1
|
Corano Scheri K, Liang X, Dalal V, Le Poole IC, Varga J, Hayashida T. SARA suppresses myofibroblast precursor transdifferentiation in fibrogenesis in a mouse model of scleroderma. JCI Insight 2022; 7:160977. [PMID: 36136606 PMCID: PMC9675568 DOI: 10.1172/jci.insight.160977] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 09/12/2022] [Indexed: 12/15/2022] Open
Abstract
We previously reported that Smad anchor for receptor activation (SARA) plays a critical role in maintaining epithelial cell phenotype. Here, we show that SARA suppressed myofibroblast precursor transdifferentiation in a mouse model of scleroderma. Mice overexpressing SARA specifically in PDGFR-β+ pericytes and pan-leukocytes (SARATg) developed significantly less skin fibrosis in response to bleomycin injection compared with wild-type littermates (SARAWT). Single-cell RNA-Seq analysis of skin PDGFR-β+ cells implicated pericyte subsets assuming myofibroblast characteristics under fibrotic stimuli, and SARA overexpression blocked the transition. In addition, a cluster that expresses molecules associated with Th2 cells and macrophage activation was enriched in SARAWT mice, but not in SARATg mice, after bleomycin treatment. Th2-specific Il-31 expression was increased in skin of the bleomycin-treated SARAWT mice and patients with scleroderma (or systemic sclerosis, SSc). Receptor-ligand analyses indicated that lymphocytes mediated pericyte transdifferentiation in SARAWT mice, while with SARA overexpression the myofibroblast activity of pericytes was suppressed. Together, these data suggest a potentially novel crosstalk between myofibroblast precursors and immune cells in the pathogenesis of SSc, in which SARA plays a critical role.
Collapse
Affiliation(s)
- Katia Corano Scheri
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.,Pediatric Nephrology, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA
| | - Xiaoyan Liang
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Vidhi Dalal
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.,Pediatric Nephrology, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA
| | - I. Caroline Le Poole
- Departments of Dermatology and Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - John Varga
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Tomoko Hayashida
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.,Pediatric Nephrology, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA
| |
Collapse
|
2
|
Lei ZN, Teng QX, Tian Q, Chen W, Xie Y, Wu K, Zeng Q, Zeng L, Pan Y, Chen ZS, He Y. Signaling pathways and therapeutic interventions in gastric cancer. Signal Transduct Target Ther 2022; 7:358. [PMID: 36209270 PMCID: PMC9547882 DOI: 10.1038/s41392-022-01190-w] [Citation(s) in RCA: 97] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/14/2022] [Accepted: 09/07/2022] [Indexed: 11/23/2022] Open
Abstract
Gastric cancer (GC) ranks fifth in global cancer diagnosis and fourth in cancer-related death. Despite tremendous progress in diagnosis and therapeutic strategies and significant improvements in patient survival, the low malignancy stage is relatively asymptomatic and many GC cases are diagnosed at advanced stages, which leads to unsatisfactory prognosis and high recurrence rates. With the recent advances in genome analysis, biomarkers have been identified that have clinical importance for GC diagnosis, treatment, and prognosis. Modern molecular classifications have uncovered the vital roles that signaling pathways, including EGFR/HER2, p53, PI3K, immune checkpoint pathways, and cell adhesion signaling molecules, play in GC tumorigenesis, progression, metastasis, and therapeutic responsiveness. These biomarkers and molecular classifications open the way for more precise diagnoses and treatments for GC patients. Nevertheless, the relative significance, temporal activation, interaction with GC risk factors, and crosstalk between these signaling pathways in GC are not well understood. Here, we review the regulatory roles of signaling pathways in GC potential biomarkers, and therapeutic targets with an emphasis on recent discoveries. Current therapies, including signaling-based and immunotherapies exploited in the past decade, and the development of treatment for GC, particularly the challenges in developing precision medications, are discussed. These advances provide a direction for the integration of clinical, molecular, and genomic profiles to improve GC diagnosis and treatments.
Collapse
Affiliation(s)
- Zi-Ning Lei
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Qiu-Xu Teng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Qin Tian
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China
| | - Wei Chen
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China
| | - Yuhao Xie
- Institute for Biotechnology, St. John's University, Queens, NY, 11439, USA
| | - Kaiming Wu
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China
| | - Qianlin Zeng
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China
| | - Leli Zeng
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China.
| | - Yihang Pan
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China.
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
- Institute for Biotechnology, St. John's University, Queens, NY, 11439, USA.
| | - Yulong He
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China.
| |
Collapse
|
3
|
Hypoxia Selectively Increases a SMAD3 Signaling Axis to Promote Cancer Cell Invasion. Cancers (Basel) 2022; 14:cancers14112751. [PMID: 35681731 PMCID: PMC9179584 DOI: 10.3390/cancers14112751] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 05/30/2022] [Indexed: 01/27/2023] Open
Abstract
Transforming growth factor β (TGFβ) plays a paradoxical role in cancer, first inhibiting then promoting its progression, a duality that poses a real challenge for the development of effective TGFβ-targeted therapies. The major TGFβ downstream effectors, SMAD2 and SMAD3, display both distinct and overlapping functions and accumulating evidence suggests that their activation ratio may contribute to the dual effect of TGFβ. However, the mechanisms responsible for their selective activation remain poorly understood. Here, we provide experimental evidence that hypoxia induces the pro-invasive arm of TGFβ signaling through a selective increase in SMAD3 interaction with SMAD-Anchor for Receptor Activation (SARA). This event relies on HDAC6-dependent SMAD3 bioavailability, as well as increased SARA recruitment to EEA1+ endosomes. A motility gene expression study indicated that SMAD3 selectively increased the expression of ITGB2 and VIM, two genes that were found to be implicated in hypoxia-induced cell invasion and associated with tumor progression and metastasis in cohorts of cancer patients. Furthermore, CAM xenograft assays show the significant benefit of selective inhibition of the SMAD3 signaling pathway as opposed to global TGFβ inhibition in preventing tumor progression. Overall, these results suggest that fine-tuning of the pro-invasive HDAC6-SARA-SMAD3 axis could be a better strategy towards effective cancer treatments.
Collapse
|
4
|
Buwaneka P, Ralko A, Gorai S, Pham H, Cho W. Phosphoinositide-binding activity of Smad2 is essential for its function in TGF-β signaling. J Biol Chem 2021; 297:101303. [PMID: 34655614 PMCID: PMC8567202 DOI: 10.1016/j.jbc.2021.101303] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/23/2021] [Accepted: 10/12/2021] [Indexed: 12/20/2022] Open
Abstract
As a central player in the canonical TGF-β signaling pathway, Smad2 transmits the activation of TGF-β receptors at the plasma membrane (PM) to transcriptional regulation in the nucleus. Although it has been well established that binding of TGF-β to its receptors leads to the recruitment and activation of Smad2, the spatiotemporal mechanism by which Smad2 is recruited to the activated TGF-β receptor complex and activated is not fully understood. Here we show that Smad2 selectively and tightly binds phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) in the PM. The PI(4,5)P2-binding site is located in the MH2 domain that is involved in interaction with the TGF-β receptor I that transduces TGF-β-receptor binding to downstream signaling proteins. Quantitative optical imaging analyses show that PM recruitment of Smad2 is triggered by its interaction with PI(4,5)P2 that is locally enriched near the activated TGF-β receptor complex, leading to its binding to the TGF-β receptor I. The PI(4,5)P2-binding activity of Smad2 is essential for the TGF-β-stimulated phosphorylation, nuclear transport, and transcriptional activity of Smad2. Structural comparison of all Smad MH2 domains suggests that membrane lipids may also interact with other Smad proteins and regulate their function in diverse TGF-β-mediated biological processes.
Collapse
Affiliation(s)
- Pawanthi Buwaneka
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Arthur Ralko
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Sukhamoy Gorai
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Ha Pham
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Wonhwa Cho
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois, USA.
| |
Collapse
|
5
|
New Player in Endosomal Trafficking: Differential Roles of Smad Anchor for Receptor Activation (SARA) Protein. Mol Cell Biol 2018; 38:MCB.00446-18. [PMID: 30275343 DOI: 10.1128/mcb.00446-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The development and maintenance of multicellular organisms require specialized coordination between external cellular signals and the proteins receiving stimuli and regulating responses. A critical role in the proper functioning of these processes is played by endosomal trafficking, which enables the transport of proteins to targeted sites as well as their return to the plasma membrane through its essential components, the endosomes. During this trafficking, signaling pathways controlling functions related to the endosomal system are activated both directly and indirectly. Although there are a considerable number of molecules participating in these processes, some are more known than others for their specific functions. Toward the end of the 1990s, Smad anchor for receptor activation (SARA) protein was described to be controlling and to facilitate the localization of Smads to transforming growth factor β (TGF-β) receptors during TGF-β signaling activation, and, strikingly, SARA was also identified to be one of the proteins that bind to early endosomes (EEs) participating in membrane trafficking in several cell models. The purpose of this review is to analyze the state of the art of the contribution of SARA in different cell types and cellular contexts, focusing on the biological role of SARA in two main processes, trafficking and cellular signaling, both of which are necessary for intercellular coordination, communication, and development.
Collapse
|
6
|
Goh JB, Wallace DF, Hong W, Subramaniam VN. Endofin, a novel BMP-SMAD regulator of the iron-regulatory hormone, hepcidin. Sci Rep 2015; 5:13986. [PMID: 26358513 PMCID: PMC4566084 DOI: 10.1038/srep13986] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 08/12/2015] [Indexed: 11/15/2022] Open
Abstract
BMP-SMAD signalling plays a crucial role in numerous biological processes including embryonic development and iron homeostasis. Dysregulation of the iron-regulatory hormone hepcidin is associated with many clinical iron-related disorders. We hypothesised that molecules which mediate BMP-SMAD signalling play important roles in the regulation of iron homeostasis and variants in these proteins may be potential genetic modifiers of iron-related diseases. We examined the role of endofin, a SMAD anchor, and show that knockdown of endofin in liver cells inhibits basal and BMP-induced hepcidin expression along with other BMP-regulated genes, ID1 and SMAD7. We show for the first time, the in situ interaction of endofin with SMAD proteins and significantly reduced SMAD phosphorylation with endofin knockdown, suggesting that endofin modulates hepcidin through BMP-SMAD signalling. Characterisation of naturally occurring SNPs show that mutations in the conserved FYVE domain result in mislocalisation of endofin, potentially affecting downstream signalling and modulating hepcidin expression. In conclusion, we have identified a hitherto unrecognised link, endofin, between the BMP-SMAD signalling pathway, and the regulation of hepcidin expression and iron homeostasis. This study further defines the molecular network involved in iron regulation and provides potential targets for the treatment of iron-related disorders.
Collapse
Affiliation(s)
- Justin B Goh
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.,Faculty of Medicine and Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - Daniel F Wallace
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.,Faculty of Medicine and Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - Wanjin Hong
- Institute of Molecular and Cell Biology, Singapore
| | - V Nathan Subramaniam
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.,Faculty of Medicine and Biomedical Sciences, The University of Queensland, Brisbane, Australia
| |
Collapse
|
7
|
Chang HM, Lin YY, Tsai PC, Liang CT, Yan YT. The FYVE domain of Smad Anchor for Receptor Activation (SARA) is required to prevent skin carcinogenesis, but not in mouse development. PLoS One 2014; 9:e105299. [PMID: 25170969 PMCID: PMC4149420 DOI: 10.1371/journal.pone.0105299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 07/22/2014] [Indexed: 02/07/2023] Open
Abstract
Smad Anchor for Receptor Activation (SARA) has been reported as a critical role in TGF-β signal transduction by recruiting non-activated Smad2/3 to the TGF-β receptor and ensuring appropriate subcellular localization of the activated receptor-bound complex. However, controversies still exist in previous reports. In this study, we describe the expression of two SARA isoforms, SARA1 and SARA2, in mice and report the generation and characterization of SARA mutant mice with FYVE domain deletion. SARA mutant mice developed normally and showed no gross abnormalities. Further examination showed that the TGF-β signaling pathway was indeed altered in SARA mutant mice, with the downregulation of Smad2 protein expression. The decreasing expression of Smad2 was caused by enhancing Smurf2-mediated proteasome degradation pathway. However, the internalization of TGF-β receptors into the early endosome was not affected in SARA mutant mouse embryonic fibroblasts (MEFs). Moreover, the downregulation of Smad2 in SARA mutant MEFs was not sufficient to disrupt the diverse cellular biological functions of TGF-β signaling, including growth inhibition, apoptosis, senescence, and the epithelial-to-mesenchymal transition. Our results indicate that SARA is not involved in the activation process of TGF-β signal transduction. Using a two-stage skin chemical carcinogenesis assay, we found that the loss of SARA promoted skin tumor formation and malignant progression. Our data suggest a protective role of SARA in skin carcinogenesis.
Collapse
Affiliation(s)
- Huang-Ming Chang
- Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan, ROC
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Yu-Ying Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, ROC
| | - Pei-Chun Tsai
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, ROC
| | - Chung-Tiang Liang
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei, Taiwan, ROC
| | - Yu-Ting Yan
- Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan, ROC
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, ROC
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan, ROC
- * E-mail:
| |
Collapse
|
8
|
Itman C, Loveland KL. Smads and cell fate: Distinct roles in specification, development, and tumorigenesis in the testis. IUBMB Life 2013; 65:85-97. [DOI: 10.1002/iub.1115] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 10/15/2012] [Indexed: 11/11/2022]
|
9
|
Barakat B, Itman C, Mendis SH, Loveland KL. Activins and inhibins in mammalian testis development: new models, new insights. Mol Cell Endocrinol 2012; 359:66-77. [PMID: 22406273 DOI: 10.1016/j.mce.2012.02.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 02/20/2012] [Accepted: 02/21/2012] [Indexed: 01/15/2023]
Abstract
The discovery of activin and inhibins as modulators of the hypothalamic-pituitary-gonadal axis has set the foundation for understanding their central importance to many facets of development and disease. This review contains an overview of the processes and cell types that are central to testis development and spermatogenesis and then provides an update focussed on information gathered over the past five years to address new concepts about how these proteins function to control testis development in fetal and juvenile life. Current knowledge about the interactive nature of the transforming growth factor-β (TGFβ) superfamily signalling network is applied to recent findings about activins and inhibins in the testis. Information about the regulated synthesis of signalling components and signalling regulators in the testis is integrated with new concepts that demonstrate their functional significance. The importance of activin bioactivity levels or dosage in controlling balanced growth of spermatogonial cells and their niche at different stages of testis development is highlighted.
Collapse
Affiliation(s)
- B Barakat
- Monash Institute of Reproduction and Development, Monash University, Clayton, Victoria, Australia
| | | | | | | |
Collapse
|
10
|
Bakkebø M, Huse K, Hilden VI, Forfang L, Myklebust JH, Smeland EB, Oksvold MP. SARA is dispensable for functional TGF-β signaling. FEBS Lett 2012; 586:3367-72. [PMID: 22819827 DOI: 10.1016/j.febslet.2012.07.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 06/29/2012] [Accepted: 07/07/2012] [Indexed: 10/28/2022]
Abstract
Smad anchor for receptor activation (SARA or ZFYVE9) has been proposed to mediate transforming growth factor β (TGF-β) signaling by direct interaction with the non-activated Smad proteins and the TGF-β receptors; however, these findings are controversial. We demonstrate no correlation between SARA expression and the levels of TGF-β-induced phosphorylation of Smads in various B-cell lymphomas. Moreover, knockdown of SARA in HeLa cells did not interfere with TGF-β-induced Smad activation, Smad nuclear translocation, or induction of TGF-β target genes. Various R-Smads and TGF-β receptors did not co-immunoprecipitate with SARA. Collectively, our results demonstrate that SARA is dispensable for functional TGF-β-mediated signaling.
Collapse
Affiliation(s)
- Maren Bakkebø
- Department of Immunology, Institute for Cancer Research, Oslo University Hospital HF, Montebello, Oslo, Norway
| | | | | | | | | | | | | |
Collapse
|
11
|
Wegner K, Bachmann A, Schad JU, Lucarelli P, Sahle S, Nickel P, Meyer C, Klingmüller U, Dooley S, Kummer U. Dynamics and feedback loops in the transforming growth factor β signaling pathway. Biophys Chem 2012; 162:22-34. [PMID: 22284904 DOI: 10.1016/j.bpc.2011.12.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 12/19/2011] [Accepted: 12/20/2011] [Indexed: 11/25/2022]
Abstract
Transforming growth factor β (TGF-β) ligands activate a signaling cascade with multiple cell context dependent outcomes. Disruption or disturbance leads to variant clinical disorders. To develop strategies for disease intervention, delineation of the pathway in further detail is required. Current theoretical models of this pathway describe production and degradation of signal mediating proteins and signal transduction from the cell surface into the nucleus, whereas feedback loops have not exhaustively been included. In this study we present a mathematical model to determine the relevance of feedback regulators (Arkadia, Smad7, Smurf1, Smurf2, SnoN and Ski) on TGF-β target gene expression and the potential to initiate stable oscillations within a realistic parameter space. We employed massive sampling of the parameters space to pinpoint crucial players for potential oscillations as well as transcriptional product levels. We identified Smad7 and Smurf2 with the highest impact on the dynamics. Based on these findings, we conducted preliminary time course experiments.
Collapse
Affiliation(s)
- Katja Wegner
- Biological and Neural Computation Group, Science and Technology Research Institute, University of Hertfordshire, College Lane, Hatfield, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Itman C, Wong C, Whiley PA, Fernando D, Loveland KL. TGFβ superfamily signaling regulators are differentially expressed in the developing and adult mouse testis. SPERMATOGENESIS 2011; 1:63-72. [PMID: 21866277 DOI: 10.4161/spmg.1.1.15263] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 12/19/2010] [Revised: 02/22/2011] [Accepted: 02/23/2011] [Indexed: 02/06/2023]
Abstract
Transforming growth factor-beta (TGFβ) superfamily ligands are produced by and act upon testicular cells to control testis morphogenesis and adult fertility. Ligand production changes during testis development and dysregulated signaling affects the number of cells comprising each lineage and their development, with several components of this diverse signaling pathway linked to male infertility. To test the hypothesis that TGFβ superfamily signaling regulators are differentially expressed during mouse testis development, we surveyed expression of Hgs, Zfyve9, Smurf1 and Net25 by northern blot and in situ hybridization and SMURF2 and MAN1 by western blot and immunohistochemistry. Expression of these genes is highly regulated and differs between the first spermatogenic wave and adult spermatogenesis. Zfyve9 transcripts were first detected in Sertoli cells and spermatogonia at 5 days post partum (dpp) whereas Hgs mRNA was first detected in pachytene spermatocytes at 15 dpp. Smurf1 mRNA was broadly expressed at 0 and 5 dpp but restricted to spermatogonia and early spermatocytes at 15 dpp and spermatogonia, spermatocytes and round spermatids in adults. SMURF2 was limited to gonocyte nuclei at birth but was nuclear in all cells at 5 dpp. SMURF2 was absent from 15 dpp differentiating spermatogonia and early spermatocytes but readily detected in adult pachytene spermatocytes and round spermatids. MAN1 and Net25 also had different expression profiles, with MAN1 undetectable at 5 dpp. Differential synthesis of signaling modulators explains how Sertoli cells and spermatogenic cells, which all possess TGFβ superfamily signaling machinery and reside within the same microenvironment, respond differently to the same ligand.
Collapse
Affiliation(s)
- Catherine Itman
- Department of Biochemistry and Molecular Biology; School of Biomedical Sciences; Monash University; Melbourne, Australia
| | | | | | | | | |
Collapse
|
13
|
Giroux M, Delisle JS, O'Brien A, Hébert MJ, Perreault C. T cell activation leads to protein kinase C theta-dependent inhibition of TGF-beta signaling. THE JOURNAL OF IMMUNOLOGY 2010; 185:1568-76. [PMID: 20592275 DOI: 10.4049/jimmunol.1000137] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
TGF-beta is an ubiquitous cytokine that plays a pivotal role in the maintenance of self-tolerance and prevention of immunopathologies. Under steady-state conditions, TGF-beta keeps naive T cells in a resting state and inhibits Th1 and Th2 cell differentiation. Because rapid generation of Th1 and Th2 effector cells is needed in response to pathogen invasion, how do naive T cells escape from the quiescent state maintained by TGF-beta? We hypothesized that stimulation by strong TCR agonists might interfere with TGF-beta signaling. Using both primary mouse CD4(+) T cells and human Jurkat cells, we observed that strong TCR agonists swiftly suppress TGF-beta signaling. TCR engagement leads to a rapid increase in SMAD7 levels and decreased SMAD3 phosphorylation. We present evidence that TCR signaling hinders SMAD3 activation by inducing recruitment of TGF-betaRs in lipid rafts together with inhibitory SMAD7. This effect is dependent on protein kinase C, a downstream TCR signaling intermediary, as revealed by both pharmacological inhibition and expression of dominant-negative and constitutively active protein kinase C mutants. This work broadens our understanding of the cross-talk occurring between the TCR and TGF-beta signaling pathways and reveals that strong TCR agonists can release CD4 T cells from constitutive TGF-beta signaling. We propose that this process may be of vital importance upon confrontation with microbial pathogens.
Collapse
Affiliation(s)
- Martin Giroux
- Institute for Research in Immunology and Cancer, Montreal, Quebec H3C 3J7, Canada
| | | | | | | | | |
Collapse
|
14
|
Runyan CE, Hayashida T, Hubchak S, Curley JF, Schnaper HW. Role of SARA (SMAD anchor for receptor activation) in maintenance of epithelial cell phenotype. J Biol Chem 2009; 284:25181-9. [PMID: 19620243 DOI: 10.1074/jbc.m109.032847] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
By inducing epithelial-to-mesenchymal transition (EMT), transforming growth factor-beta (TGF-beta) promotes cancer progression and fibrosis. Here we show that expression of the TGF-beta receptor-associated protein, SARA (Smad anchor for receptor activation), decreases within 72 h of exposure to TGF-beta and that this decline is both required and sufficient for the induction of several markers of EMT. It has been suggested recently that expression of the TGF-beta signaling mediators, Smad2 and Smad3, may have different functional effects, with Smad2 loss being more permissive for EMT progression. We find that the loss of SARA expression leads to a concomitant decrease in Smad2 expression and a disruption of Smad2-specific transcriptional activity, with no effect on Smad3 signaling or expression. Further, the effects of inducing the loss of Smad2 mimic those of the loss of SARA, enhancing expression of the EMT marker, smooth muscle alpha-actin. Smad2 mRNA levels are not affected by the loss of SARA. However, the ubiquitination of Smad2 is increased in SARA-deficient cells. We therefore examined the E3 ubiquitin ligase Smurf2 and found that although Smurf2 expression was unaltered in SARA-deficient cells, the interaction of Smad2 and Smurf2 was enhanced. These results describe a significant role for SARA in regulating cell phenotype and suggest that its effects are mediated through modification of the balance between Smad2 and Smad3 signaling. In part, this is achieved by enhancing the association of Smad2 with Smurf2, leading to Smad2 degradation.
Collapse
Affiliation(s)
- Constance E Runyan
- Department of Pediatrics, Northwestern University, Chicago, Illinois 60611, USA.
| | | | | | | | | |
Collapse
|
15
|
Schnaper HW, Jandeska S, Runyan CE, Hubchak SC, Basu RK, Curley JF, Smith RD, Hayashida T. TGF-beta signal transduction in chronic kidney disease. Front Biosci (Landmark Ed) 2009; 14:2448-65. [PMID: 19273211 DOI: 10.2741/3389] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Transforming growth factor (TGF)-beta is a central stimulus of the events leading to chronic progressive kidney disease, having been implicated in the regulation of cell proliferation, hypertrophy, apoptosis and fibrogenesis. The fact that it mediates these varied events suggests that multiple mechanisms play a role in determining the outcome of TGF-beta signaling. Regulation begins with the availability and activation of TGF-beta and continues through receptor expression and localization, control of the TGF-beta family-specific Smad signaling proteins, and interaction of the Smads with multiple signaling pathways extending into the nucleus. Studies of these mechanisms in kidney cells and in whole-animal experimental models, reviewed here, are beginning to provide insight into the role of TGF-beta in the pathogenesis of renal dysfunction and its potential treatment.
Collapse
Affiliation(s)
- H William Schnaper
- Division of Kidney Diseases, Department of Pediatrics, Northwestern University Feinberg School of Medicine, 303 E Chicago Ave.; Chicago, IL 60611-3008, USA.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Liu AC, Gotlieb AI. Transforming growth factor-beta regulates in vitro heart valve repair by activated valve interstitial cells. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 173:1275-85. [PMID: 18832581 DOI: 10.2353/ajpath.2008.080365] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The regulation of valve interstitial cell (VIC) function in response to tissue injury and valve disease is not well understood. Because transforming growth factor-beta (TGF-beta) has been implicated in tissue repair, we tested the hypothesis that TGF-beta is a regulator of VIC activation and associated cell responses that occur during early repair processes. We used a well-characterized wound model that was created by mechanical denudation of a confluent VIC monolayer to study activation and repair 24 hours after wounding. VIC activation was demonstrated by immunofluorescent localization of alpha-smooth muscle actin (alpha-SMA), and alpha-SMA mRNA levels were quantified by real-time polymerase chain reaction. Proliferation and apoptosis were quantified by bromodeoxyuridine staining and terminal deoxynucleotidyl transferase dUTP nick end labeling, respectively. Repair was quantified by measuring VIC extension into the wound, and TGF-beta expression was shown by immunofluorescent localization of intracellular TGF-beta. Compared with nonwounded monolayers, VICs at the wound edge showed alpha-SMA staining, increased alpha-SMA mRNA content, elongation into the wound with stress fibers, proliferation, and apoptosis. VICs at the wound edge also showed increased TGF-beta and pSmad2/3 staining with co-expression of alpha-SMA. Addition of TGF-beta neutralizing antibody to the wound decreased VIC activation, alpha-SMA mRNA content, proliferation, apoptosis, wound closure rate, and stress fibers. Conversely, exogenous addition of TGF-beta to the wound increased VIC activation, proliferation, wound closure rate, and stress fibers. Thus, wounding activates VICs, and TGF-beta signaling modulates VIC response to injury.
Collapse
Affiliation(s)
- Amber C Liu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada
| | | |
Collapse
|
17
|
Abstract
Transforming growth factor-beta (TGF-beta) regulates a wide variety of cellular processes including cell growth, apoptosis, differentiation, migration, and extracellular matrix production among others. The canonical signaling pathway induced by the TGF-beta receptor complex involves the phosphorylation of Smad proteins which upon activation accumulate in the nucleus and regulate transcription. Interestingly, the cellular response to TGF-beta can be extremely variable depending on the cell type and stimulation context. TGF-beta causes epithelial cells to undergo growth arrest and apoptosis, responses which are critical to suppressing carcinogenesis, whereas it can also induce epithelial-mesenchymal transition and mediate fibroblast activation, responses implicated in promoting carcinogenesis and fibrotic diseases. However, TGF-beta induces all these responses via the same receptor complex and Smad proteins. To address this apparent paradox, during the last few years a number of additional signaling pathways have been identified which potentially regulate the different cellular responses to TGF-beta. The identification of these signaling pathways has shed light onto the mechanisms whereby Smad and non-Smad pathways collaborate to induce a particular cellular phenotype. In this article, we review TGF-beta signaling in epithelial cells and fibroblasts with a focus on understanding the mechanisms of TGF-beta versatility.
Collapse
Affiliation(s)
- Rod A Rahimi
- Department of Biochemistry and Molecular Biology, Thoracic Diseases Research Unit, Mayo Clinic Cancer Center, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | | |
Collapse
|
18
|
Oganesian A, Au S, Horst JA, Holzhausen LC, Macy AJ, Pace JM, Bornstein P. The NH2-terminal propeptide of type I procollagen acts intracellularly to modulate cell function. J Biol Chem 2006; 281:38507-18. [PMID: 17018525 PMCID: PMC3086210 DOI: 10.1074/jbc.m607536200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The function of the NH(2)-terminal propeptide of type I procollagen (N-propeptide) is poorly understood. We now show that a recombinant trimeric N-propeptide interacts with transforming growth factor-beta1 and BMP2 and exhibits functional effects in stably transfected cells. The synthesis of N-propeptide by COS-7 cells results in an increase in phosphorylation of Akt and Smad3 and is associated with a marked reduction in type I procollagen synthesis and impairment in adhesion. In C2C12 cells, N-propeptide inhibits the osteoblastic differentiation induced by BMP2. Our data suggest that these effects are mediated by the interaction of N-propeptide with an intracellular receptor in the secretory pathway, because they are not observed when recombinant N-propeptide is added to the culture medium of either COS-7 or C2C12 cells. Both the binding of N-propeptide to cytokines and its functional properties are entirely dependent on the exon 2-encoded globular domain, and a mutation that substitutes a serine for a highly conserved cysteine in exon 2 abolishes its function. Our findings suggest that N-propeptide performs an important feedback regulatory function and provides a rationale for the prominence of a homotrimeric form of type I procollagen (alpha1 trimer) during vertebrate development.
Collapse
Affiliation(s)
- Anush Oganesian
- Department of Biochemistry, University of Washington, Seattle, Washington 98195
| | - Sandra Au
- Department of Biochemistry, University of Washington, Seattle, Washington 98195
| | - Jeremy A. Horst
- Department of Biochemistry, University of Washington, Seattle, Washington 98195
| | - Lars C. Holzhausen
- Department of Biochemistry, University of Washington, Seattle, Washington 98195
| | - Athena J. Macy
- Department of Biochemistry, University of Washington, Seattle, Washington 98195
| | - James M. Pace
- Department of Pathology, University of Washington, Seattle, Washington 98195
| | - Paul Bornstein
- Department of Biochemistry, University of Washington, Seattle, Washington 98195
- Department of Medicine, University of Washington, Seattle, Washington 98195
- To whom correspondence should be addressed: Dept. of Biochemistry, Box 357350, University of Washington, Seattle WA 98195. Tel.: 206-543-1789; Fax: 206-685-4426;
| |
Collapse
|
19
|
Runyan CE, Poncelet AC, Schnaper HW. TGF-beta receptor-binding proteins: complex interactions. Cell Signal 2006; 18:2077-88. [PMID: 16824734 DOI: 10.1016/j.cellsig.2006.05.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2006] [Accepted: 05/11/2006] [Indexed: 01/06/2023]
Abstract
Members of the Smad protein family are fundamental downstream mediators of TGF-beta signals. However, the basic, linear Smad signaling pathway is unlikely to be the sole contributor to the plethora of cell type-specific TGF-beta responses. Investigators have identified a number of molecules that interact with the TGF-beta receptors (TbetaRs) and may explain, at least in part, the tight regulation of TGF-beta effects. Understanding these TbetaR-interacting molecules is thus a matter of great potential significance for elucidating TGF-beta-family signal transduction. The present article reviews our current understanding of the roles and mechanisms of action of this relatively understudied group of molecules.
Collapse
Affiliation(s)
- Constance E Runyan
- Department of Pediatrics, Feinberg School of Medicine, Chicago, IL, USA.
| | | | | |
Collapse
|
20
|
Haag J, Chubinskaya S, Aigner T. Hgs physically interacts with Smad5 and attenuates BMP signaling. Exp Cell Res 2006; 312:1153-63. [PMID: 16516194 DOI: 10.1016/j.yexcr.2006.01.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2005] [Revised: 01/13/2006] [Accepted: 01/18/2006] [Indexed: 11/25/2022]
Abstract
Signaling by members of the bone morphogenetic protein family plays a critical role in cartilage development and differentiation. Recently, the potential involvement of BMPs in the maintenance and repair of damaged adult articular cartilage has initiated an interest in the role of BMP signaling and the involved signaling pathways in the adult tissue. In this study, we identified Hgs as a novel Smad5 interactor using a cDNA expression library constructed from human adult cartilage. This interaction was confirmed by coimmunoprecipitation experiments in 293 EBNA cells and the chondrocytic cell line T/C-28a2. Overexpression of Hgs resulted in an attenuation of BMP-dependent transcriptional responses suggesting that Hgs acts as an inhibitor of BMP signaling. Of note, osteoarthritic chondrocytes which have been suggested previously to show increased reactivity to BMP-stimulation showed less expression of Hgs. Thus, it is tempting to speculate that both might be related to each other given the suppressive effect of BMP signaling on Hgs shown in this study.
Collapse
Affiliation(s)
- Jochen Haag
- Osteoarticular and Arthritis Research, Department of Pathology, Friedrich-Alexander University of Erlangen-Nuremberg, Krankenhausstr. 8-10, D-91054 Erlangen, Germany
| | | | | |
Collapse
|
21
|
Runyan CE, Schnaper HW, Poncelet AC. The Role of Internalization in Transforming Growth Factor β1-induced Smad2 Association with Smad Anchor for Receptor Activation (SARA) and Smad2-dependent Signaling in Human Mesangial Cells. J Biol Chem 2005; 280:8300-8. [PMID: 15613484 DOI: 10.1074/jbc.m407939200] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recent data investigating the role of the Smad anchor for receptor activation (SARA) in TGF-beta signaling have suggested that it has a crucial function in both aiding the recruitment of Smad to the TGF-beta receptor, and ensuring appropriate subcellular localization of the activated receptor-bound complex. The FYVE domain in SARA directs its localization to early endosomal compartments where it can interact with both the TGF-beta receptors and Smads. However, the necessity of endocytosis in the TGF-beta response remains controversial. We sought to examine the role of internalization in TGF-beta/Smad signaling in human kidney mesangial cells. Using co-immunoprecipitation studies, we show that endogenous Smad2 interacts with SARA after TGF-beta1 stimulation. Inhibition of clathrin-mediated internalization only slightly affects TGF-beta1-stimulated association between SARA and Smad2, Smad2 phosphorylation, or Smad2 interaction with Smad4. However, endocytosis inhibition decreases TGF-beta1-induced Smad2 nuclear translocation and thus abrogates Smad2-dependent transcriptional responses. The TGF-beta1-stimulated association between SARA and Smad2 peaks at 30 min followed by separation of the complex components. However, under conditions of inhibited endocytosis, Smad2 remains bound to SARA for at least 6 h without a significant decline in associated levels. This lack of complex dissociation correlates with a lack of Smad2 nuclear accumulation and reduction of Smad2-dependent ARE-Luc reporter activity. Our data therefore suggest that endocytosis plays a critical role in TGF-beta signaling in mesangial cells, and that internalization enhances the dissociation of Smad2 from the TGF-beta receptor-SARA complex, allowing Smad2 to accumulate in the nucleus and modulate target gene transcription.
Collapse
Affiliation(s)
- Constance E Runyan
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA.
| | | | | |
Collapse
|
22
|
Asano Y, Ihn H, Yamane K, Jinnin M, Mimura Y, Tamaki K. Phosphatidylinositol 3-kinase is involved in alpha2(I) collagen gene expression in normal and scleroderma fibroblasts. THE JOURNAL OF IMMUNOLOGY 2004; 172:7123-35. [PMID: 15153536 DOI: 10.4049/jimmunol.172.11.7123] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
TGF-beta is implicated in the pathogenesis of fibrotic disorders. It has been shown that Smad3 promotes the human alpha2(I) collagen (COL1A2) gene expression by TGF-beta1 in human dermal fibroblasts. Here, we investigated the role of phosphatidylinositol 3-kinase (PI3K) in the COL1A2 gene expression in normal and scleroderma fibroblasts. In normal fibroblasts, the PI3K inhibitor, LY294002, significantly decreased the basal and the TGF-beta1-induced increased stability of COL1A2 mRNA. The TGF-beta1-induced COL1A2 promoter activity, but not the basal activity, was significantly attenuated by LY294002 or the dominant negative mutant of p85 subunit of PI3K, while the constitutive active mutant of p110 subunit of PI3K did not affect the basal or the TGF-beta1-induced COL1A2 promoter activity. LY294002 significantly decreased the phosphorylation of Smad3 induced by TGF-beta1. Furthermore, the transient overexpression of 2xFYVE, which induces the mislocalization of FYVE domain proteins, decreased the TGF-beta1-induced Smad3 phosphorylation to a similar extent to LY294002. In scleroderma fibroblasts, the blockade of PI3K significantly decreased the mRNA stability and the promoter activity of the COL1A2 gene. Furthermore, LY294002 and the transient overexpression of 2xFYVE completely diminished the constitutive phosphorylation of Smad3. These results indicate that 1) the basal activity of PI3K is necessary for the COL1A2 mRNA stabilization in normal and scleroderma fibroblasts, 2) there is an unidentified FYVE domain protein specifically interacting with Smad3, and 3) the basal activity of PI3K and the FYVE domain protein are indispensable for the efficient TGF-beta/Smad3 signaling in normal fibroblasts and for the establishment of the constitutive activation of TGF-beta/Smad3 signaling in scleroderma fibroblasts.
Collapse
Affiliation(s)
- Yoshihide Asano
- Department of Dermatology, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
23
|
Song K, Cornelius SC, Reiss M, Danielpour D. Insulin-like growth factor-I inhibits transcriptional responses of transforming growth factor-beta by phosphatidylinositol 3-kinase/Akt-dependent suppression of the activation of Smad3 but not Smad2. J Biol Chem 2003; 278:38342-51. [PMID: 12876289 DOI: 10.1074/jbc.m304583200] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Insulin-like growth factor-I (IGF-I) and transforming growth factor-beta (TGF-beta) have been shown to be oncogenic and tumor suppressive, respectively, on prostate epithelial cells. Here we show that IGF-I inhibits the ability of TGF-beta to regulate expression of several genes in the non-tumorigenic rat prostatic epithelial line, NRP-152. In these cells, IGF-I also inhibits TGF-beta-induced transcriptional responses, as shown by several promoter reporter constructs, suggesting that IGF-I intercepts an early step in TGF-beta signaling. We show that IGF-I does not down-regulate TGF-beta receptor levels, as determined by both receptor cross-linking and Western blot analyses. However, Western blot analysis reveals that IGF-I selectively inhibits the TGF-beta-triggered activation Smad3 but not Smad2, while not altering expression of total Smads 2, 3, or 4. The phosphatidylinositol 3-kinase (PI3K) inhibitor, LY29004 reverses the ability of IGF-I to inhibit TGF-beta-induced transcriptional responses and the activation of Smad3, suggesting that the suppression of TGF-beta signaling by IGF-I is mediated through activation of PI3K. Moreover, we show that enforced expression of dominant-negative PI3K (DN-p85alpha) or phosphatidylinositol 3-phosphate-phosphatase, PTEN, also reverse the suppressive effect of IGF-I on TGF-beta-induced 3TP-luciferase reporter activity, whereas constitutively active PI3K (p110alphaCAAX) completely blocks TGF-beta-induced 3TP-luciferase reporter activity. Further transfection experiments including expression of constitutively active and dominant-negative Akt and rapamycin treatment suggest that suppression of TGF-beta signaling/Smad3 activation by IGF-I occurs downstream of Akt and through mammalian target of rapamycin activation. In summary, our data suggest that IGF-I inhibits TGF-beta transcriptional responses through selective suppression of Smad3 activation via a PI3K/Akt-dependent pathway.
Collapse
Affiliation(s)
- Kyung Song
- Ireland Cancer Center Research Laboratories and the Department of Pharmacology, Case Western Reserve University/University Hospital of Cleveland, Cleveland, Ohio 44106, USA
| | | | | | | |
Collapse
|
24
|
Liu C, Gaça MDA, Swenson ES, Vellucci VF, Reiss M, Wells RG. Smads 2 and 3 are differentially activated by transforming growth factor-beta (TGF-beta ) in quiescent and activated hepatic stellate cells. Constitutive nuclear localization of Smads in activated cells is TGF-beta-independent. J Biol Chem 2003; 278:11721-8. [PMID: 12547835 DOI: 10.1074/jbc.m207728200] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Hepatic stellate cells are the primary cell type responsible for matrix deposition in liver fibrosis, undergoing a process of transdifferentiation into fibrogenic myofibroblasts. These cells, which undergo a similar transdifferentiation process when cultured in vitro, are a major target of the profibrogenic agent transforming growth factor-beta (TGF-beta). We have studied activation of the TGF-beta downstream signaling molecules Smads 2, 3, and 4 in hepatic stellate cells (HSC) cultured in vitro for 1, 4, and 7 days, with quiescent, intermediate, and fully transdifferentiated phenotypes, respectively. Total levels of Smad4, common to multiple TGF-beta superfamily signaling pathways, do not change as HSC transdifferentiate, and the protein is found in both nucleus and cytoplasm, independent of treatment with TGF-beta or the nuclear export inhibitor leptomycin B. TGF-beta mediates activation of Smad2 primarily in early cultured cells and that of Smad3 primarily in transdifferentiated cells. The linker protein SARA, which is required for Smad2 signaling, disappears with transdifferentiation. Additionally, day 7 cells demonstrate constitutive phosphorylation and nuclear localization of Smad 2, which is not affected by pretreatment with TGF-beta-neutralizing antibodies, a type I TGF-beta receptor kinase inhibitor, or activin-neutralizing antibodies. These results demonstrate essential differences between TGF-beta-mediated signaling pathways in quiescent and in vitro transdifferentiated hepatic stellate cells.
Collapse
Affiliation(s)
- Chenghai Liu
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | | | | | |
Collapse
|
25
|
Kunzmann S, Wohlfahrt JG, Itoh S, Asao H, Komada M, Akdis CA, Blaser K, Schmidt-Weber CB. SARA and Hgs attenuate susceptibility to TGF-beta1-mediated T cell suppression. FASEB J 2003; 17:194-202. [PMID: 12554698 DOI: 10.1096/fj.02-0550com] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Transforming growth factor-beta1 (TGF-beta1) is a pluripotent cytokine that controls peripheral T cell tolerance mainly in mucosal immunity. It is secreted by regulatory T cells (Tr /Th3) but also by other immununologically active cells. Smad anchor for receptor activation (SARA) and hepatic growth factor-regulated tyrosine kinase substrate (Hgs) are involved in TGF-beta1 signaling. Both molecules are known to present Smad2 and Smad3 to the TGF-beta receptor complex. The role of SARA and Hgs in TGF-beta1 susceptibility of human CD4+ T cells is unclear. We demonstrate here that TGF-beta1 up-regulates SARA mRNA expression in CD4+ T cells similar to that of Smad7. However, the increase in SARA expression was lower (6.1+/-0.3-fold vs. 25+/-4.1-fold) compared with Smad7 and delayed, with a maximum at 12 h compared with 2 h. Th1 and Th2 cell subsets expressed the same levels of SARA and Hgs. Compared with resting cells, significantly lower levels of the two molecules were found in antigen/allergen- or anti-CD3/CD28-stimulated cells. Down-regulation of SARA and Hgs mRNA in preactivated CD4+ T cells was accompanied by a twofold increase in a TGF-beta1 responsive reporter gene assay. Overexpression of SARA and Hgs in T cells yielded a dose-dependent decrease in cotransfected reporter gene expression, indicating an inhibitory function of both molecules. Thus, SARA and Hgs are regulators of TGF-beta1 susceptibility in T cells and integrate regulatory signals into the influence of TGF-beta1-mediated suppression of human T cells.
Collapse
Affiliation(s)
- S Kunzmann
- Swiss Institute of Allergy and Asthma Research (SIAF), CH-7270 Davos, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Transforming growth factor-betas (TGF-betas) regulate pivotal cellular processes such as proliferation, differentiation and apoptosis. After ligand binding, the signals are transmitted by two types of transmembrane serine/threonine kinase receptors. The type I receptor phosphorylates Smad proteins, intracellular effectors which upon oligomerization enter the nucleus to regulate transcription following assembly with transcriptional co-factors and co-modulators. The cellular distribution of TGF-beta receptors along with their oligomerization mode and their complex formation with different cell surface receptors represent crucial steps in determining the initiation of distinct signalling cascades. In addition, the broad array of intracellular proteins that influence the TGF-beta pathway demonstrates that signal transduction does not proceed in a linear fashion but rather comprises a complex network of cascades that mutually influence each other. The present review describes the intricate control of TGF-beta signal transduction on various levels of the cascade with particular focus (i) on the assembly of different receptor subtypes and (ii) on the multitude of crosstalk with signal transducers from other pathways. Integration of the TGF-beta/Smad pathway into the signalling network has taken on added importance as it substantially contributes to elicit the plethora of cell- and tissue-specific effects of TGF-beta.
Collapse
Affiliation(s)
- Marion Lutz
- Department of Physiological Chemistry II, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | | |
Collapse
|
27
|
Welt C, Sidis Y, Keutmann H, Schneyer A. Activins, inhibins, and follistatins: from endocrinology to signaling. A paradigm for the new millennium. Exp Biol Med (Maywood) 2002; 227:724-52. [PMID: 12324653 DOI: 10.1177/153537020222700905] [Citation(s) in RCA: 220] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
It has been 70 years since the name inhibin was used to describe a gonadal factor that negatively regulated pituitary hormone secretion. The majority of this period was required to achieve purification and definitive characterization of inhibin, an event closely followed by identification and characterization of activin and follistatin (FS). In contrast, the last 15-20 years saw a virtual explosion of information regarding the biochemistry, physiology, and biosynthesis of these proteins, as well as identification of activin receptors, and a unique mechanism for FS action-the nearly irreversible binding and neutralization of activin. Many of these discoveries have been previously summarized; therefore, this review will cover the period from the mid 1990s to present, with particular emphasis on emerging themes and recent advances. As the field has matured, recent efforts have focused more on human studies, so the endocrinology of inhibin, activin, and FS in the human is summarized first. Another area receiving significant recent attention is local actions of activin and its regulation by both FS and inhibin. Because activin and FS are produced in many tissues, we chose to focus on a few particular examples with the most extensive experimental support, the pituitary and the developing follicle, although nonreproductive actions of activin and FS are also discussed. At the cellular level, it now seems that activin acts largely as an autocrine and/or paracrine growth factor, similar to other members of the transforming growh factor beta superfamily. As we discuss in the next section, its actions are regulated extracellularly by both inhibin and FS. In the final section, intracellular mediators and modulators of activin signaling are reviewed in detail. Many of these are shared with other transforming growh factor beta superfamily members as well as unrelated molecules, and in a number of cases, their physiological relevance to activin signal propagation remains to be elucidated. Nevertheless, taken together, recent findings suggest that it may be more appropriate to consider a new paradigm for inhibin, activin, and FS in which activin signaling is regulated extracellularly by both inhibin and FS whereas a number of intracellular proteins act to modulate cellular responses to these activin signals. It is therefore the balance between activin and all of its modulators, rather than the actions of any one component, that determines the final biological outcome. As technology and model systems become more sophisticated in the next few years, it should become possible to test this concept directly to more clearly define the role of activin, inhibin, and FS in reproductive physiology.
Collapse
Affiliation(s)
- Corrine Welt
- Reproductive Endocrine Unit and Endocrine Unit, Massachusetts General Hospital, Boston 02114, USA
| | | | | | | |
Collapse
|
28
|
Ghosh AK. Factors involved in the regulation of type I collagen gene expression: implication in fibrosis. Exp Biol Med (Maywood) 2002; 227:301-14. [PMID: 11976400 DOI: 10.1177/153537020222700502] [Citation(s) in RCA: 191] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Type I collagen, the major component of extracellular matrix in skin and other tissues, is a heterotrimer of two alpha1 and one alpha2 collagen polypeptides. The synthesis of both chains is highly regulated by different cytokines at the transcriptional level. Excessive synthesis and deposition of collagen in the dermal region causes thick and hard skin, a clinical manifestation of scleroderma. To better understand the causes of scleroderma or other tissue fibrosis, it is very important to investigate the molecular mechanisms that cause upregulation of the Type I collagen synthesis in these tissues. Several cis-acting regulatory elements and trans-acting protein factors, which are involved in basal as well as cytokine-modulated Type I collagen gene expression, have been identified and characterized. Hypertranscription of Type I collagen in scleroderma skin fibroblasts may be due to abnormal activities of different positive or negative transcription factors in response to different abnormally induced signaling pathways. In this review, I discuss the present day understanding about the involvement of different factors in the regulation of basal as well as cytokine-modulated Type I collagen gene expression and its implication in scleroderma research.
Collapse
Affiliation(s)
- Asish K Ghosh
- Section of Rheumatology, Department of Medicine, 1158 Molecular Biology Research Building, University of Illinois, 900 South Ashland Avenue, Chicago, IL 60607, USA.
| |
Collapse
|
29
|
Abstract
The TGF-beta superfamily is an important class of intercellular signalling molecule, including TGF-beta and bone morphogenetic proteins. Intracellular signalling cascades triggered by these molecules eventually activate transcription factors of the Smad family, which then regulate expression of their respective target genes. This article will discuss the TGF-beta--Smad signalling networks and how these processes are represented in databases of signal transduction and transcription control mechanisms. These databases can provide a well-structured overview of the subject and a basis for advanced bioinformatics analyses to interpret the function of genomic sequences or to analyse signalling networks.
Collapse
Affiliation(s)
- Dorothee U Kloos
- BIOBASE GmbH, Biological Databases, Halchtersche Strasse 33, D-38304 Wolfenbüttel, Germany.
| | | | | |
Collapse
|