1
|
Tao J, Luo J, Li K, Yang R, Lin Y, Ge J. Comprehensive genetic analysis uncovers the mutational spectrum of MFRP and its genotype-phenotype correlation in a large cohort of Chinese microphthalmia patients. Gene 2024; 926:148647. [PMID: 38848879 DOI: 10.1016/j.gene.2024.148647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/21/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024]
Abstract
PURPOSE Microphthalmia is a severe congenital ocular disease featured by abnormal ocular development. The aim of this study was to detail the genetic and clinical characteristics of a large cohort of Chinese patients with microphthalmia related to MFRP variants, focusing on uncovering genotype-phenotype correlations. METHODS Fifty microphthalmia patients from 44 unrelated Chinese families were recruited. Whole-exome sequencing (WES) was conducted to analyze the coding regions and adjacent intronic regions of MFRP. Axial lengths (AL) were measured for all probands and available family members. Protein structures of mutations with high frequency in our cohort were predicted. The genotype-phenotype correlations were explored by statistical analysis. RESULTS Sixteen MFRP variants were detected in 17 families, accounting for 38.64 % of all microphthalmia families. There were 9 novel mutations (c.427+1G>C, c.428-2A>C, c.561_575del:p.A188_E192del, c.836G>A:p.C279Y, c.1010_1021del:p.H337_E340del:p.Y479*, c.1516_1517del:p.S506Pfs*66, c.1561T>G:p.C521G, c.1616G>A:p.R539H, and c.1735C>T:p.P579S) and six previously reported variants in MFRP, with p.E496K and p.H337_E340del being highly frequent, found in eight (47.06 %) and two families (11.76 %), respectively. Seven variants (43.75 %) were located in the C-terminal cysteine-rich frizzled-related domain (CRD) (7/16, 43.75 %). Protein prediction implicated p.E496K and p.H337_E340del mutations might lead to a destabilization of the MFRP protein. The average AL of all 42 eyes was 16.02 ± 1.05 mm, and 78.36 % of eyes with AL < 16 mm harbored p.E496K variant. Twenty-six eyes with variant variant had shorter AL than that of the other 16 eyes without this variant (p = 0.006), highlighting a novel genotype-phenotype correlation. CONCLUSIONS In this largest cohort of Chinese patients with microphthalmia, the 9 novel variants, high frequency of p.E496W, and mutation hotspots in CRD reveals unique insights into the MFRP mutation spectrum among Chinese patients, indicating ethnic variability. A new genotype-phenotype correlation that p.E496K variant associated with a shorter AL is unveiled. Our findings enhance the current knowledge of MFRP-associated microphthalmia and provide valuable information for prenatal diagnosis as well as future therapy.
Collapse
Affiliation(s)
- Jing Tao
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing 100730, China
| | - Jingyi Luo
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510000, China
| | - Kaijing Li
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510000, China
| | - Runcai Yang
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510000, China
| | - Yixiu Lin
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510000, China
| | - Jian Ge
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510000, China.
| |
Collapse
|
2
|
Li Z, Ma R, Ma M, Xiao X, Qi X, Ma H, Sheng X, Rong W. MFRP variations cause nanophthalmos in five Chinese families with distinct phenotypic diversity. Front Genet 2024; 15:1407361. [PMID: 39076172 PMCID: PMC11284154 DOI: 10.3389/fgene.2024.1407361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/21/2024] [Indexed: 07/31/2024] Open
Abstract
Purpose Nanophthalmos is a congenital ocular structural anomaly that can cause significant visual loss in children. The early diagnosis and then taking appropriate clinical and surgical treatment remains a challenge for many ophthalmologists because of genetic and phenotypic heterogeneity. The objective of this study is to identify the genetic cause of nanophthalmos in the affected families and analyze the clinical phenotype of nanophthalmos with MFRP gene variation (Microphthalmia, isolated; OMIM#611040 and Nanophthalmos 2; OMIM#609549, respectively). Methods Comprehensive ophthalmic examinations were performed on participants to confirm the phenotype. The genotype was identified using whole exome sequencing, and further verified the results among other family members by Sanger sequencing. The normal protein structure was constructed using Alphafold. Mutant proteins were visualized using pymol software. Pathogenicity of identified variant was determined by in silico analysis and the guidelines of American College of Medical Genetics and Genomics (ACMG). The relationship between genetic variants and clinical features was analyzed. Results Five nanophthalmos families were autosomal recessive, of which four families carried homozygous variants and one family had compound heterozygous variants in the MFRP gene. Both family one and family three carried the homozygous missense variant c.1486G>A (p.Glu496Lys) in the MFRP gene (Clinvar:SCV005060845), which is a novel variant and evaluated as likely pathogenic according to the ACMG guidelines and in silico analysis. The proband of family one presented papilloedema in both eyes, irregular borders, thickened retinas at the posterior pole, tortuous and dilated retinal vessels, and indistinguishable arteries and veins, while the proband of family three presented uveal effusion syndrome-like changes in the right eye. In families one and 3, despite carrying the same gene variant, the probands had completely different clinical phenotypes. The homozygous nonsense variant c.271C>T (p.Gln91Ter) (Clinvar:SCV005060846) of the MFRP gene was detected in family 2, presenting shallow anterior chamber in both eyes, pigmentation of peripheral retina 360° from the equator to the serrated rim showing a clear demarcation from the normal retina in the form of strips. Family four proband carried the homozygous missense variant c.1411G>A (p.Val471Met) in the MFRP gene (Clinvar:SCV005060847), family five proband carried compound heterozygous missense variants c.1486G>A (p.Glu496Lys) and c.602G>T (p.Arg201Leu) in the MFRP gene (Clinvar:SCV005060848), which is a novel variant and evaluated as likely pathogenic according to the ACMG guidelines and in silico analysis, and they all presented clinically with binocular angle-closure glaucoma, family four also had retinal vein occlusion in the right eye during the follow-up. Conclusion In this study, pathogenic variants of the MFRP gene were detected in five nanophthalmos families, including two novel variants. It also revealed a distinct phenotypic diversity among five probands harboring variants in the MFRP gene. Our findings extend the phenotype associated with MFRP variants and is helpful for ophthalmologists in early diagnosis and making effective treatment and rehabilitation strategies.
Collapse
Affiliation(s)
- Zhen Li
- Ningxia Eye Hospital, People’s Hospital of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, China
| | - Runqing Ma
- Ningxia Eye Hospital, People’s Hospital of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, China
| | - Meijiao Ma
- Gansu Aier Optometry Hospital, Lanzhou City, China
| | - Xue Xiao
- Ningxia Eye Hospital, People’s Hospital of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, China
| | - Xiaolong Qi
- Ningxia Eye Hospital, People’s Hospital of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, China
| | - Hongjuan Ma
- Ningxia Eye Hospital, People’s Hospital of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, China
| | - Xunlun Sheng
- Gansu Aier Optometry Hospital, Lanzhou City, China
| | - Weining Rong
- Ningxia Eye Hospital, People’s Hospital of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
3
|
Gibert MK, Zhang Y, Saha S, Marcinkiewicz P, Dube C, Hudson K, Sun Y, Bednarek S, Chagari B, Sarkar A, Roig-Laboy C, Neace N, Saoud K, Setiady I, Hanif F, Schiff D, Kumar P, Kefas B, Hafner M, Abounader R. A first comprehensive analysis of Transcribed Ultra Conserved Regions uncovers important regulatory functions of novel non-coding transcripts in gliomas. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.12.557444. [PMID: 38562826 PMCID: PMC10983853 DOI: 10.1101/2023.09.12.557444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Transcribed Ultra-Conserved Regions (TUCRs) represent a severely understudied class of putative non-coding RNAs (ncRNAs) that are 100% conserved across multiple species. We performed the first-ever analysis of TUCRs in glioblastoma (GBM) and low-grade gliomas (LGG). We leveraged large human datasets to identify the genomic locations, chromatin accessibility, transcription, differential expression, correlation with survival, and predicted functions of all 481 TUCRs, and identified TUCRs that are relevant to glioma biology. Of these, we investigated the expression, function, and mechanism of action of the most highly upregulated intergenic TUCR, uc.110, identifying it as a new oncogene. Uc.110 was highly overexpressed in GBM and LGG, where it promoted malignancy and tumor growth. Uc.110 activated the WNT pathway by upregulating the expression of membrane frizzled-related protein (MFRP), by sponging the tumor suppressor microRNA miR-544. This pioneering study shows important roles for TUCRs in gliomas and provides an extensive database and novel methods for future TUCR research.
Collapse
|
4
|
Conway MP, Stephenson KAJ, Zhu J, Dockery A, Burke T, Turner J, Le FT, O’Byrne JJ, Keegan DJ. The Role of the Ophthalmic Genetics Multidisciplinary Team in the Management of Inherited Retinal Degenerations-A Case-Based Review. Life (Basel) 2024; 14:107. [PMID: 38255722 PMCID: PMC10817299 DOI: 10.3390/life14010107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
(1) Background: Inherited retinal degenertions are rare conditions which may have a dramatic impact on the daily life of those affected and how they interact with their environment. Coordination of clinical services via an ophthalmic genetics multidisciplinary team (OG-MDT) allows better efficiency of time and resources to reach diagnoses and facilitate patient needs. (2) Methods: This clinical case series was conducted by a retrospective review of patient records for patients enrolled in the Target 5000 programme and managed by the OG-MDT, at the Mater Hospital Dublin, Ireland (n = 865) (3) Results: Herein we describe clinical cases and how the use of the OG-MDT optimizes care for isolated and syndromic IRD pedigrees. (4) Conclusions: this paper demonstrates the benefits of an OG-MDT to patients with IRDs resulting in the holistic resolution of complex and syndromic cases. Furthermore, we demonstrate that this format can be adopted/developed by similar centres around the world, bringing with it the myriad benefits.
Collapse
Affiliation(s)
- Marcus P. Conway
- Mater Clinical Ophthalmic Genetics Unit, Mater Misericordiae University Hospital, D07 AX57 Dublin, Ireland (D.J.K.)
| | - Kirk A. J. Stephenson
- Mater Clinical Ophthalmic Genetics Unit, Mater Misericordiae University Hospital, D07 AX57 Dublin, Ireland (D.J.K.)
| | - Julia Zhu
- Mater Clinical Ophthalmic Genetics Unit, Mater Misericordiae University Hospital, D07 AX57 Dublin, Ireland (D.J.K.)
| | - Adrian Dockery
- Mater Clinical Ophthalmic Genetics Unit, Mater Misericordiae University Hospital, D07 AX57 Dublin, Ireland (D.J.K.)
| | - Tomas Burke
- Mater Clinical Ophthalmic Genetics Unit, Mater Misericordiae University Hospital, D07 AX57 Dublin, Ireland (D.J.K.)
| | - Jacqueline Turner
- Mater Clinical Ophthalmic Genetics Unit, Mater Misericordiae University Hospital, D07 AX57 Dublin, Ireland (D.J.K.)
| | - Francois Thai Le
- Eye Clinic Liasson Officer, Vision Ireland, Mater Misericordiae University Hospital, D07 AX57 Dublin, Ireland;
| | - James J. O’Byrne
- Mater Clinical Ophthalmic Genetics Unit, Mater Misericordiae University Hospital, D07 AX57 Dublin, Ireland (D.J.K.)
| | - David J. Keegan
- Mater Clinical Ophthalmic Genetics Unit, Mater Misericordiae University Hospital, D07 AX57 Dublin, Ireland (D.J.K.)
| |
Collapse
|
5
|
Jackson D, Moosajee M. The Genetic Determinants of Axial Length: From Microphthalmia to High Myopia in Childhood. Annu Rev Genomics Hum Genet 2023; 24:177-202. [PMID: 37624667 DOI: 10.1146/annurev-genom-102722-090617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
The axial length of the eye is critical for normal visual function by enabling light to precisely focus on the retina. The mean axial length of the adult human eye is 23.5 mm, but the molecular mechanisms regulating ocular axial length remain poorly understood. Underdevelopment can lead to microphthalmia (defined as a small eye with an axial length of less than 19 mm at 1 year of age or less than 21 mm in adulthood) within the first trimester of pregnancy. However, continued overgrowth can lead to axial high myopia (an enlarged eye with an axial length of 26.5 mm or more) at any age. Both conditions show high genetic and phenotypic heterogeneity associated with significant visual morbidity worldwide. More than 90 genes can contribute to microphthalmia, and several hundred genes are associated with myopia, yet diagnostic yields are low. Crucially, the genetic pathways underpinning the specification of eye size are only now being discovered, with evidence suggesting that shared molecular pathways regulate under- or overgrowth of the eye. Improving our mechanistic understanding of axial length determination will help better inform us of genotype-phenotype correlations in both microphthalmia and myopia, dissect gene-environment interactions in myopia, and develop postnatal therapies that may influence overall eye growth.
Collapse
Affiliation(s)
- Daniel Jackson
- Institute of Ophthalmology, University College London, London, United Kingdom;
| | - Mariya Moosajee
- Institute of Ophthalmology, University College London, London, United Kingdom;
- The Francis Crick Institute, London, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
6
|
Siepe DH, Henneberg LT, Wilson SC, Hess GT, Bassik MC, Zinn K, Garcia KC. Identification of orphan ligand-receptor relationships using a cell-based CRISPRa enrichment screening platform. eLife 2022; 11:e81398. [PMID: 36178190 PMCID: PMC9578707 DOI: 10.7554/elife.81398] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 09/29/2022] [Indexed: 11/20/2022] Open
Abstract
Secreted proteins, which include cytokines, hormones, and growth factors, are extracellular ligands that control key signaling pathways mediating cell-cell communication within and between tissues and organs. Many drugs target secreted ligands and their cell surface receptors. Still, there are hundreds of secreted human proteins that either have no identified receptors ('orphans') or are likely to act through cell surface receptors that have not yet been characterized. Discovery of secreted ligand-receptor interactions by high-throughput screening has been problematic, because the most commonly used high-throughput methods for protein-protein interaction (PPI) screening are not optimized for extracellular interactions. Cell-based screening is a promising technology for the deorphanization of ligand-receptor interactions, because multimerized ligands can enrich for cells expressing low affinity cell surface receptors, and such methods do not require purification of receptor extracellular domains. Here, we present a proteo-genomic cell-based CRISPR activation (CRISPRa) enrichment screening platform employing customized pooled cell surface receptor sgRNA libraries in combination with a magnetic bead selection-based enrichment workflow for rapid, parallel ligand-receptor deorphanization. We curated 80 potentially high-value orphan secreted proteins and ultimately screened 20 secreted ligands against two cell sgRNA libraries with targeted expression of all single-pass (TM1) or multi-pass transmembrane (TM2+) receptors by CRISPRa. We identified previously unknown interactions in 12 of these screens, and validated several of them using surface plasmon resonance and/or cell binding assays. The newly deorphanized ligands include three receptor protein tyrosine phosphatase (RPTP) ligands and a chemokine-like protein that binds to killer immunoglobulin-like receptors (KIRs). These new interactions provide a resource for future investigations of interactions between the human-secreted and membrane proteomes.
Collapse
Affiliation(s)
- Dirk H Siepe
- Department of Molecular and Cellular Physiology, Stanford UniversityStanfordUnited States
| | - Lukas T Henneberg
- Department of Molecular and Cellular Physiology, Stanford UniversityStanfordUnited States
| | - Steven C Wilson
- Department of Molecular and Cellular Physiology, Stanford UniversityStanfordUnited States
| | - Gaelen T Hess
- Stanford ChEM-H, Department of Genetics, Stanford UniversityStanfordUnited States
| | - Michael C Bassik
- Stanford ChEM-H, Department of Genetics, Stanford UniversityStanfordUnited States
| | - Kai Zinn
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - K Christopher Garcia
- Department of Molecular and Cellular Physiology, Stanford UniversityStanfordUnited States
- Howard Hughes Medical Institute, Stanford University School of MedicineStanfordUnited States
- Department of Structural Biology, Stanford University School of MedicineStanfordUnited States
| |
Collapse
|
7
|
Genetic Interaction between Mfrp and Adipor1 Mutations Affect Retinal Disease Phenotypes. Int J Mol Sci 2022; 23:ijms23031615. [PMID: 35163536 PMCID: PMC8835889 DOI: 10.3390/ijms23031615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 12/12/2022] Open
Abstract
Adipor1tm1Dgen and Mfrprd6 mutant mice share similar eye disease characteristics. Previously, studies established a functional relationship of ADIPOR1 and MFRP proteins in maintaining retinal lipidome homeostasis and visual function. However, the independent and/or interactive contribution of both genes to similar disease phenotypes, including fundus spots, decreased axial length, and photoreceptor degeneration has yet to be examined. We performed a gene-interaction study where homozygous Adipor1tm1Dgen and Mfrprd6 mice were bred together and the resulting doubly heterozygous F1 offspring were intercrossed to produce 210 F2 progeny. Four-month-old mice from all nine genotypic combinations obtained in the F2 generation were assessed for white spots by fundus photo documentation, for axial length by caliper measurements, and for photoreceptor degeneration by histology. Two-way factorial ANOVA was performed to study individual as well as gene interaction effects on each phenotype. Here, we report the first observation of reduced axial length in Adipor1tmlDgen homozygotes. We show that while Adipor1 and Mfrp interact to affect spotting and degeneration, they act independently to control axial length, highlighting the complex functional association between these two genes. Further examination of the molecular basis of this interaction may help in uncovering mechanisms by which these genes perturb ocular homeostasis.
Collapse
|
8
|
Brandt ZJ, Collery RF, Besharse JC, Link BA. Ablation of mpeg+ Macrophages Exacerbates mfrp-Related Hyperopia. Invest Ophthalmol Vis Sci 2021; 62:13. [PMID: 34913948 PMCID: PMC8684298 DOI: 10.1167/iovs.62.15.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Proper refractive development of the eye, termed emmetropization, is critical for focused vision and is impacted by both genetic determinants and several visual environment factors. Improper emmetropization caused by genetic variants can lead to congenital hyperopia, which is characterized by small eyes and relatively short ocular axial length. To date, variants in only four genes have been firmly associated with human hyperopia, one of which is MFRP. Zebrafish mfrp mutants also have hyperopia and, similar to reports in mice, exhibit increased macrophage recruitment to the retina. The goal of this research was to examine the effects of macrophage ablation on emmetropization and mfrp-related hyperopia. Methods We utilized a chemically inducible, cell-specific ablation system to deplete macrophages in both wild-type and mfrp mutant zebrafish. Spectral-domain optical coherence tomography was then used to measure components of the eye and determine relative refractive state. Histology, immunohistochemistry, and transmission electron microscopy were used to further study the eyes. Results Although macrophage ablation does not cause significant changes to the relative refractive state of wild-type zebrafish, macrophage ablation in mfrp mutants significantly exacerbates their hyperopic phenotype, resulting in a relative refractive error 1.3 times higher than that of non-ablated mfrp siblings. Conclusions Genetic inactivation of mfrp leads to hyperopia, as well as abnormal accumulation of macrophages in the retina. Ablation of the mpeg1-positive macrophage population exacerbates the hyperopia, suggesting that macrophages may be recruited in an effort help preserve emmetropization and ameliorate hyperopia.
Collapse
Affiliation(s)
- Zachary J Brandt
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Ross F Collery
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Joseph C Besharse
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Brian A Link
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| |
Collapse
|
9
|
Trasierras AM, Luna JM, Ventura S. Improving the understanding of cancer in a descriptive way: An emerging pattern mining‐based approach. INT J INTELL SYST 2021. [DOI: 10.1002/int.22503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | - José María Luna
- Department of Computer Science and Numerical Analysis, Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI) University of Cordoba Córdoba Spain
| | - Sebastián Ventura
- Department of Computer Science and Numerical Analysis, Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI) University of Cordoba Córdoba Spain
| |
Collapse
|
10
|
Lang E, Koller S, Atac D, Pfäffli OA, Hanson JV, Feil S, Bähr L, Bahr A, Kottke R, Joset P, Fasler K, Barthelmes D, Steindl K, Konrad D, Wille D, Berger W, Gerth‐Kahlert C. Genotype-phenotype spectrum in isolated and syndromic nanophthalmos. Acta Ophthalmol 2021; 99:e594-e607. [PMID: 32996714 DOI: 10.1111/aos.14615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/01/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE To (i) describe a series of patients with isolated or syndromic nanophthalmos with the underlying genetic causes, including novel pathogenic variants and their functional characterization and (ii) to study the association of retinal dystrophy in patients with MFRP variants, based on a detailed literature review of genotype-phenotype correlations. METHODS Patients with nanophthalmos and available family members received a comprehensive ophthalmological examination. Genetic analysis was based on whole-exome sequencing and variant calling in core genes including MFRP, BEST1, TMEM98, PRSS56, CRB1, GJA1, C1QTNF5, MYRF and FAM111A. A minigene assay was performed for functional characterization of a splice site variant. RESULTS Seven patients, aged between three and 65 years, from five unrelated families were included. Novel pathogenic variants in MFRP (c.497C>T, c.899-3C>A, c.1180G>A), and PRSS56 (c.1202C>A), and a recurrent de novo variant in FAM111A (c.1706G>A) in a patient with Kenny-Caffey syndrome type 2, were identified. In addition, we report co-inheritance of MFRP-related nanophthalmos and ADAR-related Aicardi-Goutières syndrome. CONCLUSION Nanophthalmos is a genetically heterogeneous condition, and the severity of ocular manifestations appears not to correlate with variants in a specific gene. However, retinal dystrophy is only observed in patients harbouring pathogenic MFRP variants. Furthermore, heterozygous carriers of MFRP and PRSS56 should be screened for the presence of high hyperopia. Identifying nanophthalmos as an isolated condition or as part of a syndrome has implications for counselling and can accelerate the interdisciplinary care of patients.
Collapse
Affiliation(s)
- Elena Lang
- Department of Ophthalmology University Hospital Zurich and University of Zurich Zurich Switzerland
- Institute of Medical Molecular Genetics University of Zurich Schlieren Switzerland
| | - Samuel Koller
- Institute of Medical Molecular Genetics University of Zurich Schlieren Switzerland
| | - David Atac
- Institute of Medical Molecular Genetics University of Zurich Schlieren Switzerland
| | - Oliver A. Pfäffli
- Department of Ophthalmology University Hospital Zurich and University of Zurich Zurich Switzerland
| | - James V.M. Hanson
- Department of Ophthalmology University Hospital Zurich and University of Zurich Zurich Switzerland
| | - Silke Feil
- Institute of Medical Molecular Genetics University of Zurich Schlieren Switzerland
| | - Luzy Bähr
- Institute of Medical Molecular Genetics University of Zurich Schlieren Switzerland
| | - Angela Bahr
- Institute of Medical Genetics University of Zurich Zurich Switzerland
| | - Raimund Kottke
- Department of Diagnostic Imaging University Children's Hospital Zurich Zurich Switzerland
| | - Pascal Joset
- Institute of Medical Genetics University of Zurich Zurich Switzerland
| | - Katrin Fasler
- Department of Ophthalmology University Hospital Zurich and University of Zurich Zurich Switzerland
| | - Daniel Barthelmes
- Department of Ophthalmology University Hospital Zurich and University of Zurich Zurich Switzerland
- Save Sight Institute The University of Sydney Sydney NSW Australia
| | - Katharina Steindl
- Institute of Medical Genetics University of Zurich Zurich Switzerland
| | - Daniel Konrad
- Department of Pediatric Endocrinology and Diabetology University Children’s Hospital Zurich Switzerland
| | | | - Wolfgang Berger
- Institute of Medical Molecular Genetics University of Zurich Schlieren Switzerland
- Zurich Center for Integrative Human Physiology University of Zurich Zurich Switzerland
- Neuroscience Center Zurich, University and ETH Zurich Zurich Switzerland
| | - Christina Gerth‐Kahlert
- Department of Ophthalmology University Hospital Zurich and University of Zurich Zurich Switzerland
| |
Collapse
|
11
|
Kondkar AA. Updates on Genes and Genetic Mechanisms Implicated in Primary Angle-Closure Glaucoma. APPLICATION OF CLINICAL GENETICS 2021; 14:89-112. [PMID: 33727852 PMCID: PMC7955727 DOI: 10.2147/tacg.s274884] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/18/2021] [Indexed: 12/29/2022]
Abstract
Primary angle-closure glaucoma (PACG) is estimated to affect over 30 million people worldwide by 2040 and is highly prevalent in the Asian population. PACG is more severe and carries three times the higher risk of blindness than primary open-angle glaucoma, thus representing a significant public health concern. High heritability and ethnic-specific predisposition to PACG suggest the involvement of genetic factors in disease development. In the recent past, genetic studies have led to the successful identification of several genes and loci associated with PACG across different ethnicities. The precise cellular and molecular roles of these multiple loci in the development and progression of PACG remains to be elucidated. Nonetheless, these studies have significantly increased our understanding of the emerging cellular processes and biological pathways that might provide more significant insights into the disease’s genetic etiology and may be valuable for future clinical applications. This review aims to summarize and update the current knowledge of PACG genetics analysis research.
Collapse
Affiliation(s)
- Altaf A Kondkar
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,Glaucoma Research Chair in Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,King Saud University Medical City, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
12
|
Bazan NG. Overview of how N32 and N34 elovanoids sustain sight by protecting retinal pigment epithelial cells and photoreceptors. J Lipid Res 2021; 62:100058. [PMID: 33662383 PMCID: PMC8058566 DOI: 10.1194/jlr.tr120001137] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The essential fatty acid DHA (22:6, omega-3 or n-3) is enriched in and required for the membrane biogenesis and function of photoreceptor cells (PRCs), synapses, mitochondria, etc. of the CNS. PRC DHA becomes an acyl chain at the sn-2 of phosphatidylcholine, amounting to more than 50% of the PRC outer segment phospholipids, where phototransduction takes place. Very long chain PUFAs (n-3, ≥ 28 carbons) are at the sn-1 of this phosphatidylcholine molecular species and interact with rhodopsin. PRC shed their tips (DHA-rich membrane disks) daily, which in turn are phagocytized by the retinal pigment epithelium (RPE), where DHA is recycled back to PRC inner segments to be used for the biogenesis of new photoreceptor membranes. Here, we review the structures and stereochemistry of novel elovanoid (ELV)-N32 and ELV-N34 to be ELV-N32: (14Z,17Z,20R,21E,23E,25Z,27S,29Z)-20,27-dihydroxydo-triaconta-14,17,21,23,25,29-hexaenoic acid; ELV-N34: (16Z,19Z,22R,23E,25E,27Z,29S,31Z)-22,29-dihydroxytetra-triaconta-16,19,23,25,27,31-hexaenoic acid. ELVs are low-abundance, high-potency, protective mediators. Their bioactivity includes enhancing of antiapoptotic and prosurvival protein expression with concomitant downregulation of proapoptotic proteins when RPE is confronted with uncompensated oxidative stress. ELVs also target PRC/RPE senescence gene programming, the senescence secretory phenotype in the interphotoreceptor matrix, as well as inflammaging (chronic, sterile, low-grade inflammation). An important lesson on neuroprotection is highlighted by the ELV mediators that target the terminally differentiated PRC and RPE, sustaining a beautifully synchronized renewal process. The role of ELVs in PRC and RPE viability and function uncovers insights on disease mechanisms and the development of therapeutics for age-related macular degeneration, Alzheimer's disease, and other pathologies.
Collapse
Affiliation(s)
- Nicolas G Bazan
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
| |
Collapse
|
13
|
The Pathogenesis and Treatment of Complications in Nanophthalmos. J Ophthalmol 2020; 2020:6578750. [PMID: 32765903 PMCID: PMC7387986 DOI: 10.1155/2020/6578750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/09/2020] [Accepted: 07/01/2020] [Indexed: 11/17/2022] Open
Abstract
Microphthalmos is a type of developmental disorder ophthalmopathy, which can occur isolated or combined with other ocular malformations and can occur secondary to a systemic syndrome. Nanophthalmos is one of the clinical phenotypes of microphthalmos. Due to the special and complex structure of nanophthalmic eyes, the disorder is often associated with many complications, including high hyperopia, angle-closure glaucoma, and uveal effusion syndrome. The management of these complications is challenging, and conventional therapeutic methods are often ineffective in treating them. The purpose of this paper was to review the concept of nanophthalmos and present the latest progress in the study of the pathogenesis and treatment of its complications. As it is considerably challenging for ophthalmologists to prevent or treat these nanophthalmos complications, timely diagnosis and a suitable clinical treatment plan are vital to ensure that nanophthalmos patients are treated and managed effectively.
Collapse
|
14
|
The majority of autosomal recessive nanophthalmos and posterior microphthalmia can be attributed to biallelic sequence and structural variants in MFRP and PRSS56. Sci Rep 2020; 10:1289. [PMID: 31992737 PMCID: PMC6987234 DOI: 10.1038/s41598-019-57338-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 12/09/2019] [Indexed: 01/07/2023] Open
Abstract
This study aimed to genetically and clinically characterize a unique cohort of 25 individuals from 21 unrelated families with autosomal recessive nanophthalmos (NNO) and posterior microphthalmia (MCOP) from different ethnicities. An ophthalmological assessment in all families was followed by targeted MFRP and PRSS56 testing in 20 families and whole-genome sequencing in one family. Three families underwent homozygosity mapping using SNP arrays. Eight distinct MFRP mutations were found in 10/21 families (47.6%), five of which are novel including a deletion spanning the 5' untranslated region and the first coding part of exon 1. Most cases harbored homozygous mutations (8/10), while a compound heterozygous and a monoallelic genotype were identified in the remaining ones (2/10). Six distinct PRSS56 mutations were found in 9/21 (42.9%) families, three of which are novel. Similarly, homozygous mutations were found in all but one, leaving 2/21 families (9.5%) without a molecular diagnosis. Clinically, all patients had reduced visual acuity, hyperopia, short axial length and crowded optic discs. Retinitis pigmentosa was observed in 5/10 (50%) of the MFRP group, papillomacular folds in 12/19 (63.2%) of MCOP and in 3/6 (50%) of NNO cases. A considerable phenotypic variability was observed, with no clear genotype-phenotype correlations. Overall, our study represents the largest NNO and MCOP cohort reported to date and provides a genetic diagnosis in 19/21 families (90.5%), including the first MFRP genomic rearrangement, offering opportunities for gene-based therapies in MFRP-associated disease. Finally, our study underscores the importance of sequence and copy number analysis of the MFRP and PRSS56 genes in MCOP and NNO.
Collapse
|
15
|
Kautzmann MAI, Gordon WC, Jun B, Do KV, Matherne BJ, Fang Z, Bazan NG. Membrane-type frizzled-related protein regulates lipidome and transcription for photoreceptor function. FASEB J 2019; 34:912-929. [PMID: 31914617 PMCID: PMC6956729 DOI: 10.1096/fj.201902359r] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 09/27/2019] [Accepted: 10/08/2019] [Indexed: 02/06/2023]
Abstract
Molecular decision‐makers of photoreceptor (PRC) membrane organization and gene regulation are critical to understanding sight and retinal degenerations that lead to blindness. Using Mfrprd6mice, which develop PRC degeneration, we uncovered that membrane‐type frizzled‐related protein (MFRP) participates in docosahexaenoic acid (DHA, 22:6) enrichment in a manner similar to adiponectin receptor 1 (AdipoR1). Untargeted imaging mass spectrometry demonstrates cell‐specific reduction of phospholipids containing 22:6 and very long‐chain polyunsaturated fatty acids (VLC‐PUFAs) in Adipor1−/−and Mfrprd6 retinas. Gene expression of pro‐inflammatory signaling pathways is increased and gene‐encoding proteins for PRC function decrease in both mutants. Thus, we propose that both proteins are necessary for retinal lipidome membrane organization, visual function, and to the understanding of the early pathology of retinal degenerative diseases.
Collapse
Affiliation(s)
- Marie-Audrey I Kautzmann
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, USA
| | - William C Gordon
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, USA
| | - Bokkyoo Jun
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, USA
| | - Khanh V Do
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, USA
| | - Blake J Matherne
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, USA
| | - Zhide Fang
- Biostatistics, School of Public Health, Louisiana State University Health New Orleans, New Orleans, LA, USA
| | - Nicolas G Bazan
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, USA
| |
Collapse
|
16
|
Suri F, Yazdani S, Chapi M, Safari I, Rasooli P, Daftarian N, Jafarinasab MR, Ghasemi Firouzabadi S, Alehabib E, Darvish H, Klotzle B, Fan JB, Turk C, Elahi E. COL18A1 is a candidate eye iridocorneal angle-closure gene in humans. Hum Mol Genet 2019; 27:3772-3786. [PMID: 30007336 DOI: 10.1093/hmg/ddy256] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 07/05/2018] [Indexed: 01/09/2023] Open
Abstract
Primary angle-closure glaucoma (PACG) is a common form of glaucoma in the Far East. Its defining feature is iridocorneal angle closure. In addition to PACG, indications of angle closure are included in the diagnostic criteria of related conditions primary angle-closure suspect (PACS) and primary angle closure (PAC). To the best of our knowledge, a causative gene for iridocorneal angle closure in humans has not been identified. This study aimed to identify the genetic cause of iridocorneal angle closure in a pedigree with at least 10 individuals diagnosed with PACS, PAC or PACG. Results of linkage analysis, segregation analysis of 44 novel variations, whole exome sequencing of 10 individuals, screenings of controls and bioinformatics predictions identified a mutation in COL18A1 that encodes collagen type XVIII as the most likely cause of angle closure in the pedigree. The role of COL18A1 in the etiology of Knobloch syndrome (KS) that is consistently accompanied by optic anomalies, available functional data on the encoded protein and the recognized role of collagens and the extracellular matrix in glaucoma pathogenesis supported the proposed role of the COL18A1 mutation in the pedigree. Subsequent identification of other COL18A1 mutations in PACS affected individuals of two unrelated families further supported that COL18A1 may affect angle closure. These PACS individuals were parents and grandparents of KS-affected children. In conclusion, a gene that affects angle closure in humans, a critical feature of PACG, has been identified. The findings also reinforce the importance of collagens in eye features and functions.
Collapse
Affiliation(s)
- Fatemeh Suri
- Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,School of Biology, University College of Science, University of Tehran, Tehran, Iran
| | - Shahin Yazdani
- Ocular Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marjan Chapi
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Iman Safari
- School of Biology, University College of Science, University of Tehran, Tehran, Iran
| | - Paniz Rasooli
- School of Biology, University College of Science, University of Tehran, Tehran, Iran
| | - Narsis Daftarian
- Ocular Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Jafarinasab
- Ophthalmic Epidemiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Elham Alehabib
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Darvish
- Department of Medical Genetics, Semnan University of Medical Sciences, Semnan, Iran
| | | | | | | | - Elahe Elahi
- School of Biology, University College of Science, University of Tehran, Tehran, Iran.,Department of Biotechnology, University College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
17
|
Genetics of anophthalmia and microphthalmia. Part 1: Non-syndromic anophthalmia/microphthalmia. Hum Genet 2019; 138:799-830. [PMID: 30762128 DOI: 10.1007/s00439-019-01977-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 01/30/2019] [Indexed: 12/22/2022]
Abstract
Eye formation is the result of coordinated induction and differentiation processes during embryogenesis. Disruption of any one of these events has the potential to cause ocular growth and structural defects, such as anophthalmia and microphthalmia (A/M). A/M can be isolated or occur with systemic anomalies, when they may form part of a recognizable syndrome. Their etiology includes genetic and environmental factors; several hundred genes involved in ocular development have been identified in humans or animal models. In humans, around 30 genes have been repeatedly implicated in A/M families, although many other genes have been described in single cases or families, and some genetic syndromes include eye anomalies occasionally as part of a wider phenotype. As a result of this broad genetic heterogeneity, with one or two notable exceptions, each gene explains only a small percentage of cases. Given the overlapping phenotypes, these genes can be most efficiently tested on panels or by whole exome/genome sequencing for the purposes of molecular diagnosis. However, despite whole exome/genome testing more than half of patients currently remain without a molecular diagnosis. The proportion of undiagnosed cases is even higher in those individuals with unilateral or milder phenotypes. Furthermore, even when a strong gene candidate is available for a patient, issues of incomplete penetrance and germinal mosaicism make diagnosis and genetic counseling challenging. In this review, we present the main genes implicated in non-syndromic human A/M phenotypes and, for practical purposes, classify them according to the most frequent or predominant phenotype each is associated with. Our intention is that this will allow clinicians to rank and prioritize their molecular analyses and interpretations according to the phenotypes of their patients.
Collapse
|
18
|
Roberts DK, Newman TL, Roberts MF, Teitelbaum BA, Winters JE. Long Anterior Lens Zonules and Intraocular Pressure. Invest Ophthalmol Vis Sci 2019; 59:2015-2023. [PMID: 29677364 PMCID: PMC5907516 DOI: 10.1167/iovs.17-23705] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Purpose To investigate the relation between intraocular pressure (IOP) and the idiopathic long anterior zonule (LAZ) trait. Methods Patients presenting for primary eye care were examined for LAZ, identified as radially oriented zonular fibers with central extension >1.0 mm beyond the normal anterior lens insertion zone (estimated via slit lamp beam length). Ocular, systemic health, and lifestyle data were collected via comprehensive exam and questionnaire. Multivariate regression was used to assess the relationship between IOP (Goldmann) and LAZ. Results There were 2169 non-LAZ and 129 LAZ subjects (mean age: 49.8 ± 15.0 vs. 62.6 ± 10.2 years; 63.6% vs. 76.0% female; 83.2% vs. 91.5% African American). Right eyes with >trace LAZ (n = 59 of 110) had higher unadjusted mean IOP than control eyes (16.4 ± 3.3 vs. 15.0 ± 3.3 mm Hg, P = 0.005), and with control for numerous factors, LAZ eyes had an average IOP of approximately 1.3 ± 0.4 mm Hg higher (P = 0.003) than non-LAZ eyes. Final model covariates included sex (P = 0.001); spherical-equivalent refractive error (D; P < 0.0001); body mass index (kg/m2; P < 0.001); presence of diabetes (P < 0.001); having >high school education (P < 0.001); systolic blood pressure (mm Hg; P < 0.0001); being an ever smoker (P = 0.006); and having history of any site cancer (P = 0.01). Conclusions The LAZ trait, with potential prevalence near 2%, was associated with a higher IOP. This observation is consistent with the hypothesis that the trait is a marker for underlying mechanisms that elevate glaucoma risk.
Collapse
Affiliation(s)
- Daniel K Roberts
- Illinois Eye Institute, Illinois College of Optometry, Department of Clinical Education, Chicago, Illinois, United States.,University of Illinois at Chicago, School of Medicine, Department of Ophthalmology and Visual Sciences, Chicago, Illinois, United States.,University of Illinois at Chicago, School of Public Health, Division of Epidemiology and Biostatistics, Chicago, Illinois, United States
| | - Tricia L Newman
- Illinois Eye Institute, Illinois College of Optometry, Department of Clinical Education, Chicago, Illinois, United States
| | - Mary Flynn Roberts
- Illinois Eye Institute, Illinois College of Optometry, Department of Clinical Education, Chicago, Illinois, United States
| | - Bruce A Teitelbaum
- Illinois Eye Institute, Illinois College of Optometry, Department of Clinical Education, Chicago, Illinois, United States
| | - Janis E Winters
- Illinois Eye Institute, Illinois College of Optometry, Department of Clinical Education, Chicago, Illinois, United States
| |
Collapse
|
19
|
Chekuri A, Sahu B, Chavali VRM, Voronchikhina M, Soto-Hermida A, Suk JJ, Alapati AN, Bartsch DU, Ayala-Ramirez R, Zenteno JC, Dinculescu A, Jablonski MM, Borooah S, Ayyagari R. Long-Term Effects of Gene Therapy in a Novel Mouse Model of Human MFRP-Associated Retinopathy. Hum Gene Ther 2019; 30:632-650. [PMID: 30499344 DOI: 10.1089/hum.2018.192] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Patients harboring homozygous c.498_499insC mutations in MFRP demonstrate hyperopia, microphthalmia, retinitis pigmentosa, retinal pigment epithelial atrophy, variable degrees of foveal edema, and optic disc drusen. The disease phenotype is variable, however, with some patients maintaining good central vision and cone function till late in the disease. A knock-in mouse model with the c.498_499insC mutation in Mfrp (Mfrp KI/KI) was developed to understand the effects of these mutations in the retina. The model shares many of the features of human clinical disease, including reduced axial length, hyperopia, retinal degeneration, retinal pigment epithelial atrophy, and decreased electrophysiological responses. In addition, the eyes of these mice had a significantly greater refractive error (p < 0.01) when compared to age-matched wild-type control animals. Administration of recombinant adeno-associated virus-mediated Mfrp gene therapy significantly prevented thinning from retinal neurodegeneration (p < 0.005) and preserved retinal electrophysiology (p < 0.001) when treated eyes were compared to contralateral sham-treated control eyes. The Mfrp KI/KI mice will serve as a useful tool to model human disease and point to a potential gene therapeutic approach for patients with preserved vision and electrophysiological responses in MFRP-related retinopathy.
Collapse
Affiliation(s)
- Anil Chekuri
- 1 Shiley Eye Institute, University of California San Diego, La Jolla, California
| | - Bhubanananda Sahu
- 1 Shiley Eye Institute, University of California San Diego, La Jolla, California.,2 Department of Ophthalmology and Visual sciences, Kentucky Lions Eye Center, University of Louisville, Louisville, Kentucky
| | - Venkata Ramana Murthy Chavali
- 1 Shiley Eye Institute, University of California San Diego, La Jolla, California.,3 Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Marina Voronchikhina
- 1 Shiley Eye Institute, University of California San Diego, La Jolla, California
| | - Angel Soto-Hermida
- 1 Shiley Eye Institute, University of California San Diego, La Jolla, California
| | - John J Suk
- 1 Shiley Eye Institute, University of California San Diego, La Jolla, California
| | - Akhila N Alapati
- 1 Shiley Eye Institute, University of California San Diego, La Jolla, California
| | - Dirk-Uwe Bartsch
- 1 Shiley Eye Institute, University of California San Diego, La Jolla, California
| | - Raul Ayala-Ramirez
- 4 Department of Genetics-Research Unit, Institute of Ophthalmology, Conde de Valenciana, Mexico City, Mexico
| | - Juan C Zenteno
- 4 Department of Genetics-Research Unit, Institute of Ophthalmology, Conde de Valenciana, Mexico City, Mexico.,5 Department of Biochemistry, Faculty of Medicine, UNAM, Mexico City, Mexico
| | - Astra Dinculescu
- 6 Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, Florida
| | - Monica M Jablonski
- 7 Department of Ophthalmology, The University of Tennessee Health Science Center, Hamilton Eye Institute, University of Tennessee, Memphis, Tennessee
| | - Shyamanga Borooah
- 1 Shiley Eye Institute, University of California San Diego, La Jolla, California
| | - Radha Ayyagari
- 1 Shiley Eye Institute, University of California San Diego, La Jolla, California
| |
Collapse
|
20
|
Association of Genes implicated in primary angle-closure Glaucoma and the ocular biometric parameters of anterior chamber depth and axial length in a northern Chinese population. BMC Ophthalmol 2018; 18:271. [PMID: 30348125 PMCID: PMC6198425 DOI: 10.1186/s12886-018-0934-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/05/2018] [Indexed: 11/18/2022] Open
Abstract
Background The membrane frizzled-related protein (MFRP) gene is involved in axial length (AL) regulation and MFRP mutations cause nanophthalmos; also, the hepatocyte growth factor (HGF) gene is reported to result in morphologic changes of the anterior segment and abnormal aqueous regulation that increases the risk of primary angle-closure glaucoma (PACG), while the zinc ring finger 3 (ZNRF3) gene is associated with AL. The present study investigated the association of single nucleotide polymorphisms (SNPs) in ZNRF3, HGF and MFRP with PACG in a northern Chinese population, as well as the association of these SNPs with the ocular biometric parameters of anterior chamber depth (ACD) and AL. Methods A total of 500 PACG patients and 720 controls were recruited. All individuals were genotyped for 12 SNPs in three genes (rs7290117, rs2179129, rs4823006 and rs3178915 in ZNRF3; rs5745718, rs12536657, rs12540393, rs17427817 and rs3735520 in HGF, rs2510143, rs36015759 and rs3814762 in MFRP) using an improved multiplex ligation detection reaction (iMLDR) technique. Genotypic distribution was analyzed for Hardy-Weinberg equilibrium. Differences in the allelic and genotypic frequencies were evaluated and adjusted by age and sex. Linkage disequilibrium (LD) patterns were tested and haplotype analysis was conducted by a logistic regression model. Generalized estimation equation (GEE) analysis was conducted using SPSS for primary association testing between genotypes and ocular biometric parameters. Bonferroni corrections for multiple comparisons were performed, and the statistical power was calculated by power and sample size calculations. Results The rs7290117 SNP in ZNRF3 was significantly associated with the AL, with a p-value of 0.002. We did not observe any significant associations between the SNPs and PACG or ACD. In a stratification analysis by ethnicity, rs12540393 and rs17427817 in HGF showed a nominal association with PACG in the Hui cohort, although significance was lost after correction. Conclusions The present study suggests rs7290117 in ZNRF3 may be involved in the regulation of AL, though our results do not support a contribution of the SNPs we tested in ZNRF3, HGF and MFRP to PACG in northern Chinese people. Further studies in a larger population are warranted to confirm this conclusion.
Collapse
|
21
|
Nanophthalmos: A Review of the Clinical Spectrum and Genetics. J Ophthalmol 2018; 2018:2735465. [PMID: 29862063 PMCID: PMC5971257 DOI: 10.1155/2018/2735465] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/20/2018] [Accepted: 04/08/2018] [Indexed: 11/28/2022] Open
Abstract
Nanophthalmos is a clinical spectrum of disorders with a phenotypically small but structurally normal eye. These disorders present significant clinical challenges to ophthalmologists due to a high rate of secondary angle-closure glaucoma, spontaneous choroidal effusions, and perioperative complications with cataract and retinal surgeries. Nanophthalmos may present as a sporadic or familial disorder, with autosomal-dominant or recessive inheritance. To date, five genes (i.e., MFRP, TMEM98, PRSS56, BEST1, and CRB1) and two loci have been implicated in familial forms of nanophthalmos. Here, we review the definition of nanophthalmos, the clinical and pathogenic features of the condition, and the genetics of this disorder.
Collapse
|
22
|
Collery RF, Volberding PJ, Bostrom JR, Link BA, Besharse JC. Loss of Zebrafish Mfrp Causes Nanophthalmia, Hyperopia, and Accumulation of Subretinal Macrophages. Invest Ophthalmol Vis Sci 2017; 57:6805-6814. [PMID: 28002843 PMCID: PMC5215506 DOI: 10.1167/iovs.16-19593] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Purpose Mutations in membrane frizzled-related protein (MFRP) are associated with nanophthalmia, hyperopia, foveoschisis, irregular patches of RPE atrophy, and optic disc drusen in humans. Mouse mfrp mutants show retinal degeneration but no change in eye size or refractive state. The goal of this work was to generate zebrafish mutants to investigate the loss of Mfrp on eye size and refractive state, and to characterize other phenotypes observed. Methods Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 methods were used to generate multiple frameshift mutations in zebrafish mfrp causing premature translational stops in Mfrp. Spectral-domain optical coherence tomography (SD-OCT) was used to measure eye metrics and refractive state, and immunohistochemistry was used to study adult eyes. Gene expression levels were measured using quantitative PCR. Results Zebrafish Mfrp was shown to localize to apical and basal regions of RPE cells, as well as the ciliary marginal zone. Loss of Mfrp in mutant zebrafish was verified histologically. Zebrafish eyes that were mfrp mutant showed reduced axial length causing hyperopia, RPE folding, and macrophages were observed subretinally. Visual acuity was reduced in mfrp mutant animals. Conclusions Mutation of zebrafish mfrp results in hyperopia with subretinal macrophage infiltration, phenocopying aspects of human and mouse Mfrp deficiency. These mutant zebrafish will be useful in studying the onset and progression of Mfrp-related nanophthalmia, the cues that initiate the recruitment of macrophages, and the mechanisms of Mfrp function.
Collapse
Affiliation(s)
- Ross F Collery
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Peter J Volberding
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Jonathan R Bostrom
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Brian A Link
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Joseph C Besharse
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| |
Collapse
|
23
|
Mameesh M, Ganesh A, Harikrishna B, Al Zuhaibi S, Scott P, Al Kalbani S, Al Thihli K. Co-inheritance of the membrane frizzled-related protein ocular phenotype and glycogen storage disease type Ib. Ophthalmic Genet 2017; 38:544-548. [DOI: 10.1080/13816810.2017.1323340] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Maha Mameesh
- Department of Ophthalmology, Sultan Qaboos University Hospital, Muscat, Oman
| | - Anuradha Ganesh
- Department of Ophthalmology, Sultan Qaboos University Hospital, Muscat, Oman
| | - Beena Harikrishna
- Department of Ophthalmology, Sultan Qaboos University Hospital, Muscat, Oman
| | - Sana Al Zuhaibi
- Department of Ophthalmology, Sultan Qaboos University Hospital, Muscat, Oman
| | - Patrick Scott
- Department of Genetics, Sultan Qaboos University Hospital, Muscat, Oman
| | - Sami Al Kalbani
- Department of Genetics, Sultan Qaboos University Hospital, Muscat, Oman
| | - Khalid Al Thihli
- Department of Genetics, Sultan Qaboos University Hospital, Muscat, Oman
| |
Collapse
|
24
|
Roberts DK, Yang Y, Morettin CE, Newman TL, Roberts MF, Wilensky JT. Morphologic Patterns Formed by the Anomalous Fibers Occurring Along the Anterior Capsule of the Crystalline Lens in People With the Long Anterior Zonule Trait. Anat Rec (Hoboken) 2017; 300:1336-1347. [PMID: 28196403 DOI: 10.1002/ar.23570] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 07/16/2016] [Accepted: 08/27/2016] [Indexed: 11/07/2022]
Abstract
People with the long anterior zonule (LAZ) trait, which may have prevalence near 2%, have zonular fibers that extend more central than usual along the anterior capsule of the crystalline lens. The anomalous fibers can be observed in vivo with clinical slit lamp biomicroscopy after pharmacologic pupil dilation, and although minimally studied, the LAZ trait may have importance to glaucoma, retinal degeneration, and cataract surgery. To further characterize LAZ morphology, a custom computer program was used to trace LAZ fibers seen on retro-illumination photos acquired during previous study at an academic, urban eye care facility in Chicago, IL. There were 59 African-Americans (54 female; median age = 70 years, 53-91 years) included in the analysis. After initial review of the zonule tracings, we identified three basic LAZ patterns. We called one pattern (47% of right eyes) a "non-segmental LAZ pattern," which was predominated by fibers that could be visually traced to the dilated pupil border where they became obscured by the iris. Another pattern (35% of right eyes), the "segmental LAZ pattern," was predominated by fibers that appeared to terminate abruptly without detectable extension to the pupil border. The third pattern (18% of right eyes), the "mixed LAZ pattern," had a more equivalent mixture of the other two fiber morphologies. Compared to the "non-segmental" group, the "segmental" LAZ eyes had smaller central zonule-free zones (P < 0.0001), and they tended to exhibit fewer LAZ fibers (P = 0.07). These data improve understanding of LAZ clinical anatomy and may be helpful to future investigation. Anat Rec, 300:1336-1347, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Daniel K Roberts
- Department of Clinical Education, Illinois College of Optometry, Illinois Eye Institute, Chicago, Illinois.,Department of Epidemiology and Biostatistics, University of Illinois at Chicago, Chicago, Illinois.,Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois
| | - Yongyi Yang
- Department of Electrical and Computer Engineering, Illinois Institute of Technology, Chicago, Illinois
| | - Christina E Morettin
- Department of Clinical Education, Illinois College of Optometry, Illinois Eye Institute, Chicago, Illinois
| | - Tricia L Newman
- Department of Clinical Education, Illinois College of Optometry, Illinois Eye Institute, Chicago, Illinois
| | - Mary F Roberts
- Department of Clinical Education, Illinois College of Optometry, Illinois Eye Institute, Chicago, Illinois
| | - Jacob T Wilensky
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
25
|
Abstract
PURPOSE Mutations in MFRP have been reported to cause autosomal recessive posterior microphthalmia, nanophthalmos, and an ophthalmic syndrome characterized by posterior microphthalmia, high hyperopia, retinitis pigmentosa, foveoschisis, and optic disc drusen. High hyperopia is a consistent sign of this syndrome. The purpose of this study was to detect MFRP mutations in 46 unrelated Chinese probands with high hyperopia. METHODS Clinical data and genomic DNA were collected from 46 Chinese probands diagnosed as having high hyperopia. Genomic DNA from 42 probands was initially analyzed by whole exome sequencing. MFRP variants were confirmed by Sanger sequencing. The coding sequence of MFRP for four additional probands was also analyzed by Sanger sequencing. Candidate MFRP variants were further validated in available family members and 192 normal individuals. RESULTS Potential pathogenic compound heterozygous mutations, including c.287_291del (p.P96Lfs*6), c.1615C>T (p.R539C), c.664C>A (p.P222T), c.1150dup (p.H384Pfs*8), and c.1549C>T (p.R517W), were detected in three of the 46 probands included in this study. The clinical data revealed that all patients in this study had high hyperopia of +13.50D or higher and an eye axial length of 16.78 mm or less. Electroretinography showed normal responses in a patient with missense mutations and reduced rod responses in another patient with missense and truncation mutations in whom optical coherence tomography showed developmental cystoid macular degeneration in both eyes. CONCLUSIONS The current study expands our knowledge of the mutation spectrum of MFRP and its associated phenotypes. To our knowledge, this is the first report of MFRP mutations in a Chinese cohort.
Collapse
|
26
|
Gene profiling of postnatal Mfrprd6 mutant eyes reveals differential accumulation of Prss56, visual cycle and phototransduction mRNAs. PLoS One 2014; 9:e110299. [PMID: 25357075 PMCID: PMC4214712 DOI: 10.1371/journal.pone.0110299] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 09/18/2014] [Indexed: 12/02/2022] Open
Abstract
Mutations in the membrane frizzled-related protein (MFRP/Mfrp) gene, specifically expressed in the retinal pigment epithelium (RPE) and ciliary body, cause nanophthalmia or posterior microphthalmia with retinitis pigmentosa in humans, and photoreceptor degeneration in mice. To better understand MFRP function, microarray analysis was performed on eyes of homozygous Mfrprd6 and C57BL/6J mice at postnatal days (P) 0 and P14, prior to photoreceptor loss. Data analysis revealed no changes at P0 but significant differences in RPE and retina-specific transcripts at P14, suggesting a postnatal influence of the Mfrprd6 allele. A subset of these transcripts was validated by quantitative real-time PCR (qRT-PCR). In Mfrprd6 eyes, a significant 1.5- to 2.0-fold decrease was observed among transcripts of genes linked to retinal degeneration, including those involved in visual cycle (Rpe65, Lrat, Rgr), phototransduction (Pde6a, Guca1b, Rgs9), and photoreceptor disc morphogenesis (Rpgrip1 and Fscn2). Levels of RPE65 were significantly decreased by 2.0-fold. Transcripts of Prss56, a gene associated with angle-closure glaucoma, posterior microphthalmia and myopia, were increased in Mfrprd6 eyes by 17-fold. Validation by qRT-PCR indicated a 3.5-, 14- and 70-fold accumulation of Prss56 transcripts relative to controls at P7, P14 and P21, respectively. This trend was not observed in other RPE or photoreceptor mutant mouse models with similar disease progression, suggesting that Prss56 upregulation is a specific attribute of the disruption of Mfrp. Prss56 and Glul in situ hybridization directly identified Müller glia in the inner nuclear layer as the cell type expressing Prss56. In summary, the Mfrprd6 allele causes significant postnatal changes in transcript and protein levels in the retina and RPE. The link between Mfrp deficiency and Prss56 up-regulation, together with the genetic association of human MFRP or PRSS56 variants and ocular size, raises the possibility that these genes are part of a regulatory network influencing postnatal posterior eye development.
Collapse
|
27
|
Li Y, Wu WH, Hsu CW, Nguyen HV, Tsai YT, Chan L, Nagasaki T, Maumenee IH, Yannuzzi LA, Hoang QV, Hua H, Egli D, Tsang SH. Gene therapy in patient-specific stem cell lines and a preclinical model of retinitis pigmentosa with membrane frizzled-related protein defects. Mol Ther 2014; 22:1688-97. [PMID: 24895994 DOI: 10.1038/mt.2014.100] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 05/23/2014] [Indexed: 12/21/2022] Open
Abstract
Defects in Membrane Frizzled-related Protein (MFRP) cause autosomal recessive retinitis pigmentosa (RP). MFRP codes for a retinal pigment epithelium (RPE)-specific membrane receptor of unknown function. In patient-specific induced pluripotent stem (iPS)-derived RPE cells, precise levels of MFRP, and its dicistronic partner CTRP5, are critical to the regulation of actin organization. Overexpression of CTRP5 in naïve human RPE cells phenocopied behavior of MFRP-deficient patient RPE (iPS-RPE) cells. AAV8 (Y733F) vector expressing human MFRP rescued the actin disorganization phenotype and restored apical microvilli in patient-specific iPS-RPE cell lines. As a result, AAV-treated MFRP mutant iPS-RPE recovered pigmentation and transepithelial resistance. The efficacy of AAV-mediated gene therapy was also evaluated in Mfrp(rd6)/Mfrp(rd6) mice--an established preclinical model of RP--and long-term improvement in visual function was observed in AAV-Mfrp-treated mice. This report is the first to indicate the successful use of human iPS-RPE cells as a recipient for gene therapy. The observed favorable response to gene therapy in both patient-specific cell lines, and the Mfrp(rd6)/Mfrp(rd6) preclinical model suggests that this form of degeneration caused by MFRP mutations is a potential target for interventional trials.
Collapse
Affiliation(s)
- Yao Li
- Barbara and Donald Jonas Laboratory of Stem Cells and Regenerative Medicine, and Bernard and Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University, New York, New York, USA
| | - Wen-Hsuan Wu
- Barbara and Donald Jonas Laboratory of Stem Cells and Regenerative Medicine, and Bernard and Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University, New York, New York, USA
| | - Chun-Wei Hsu
- Barbara and Donald Jonas Laboratory of Stem Cells and Regenerative Medicine, and Bernard and Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University, New York, New York, USA
| | - Huy V Nguyen
- Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Yi-Ting Tsai
- Barbara and Donald Jonas Laboratory of Stem Cells and Regenerative Medicine, and Bernard and Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University, New York, New York, USA
| | - Lawrence Chan
- Barbara and Donald Jonas Laboratory of Stem Cells and Regenerative Medicine, and Bernard and Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University, New York, New York, USA
| | - Takayuki Nagasaki
- Barbara and Donald Jonas Laboratory of Stem Cells and Regenerative Medicine, and Bernard and Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University, New York, New York, USA
| | - Irene H Maumenee
- Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Lawrence A Yannuzzi
- Barbara and Donald Jonas Laboratory of Stem Cells and Regenerative Medicine, and Bernard and Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University, New York, New York, USA
| | - Quan V Hoang
- 1] Barbara and Donald Jonas Laboratory of Stem Cells and Regenerative Medicine, and Bernard and Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University, New York, New York, USA [2] New York-Presbyterian Hospital/Columbia University Medical Center, New York, New York, USA
| | - Haiqing Hua
- 1] Division of Molecular Genetics, Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia University, New York, New York, USA [2] New York Stem Cell Foundation, New York, New York, USA
| | - Dieter Egli
- New York Stem Cell Foundation, New York, New York, USA
| | - Stephen H Tsang
- 1] New York-Presbyterian Hospital/Columbia University Medical Center, New York, New York, USA [2] Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| |
Collapse
|
28
|
Nonsense-mediated mRNA decay immunity can help identify human polycistronic transcripts. PLoS One 2014; 9:e91535. [PMID: 24621851 PMCID: PMC3951408 DOI: 10.1371/journal.pone.0091535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 02/13/2014] [Indexed: 11/19/2022] Open
Abstract
Eukaryotic polycistronic transcription units are rare and only a few examples are known, mostly being the outcome of serendipitous discovery. We claim that nonsense-mediated mRNA decay (NMD) immune structure is a common characteristic of polycistronic transcripts, and that this immunity is an emergent property derived from all functional CDSs. The human RefSeq transcriptome was computationally screened for transcripts capable of eliciting NMD, and which contain an additional ORF(s) potentially capable of rescuing the transcript from NMD. Transcripts were further analyzed implementing domain-based strategies in order to estimate the potential of the candidate ORF to encode a functional protein. Consequently, we predict the existence of forty nine novel polycistronic transcripts. Experimental verification was carried out utilizing two different types of analyses. First, five Gene Expression Omnibus (GEO) datasets from published NMD-inhibition studies were used, aiming to explore whether a given mRNA is indeed insensitive to NMD. All known bicistronic transcripts and eleven out of the twelve predicted genes that were analyzed, displayed NMD insensitivity using various NMD inhibitors. For three genes, a mixed expression pattern was observed presenting both NMD sensitivity and insensitivity in different cell types. Second, we used published global translation initiation sequencing data from HEK293 cells to verify the existence of translation initiation sites in our predicted polycistronic genes. In five of our genes, the predicted rescuing uORFs are indeed identified as translation initiation sites, and in two additional genes, one of two predicted rescuing uORF is verified. These results validate our computational analysis and reinforce the possibility that NMD-immune architecture is a parameter by which polycistronic genes can be identified. Moreover, we present evidence for NMD-mediated regulation controlling the production of one or more proteins encoded in the polycistronic transcript.
Collapse
|
29
|
Sharmila F, Abinayapriya, Ramprabhu K, Kumaramanickavel G, R R Sudhir, Sripriya S. Genetic analysis of axial length genes in high grade myopia from Indian population. Meta Gene 2014; 2:164-75. [PMID: 25606400 PMCID: PMC4287827 DOI: 10.1016/j.mgene.2014.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 01/09/2014] [Accepted: 01/09/2014] [Indexed: 11/29/2022] Open
Abstract
Purpose To study the putative association of Membrane frizzled related protein (MFRP) and Visual system homeobox protein (VSX2) gene variants with axial length (AL) in myopia. Method A total of 189 samples with (N = 98) and without (N = 91) myopia were genotyped for the MRFP and VSX2 variations in ABI Prism 3100 AVANT genetic analyzer. Genotype/haplotype analysis was performed using PLINK, Haploview and THESIAS softwares. Results Fifteen variations were observed in the MFRP gene of which, rs36015759 (c.492C > T, T164T) in exon 5 was distributed at a high frequency in the controls and significantly associated with a low risk for myopia (P = 4.10 ∗ e− 07 OR < 1.0). An increased frequency for the coding haplotype block [CGTCGG] harboring rs36015759 was observed in controls (31%) than cases (8%) that also correlated with a decreased mean AL (− 1.35085; P = 0.000444) by THESIAS analysis. The ‘T’ allele of rs36015759 was predicted to abolish the binding site for splicing enhancer (SRp40) by FASTSNP analysis. Conclusion Myopia is a complex disorder influenced by genetic and environmental factors. Our work shows evidence of association of a specific MFRP haplotype which was more prevalent in controls with decreased AL. However, replication and functional studies are warranted to confirm these findings.
Collapse
Affiliation(s)
- Ferdinamarie Sharmila
- SN ONGC, Department of Genetics and Molecular Biology, Vision Research Foundation, India ; Birla Institute of Technology & Science (BITS), Pilani, 333 031 Rajasthan, India
| | - Abinayapriya
- Medical Research Foundation, Sankara Nethralaya, Chennai, India
| | - Karthikeyan Ramprabhu
- SN ONGC, Department of Genetics and Molecular Biology, Vision Research Foundation, India
| | | | - R R Sudhir
- Preventive Ophthalmology Department, Sankara Nethralaya, Chennai, India
| | - Sarangapani Sripriya
- SN ONGC, Department of Genetics and Molecular Biology, Vision Research Foundation, India
| |
Collapse
|
30
|
Gene therapy in the rd6 mouse model of retinal degeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 801:711-8. [PMID: 24664762 DOI: 10.1007/978-1-4614-3209-8_89] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The rd6 mouse is a natural model of an RPE-based (retinal pigment epithelium) autosomal recessive retinitis pigmentosa (RP) caused by mutations in the Mfrp (membrane-type frizzled related protein) gene. Previously, we showed that subretinal delivery of the wild-type mouse Mfrp mediated by a tyrosine-capsid mutant scAAV8 (Y733F) vector prevented photoreceptor cell death, and rescued retinal function as assessed by electroretinography. In this study, we describe the effect of gene therapy on the retinal structure and function in rd6 mice using a quadruple (Y272, 444, 500, 730F) tyrosine-capsid mutant scAAV2 viral vector delivered subretinally at postnatal day 14 (P14). We show that therapy is effective at slowing the photoreceptor degeneration, and in preventing the characteristic accumulation of abnormal phagocytic cells in the subretinal space. MFRP expression as driven by the ubiquitous chicken β-actin (smCBA) promoter in treated rd6 mice was found predominantly in the RPE apical membrane and the entire length of its microvilli, as well as in the photoreceptor inner segments, suggesting a potential interaction with actin filaments. In spite of preserving retinal morphology, the effects of gene therapy on retinal function were minimal, suggesting that the scAAV8 (Y733F) vector may be more efficient for the treatment of RP caused by Mfrp mutations.
Collapse
|
31
|
Won J, Charette JR, Philip VM, Stearns TM, Zhang W, Naggert JK, Krebs MP, Nishina PM. Genetic modifier loci of mouse Mfrp(rd6) identified by quantitative trait locus analysis. Exp Eye Res 2013; 118:30-5. [PMID: 24200520 DOI: 10.1016/j.exer.2013.10.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 10/27/2013] [Indexed: 11/25/2022]
Abstract
The identification of genes that modify pathological ocular phenotypes in mouse models may improve our understanding of disease mechanisms and lead to new treatment strategies. Here, we identify modifier loci affecting photoreceptor cell loss in homozygous Mfrp(rd6) mice, which exhibit a slowly progressive photoreceptor degeneration. A cohort of 63 F2 homozygous Mfrp(rd6) mice from a (B6.C3Ga-Mfrp(rd6)/J × CAST/EiJ) F1 intercross exhibited a variable number of cell bodies in the retinal outer nuclear layer at 20 weeks of age. Mice were genotyped with a panel of single nucleotide polymorphism markers, and genotypes were correlated with phenotype by quantitative trait locus (QTL) analysis to map modifier loci. A genome-wide scan revealed a statistically significant, protective candidate locus on CAST/EiJ Chromosome 1 and suggestive modifier loci on Chromosomes 6 and 11. Multiple regression analysis of a three-QTL model indicated that the modifier loci on Chromosomes 1 and 6 together account for 26% of the observed phenotypic variation, while the modifier locus on Chromosome 11 explains only an additional 4%. Our findings indicate that the severity of the Mfrp(rd6) retinal degenerative phenotype in mice depends on the strain genetic background and that a significant modifier locus on CAST/EiJ Chromosome 1 protects against Mfrp(rd6)-associated photoreceptor loss.
Collapse
Affiliation(s)
- Jungyeon Won
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | | | - Vivek M Philip
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | | | - Weidong Zhang
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Jürgen K Naggert
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Mark P Krebs
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Patsy M Nishina
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA.
| |
Collapse
|
32
|
Merker JD, Roskin KM, Ng D, Pan C, Fisk DG, King JJ, Hoh R, Stadler M, Okumoto LM, Abidi P, Hewitt R, Jones CD, Gojenola L, Clark MJ, Zhang B, Cherry AM, George TI, Snyder M, Boyd SD, Zehnder JL, Fire AZ, Gotlib J. Comprehensive whole-genome sequencing of an early-stage primary myelofibrosis patient defines low mutational burden and non-recurrent candidate genes. Haematologica 2013; 98:1689-96. [PMID: 23872309 DOI: 10.3324/haematol.2013.092379] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In order to identify novel somatic mutations associated with classic BCR/ABL1-negative myeloproliferative neoplasms, we performed high-coverage genome sequencing of DNA from peripheral blood granulocytes and cultured skin fibroblasts from a patient with MPL W515K-positive primary myelofibrosis. The primary myelofibrosis genome had a low somatic mutation rate, consistent with that observed in similar hematopoietic tumor genomes. Interfacing of whole-genome DNA sequence data with RNA expression data identified three somatic mutations of potential functional significance: i) a nonsense mutation in CARD6, implicated in modulation of NF-kappaB activation; ii) a 19-base pair deletion involving a potential regulatory region in the 5'-untranslated region of BRD2, implicated in transcriptional regulation and cell cycle control; and iii) a non-synonymous point mutation in KIAA0355, an uncharacterized protein. Additional mutations in three genes (CAP2, SOX30, and MFRP) were also evident, albeit with no support for expression at the RNA level. Re-sequencing of these six genes in 178 patients with polycythemia vera, essential thrombocythemia, and myelofibrosis did not identify recurrent somatic mutations in these genes. Finally, we describe methods for reducing false-positive variant calls in the analysis of hematologic malignancies with a low somatic mutation rate. This trial is registered with ClinicalTrials.gov (NCT01108159).
Collapse
|
33
|
Dinculescu A, Estreicher J, Zenteno JC, Aleman TS, Schwartz SB, Huang WC, Roman AJ, Sumaroka A, Li Q, Deng WT, Min SH, Chiodo VA, Neeley A, Liu X, Shu X, Matias-Florentino M, Buentello-Volante B, Boye SL, Cideciyan AV, Hauswirth WW, Jacobson SG. Gene therapy for retinitis pigmentosa caused by MFRP mutations: human phenotype and preliminary proof of concept. Hum Gene Ther 2012; 23:367-76. [PMID: 22142163 DOI: 10.1089/hum.2011.169] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Autosomal recessive retinitis pigmentosa (RP), a heterogeneous group of degenerations of the retina, can be due to mutations in the MFRP (membrane-type frizzled-related protein) gene. A patient with RP with MFRP mutations, one of which is novel and the first splice site mutation reported, was characterized by noninvasive retinal and visual studies. The phenotype, albeit complex, suggested that this retinal degeneration may be a candidate for gene-based therapy. Proof-of-concept studies were performed in the rd6 Mfrp mutant mouse model. The fast-acting tyrosine-capsid mutant AAV8 (Y733F) vector containing the small chicken β-actin promoter driving the wild-type mouse Mfrp gene was used. Subretinal vector delivery on postnatal day 14 prevented retinal degeneration. Treatment rescued rod and cone photoreceptors, as assessed by electroretinography and retinal histology at 2 months of age. This AAV-mediated gene delivery also resulted in robust MFRP expression predominantly in its normal location within the retinal pigment epithelium apical membrane and its microvilli. The clinical features of MFRP-RP and our preliminary data indicating a response to gene therapy in the rd6 mouse suggest that this form of RP is a potential target for gene-based therapy.
Collapse
Affiliation(s)
- Astra Dinculescu
- Department of Ophthalmology, University of Florida, Gainesville, FL 32610, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Fogerty J, Besharse JC. 174delG mutation in mouse MFRP causes photoreceptor degeneration and RPE atrophy. Invest Ophthalmol Vis Sci 2011; 52:7256-66. [PMID: 21810984 DOI: 10.1167/iovs.11-8112] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE The authors have identified a recessive mutation causing progressive retinal degeneration, white fundus flecks, and eventual retinal pigment epithelium (RPE) atrophy. The goal of these studies was to characterize the retinal phenotype, to identify the causative locus, and to examine possible functions of the affected gene. METHODS SNP mapping, DNA sequencing, and genetic complementation were used to identify the affected locus. Histology, electroretinography, immunohistochemistry, Western blot analysis, fundus photography, electron microscopy, and in vitro phagocytosis assays were used to characterize the phenotype of the mouse. RESULTS Gene mapping identified a single base pair deletion in membrane-type frizzled related protein (MFRP), designated Mfrp(174delG). MFRP is normally expressed in the RPE and ciliary body but was undetectable by Western blot in mutants. CTRP5, a binding partner of MFRP, was upregulated at the mRNA level and at the protein level in most patients. Assays designed to test the integrity of retinoid cycling and phagocytic pathways showed no deficits in Mfrp(174delG) or rd6 animals. However, the RPE of both Mfrp(174delG) and rd6 mice exhibited a dramatic increase in the number of apical microvilli. Furthermore, evidence of RPE atrophy was evident in Mfrp(174delG) mice by 21 months. CONCLUSIONS The authors have identified a novel null mutation in mouse Mfrp. This mutation causes photoreceptor degeneration and eventual RPE atrophy, which may be related to alterations in the number of RPE microvilli. These mice will be useful to identify a function of MFRP and to study the pathogenesis of atrophic macular degeneration.
Collapse
Affiliation(s)
- Joseph Fogerty
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | |
Collapse
|
35
|
Chavali VRM, Sommer JR, Petters RM, Ayyagari R. Identification of a promoter for the human C1Q-tumor necrosis factor-related protein-5 gene associated with late-onset retinal degeneration. Invest Ophthalmol Vis Sci 2010; 51:5499-507. [PMID: 20554618 DOI: 10.1167/iovs.10-5543] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE The Complement-1q tumor necrosis factor-related protein 5 (C1QTNF5/CTRP5) gene is located in the 3' untranslated region of the Membrane Frizzled Related Protein (MFRP) gene, and these two genes are reported to be dicistronic. The authors examined the 5' upstream sequence of CTRP5 for the presence of a promoter regulating the expression of this gene. METHODS The sequence upstream of the translational start site of human CTRP5 (hCTRP5) was analyzed by Promoter Inspector software. A series of plasmids containing segments of hCTRP5 putative promoter sequence (-29 bp to -3.6 kb) upstream of the luciferase gene were generated. Cells were transiently transfected with these plasmids, and luciferase activity was measured. 5' RACE analysis was performed to determine the functional transcription start site. V5 tagged-pig CTRP5 (pCTRP5) gene, cloned downstream of the hCTRP5 putative promoter, was expressed in a human retinal cell line (ARPE-19) and a Chinese hamster ovary cell line (CHO-K1) to study the functionality of the putative promoter. RESULTS Bioinformatic analysis identified a putative promoter region between nt -1322 and +1 sequence of hCTRP5. 5' RACE analysis revealed the presence of the transcriptional start site (TSS) at 62 bp upstream of the start codon in the CTRP5. The 1.3-kb sequence of the hCTRP5 predicted promoter produced higher levels of luciferase activity, indicating the strength of the cloned CTRP5 promoter. The promoter sequence between nt -1322 bp to -29 bp upstream of the first ATG of CTRP5 was found to be essential for this promoter activity. The predicted hCTRP5 promoter was found to control the expression of V5-tagged pCTRP5 and nuclear GFP, indicating that the promoter was functional. CONCLUSIONS This study revealed the presence of a functional promoter for the CTRP5 gene located 5' of its start site. Understanding the regulation of CTRP5 gene transcription may provide insights into the possible role of CTRP5 in the retina and the pathology underlying late-onset retinal degeneration caused by mutations in this gene. In addition, these studies will determine whether CTRP5 and MFRP are functionally dicistronic.
Collapse
Affiliation(s)
- Venkata R M Chavali
- Department of Ophthalmology, University of California San Diego, La Jolla, California, USA
| | | | | | | |
Collapse
|
36
|
|
37
|
Membrane frizzled-related protein is necessary for the normal development and maintenance of photoreceptor outer segments. Vis Neurosci 2009; 25:563-74. [PMID: 18764959 DOI: 10.1017/s0952523808080723] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A 4 base pair deletion in a splice donor site of the Mfrp (membrane-type frizzled-related protein) gene, herein referred to as Mfrprd6/rd6, is predicted to lead to the skipping of exon 4 and photoreceptor degeneration in retinal degeneration 6 (rd6) mutant mice. Little, however, is known about the function of the protein or how the mutation causes the degenerative retinal phenotype. Here we examine ultrastructural changes in the retina of Mfrprd6/rd6 mice to determine the earliest effects of the mutation. We also extend the reported observations of the expression pattern of the dicistronic Mfrp/C1qtnf5 message and the localization of these and other retinal pigment epithelium (RPE) and retinal proteins during development and assess the ability of RPE cells to phagocytize outer segments (OSs) in mutant and wild-type (WT) mice. At the ultrastructural level, OSs do not develop normally in Mfrprd6/rd6 mutants. They are disorganized and become progressively shorter as mutant mice age. Additionally, there are focal areas in which there is a reduction of apical RPE microvilli. At P25, the rod electroretinogram (ERG) a-wave of Mfrprd6/rd6 mice is reduced in amplitude by ~50% as are ERG components generated by the RPE. Examination of beta-catenin localization and Fos and Tcf-1 expression, intermediates of the canonical Wnt pathway, showed that they were not different between mutant and WT mice, suggesting that MFRP may operate through an alternative pathway. Finally, impaired OS phagocytosis was observed in Mfrprd6/rd6 mice both in standard ambient lighting conditions and with bright light exposure when compared to WT controls.
Collapse
|
38
|
Sundin OH, Dharmaraj S, Bhutto IA, Hasegawa T, McLeod DS, Merges CA, Silval ED, Maumenee IH, Lutty GA. Developmental basis of nanophthalmos: MFRP Is required for both prenatal ocular growth and postnatal emmetropization. Ophthalmic Genet 2008; 29:1-9. [PMID: 18363166 DOI: 10.1080/13816810701651241] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Nanophthalmos is a genetic disorder characterized by very small, hyperopic eyes that are without gross structural defects. Recessive nanophthalmos is caused by severe mutations in the MFRP gene, which encodes a Frizzled-related transmembrane protein that is selectively expressed in the retinal pigment epithelium (RPE) and ciliary body. RESULTS For two MFRP -/- adults, we have obtained records of refraction that begin in early childhood. At the age of 6 months, one patient's eyes already had a refractive error of +12.25 D, and over the next 20 years this slowly increased to +17.50 D. Adults homozygous for null mutations in MFRP have eyes with axial lengths shorter than those of normal newborns. Furthermore, the unusually high curvature of their corneas is consistent with eyes that had been smaller than normal during late fetal development. MFRP protein was first detected at 14 weeks of gestation, when it was restricted to the posterior pole RPE. By 20 weeks gestation, MFRP expression had spread laterally, and was found throughout the RPE. MFRP protein was detected in both posterior and lateral RPE of the adult eye. CONCLUSIONS Embryonic function of the MFRP gene appears necessary for the eye to reach its full size at birth. Its onset of expression in the RPE during mid-gestation suggests that MFRP does not participate in early formation of the optic cup, and is consistent with a role in later growth and development of the eye. Patients without MFRP gene function exhibit no correction of refractive error during childhood, which suggests that this gene is essential for emmetropization, a complex process by which vision regulates axial growth of the eye.
Collapse
Affiliation(s)
- Olof H Sundin
- Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287-92889, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Shu X, Tulloch B, Lennon A, Vlachantoni D, Zhou X, Hayward C, Wright AF. Disease mechanisms in late-onset retinal macular degeneration associated with mutation in
C1QTNF5. Hum Mol Genet 2006; 15:1680-9. [PMID: 16600989 DOI: 10.1093/hmg/ddl091] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Late-onset retinal macular degeneration (L-ORMD) is an autosomal dominant condition resembling age-related macular degeneration (AMD) in which a key pathological feature is a thick extracellular sub-retinal pigment epithelial (RPE) deposit. L-ORMD is caused by mutation in the C1QTNF5 (CTRP5) short-chain collagen gene, but the disease mechanism is unknown. Here, we first show that wild-type C1QTNF5 is secreted, whereas mutant C1QTNF5 is misfolded and retained within the endoplasmic reticulum (ER). Secondly, the ER retained mutant protein has a shorter half-life than wild-type C1QTNF5 and is preferentially degraded by proteasomes. Thirdly, C1QTNF5 is shown to interact with the membrane-type frizzled related protein (MFRP), on the basis of yeast two-hybrid, protein pull-down and co-immunoprecipitation assays and RPE co-localization. These data suggest that L-ORMD is due to insufficient levels of secreted C1QTNF5, compromised RPE cell function resulting from ER retention of the mutant protein or both mechanisms.
Collapse
Affiliation(s)
- Xinhua Shu
- MRC Human Genetics Unit, Western General Hospital, Edinburgh EH4 2XU, UK.
| | | | | | | | | | | | | |
Collapse
|
40
|
Pauer GJT, Xi Q, Zhang K, Traboulsi EI, Hagstrom SA. Mutation screen of the membrane-type frizzled-related protein (MFRP) gene in patients with inherited retinal degenerations. Ophthalmic Genet 2006; 26:157-61. [PMID: 16352475 DOI: 10.1080/13816810500374425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
MFRP is a member of the frizzled-related protein family and contains a cysteine-rich domain essential for Wnt binding and signaling. MFRP is highly expressed in the retinal pigment epithelial cells of the eye. A splice donor mutation in the mouse ortholog of Mfrp is responsible for photoreceptor degeneration in the rd6 mouse. For these reasons, we investigated MFRP as a candidate gene for a phenotype associated with mutations. We screened 152 patients with inherited retinal degenerations including retinitis pigmentosa, Leber congenital amaurosis and Stargardt macular dystrophy. We identified five polymorphisms in the 5' untranslated region, four missense changes, six isocoding variants and four intronic changes. None of the sequence variants were interpreted as pathogenic.
Collapse
Affiliation(s)
- Gayle J T Pauer
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | | | | | | | |
Collapse
|
41
|
Yam JWP, Chan KW, Ngan ESW, Hsiao WLW. Genomic structure, alternative splicing and tissue expression of rFrp/sFRP-4, the rat frizzled related protein gene. Gene 2005; 357:55-62. [PMID: 16005582 DOI: 10.1016/j.gene.2005.05.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2004] [Revised: 04/10/2005] [Accepted: 05/10/2005] [Indexed: 12/24/2022]
Abstract
Secreted frizzled related proteins (sFRP) are regulators of Wnt signaling pathways that play central roles in developmental processes and oncogenesis. Various sFRP genes have been cloned from different tissues and implicated in diverse biological activities. rFrp, the rat homologue of sFRP-4, was initially identified as being upregulated in mutant p53-induced cellular transformation. Here, we report on the isolation of five novel splice variants, rFrp/sFRP-4 II, II, III, IVa and IVb. The complete rFrp/sFRP-4 genomic structure spans over 31 kb covering 9 exons. Except for the variant IVb, which was derived from IVa by alternative polyadenylation signal, variants I to IVa were alternatively spliced to different exons in the 3'end of mRNA and resulted in transcripts with truncated open reading frame. The deduced proteins of the variants had truncated C-termini, however, the two key functional protein domains, the cysteine-rich domain and the netrin-like domain of the isoforms, were not altered. In addition, different transcriptional initiation sites were found with variants II and IV, implying that these variants may be regulated differently from the rFrp/sFRP-4. RT-PCR analysis showed that these splice variants displayed different patterns of tissue-specific expression. Northern blot analysis revealed that the rFrp/sFRP-4 is most abundant in the ovary. Taken together, our findings suggest that alternative splicing of rFrp/sFRP-4 plays a role in regulating tissue-specific expression. The truncated C terminals of rFrp/sFRP-4 variants may confer structural specificity and hence exert different biological functions in different tissues. Characterization of these novel splice variants should help to elucidate the function of the sFRP family gene.
Collapse
Affiliation(s)
- Judy Wai Ping Yam
- Biomedical Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | | | | | | |
Collapse
|
42
|
Sundin OH, Leppert GS, Silva ED, Yang JM, Dharmaraj S, Maumenee IH, Santos LC, Parsa CF, Traboulsi EI, Broman KW, Dibernardo C, Sunness JS, Toy J, Weinberg EM. Extreme hyperopia is the result of null mutations in MFRP, which encodes a Frizzled-related protein. Proc Natl Acad Sci U S A 2005; 102:9553-8. [PMID: 15976030 PMCID: PMC1172243 DOI: 10.1073/pnas.0501451102] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nanophthalmos is a rare disorder of eye development characterized by extreme hyperopia (farsightedness), with refractive error in the range of +8.00 to +25.00 diopters. Because the cornea and lens are normal in size and shape, hyperopia occurs because insufficient growth along the visual axis places these lensing components too close to the retina. Nanophthalmic eyes show considerable thickening of both the choroidal vascular bed and scleral coat, which provide nutritive and structural support for the retina. Thickening of these tissues is a general feature of axial hyperopia, whereas the opposite occurs in myopia. We have mapped recessive nanophthalmos to a unique locus at 11q23.3 and identified four independent mutations in MFRP, a gene that is selectively expressed in the eye and encodes a protein with homology to Tolloid proteases and the Wnt-binding domain of the Frizzled transmembrane receptors. This gene is not critical for retinal function, as patients entirely lacking MFRP can still have good refraction-corrected vision, produce clinically normal electro-retinograms, and show only modest anomalies in the dark adaptation of photoreceptors. MFRP appears primarily devoted to regulating axial length of the eye. It remains to be determined whether natural variation in its activity plays a role in common refractive errors.
Collapse
Affiliation(s)
- Olof H Sundin
- Laboratory of Developmental Genetics, The Johns Hopkins University, Baltimore, MD 21287, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Michishita M, Ikeda T, Nakashiba T, Ogawa M, Tashiro K, Honjo T, Doi K, Itohara S, Endo S. Expression of Btcl2, a novel member of Btcl gene family, during development of the central nervous system. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2004; 153:135-42. [PMID: 15464227 DOI: 10.1016/j.devbrainres.2004.06.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/14/2004] [Indexed: 10/26/2022]
Abstract
Cell-cell interactions are primarily mediated by secreted and transmembrane proteins which play essential roles in the neuronal circuit formation. However, molecular mechanisms underlying neuronal circuit formation, which is mediated by the cell-cell interactions, remain largely elusive. We isolated and characterized a novel gene, Btcl2 (brain-specific transmembrane protein containing CUB [complement subcomponent C1r/C1s, sea urchin protein Uegf, and BMP-1] and LDLa [low-density lipoprotein receptor domain class A] domains 2), using the signal sequence trap (SST) method. The extracellular domain of BTCL2 contains two CUB domains and an LDLa domain. BTCL2 and BTCL1 have similar domain structures, sharing 51% overall identity. The CUB1, CUB2, and LDLa domains of these two proteins share 63%, 72%, and 84% identity, respectively. The CUB domains of BTCL1 and BTCL2 share significant identity with those of neuropilins. Btcl2 mRNA was detected as a single 6-kb transcript in Northern blot analysis. In situ hybridization (ISH) analysis revealed that both Btcl1 and Btcl2 mRNAs were observed restrictively in brain throughout embryonic and postnatal stages. Btcl1 and Btcl2 mRNAs were expressed uniquely in the pontine nucleus and subplate, which are required for establishing the neuronal circuit formation. These results will aid in resolving the mechanisms underlying neuronal circuit formations (e.g., pontocerebellar and thalamocortical axon guidance) and permit more precise studies aimed at understanding the role of BTCL1 and BTCL2 in the central nervous system.
Collapse
Affiliation(s)
- Masaki Michishita
- Department of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Elamaa H, Snellman A, Rehn M, Autio-Harmainen H, Pihlajaniemi T. Characterization of the human type XVIII collagen gene and proteolytic processing and tissue location of the variant containing a frizzled motif. Matrix Biol 2003; 22:427-42. [PMID: 14614989 DOI: 10.1016/s0945-053x(03)00073-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Human type XVIII collagen was found to be expressed as three variants, termed NC1-303, NC1-493 and NC1-728, differing in their N-terminal non-collagenous domains (NC1). The corresponding gene was found to be approximately 105 kb in size and contain 43 exons. The short variant is derived from utilization of an upstream promoter associated with the first two exons of the gene. The two other variants are derived from a downstream promoter and alternative splicing of exon 3, resulting in 192 residues of shared sequences characterized by a putative approximately 30 residue conserved coiled-coil motif and 235 residues of sequences specific to NC1-728. The NC1-728 variant has a conserved cysteine-rich domain homologous with the ligand-binding part of the frizzled proteins. A polyclonal antibody specific to the NC1-728 variant was generated, and immunostaining of fetal tissues revealed staining in lung and skeletal muscle. Human serum contained 173- and 144-kDa alpha1(XVIII) chains corresponding to the NC1-728 and NC1-493 variants, respectively. A 200-kDa polypeptide was detected in cells transfected with a cDNA construct corresponding to the full-length NC1-728 variant, and EBNA-293 cells endogenously synthesizing low amounts of type XVIII collagen had a 45-kDa fragment in their culture medium that corresponded to most of the NC1 domain of the NC1-728 variant, suggesting processing of the N-terminal frizzled-containing domain.
Collapse
Affiliation(s)
- Harri Elamaa
- Collagen Research Unit, Biocenter Oulu, Department of Medical Biochemistry and Molecular Biology, University of Oulu, P.O. Box 5000, Oulu 90014, Finland
| | | | | | | | | |
Collapse
|
45
|
Wong VKW, Yam JWP, Hsiao WLW. Cloning and characterization of the promoter region of the mouse frizzled-related protein 4 gene. Biol Chem 2003; 384:1147-54. [PMID: 12974383 DOI: 10.1515/bc.2003.127] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Frizzled-related protein (Frp) is a newly identified family of secreted proteins involved in the Wnt signaling pathway. To date, little is known about the underlying mechanisms regulating Frp expression. In this study the promoter region of mouse frizzled related protein 4 (sFrp4) gene was cloned, sequenced, and analyzed using transient reporter assays along with site-directed mutagenesis. Two clusters of cis-acting elements, STAT3/Lyf-1/MZF1 (site 1) and C/EBP-beta/ GATA-1/CREB (site 2) located in the promoter region from -238 to -144 were found to be essential for the promoter activity of sFrp4. In addition to sites 1 and 2, putative transcriptional factor binding sites for TFIID, SP1/GC and ATF/CREB exhibited positive, while the site for NRSE exhibited negative regulatory functions, as determined by the alkaline phosphatase activities of the reporter assay. We also demonstrate that the ATF/CREB site may cooperatively interact with the NRSF-like element in regulating sFrp4 promoter activity. The data of our study, which is the first promoter analysis of mouse Frp genes, provide the basis for understanding the functions and the regulation of Frp and its role in regulating Wnt signals.
Collapse
Affiliation(s)
- Vincent Kam Wai Wong
- Department of Biology, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | | | | |
Collapse
|
46
|
Yam JWP, Chan KW, Hsiao WLW. Transcriptional regulation of the promoter of the rat frizzled related protein gene by CREB. Oncogene 2003; 22:3901-10. [PMID: 12813463 DOI: 10.1038/sj.onc.1206489] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Frizzled related proteins (Frps) are secreted proteins structurally similar to frizzled receptors; they bind Wnt via the cysteine-rich domain and antagonize the Wnt signaling pathway. In this study, we have investigated the mechanisms regulating the transcriptional regulation of rat Frp (rFrp) promoter. From previous findings, we know that the transcriptional activation domain of rFrp resides in the region -202 to -144 relative to the transcription start site, and that it is essential for efficient promoter activity. The study presented here was designed to identify trans-acting factors that bind to this critical domain of the rFrp promoter and to elucidate the pathway involved in the regulation of rFrp expression. Electrophoretic mobility shift assay (EMSA) demonstrated that specific DNA-protein binding activities fall into two adjacent core sequences with (CTTTGGGGG) at -197 to -189 and (AGATGATGTAA) at -151 to -141 of the rFrp promoter. Reporter assay showed that these core sequences are both required for the activation of rFrp promoter. Mutation within either one or both core sequence drastically reduced the promoter activity. Southwestern blotting showed that the estimated molecular mass of the distinct binding protein to the (AGATGATGTAA) domain is about 43 kDa. Further EMSA suggested CREB as the trans-acting factor in the DNA-protein complex, which was out competed by CREB consensus oligonucleotides and supershifted by anti-CREB antibody. Overexpression of PKA and CREB also transactivated rFrp promoter, and dominant-negative CREB inhibited the promoter activity in transient reporter assays. More importantly, CREB, phosphorylated CREB and the adaptor protein CBP were found binding to the endogenous rFrp promoter using chromatin immunoprecipitation assay. Collectively, our results demonstrate the induction of rFrp promoter activity by PKA and CREB in vitro, and the binding of CREB and CBP to the rFrp promoter core motif in vivo.
Collapse
Affiliation(s)
- Judy Wai Ping Yam
- Department of Biology, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | | | | |
Collapse
|
47
|
Jones SE, Jomary C. Secreted Frizzled-related proteins: searching for relationships and patterns. Bioessays 2002; 24:811-20. [PMID: 12210517 DOI: 10.1002/bies.10136] [Citation(s) in RCA: 317] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Secreted Frizzled-related proteins (SFRPs) are modulators of the intermeshing pathways in which signals are transduced by Wnt ligands through Frizzled (Fz) membrane receptors. The Wnt networks influence biological processes ranging from developmental cell fate, cell polarity and adhesion to tumorigenesis and apoptosis. In the five or six years since their discovery, the SFRPs have emerged as dynamically expressed proteins able to bind both Wnts and Fz, with distinctive structural properties in which cysteine-rich domains from Fz- and from netrin-like proteins are juxtaposed. The abundant expression of SFRP genes in the early embryo, altered expression patterns in disease states, and potential significance in the evolution of the vertebrate body plan, make these intriguing molecules relevant to investigations in diverse fields of biology and biomedical sciences.
Collapse
Affiliation(s)
- Steve E Jones
- Retinitis Pigmentosa Research Unit, Division of Pharmacology and Theraputics, GKT School of Biomedical Sciences, The Rayne Institute, St Thomas' Hospital, London UK.
| | | |
Collapse
|
48
|
Stöhr H, Berger C, Fröhlich S, Weber BHF. A novel gene encoding a putative transmembrane protein with two extracellular CUB domains and a low-density lipoprotein class A module: isolation of alternatively spliced isoforms in retina and brain. Gene 2002; 286:223-31. [PMID: 11943477 DOI: 10.1016/s0378-1119(02)00438-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We report herein the cDNA cloning of a novel retina and brain specific gene from mouse and human encoding a putative transmembrane protein with an N-terminal signal sequence and two conserved extracellular CUB domains followed by a single copy of the low-density lipoprotein class A (LDLa) module. The mouse and human genes, termed NETO1 (neuropilin and tolloid like-1), display sequence identities of 87% at the nucleotide and 95% at the protein level. The human NETO1 gene comprises 13 exons on chromosome 18q22-q23 and gives rise to three different mRNA isoforms. Two alternative leader exons 1a and 1b generate transcripts that translate into putative signal peptides with individual sequence composition but otherwise do not affect the primary structure of the mature NETO1 protein. Usage of the internal exon 5 is restricted to the retinal tissue and generates a truncated transcript that codes for a putative soluble protein, termed sNETO1, with only one copy of the CUB domain while lacking the LDLa module. NETO1 exhibits 57% identity to the deduced amino acid sequence of a non-annotated nucleotide sequence in the GenBank database, therefore designated NETO2. Both NETO1 and NETO2 share an identical and unique domain structure thus representing a novel subfamily of CUB- and LDLa-containing proteins. The cytoplasmic domains of NETO1 and NETO2 are not homologous to other known protein sequences but contain a conserved FXNPXY-like motif, which is essential for the internalization of clathrin coated pits during endocytosis or alternatively, may be implicated in intracellular signaling pathways.
Collapse
Affiliation(s)
- Heidi Stöhr
- Institut für Humangenetik, Biozentrum, Universität Würzburg, Am-Hubland, D-97074 Würzburg, Germany
| | | | | | | |
Collapse
|
49
|
Saitoh T, Hirai M, Katoh M. Molecular cloning and characterization of WNT3A and WNT14 clustered in human chromosome 1q42 region. Biochem Biophys Res Commun 2001; 284:1168-75. [PMID: 11414706 DOI: 10.1006/bbrc.2001.5105] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Human WNT3A and WNT14 cDNAs were cloned and characterized. WNT3A and WNT14 encoded WNT family protein of 352 and 365 amino acids, respectively. The 3.0-kb WNT3A mRNA was moderately expressed in placenta, and the 4.4-kb WNT14 mRNA was moderately expressed in skeletal muscle and heart. Although WNT3A mRNA was not detected in 35 human cancer cell lines, WNT14 mRNA was expressed in gastric cancer cell lines TMK1, MKN7, MKN45 and KATO-III. WNT3A and WNT14 genes, clustered in the head to head manner with an interval of about 58.0 kb, were mapped to human chromosome 1q42 region by fluorescence in situ hybridization. WNT3 and WNT15, clustered in human chromosome 17q21 region, are related genes of WNT3A and WNT14, respectively. WNT3A-WNT14 gene cluster and WNT3-WNT15 gene cluster might be generated due to duplication of ancestral gene cluster, just like WNT10A-WNT6 gene cluster and WNT10B-WNT1 gene cluster. Integration sites of mouse mammary tumor virus (MMTV) are located in the mouse chromosomal regions corresponding to these human WNT gene clusters. These results strongly suggest that unidentified nucleotide motif responsible for susceptibility to recombination might exist within the intergenic regions of these WNT gene clusters.
Collapse
Affiliation(s)
- T Saitoh
- Genetics and Cell Biology Section, Genetics Division, National Cancer Center Research Institute, Tsukiji 5-chome, Tokyo, Chuo-ku, 104-0045, Japan
| | | | | |
Collapse
|
50
|
Kirikoshi H, Sekihara H, Katoh M. WNT10A and WNT6, clustered in human chromosome 2q35 region with head-to-tail manner, are strongly coexpressed in SW480 cells. Biochem Biophys Res Commun 2001; 283:798-805. [PMID: 11350055 DOI: 10.1006/bbrc.2001.4855] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human WNT10A and WNT6 were cloned and characterized. WNT10A encoded a 417-amino-acid polypeptide with WNT core domain, and WNT6 encoded a 365-amino-acid polypeptide with N-terminal signal peptide, WNT core domain, and RGD motif. WNT10A and WNT6 genes were clustered in the head-to-tail manner with an interval less than 7.0 kb in human chromosome 2q35 region. Among human WNT family, WNT10A was most homologous to WNT10B (59.2% amino-acid identity), and WNT6 was most homologous to WNT1 (47.4% amino-acid identity). WNT10B and WNT1 genes were also clustered in human chromosome 12q13 region. Two WNT gene clusters in human chromosome 2q35 and 12q13 regions might be generated due to duplication of ancestral gene cluster. The 3.0- and 2.4-kb WNT10A mRNAs were expressed in fetal kidney, placenta, adult spleen and kidney. The 2.0-kb WNT6 mRNA was coexpressed with WNT10A in placenta and adult spleen. WNT10A and WNT6 were strongly coexpressed in SW480 (colorectal cancer). In addition to SW480, WNT10A was strongly expressed in HL-60 (promyelocytic leukemia) and Raji (Burkitt's lymphoma), and WNT6 in HeLa S3 (cervical cancer). Overexpression WNT10A and WNT6 might play key roles in human carcinogenesis through activation of WNT-beta-catenin-TCF signaling pathway, just like Wnt10b and Wnt1.
Collapse
Affiliation(s)
- H Kirikoshi
- Genetics and Cell Biology Section, Genetics Division, National Cancer Center Research Institute, Tsukiji 5-chome, Chuo-ku, Tokyo, 104-0045, Japan
| | | | | |
Collapse
|