Zhou T, Chiang CM. Sp1 and AP2 regulate but do not constitute TATA-less human TAF(II)55 core promoter activity.
Nucleic Acids Res 2002;
30:4145-57. [PMID:
12364593 PMCID:
PMC140537 DOI:
10.1093/nar/gkf537]
[Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Human TAF(II)55 (hTAF(II)55), a component of the general transcription factor TFIID, is the only general transcription factor encoded by an intronless gene identified thus far. Analysis of the TATA-less hTAF(II)55 promoter-proximal sequence reveals putative binding sites for STAT-1, MEF2, E2F, Sp1, AP2, AREB6 and E47. Using chromatin immunoprecipitation, DNase I footprinting and electrophoretic mobility shift assays, we demonstrate that Sp1 and AP2 can bind simultaneously to juxtaposed Sp1- and AP2-binding sites in the hTAF(II)55 promoter-proximal region and functionally modulate hTAF(II)55 promoter activity, as evidenced by reporter gene assays performed in transiently transfected human C-33A and insect SL2 cell lines. Interestingly, removal of all the promoter-proximal Sp1-binding sites does not impair the function of the hTAF(II)55 core promoter. Moreover, a 52-bp DNA fragment containing only the hTAF(II)55 initiator (Inr) and downstream promoter element (DPE) is able to support Gal4-VP16-mediated activation in vivo and in vitro. Our data suggest that Sp1, although it plays an enhancing role in hTAF(II)55 gene expression, is not essential for hTAF(II)55 core promoter activity. Interestingly, mutations introduced at the Inr and DPE differentially affect the selection of transcription start sites, suggesting that these two core promoter elements play a non-redundant role in the function of TATA-less promoters.
Collapse