 10:cells10092306. [PMID: 34571956 PMCID: PMC8471093 DOI: 10.3390/cells10092306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/11/2021] [Accepted: 08/19/2021] [Indexed: 11/16/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive lung disease caused by thickening of the pulmonary arterial wall and luminal obliteration of the small peripheral arteries leading to increase in vascular resistance which elevates pulmonary artery pressure that eventually causes right heart failure and death. We have previously shown that transcription factor Msx1 (mainly expressed during embryogenesis) is strongly upregulated in transformed lymphocytes obtained from PAH patients, especially IPAH. Under pathological conditions, Msx1 overexpression can cause cell dedifferentiation or cell apoptosis. We hypothesized that Msx1 overexpression contributes to loss of small pulmonary vessels in PAH. In IPAH lung, MSX1 protein localization was strikingly increased in muscularized remodeled pulmonary vessels, whereas it was undetectable in control pulmonary arteries. We developed a transgenic mouse model overexpressing MSX1 (MSX1OE) by about 4-fold and exposed these mice to normoxic, sugen hypoxic (3 weeks) or hyperoxic (100% 02 for 3 weeks) conditions. Under normoxic conditions, compared to controls, MSX1OE mice demonstrated a 30-fold and 2-fold increase in lung Msx1 mRNA and protein expression, respectively. There was a significant retinal capillary dropout (p < 0.01) in MSX1OE mice, which was increased further (p < 0.03) with sugen hypoxia. At baseline, the number of pulmonary vessels in MSX1OE mice was similar to controls. In sugen-hypoxia-treated MSX1OE mice, the number of small (0-25 uM) and medium (25-50 uM) size muscularized vessels increased approximately 2-fold (p < 0.01) compared to baseline controls; however, they were strikingly lower (p < 0.001) in number than in sugen-hypoxia-treated control mice. In MSX1OE mouse lung, 104 genes were upregulated and 67 genes were downregulated compared to controls. Similarly, in PVECs, 156 genes were upregulated and 320 genes were downregulated from siRNA to MSX1OE, and in PVSMCs, 65 genes were upregulated and 321 genes were downregulated from siRNA to MSX1OE (with control in the middle). Many of the statistically significant GO groups associated with MSX1 expression in lung, PVECs, and PVSMCs were similar, and were involved in cell cycle, cytoskeletal and macromolecule organization, and programmed cell death. Overexpression of MSX1 suppresses many cell-cycle-related genes in PVSMCs but induces them in PVECs. In conclusion, overexpression of Msx1 leads to loss of pulmonary vessels, which is exacerbated by sugen hypoxia, and functional consequences of Msx1 overexpression are cell-dependent.
Collapse
Affiliation(s)
| | | | | | | | | | - Megha Talati
- Correspondence: ; Tel.: +1-615-322-8095; Fax: +1-615-343-7448
| |
Collapse
|
3
|
Liu C, Huang M, Han C, Li H, Wang J, Huang Y, Chen Y, Zhu J, Fu G, Yu H, Lei Z, Chu X. A narrative review of the roles of muscle segment homeobox transcription factor family in cancer. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:810. [PMID: 34268423 PMCID: PMC8246185 DOI: 10.21037/atm-21-220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/05/2021] [Indexed: 11/23/2022]
Abstract
Deregulation of many homeobox genes has been observed in various cancers and has caused functional implications in the tumor progression. In this review, we will focus on the roles of the human muscle segment homeobox (MSX) transcription factor family in the process of tumorigenesis. The MSX transcription factors, through complex downstream regulation mechanisms, are promoters or inhibitors of diverse cancers by participating in cell proliferation, cell invasion, cell metastasis, cell apoptosis, cell differentiation, drug resistance of tumors, maintenance of tumor stemness, and tumor angiogenesis. Moreover, their upstream regulatory mechanisms in cancers may include: gene mutation and chromosome aberration; DNA methylation and chromatin modification; regulation by non-coding RNAs; regulation by other transcription factors and post-translational modification. These mechanisms may provide a better understanding of why MSX transcription factors are abnormally expressed in tumors. Notably, intermolecular interactions and post-translational modification can regulate the transcriptional activity of MSX transcription factors. It is also crucial to know what affects the transcriptional activity of MSX transcription factors in tumors for possible interventions in them in the future. This systematic summary of the regulatory patterns of the MSX transcription factor family may help to further understand the mechanisms involved in transcriptional regulation and also provide new therapeutic approaches for tumor progression.
Collapse
Affiliation(s)
- Chao Liu
- Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Mengxi Huang
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Chao Han
- Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Huiyu Li
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Jing Wang
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Yadi Huang
- Department of Medical Oncology, Jinling Hospital, First School of Clinical Medicine, Southern Medical University, Nanjing, China
| | - Yanyan Chen
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Jialong Zhu
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Gongbo Fu
- Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, China.,Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Hanqing Yu
- Department of Clinical Laboratory, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Zengjie Lei
- Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, China.,Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Xiaoyuan Chu
- Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
4
|
Song K, Xu H, Wang C. The Role of N6-Methyladenosine Methylation in the Progression of Endometrial Cancer. Cancer Biother Radiopharm 2020; 37:737-749. [PMID: 33052742 DOI: 10.1089/cbr.2020.3912] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Purpose: N6-methyladenosine (m6A) methylation was the most abundant internal modification on messenger RNAs in eukaryotes. This study intended to explore the role of m6A methylation in endometrial cancer (EC). Materials and Methods: The m6A-sequencing data "GSE93911" of human EC were downloaded from Gene Expression Omnibus database. Hisat2 software and MACS2 were used to perform the alignment of reads and m6A methylation peak calling, and the peaks were annotated using Chipseeker. Then, differential m6A methylation peaks between normal and tumor samples were analyzed, followed by the functional enrichment analysis of the differentially methylated genes in promoter and 3' untranslated region (UTR) using Clusterprofiler. Based on the 450K methylated chip data, gene expression and clinical data in The Cancer Genome Atlas, the differentially methylated genes were verified, followed by Cox univariate/multivariate regression analysis and survival analysis. Finally, a risk prognosis model was constructed. Results: The m6A peak number was decreased in EC. The distribution of m6A peaks was highly enriched near transcriptional start site, in promoter, UTR, intron and exon, followed by distal intergenic. A total of 581 differentially methylated genes (361 hyper- and 220 hypomethylated genes) were identified in promoter and UTR regions that were enriched in insulin resistance (IR) and extracellular matrix (ECM). A total of 181 genes with significant differential expressions and differential methylation site in EC were selected. Of which, 31 genes were correlated with survival, and an 11-gene risk prognosis model was identified, including GDF7, BNC2, SLC8A1, B4GALNT3, DHCR24, ESRP1, HOXB9, IGSF9, KIAA1324, MSnX1, and PHGDH. Conclusion: The m6A methylation regulated EC progression by targeting the genes related to IR and ECM. A 11-gene risk prognosis model was identified to predict survival of patients with EC.
Collapse
Affiliation(s)
- Kewei Song
- Department of Nursing, Jining No. 1 People's Hospital, Jining City, China
| | - Hongxia Xu
- Jining No. 1 People's Hospital, Jining City, China
| | - Changhe Wang
- Department of Gynecology, Jining No. 1 People's Hospital, Jining City, China
| |
Collapse
|
5
|
Homeoprotein Msx1-PIASy Interaction Inhibits Angiogenesis. Cells 2020; 9:cells9081854. [PMID: 32784646 PMCID: PMC7463958 DOI: 10.3390/cells9081854] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/17/2020] [Accepted: 08/03/2020] [Indexed: 02/06/2023] Open
Abstract
Previously, we demonstrated that the homeoprotein Msx1 interaction with p53 inhibited tumor growth by inducing apoptosis. However, Msx1 can exert its tumor suppressive effect through the inhibition of angiogenesis since growth of the tumor relies on sufficient blood supply from the existing vessels to provide oxygen and nutrients for tumor growth. We hypothesized that the inhibition of tumor growth by Msx1 might be due to the inhibition of angiogenesis. Here, we explored the role of Msx1 in angiogenesis. Overexpression of Msx1 in HUVECs inhibited angiogenesis, and silencing of Msx1 by siRNA abrogated its anti-angiogenic effects. Furthermore, forced expression of Msx1 in mouse muscle tissue inhibited vessel sprouting, and application of an Ad-Msx1-transfected conditioned medium onto the chicken chorioallantoic membrane (CAM) led to a significant inhibition of new vessel formation. To explore the underlying mechanism of Msx1-mediated angiogenesis, yeast two-hybrid screening was performed, and we identified PIASy (protein inhibitor of activated STAT Y) as a novel Msx1-interacting protein. We mapped the homeodomain of Msx1 and the C-terminal domain of PIASy as respective interacting domains. Consistent with its anti-angiogenic function, overexpression of Msx1 suppressed the reporter activity of VEGF. Interestingly, PIASy stabilized Msx1 protein, whereas deletion of the Msx1-interacting domain in PIASy abrogated the inhibition of tube formation and the stabilization of Msx1 protein. Our findings suggest the functional importance of PIASy-Msx1 interaction in Msx1-mediated angiogenesis inhibition.
Collapse
|
6
|
Deregulated NKL Homeobox Genes in B-Cell Lymphoma. Cancers (Basel) 2019; 11:cancers11121874. [PMID: 31779217 PMCID: PMC6966443 DOI: 10.3390/cancers11121874] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/22/2019] [Accepted: 11/25/2019] [Indexed: 12/26/2022] Open
Abstract
Recently, we have described physiological expression patterns of NKL homeobox genes in early hematopoiesis and in subsequent lymphopoiesis. We identified nine genes which constitute the so-called NKL-code. Aberrant overexpression of code-members or ectopically activated non-code NKL homeobox genes are described in T-cell leukemia and in T- and B-cell lymphoma, highlighting their oncogenic role in lymphoid malignancies. Here, we introduce the NKL-code in normal hematopoiesis and focus on deregulated NKL homeobox genes in B-cell lymphoma, including HLX, MSX1 and NKX2-2 in Hodgkin lymphoma; HLX, NKX2-1 and NKX6-3 in diffuse large B-cell lymphoma; and NKX2-3 in splenic marginal zone lymphoma. Thus, the roles of various members of the NKL homeobox gene subclass are considered in normal and pathological hematopoiesis in detail.
Collapse
|
7
|
Yue Y, Zhou K, Li J, Jiang S, Li C, Men H. MSX1 induces G0/G1 arrest and apoptosis by suppressing Notch signaling and is frequently methylated in cervical cancer. Onco Targets Ther 2018; 11:4769-4780. [PMID: 30127625 PMCID: PMC6091477 DOI: 10.2147/ott.s165144] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
PURPOSE The objectives of this study were to investigate the expression of MSX1 in cervical cells and tissues, the methylation status of the MSX1 promoter, the influence of overexpression of gene MSX1 on the proliferation, migration, and invasion of HeLa and SiHa cells, and finally the possible molecular mechanisms responsible for the suppressive effects of MSX1 upon cervical cancer cells. PATIENTS AND METHODS Semi-quantitative and quantitative reverse transcription-polymerase chain reactions were used to investigate the expression levels of MSX1, and methylation-specific polymerase chain reaction (MSP) was performed to investigate promoter methylation status in cervical cancer cell lines, primary cervical tissues, and normal cervical tissues. Clone formation, Cell Counting Kit-8 (CCK-8), cell wound scratch, and transwell assays were performed to verify whether MSX1 could inhibit the proliferation and migration of cervical cancer cells. Western blot was used to analyze the effect of MSX1 upon Notch1, Jagged1, c-Myc, cleaved PARP, cleaved caspse-3, and cyclin D1 (CCND1). RESULTS MSX1 was frequently downregulated or silenced in 60.0% (3/5) of cervical cancer cell lines. The promoter methylation of MSX1 was detected in 42.0% (42/100) of primary tumor tissues, while no methylation was observed in normal cervical tissues. Pharmacological demethylation reduced MSX1 promoter methylation levels and restored the expression of MSX1. The overexpression of MSX1 in cervical cancer cells thus inhibited the proliferation and migration of cervical cancer cells. The overexpression of MSX1 in cervical cancer cells downregulated the expression levels of Notch1, Jagged1, and c-Myc but upregulated the expression levels of CCND1, cleaved PARP, and cleaved caspase-3. CONCLUSION MSX1 appears to be a functional tumor suppressor that regulates tumorigenesis in cervical cancer by antagonizing Notch signaling.
Collapse
Affiliation(s)
- Yujuan Yue
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Kun Zhou
- Clinical Center for Tumor Therapy, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China,
| | - Jiachu Li
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Shan Jiang
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Chunyan Li
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Haitao Men
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
8
|
Yue Y, Yuan Y, Li L, Fan J, Li C, Peng W, Ren G. Homeobox protein MSX1 inhibits the growth and metastasis of breast cancer cells and is frequently silenced by promoter methylation. Int J Mol Med 2018; 41:2986-2996. [PMID: 29436596 DOI: 10.3892/ijmm.2018.3468] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 01/24/2018] [Indexed: 11/05/2022] Open
Abstract
Deregulation of msh homeobox 1 (MSX1) has been identified to be associated with multiple human malignant neoplasms. However, the association of the expression and biological function of MSX1 with breast tumorigenesis, and the underlying mechanism remain largely unknown. Therefore, the present study examined the expression and promoter methylation of MSX1 in breast tumor cell lines, primary breast tumors and normal breast tissues using semi-quantitative, quantitative and methylation-specific reverse transcription‑polymerase chain reaction. Colony formation assays, flow cytometric analysis, and wound healing and Transwell assays were used to assess various functions of MSX1. Western blot analyses were also conducted to explore the mechanism of MSX1. The results revealed that MSX1 was broadly expressed in normal human tissues, including breast tissues, but was frequently downregulated or silenced in breast cancer cell lines and primary tumors by promoter methylation. Methylation of the MSX1 promoter was observed in 7/9 (77.8%) breast cancer cell lines and 47/99 (47.5%) primary tumors, but not in normal breast tissues or surgical margin tissues, suggesting that tumor-specific methylation of MSX1 occurs in breast cancer. Pharmacological demethylation reduced MSX1 promoter methylation levels and restored the expression of MSX1. The ectopic expression of MSX1, induced by transfection with a lentiviral vector, significantly inhibited the clonogenicity, proliferation, migration and invasion of breast tumor cells by inducing G1/S cell cycle arrest and apoptosis. Ectopic MSX1 expression also inhibited the expression of active β-catenin and its downstream targets c-Myc and cyclin D1, and also increased the cleavage of caspase-3 and poly (ADP-ribose) polymerase. In conclusion, MSX1 exerts tumor-suppressive functions by inducing G1/S cell cycle arrest and apoptosis in breast tumorigenesis. Its methylation may be used as an epigenetic biomarker for the early detection and diagnosis of breast cancer.
Collapse
Affiliation(s)
- Yujuan Yue
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Ying Yuan
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Lili Li
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Oncology in South China, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong and CUHK Shenzhen Research Institute, Hong Kong, SAR 999077, P.R. China
| | - Jiangxia Fan
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Chen Li
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Oncology in South China, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong and CUHK Shenzhen Research Institute, Hong Kong, SAR 999077, P.R. China
| | - Weiyan Peng
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Guosheng Ren
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
9
|
Feng XY, Wu XS, Wang JS, Zhang CM, Wang SL. Homeobox protein MSX-1 inhibits expression of bone morphogenetic protein 2, bone morphogenetic protein 4, and lymphoid enhancer-binding factor 1 via Wnt/β-catenin signaling to prevent differentiation of dental mesenchymal cells during the late bell stage. Eur J Oral Sci 2017; 126:1-12. [PMID: 29148101 DOI: 10.1111/eos.12390] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Homeobox protein MSX-1 (hereafter referred to as MSX-1) is essential for early tooth-germ development. Tooth-germ development is arrested at bud stage in Msx1 knockout mice, which prompted us to study the functions of MSX-1 beyond this stage. Here, we investigated the roles of MSX-1 during late bell stage. Mesenchymal cells of the mandibular first molar were isolated from mice at embryonic day (E)17.5 and cultured in vitro. We determined the expression levels of β-catenin, bone morphogenetic protein 2 (Bmp2), Bmp4, and lymphoid enhancer-binding factor 1 (Lef1) after knockdown or overexpression of Msx1. Our findings suggest that knockdown of Msx1 promoted expression of Bmp2, Bmp4, and Lef1, resulting in elevated differentiation of odontoblasts, which was rescued by blocking the expression of these genes. In contrast, overexpression of Msx1 decreased the expression of Bmp2, Bmp4, and Lef1, leading to a reduction in odontoblast differentiation. The regulation of Bmp2, Bmp4, and Lef1 by Msx1 was mediated by the Wnt/β-catenin signaling pathway. Additionally, knockdown of Msx1 impaired cell proliferation and slowed S-phase progression, while overexpression of Msx1 also impaired cell proliferation and prolonged G1-phase progression. We therefore conclude that MSX-1 maintains cell proliferation by regulating transition of cells from G1-phase to S-phase and prevents odontoblast differentiation by inhibiting expression of Bmp2, Bmp4, and Lef1 at the late bell stage via the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Xiao-Yu Feng
- Salivary Gland Disease Center and Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Xiao-Shan Wu
- Salivary Gland Disease Center and Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Jin-Song Wang
- Salivary Gland Disease Center and Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Chun-Mei Zhang
- Salivary Gland Disease Center and Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Song-Lin Wang
- Salivary Gland Disease Center and Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
10
|
Bonds J, Pollan-White S, Xiang L, Mues G, D'Souza R. Is there a link between ovarian cancer and tooth agenesis? Eur J Med Genet 2014; 57:235-9. [PMID: 24631698 DOI: 10.1016/j.ejmg.2014.02.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 02/21/2014] [Indexed: 11/16/2022]
Abstract
An epidemiologic study from the year 2008 found a highly significant increase of congenital tooth agenesis in women with ovarian cancer suggesting that a common genetic etiology may predispose women to both conditions. The finding was reminiscent of a previously described family harboring an AXIN2 mutation which could be shown to segregate with both the tooth agenesis and the predisposition to colon cancer transmitted in this family. Since tooth agenesis as a marker for susceptibility to ovarian cancer would be of great relevance to both oncologists and women with inborn missing teeth, the relationship between the two disorders requires a thorough assessment. We examined DNA samples from the ovarian cancer patients who participated in the original study, to look for a possible genetic connection between their ovarian malignancies and tooth agenesis. MSX1, PAX9, AXIN2, EDA, WNT10A, BARX and BRCA1 genes were selected for sequence analysis as they may cause tooth agenesis, are expressed in the female reproductive system, and/or are involved in tumorigenesis in general or specifically in the ovary. Our study revealed evidence that one half of the dually affected patients had an independent causation of the two conditions, thus reducing the previously estimated ovarian cancer risk for women with congenital tooth agenesis quite significantly.
Collapse
Affiliation(s)
- John Bonds
- Department of Biological Sciences, Texas A&M University Baylor College of Dentistry, Dallas, TX 75246, USA
| | - Sarah Pollan-White
- Baylor Graduate Orthodontics Department, Texas A&M University Baylor College of Dentistry, Dallas, TX 75246, USA
| | - Lilin Xiang
- Department of Biological Sciences, Texas A&M University Baylor College of Dentistry, Dallas, TX 75246, USA
| | - Gabriele Mues
- Department of Biological Sciences, Texas A&M University Baylor College of Dentistry, Dallas, TX 75246, USA.
| | - Rena D'Souza
- Department of Biological Sciences, Texas A&M University Baylor College of Dentistry, Dallas, TX 75246, USA; University of Utah School of Dentistry, Salt Lake City, UT 84112, USA
| |
Collapse
|
11
|
Nagel S, Ehrentraut S, Meyer C, Kaufmann M, Drexler HG, MacLeod RAF. Oncogenic deregulation of NKL homeobox gene MSX1 in mantle cell lymphoma. Leuk Lymphoma 2014; 55:1893-903. [PMID: 24237447 DOI: 10.3109/10428194.2013.864762] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
NKL homeobox gene MSX1 is physiologically expressed during embryonic hematopoiesis. Here, we detected MSX1 overexpression in three examples of mantle cell lymphoma (MCL) and one of acute myeloid leukemia (AML) by screening 96 leukemia/lymphoma cell lines via microarray profiling. Moreover, in silico analysis identified significant overexpression of MSX1 in 3% each of patients with MCL and AML, confirming aberrant activity in subsets of both types of malignancies. Comparative expression profiling analysis and subsequent functional studies demonstrated overexpression of histone acetyltransferase PHF16 together with transcription factors FOXC1 and HLXB9 as activators of MSX1 transcription. Additionally, we identified regulation of cyclin D1/CCND1 by MSX1 and its repressive cofactor histone H1C. Fluorescence in situ hybridization in MCL cells showed that t(11;14)(q13;q32) results in detachment of CCND1 from its corresponding repressive MSX1 binding site. Taken together, we uncovered regulators and targets of homeobox gene MSX1 in leukemia/lymphoma cells, supporting the view of a recurrent genetic network that is reactivated in malignant transformation.
Collapse
Affiliation(s)
- Stefan Nagel
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ - German Collection of Microorganisms and Cell Cultures , Braunschweig , Germany
| | | | | | | | | | | |
Collapse
|
12
|
Feng XY, Zhao YM, Wang WJ, Ge LH. Msx1regulates proliferation and differentiation of mouse dental mesenchymal cells in culture. Eur J Oral Sci 2013; 121:412-20. [PMID: 24028588 DOI: 10.1111/eos.12078] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2013] [Indexed: 11/26/2022]
Affiliation(s)
- Xiao-yu Feng
- Department of Pediatric Dentistry; Peking University School and Hospital of Stomatology; Beijing; China
| | - Yu-ming Zhao
- Department of Pediatric Dentistry; Peking University School and Hospital of Stomatology; Beijing; China
| | - Wen-jun Wang
- Department of Pediatric Dentistry; Peking University School and Hospital of Stomatology; Beijing; China
| | - Li-hong Ge
- Department of Pediatric Dentistry; Peking University School and Hospital of Stomatology; Beijing; China
| |
Collapse
|
13
|
The c.469+46_56del mutation in the homeobox MSX1 gene--a novel risk factor in breast cancer? Cancer Epidemiol 2010; 34:652-5. [PMID: 20638926 DOI: 10.1016/j.canep.2010.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 06/07/2010] [Accepted: 06/10/2010] [Indexed: 12/21/2022]
Abstract
PURPOSE The aim of this study was to investigate the association of a 11 nucleotide deletion, the c.469+46_56del mutation, in the intron of the homeobox MSX1 gene and breast cancer occurrence and characteristics. METHODS The mutation was genotyped in peripheral blood lymphocytes of 200 breast cancer patients and 203 controls by single-strand conformational PCR and DNA sequencing. RESULTS The del/del variant of the c.469+46_56del mutation increased the risk of breast cancer occurrence (OR 2.20; 95% CI 1.41-3.44, p<0.05). We did not observe any association between genotypes of this mutation and lymph node status, Bloom-Richardson grading, estrogen and progesterone receptors and HER2 expression. CONCLUSIONS The del/del genotype of the c.469+46_56del mutation in the MSX1 gene may be associated with the increased risk of breast cancer in Polish population and may be considered as an early marker in this disease.
Collapse
|
14
|
Park K, Choi K, Kim H, Kim K, Lee MH, Lee JH, Kim Rim JC. Isoflavone-deprived soy peptide suppresses mammary tumorigenesis by inducing apoptosis. Exp Mol Med 2009; 41:371-81. [PMID: 19322027 PMCID: PMC2705857 DOI: 10.3858/emm.2009.41.6.042] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2009] [Indexed: 12/20/2022] Open
Abstract
During carcinogenesis, NF-gammaB mediates processes associated with deregulation of the normal control of proliferation, angiogenesis, and metastasis. Thus, suppression of NF-gammaB has been linked with chemoprevention of cancer. Accumulating findings reveal that heat shock protein 90 (HSP90) is a molecular chaperone and a component of the IgammaB kinase (IKK) complex that plays a central role in NF-gammaB activation. HSP90 also stabilizes key proteins involved in cell cycle control and apoptosis signaling. We have determined whether the exogenous administration of isoflavone-deprived soy peptide prevents 7,12-dimethylbenz[alpha]anthracene (DMBA)-induced rat mammary tumorigenesis and investigated the mechanism of action. Dietary administration of soy peptide (3.3 g/rat/day) significantly reduced the incidence of ductal carcinomas (50%), the number of tumors per multiple tumor-bearing rats (49%; P<0.05), and extended the latency period of tumor development (8.07+/-0.92 weeks) compared to control diet animals (10.80+/-1.30; P<0.05). Our results have further demonstrated that soy peptide (1) dramatically inhibits the expression of HSP90, thereby suppressing signaling pathway leading to NF-gammaB activation; (2) induces expression of p21, p53, and caspase-3 proteins; and (3) inhibits expression of VEGF. In agreement with our in vivo data, soy peptide treatment inhibited the growth of human breast MCF-7 tumor cells in a dose-dependent manner and induced apoptosis. Taken together, our in vivo and in vitro results suggest chemopreventive and tumor suppressive functions of isoflavone-deprived soy peptide by inducing growth arrest and apoptosis.
Collapse
Affiliation(s)
- Kyoungsook Park
- Department of, Molecular Therapy Research Center, Sungkyunkwan University, Cancer Center B4-193, Samsung Medical Center, Seoul 135-710, Korea
| | | | | | | | | | | | | |
Collapse
|
15
|
Ruhin-Poncet B, Ghoul-Mazgar S, Hotton D, Capron F, Jaafoura MH, Goubin G, Berdal A. Msx and dlx homeogene expression in epithelial odontogenic tumors. J Histochem Cytochem 2008; 57:69-78. [PMID: 18854600 DOI: 10.1369/jhc.2008.951707] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Epithelial odontogenic tumors are rare jaw pathologies that raise clinical diagnosis and prognosis dilemmas notably between ameloblastomas and clear cell odontogenic carcinomas (CCOCs). In line with previous studies, the molecular determinants of tooth development-amelogenin, Msx1, Msx2, Dlx2, Dlx3, Bmp2, and Bmp4-were analyzed by RT-PCR, ISH, and immunolabeling in 12 recurrent ameloblastomas and in one case of CCOC. Although Msx1 expression imitates normal cell differentiation in these tumors, other genes showed a distinct pattern depending on the type of tumor and the tissue involved. In benign ameloblastomas, ISH localized Dlx3 transcripts and inconstantly detected Msx2 transcripts in epithelial cells. In the CCOC, ISH established a lack of both Dlx3 and Msx2 transcripts but allowed identification of the antisense transcript of Msx1, which imitates the same scheme of distribution between mesenchyme and epithelium as in the cup stage of tooth development. Furthermore, while exploring the expression pattern of signal molecules by RT-PCR, Bmp2 was shown to be completely inactivated in the CCOC and irregularly noticeable in ameloblastomas. Bmp4 was always expressed in all the tumors. Based on the established roles of Msx and Dlx transcription factors in dental cell fates, these data suggest that their altered expression is a proposed trail to explain the genesis and/or the progression of odontogenic tumors.
Collapse
Affiliation(s)
- Blandine Ruhin-Poncet
- Laboratory of Orofacial Biology and Pathology-Centre de Recherche des Cordeliers, INSERM, UMR S 872, Team 5, Pierre and Marie Curie University, Paris, France
| | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
BACKGROUND Genetic mutations that result in hypodontia also may be associated with abnormalities in other parts of the body. The authors conducted a study to establish the prevalence rates of hypodontia among subjects with epithelial ovarian cancer (EOC) and control subjects to explore possible genetic associations between these two phenotypes. METHODS The authors recruited 50 subjects with EOC and 100 control subjects who did not have EOC. The authors performed a dental examination on each subject to detect hypodontia, and they reviewed pertinent radiographs and dental histories. They also recorded any family history of cancer and hypodontia. RESULTS The prevalence of hypodontia was 20 percent for EOC subjects and 3 percent for control subjects. The difference between these two hypodontia rates was significant. This difference implied that women with EOC are 8.1 times more likely to have hypodontia than are women without EOC. The severity of hypodontia was similar between the two groups, with one to two teeth being affected. Maxillary lateral incisors followed by second premolars were the most frequently affected teeth. CONCLUSION The preliminary data suggest a statistical association between hypodontia of the permanent dentition and EOC. CLINICAL IMPLICATIONS Genetic analysis of the genes of interest is necessary to explore similarities between hypodontia and EOC further. An association could allow hypodontia to serve as a potential risk marker for EOC.
Collapse
|
17
|
Revet I, Huizenga G, Chan A, Koster J, Volckmann R, van Sluis P, Øra I, Versteeg R, Geerts D. The MSX1 homeobox transcription factor is a downstream target of PHOX2B and activates the Delta-Notch pathway in neuroblastoma. Exp Cell Res 2008; 314:707-19. [PMID: 18201699 DOI: 10.1016/j.yexcr.2007.12.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Revised: 11/05/2007] [Accepted: 12/05/2007] [Indexed: 02/03/2023]
Abstract
Neuroblastoma is an embryonal tumour of the peripheral sympathetic nervous system (SNS). One of the master regulator genes for peripheral SNS differentiation, the homeobox transcription factor PHOX2B, is mutated in familiar and sporadic neuroblastomas. Here we report that inducible expression of PHOX2B in the neuroblastoma cell line SJNB-8 down-regulates MSX1, a homeobox gene important for embryonic neural crest development. Inducible expression of MSX1 in SJNB-8 caused inhibition of both cell proliferation and colony formation in soft agar. Affymetrix micro-array and Northern blot analysis demonstrated that MSX1 strongly up-regulated the Delta-Notch pathway genes DLK1, NOTCH3, and HEY1. In addition, the proneural gene NEUROD1 was down-regulated. Western blot analysis showed that MSX1 induction caused cleavage of the NOTCH3 protein to its activated form, further confirming activation of the Delta-Notch pathway. These experiments describe for the first time regulation of the Delta-Notch pathway by MSX1, and connect these genes to the PHOX2B oncogene, indicative of a role in neuroblastoma biology. Affymetrix micro-array analysis of a neuroblastic tumour series consisting of neuroblastomas and the more benign ganglioneuromas showed that MSX1, NOTCH3 and HEY1 are more highly expressed in ganglioneuromas. This suggests a block in differentiation of these tumours at distinct developmental stages or lineages.
Collapse
Affiliation(s)
- Ingrid Revet
- Department of Human Genetics, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Mizokami Y, Egashira N, Takekoshi S, Itoh J, Itoh Y, Osamura RY, Matsumae M. Expression of MSX1 in human normal pituitaries and pituitary adenomas. Endocr Pathol 2008; 19:54-61. [PMID: 18379900 DOI: 10.1007/s12022-008-9021-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Transcription factors play specific roles in the development and differentiation of normal pituitary tissues and pituitary adenoma. The transcription factor, muscle segment homeobox 1 (MSX1), which belongs to the homeobox gene family, binds the promoter region of the glycoprotein hormone alpha-subunit (SU) in TSH-producing cells in the mouse pituitary and regulates alpha-SU expression. The present study investigated MSX1 expression in the normal human pituitary. In addition, 50 pituitary adenomas were examined using immunohistochemistry and reverse transcription polymerase chain reaction (RT-PCR) to clarify the role of MSX1 in the development and functional differentiation of pituitary adenoma cells. In the normal pituitary, MSX1 was predominantly expressed in the cytoplasm of GH-producing cells. Furthermore, MSX1 immunoreactivity was observed in the cytoplasm of some alpha-SU-producing cells. It is interesting to note that, in the pituitary adenoma, MSX1 was expressed in the nucleus of GH- and TSH-producing adenomas. RT-PCR using RNA extracted and purified from formalin-fixed paraffin-embedded pituitary adenoma specimens revealed MSX1 mRNA expressed in GH- and TSH-producing adenomas. Immunoelectron microscopy demonstrated MSX1 localized at intranuclear heterochromatin and euchromatin, which suggests transcriptional activity. These results suggest that MSX1 plays a specific role in human pituitary adenoma.
Collapse
Affiliation(s)
- Yoshihito Mizokami
- Department of Neurosurgery, School of Medicine, Tokai University, Isehara, Kanagawa, Japan
| | | | | | | | | | | | | |
Collapse
|
19
|
Ghanem N, Hölker M, Rings F, Jennen D, Tholen E, Sirard MA, Torner H, Kanitz W, Schellander K, Tesfaye D. Alterations in transcript abundance of bovine oocytes recovered at growth and dominance phases of the first follicular wave. BMC DEVELOPMENTAL BIOLOGY 2007; 7:90. [PMID: 17662127 PMCID: PMC1976425 DOI: 10.1186/1471-213x-7-90] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Accepted: 07/27/2007] [Indexed: 11/10/2022]
Abstract
Background Oocyte developmental competence is highly affected by the phase of ovarian follicular wave. Previous studies have shown that oocytes from subordinate follicles recovered at growth phase (day 3 after estrus) are developmentally more competent than those recovered at dominance phase (day 7 after estrus). However, the molecular mechanisms associated with these differences are not well elucidated. Therefore, the objective of this study was to investigate transcript abundance of bovine oocytes retrieved from small follicles at growth and dominance phases of the first follicular wave and to identify candidate genes related to oocyte developmental competence using cDNA microarray. Results Comparative gene expression analysis of oocytes from growth and dominance phases and subsequent data analysis using Significant Analysis of Microarray (SAM) revealed a total of 51 differentially regulated genes, including 36 with known function, 6 with unknown function and 9 novel transcripts. Real-time PCR has validated 10 transcripts revealed by microarray analysis and quantified 5 genes in cumulus cells derived from oocytes of both phases. The expression profile of 8 (80%) transcripts (ANAXA2, FL396, S100A10, RPL24, PP, PTTG1, MSX1 and BMP15) was in agreement with microarray data. Transcript abundance of five candidate genes in relation to oocyte developmental competence was validated using Brilliant Cresyl Blue (BCB) staining as an independent model. Furthermore, localization of mRNA and protein product of the candidate gene MSX1 in sections of ovarian follicles at days 0, 1, 3 and 7 of estrous cycle showed a clear fluorescent signal in both oocytes and cumulus cells with higher intensity in the former. Moreover, the protein product was detected in bovine oocytes and early cleavage embryos after fertilization with higher intensity around the nucleus. Conclusion This study has identified distinct sets of differentially regulated transcripts between bovine oocytes recovered from small follicles at growth and dominance phases of the first follicular wave. The validation with independent model supports our notion that many of the transcripts identified here may represent candidate genes associated with oocyte developmental competence. Further specific functional analysis will provide insights into the exact role of these transcripts in oocyte competence and early embryonic development.
Collapse
Affiliation(s)
- Nasser Ghanem
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, 53115 Bonn, Germany
| | - Michael Hölker
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, 53115 Bonn, Germany
| | - Franca Rings
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, 53115 Bonn, Germany
| | - Danyel Jennen
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, 53115 Bonn, Germany
| | - Ernst Tholen
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, 53115 Bonn, Germany
| | - Marc-André Sirard
- Centre de Recherche en Biologie de la Reproduction, Université Laval, Département des Sciences Animales, Pav. Comtois, Laval, Sainte-Foy, Québec, G1K 7P4, Canada
| | - Helmut Torner
- Research Institute for Biology of Farm Animals, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Wilhelm Kanitz
- Research Institute for Biology of Farm Animals, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Karl Schellander
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, 53115 Bonn, Germany
| | - Dawit Tesfaye
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, 53115 Bonn, Germany
| |
Collapse
|
20
|
El-Sayed A, Hoelker M, Rings F, Salilew D, Jennen D, Tholen E, Sirard MA, Schellander K, Tesfaye D. Large-scale transcriptional analysis of bovine embryo biopsies in relation to pregnancy success after transfer to recipients. Physiol Genomics 2006; 28:84-96. [PMID: 17018689 DOI: 10.1152/physiolgenomics.00111.2006] [Citation(s) in RCA: 187] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of this work is to address the relationship between transcriptional profile of embryos and the pregnancy success based on gene expression analysis of blastocyst biopsies taken prior to transfer to recipients. Biopsies (30-40% of the intact embryo) were taken from in vitro-produced day 7 blastocysts (n = 118), and 60-70% were transferred to recipients after reexpansion. Based on the success of pregnancy, biopsies were pooled in three groups (each 10 biopsies) namely: those resulting in no pregnancy (G1), resorbed embryos (G2), and those resulting in calf delivery (G3). Gene expression analysis of these groups was performed using home-made bovine preimplantation-specific cDNA array (219 clones) and BlueChip (with approximately 2,000 clones). Microarray data analysis results revealed a total of 52 and 58 genes were differentially regulated during comparison between G1 vs. G3 and G2 vs. G3. Biopsies resulted in calf delivery were enriched with genes necessary for implantation (COX2 and CDX2), carbohydrate metabolism (ALOX15), growth factor (BMP15), signal transduction (PLAU), and placenta-specific 8 (PLAC8). Biopsies from embryos resulting in resorption are enriched with transcripts involved protein phosphorylation (KRT8), plasma membrane (OCLN), and glucose metabolism (PGK1 and AKR1B1). Biopsies from embryos resulting in no pregnancy are enriched with transcripts involved inflammatory cytokines (TNF), protein amino acid binding (EEF1A1), transcription factors (MSX1, PTTG1), glucose metabolism (PGK1, AKR1B1), and CD9, which is an inhibitor of implantation. In conclusion, we generated direct candidates of blastocyst-specific genes which may play an important role in determining the fate of the embryo after transfer.
Collapse
Affiliation(s)
- Ashraf El-Sayed
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, Bonn, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Park K, Kim K, Rho SB, Choi K, Kim D, Oh SH, Park J, Lee SH, Lee JH. Homeobox Msx1 Interacts with p53 Tumor Suppressor and Inhibits Tumor Growth by Inducing Apoptosis. Cancer Res 2005. [DOI: 10.1158/0008-5472.749.65.3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
The stability of wild-type p53 is critical for its apoptotic function. In some cancers, wild-type p53 is inactivated by interaction with viral and cellular proteins, and restoration of its activity has therapeutic potential. Here, we identify homeobox Msx1 as a p53-interacting protein and show its novel function as a p53 regulator. Overexpression of homeobox Msx1 induced apoptosis of cancer cells harboring nonfunctional wild-type p53 and suppressed growth of human tumor xenografts in nude mice. The homeodomain of Msx1 functions as a protein-protein interacting motif rather than a DNA-binding domain and is essential for stabilization, nuclear accumulation, and apoptotic function of wild-type p53. The identification of a novel function of Msx1 as a p53 regulator may open new avenues for developing improved molecular therapies for tumors with a nonmutational p53 inactivation mechanism.
Collapse
Affiliation(s)
- Kyoungsook Park
- Molecular Therapy Research Center, Sungkyunkwan University, Samsung Medical Center Annex 8F, Kangnam-ku, Seoul, Korea
| | - Kwangbae Kim
- Molecular Therapy Research Center, Sungkyunkwan University, Samsung Medical Center Annex 8F, Kangnam-ku, Seoul, Korea
| | - Seung Bae Rho
- Molecular Therapy Research Center, Sungkyunkwan University, Samsung Medical Center Annex 8F, Kangnam-ku, Seoul, Korea
| | - Kyusam Choi
- Molecular Therapy Research Center, Sungkyunkwan University, Samsung Medical Center Annex 8F, Kangnam-ku, Seoul, Korea
| | - Dojin Kim
- Molecular Therapy Research Center, Sungkyunkwan University, Samsung Medical Center Annex 8F, Kangnam-ku, Seoul, Korea
| | - Sun-Hee Oh
- Molecular Therapy Research Center, Sungkyunkwan University, Samsung Medical Center Annex 8F, Kangnam-ku, Seoul, Korea
| | - Jinhee Park
- Molecular Therapy Research Center, Sungkyunkwan University, Samsung Medical Center Annex 8F, Kangnam-ku, Seoul, Korea
| | - Seung-Hoon Lee
- Molecular Therapy Research Center, Sungkyunkwan University, Samsung Medical Center Annex 8F, Kangnam-ku, Seoul, Korea
| | - Je-Ho Lee
- Molecular Therapy Research Center, Sungkyunkwan University, Samsung Medical Center Annex 8F, Kangnam-ku, Seoul, Korea
| |
Collapse
|
22
|
Fu SW, Schwartz A, Stevenson H, Pinzone JJ, Davenport GJ, Orenstein JM, Gutierrez P, Simmens SJ, Abraham J, Poola I, Stephan DA, Berg PE. Correlation of expression of BP1, a homeobox gene, with estrogen receptor status in breast cancer. Breast Cancer Res 2003; 5:R82-7. [PMID: 12817998 PMCID: PMC165014 DOI: 10.1186/bcr602] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2002] [Revised: 03/13/2003] [Accepted: 04/01/2003] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND BP1 is a novel homeobox gene cloned in our laboratory. Our previous studies in leukemia demonstrated that BP1 has oncogenic properties, including as a modulator of cell survival. Here BP1 expression was examined in breast cancer, and the relationship between BP1 expression and clinicopathological data was determined. METHODS Total RNA was isolated from cell lines, tumors, and matched normal adjacent tissue or tissue from autopsy. Reverse transcription polymerase chain reaction was performed to evaluate BP1 expression. Statistical analysis was accomplished with SAS. RESULTS Analysis of 46 invasive ductal breast tumors demonstrated BP1 expression in 80% of them, compared with a lack of expression in six normal breast tissues and low-level expression in one normal breast tissue. Remarkably, 100% of tumors that were negative for the estrogen receptor (ER) were BP1-positive, whereas 73% of ER-positive tumors expressed BP1 (P = 0.03). BP1 expression was also associated with race: 89% of the tumors of African American women were BP1-positive, whereas 57% of those from Caucasian women expressed BP1 (P = 0.04). However, there was no significant difference in BP1 expression between grades I, II, and III tumors. Interestingly, BP1 mRNA expression was correlated with the ability of malignant cell lines to cause breast cancer in mice. CONCLUSION Because BP1 is expressed abnormally in breast tumors, it could provide a useful target for therapy, particularly in patients with ER-negative tumors. The frequent expression of BP1 in all tumor grades suggests that activation of BP1 is an early event.
Collapse
Affiliation(s)
- Sidney W Fu
- Department of Biochemistry and Molecular Biology, The George Washington University Medical Center, Washington, DC, USA
| | - Arnold Schwartz
- Department of Pathology, The George Washington University Medical Center, Washington, DC, USA
| | - Holly Stevenson
- Department of Biochemistry and Molecular Biology, The George Washington University Medical Center, Washington, DC, USA
| | - Joseph J Pinzone
- Department of Biochemistry and Molecular Biology, The George Washington University Medical Center, Washington, DC, USA
- Department of Medicine, The George Washington University Medical Center, Washington, DC, USA
| | - Gregory J Davenport
- Department of Biochemistry and Molecular Biology, The George Washington University Medical Center, Washington, DC, USA
| | - Jan M Orenstein
- Department of Pathology, The George Washington University Medical Center, Washington, DC, USA
| | - Peter Gutierrez
- Greenebaum Cancer Center, University of Maryland Medical School, Baltimore, Maryland, USA
| | - Samuel J Simmens
- Department of Epidemiology and Biostatistics, The George Washington University Medical Center, Washington, DC, USA
| | - Jessy Abraham
- Department of Biochemistry and Molecular Biology, Howard University College of Medicine, Washington, DC, USA
| | - Indira Poola
- Department of Biochemistry and Molecular Biology, Howard University College of Medicine, Washington, DC, USA
| | - Dietrich A Stephan
- Research Center for Genetic Medicine, Children's National Medical Center, Washington, DC, USA
| | - Patricia E Berg
- Department of Biochemistry and Molecular Biology, The George Washington University Medical Center, Washington, DC, USA
| |
Collapse
|