1
|
Dimerization of Human Angiogenin and of Variants Involved in Neurodegenerative Diseases. Int J Mol Sci 2021; 22:ijms221810068. [PMID: 34576228 PMCID: PMC8468037 DOI: 10.3390/ijms221810068] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 11/25/2022] Open
Abstract
Human Angiogenin (hANG, or ANG, 14.1 kDa) promotes vessel formation and is also called RNase 5 because it is included in the pancreatic-type ribonuclease (pt-RNase) super-family. Although low, its ribonucleolytic activity is crucial for angiogenesis in tumor tissues but also in the physiological development of the Central Nervous System (CNS) neuronal progenitors. Nevertheless, some ANG variants are involved in both neurodegenerative Parkinson disease (PD) and Amyotrophic Lateral Sclerosis (ALS). Notably, some pt-RNases acquire new biological functions upon oligomerization. Considering neurodegenerative diseases correlation with massive protein aggregation, we analyzed the aggregation propensity of ANG and of three of its pathogenic variants, namely H13A, S28N, and R121C. We found no massive aggregation, but wt-ANG, as well as S28N and R121C variants, can form an enzymatically active dimer, which is called ANG-D. By contrast, the enzymatically inactive H13A-ANG does not dimerize. Corroborated by a specific cross-linking analysis and by the behavior of H13A-ANG that in turn lacks one of the two His active site residues necessary for pt-RNases to self-associate through the three-dimensional domain swapping (3D-DS), we demonstrate that ANG actually dimerizes through 3D-DS. Then, we deduce by size exclusion chromatography (SEC) and modeling that ANG-D forms through the swapping of ANG N-termini. In light of these novelties, we can expect future investigations to unveil other ANG determinants possibly related with the onset and/or development of neurodegenerative pathologies.
Collapse
|
2
|
Thomas SP, Hoang TT, Ressler VT, Raines RT. Human angiogenin is a potent cytotoxin in the absence of ribonuclease inhibitor. RNA (NEW YORK, N.Y.) 2018; 24:1018-1027. [PMID: 29748193 PMCID: PMC6049508 DOI: 10.1261/rna.065516.117] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 05/08/2018] [Indexed: 05/13/2023]
Abstract
Angiogenin (ANG) is a secretory ribonuclease that promotes the proliferation of endothelial cells, leading to angiogenesis. This function relies on its ribonucleolytic activity, which is low for simple RNA substrates. Upon entry into the cytosol, ANG is sequestered by the ribonuclease inhibitor protein (RNH1). We find that ANG is a potent cytotoxin for RNH1-knockout HeLa cells, belying its inefficiency as a nonspecific catalyst. The toxicity does, however, rely on the ribonucleolytic activity of ANG and a cytosolic localization, which lead to the accumulation of particular tRNA fragments (tRFs), such as tRF-5 Gly-GCC. These up-regulated tRFs are highly cytotoxic at physiological concentrations. Although ANG is well-known for its promotion of cell growth, our results reveal that ANG can also cause cell death.
Collapse
Affiliation(s)
- Sydney P Thomas
- Graduate Program in Cell and Molecular Biology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Trish T Hoang
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Valerie T Ressler
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Ronald T Raines
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
3
|
Ferguson R, Subramanian V. The cellular uptake of angiogenin, an angiogenic and neurotrophic factor is through multiple pathways and largely dynamin independent. PLoS One 2018; 13:e0193302. [PMID: 29486010 PMCID: PMC5828446 DOI: 10.1371/journal.pone.0193302] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 02/08/2018] [Indexed: 01/25/2023] Open
Abstract
Angiogenin (ANG), a member of the RNase superfamily (also known as RNase 5) has neurotrophic, neuroprotective and angiogenic activities. Recently it has also been shown to be important in stem cell homeostasis. Mutations in ANG are associated with neurodegenerative diseases such as Amyotrophic Lateral Sclerosis (ALS) and Fronto-temporal dementia (FTD). ANG is a secreted protein which is taken up by cells and translocated to the nucleus. However, the import pathway/s through which ANG is taken up is/are still largely unclear. We have characterised the uptake of ANG in neuronal, astrocytic and microglial cell lines as well as primary neurons and astrocytes using pharmacological agents as well as dominant negative dynamin and Rab5 to perturb uptake and intracellular trafficking. We find that uptake of ANG is largely clathrin/dynamin independent and microtubule depolymerisation has a marginal effect. Perturbation of membrane ruffling and macropinocytosis significantly inhibited ANG uptake suggesting an uptake mechanism similar to RNase A. Our findings shed light on why mutations which do not overtly affect RNase activity but cause impaired localization are associated with neurodegenerative disease.
Collapse
Affiliation(s)
- Ross Ferguson
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Vasanta Subramanian
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
- * E-mail:
| |
Collapse
|
4
|
Nastasie MS, Thissen H, Jans DA, Wagstaff KM. Enhanced tumour cell nuclear targeting in a tumour progression model. BMC Cancer 2015; 15:76. [PMID: 25885577 PMCID: PMC4342815 DOI: 10.1186/s12885-015-1045-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 01/27/2015] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND There is an urgent need for new approaches to deliver bioactive molecules to cancer cells efficiently and specifically. METHODS Here we fuse the cancer cell nuclear targeting module of the Chicken Anaemia Virus Apoptin protein to the core histones H2B and H3 and utilise them in transfection, protein transduction and DNA binding assays. RESULTS We found subsequent nuclear accumulation of these proteins to be 2-3 fold higher in tumour compared to normal cells in transfected isogenic human osteosarcoma and breast tumour progression models. This represents the first demonstration of enhanced nuclear targeting by Apoptin in a tumour progression model, and its functionality in a heterologous protein context. Excitingly, we found that the innate transduction ability of histones could be exploited in combination with the Apoptin nuclear targeting module to effect an overall 13-fold higher delivery of protein to osteosarcoma cancer cell nuclei compared to their isogenic normal counterparts. CONCLUSIONS This is the first report of cancer-cell specificity by a cell penetrating protein, with important implications for the use of protein transduction as a vehicle for gene/drug delivery in the future, and in particular in the development of highly specific and effective anti-cancer agents.
Collapse
Affiliation(s)
- Michael S Nastasie
- Nuclear Signalling Laboratory, Department Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia.
| | - Helmut Thissen
- CSIRO Molecular and Health Technologies, Bayview Avenue, Clayton, Victoria, 3168, Australia.
| | - David A Jans
- Nuclear Signalling Laboratory, Department Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia.
| | - Kylie M Wagstaff
- Nuclear Signalling Laboratory, Department Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia.
| |
Collapse
|
5
|
Overlapping binding sites for importin β1 and suppressor of fused (SuFu) on glioma-associated oncogene homologue 1 (Gli1) regulate its nuclear localization. Biochem J 2014; 461:469-76. [DOI: 10.1042/bj20130709] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The hedgehog signalling protein Gli1 has overlapping binding sites for the proteins importin β1 and SuFu at its N-terminus. These proteins compete to regulate the nuclear/cytoplasmic localization of Gli1, with importin β promoting nuclear import and SuFu preventing it.
Collapse
|
6
|
Suárez-Sánchez R, Aguilar A, Wagstaff KM, Velez G, Azuara-Medina PM, Gomez P, Vásquez-Limeta A, Hernández-Hernández O, Lieu KG, Jans DA, Cisneros B. Nucleocytoplasmic shuttling of the Duchenne muscular dystrophy gene product dystrophin Dp71d is dependent on the importin α/β and CRM1 nuclear transporters and microtubule motor dynein. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1843:985-1001. [PMID: 24486332 DOI: 10.1016/j.bbamcr.2014.01.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Revised: 12/17/2013] [Accepted: 01/24/2014] [Indexed: 01/08/2023]
Abstract
Even though the Duchenne muscular dystrophy (DMD) gene product Dystrophin Dp71d is involved in various key cellular processes through its role as a scaffold for structural and signalling proteins at the plasma membrane as well as the nuclear envelope, its subcellular trafficking is poorly understood. Here we map the nuclear import and export signals of Dp71d by truncation and point mutant analysis, showing for the first time that Dp71d shuttles between the nucleus and cytoplasm mediated by the conventional nuclear transporters, importin (IMP) α/β and the exportin CRM1. Binding was confirmed in cells using pull-downs, while in vitro binding assays showed direct, high affinity (apparent dissociation coefficient of c. 0.25nM) binding of Dp71d to IMPα/β. Interestingly, treatment of cells with the microtubule depolymerizing reagent nocodazole or the dynein inhibitor EHNA both decreased Dp71d nuclear localization, implying that Dp71d nuclear import may be facilitated by microtubules and the motor protein dynein. The role of Dp71d in the nucleus appears to relate in part to interaction with the nuclear envelope protein emerin, and maintenance of the integrity of the nuclear architecture. The clear implication is that Dp71d's previously unrecognised nuclear transport properties likely contribute to various, important physiological roles.
Collapse
Affiliation(s)
- R Suárez-Sánchez
- Departamento de Genética y Biología Molecular, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), México D.F, Mexico; Laboratorio de Medicina Genómica, Departamento de Genética, Instituto Nacional de Rehabilitación, México D.F, Mexico
| | - A Aguilar
- Departamento de Genética y Biología Molecular, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), México D.F, Mexico
| | - K M Wagstaff
- Nuclear Signalling Laboratory, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - G Velez
- Departamento de Genética y Biología Molecular, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), México D.F, Mexico
| | - P M Azuara-Medina
- Departamento de Genética y Biología Molecular, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), México D.F, Mexico
| | - P Gomez
- Departamento de Genética y Biología Molecular, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), México D.F, Mexico
| | - A Vásquez-Limeta
- Departamento de Genética y Biología Molecular, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), México D.F, Mexico
| | - O Hernández-Hernández
- Laboratorio de Medicina Genómica, Departamento de Genética, Instituto Nacional de Rehabilitación, México D.F, Mexico
| | - K G Lieu
- Nuclear Signalling Laboratory, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - D A Jans
- Nuclear Signalling Laboratory, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia.
| | - B Cisneros
- Departamento de Genética y Biología Molecular, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), México D.F, Mexico.
| |
Collapse
|
7
|
Shi D, Lv M, Chen J, Shi H, Zhang S, Zhang X, Feng L. Molecular characterizations of subcellular localization signals in the nucleocapsid protein of porcine epidemic diarrhea virus. Viruses 2014; 6:1253-73. [PMID: 24632575 PMCID: PMC3970149 DOI: 10.3390/v6031253] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 02/24/2014] [Accepted: 03/05/2014] [Indexed: 12/22/2022] Open
Abstract
The nucleolus is a dynamic subnuclear structure, which is crucial to the normal operation of the eukaryotic cell. The porcine epidemic diarrhea virus (PEDV), coronavirus nucleocapsid (N) protein, plays important roles in the process of virus replication and cellular infection. Virus infection and transfection showed that N protein was predominately localized in the cytoplasm, but also found in the nucleolus in Vero E6 cells. Furthermore, by utilizing fusion proteins with green fluorescent protein (GFP), deletion mutations or site-directed mutagenesis of PEDV N protein, coupled with live cell imaging and confocal microscopy, it was revealed that, a region spanning amino acids (aa), 71–90 in region 1 of the N protein was sufficient for nucleolar localization and R87 and R89 were critical for its function. We also identified two nuclear export signals (NES, aa221–236, and 325–364), however, only the nuclear export signal (aa325–364) was found to be functional in the context of the full-length N protein. Finally, the activity of this nuclear export signal (NES) was inhibited by the antibiotic Lepomycin B, suggesting that N is exported by a chromosome region maintenance 1-related export pathway.
Collapse
Affiliation(s)
- Da Shi
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China.
| | - Maojie Lv
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China.
| | - Jianfei Chen
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China.
| | - Hongyan Shi
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China.
| | - Sha Zhang
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China.
| | - Xin Zhang
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China.
| | - Li Feng
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China.
| |
Collapse
|
8
|
de Melo IS, Jimenez-Nuñez MD, Iglesias C, Campos-Caro A, Moreno-Sanchez D, Ruiz FA, Bolívar J. NOA36 protein contains a highly conserved nucleolar localization signal capable of directing functional proteins to the nucleolus, in mammalian cells. PLoS One 2013; 8:e59065. [PMID: 23516598 PMCID: PMC3596294 DOI: 10.1371/journal.pone.0059065] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 02/11/2013] [Indexed: 11/18/2022] Open
Abstract
NOA36/ZNF330 is an evolutionarily well-preserved protein present in the nucleolus and mitochondria of mammalian cells. We have previously reported that the pro-apoptotic activity of this protein is mediated by a characteristic cysteine-rich domain. We now demonstrate that the nucleolar localization of NOA36 is due to a highly-conserved nucleolar localization signal (NoLS) present in residues 1-33. This NoLS is a sequence containing three clusters of two or three basic amino acids. We fused the amino terminal of NOA36 to eGFP in order to characterize this putative NoLS. We show that a cluster of three lysine residues at positions 3 to 5 within this sequence is critical for the nucleolar localization. We also demonstrate that the sequence as found in human is capable of directing eGFP to the nucleolus in several mammal, fish and insect cells. Moreover, this NoLS is capable of specifically directing the cytosolic yeast enzyme polyphosphatase to the target of the nucleolus of HeLa cells, wherein its enzymatic activity was detected. This NoLS could therefore serve as a very useful tool as a nucleolar marker and for directing particular proteins to the nucleolus in distant animal species.
Collapse
Affiliation(s)
- Ivan S. de Melo
- Departamento de Biomedicina, Biotecnología y Salud Pública - Facultad de Ciencias, Universidad de Cádiz, Cádiz, Spain
| | - Maria D. Jimenez-Nuñez
- Unidad de Investigación, Hospital Universitario Puerta del Mar, Cádiz, Spain
- Departamento de Biomedicina, Biotecnología y Salud Pública - Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain
| | - Concepción Iglesias
- Departamento de Biomedicina, Biotecnología y Salud Pública - Facultad de Ciencias, Universidad de Cádiz, Cádiz, Spain
| | - Antonio Campos-Caro
- Unidad de Investigación, Hospital Universitario Puerta del Mar, Cádiz, Spain
- Departamento de Biomedicina, Biotecnología y Salud Pública - Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain
| | - David Moreno-Sanchez
- Unidad de Investigación, Hospital Universitario Puerta del Mar, Cádiz, Spain
- Departamento de Biomedicina, Biotecnología y Salud Pública - Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain
| | - Felix A. Ruiz
- Unidad de Investigación, Hospital Universitario Puerta del Mar, Cádiz, Spain
- Departamento de Biomedicina, Biotecnología y Salud Pública - Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain
| | - Jorge Bolívar
- Departamento de Biomedicina, Biotecnología y Salud Pública - Facultad de Ciencias, Universidad de Cádiz, Cádiz, Spain
| |
Collapse
|
9
|
Structural and molecular insights into the mechanism of action of human angiogenin-ALS variants in neurons. Nat Commun 2013; 3:1121. [PMID: 23047679 PMCID: PMC3493651 DOI: 10.1038/ncomms2126] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 09/06/2012] [Indexed: 12/11/2022] Open
Abstract
Mutations in angiogenin (ANG), a member of the ribonuclease A superfamily, are associated with amyotrophic lateral sclerosis (ALS; sporadic and familial) and Parkinson's disease. We have previously shown that ANG is expressed in neurons during neuro-ectodermal differentiation, and that it has both neurotrophic and neuroprotective functions. Here we report the atomic resolution structure of native ANG and 11 ANG-ALS variants. We correlate the structural changes to the effects on neuronal survival and the ability to induce stress granules in neuronal cell lines. ANG-ALS variants that affect the structure of the catalytic site and either decrease or increase the RNase activity affect neuronal survival. Neuronal cell lines expressing the ANG-ALS variants also lack the ability to form stress granules. Our structure–function studies on these ANG-ALS variants are the first to provide insights into the cellular and molecular mechanisms underlying their role in ALS. Mutations in human angiogenin are implicated in the progression of amyotrophic lateral sclerosis. Thiyagarajan and colleagues show that structural differences between angiogenin variants affect neuronal survival, and the ability to induce stress granules in neuronal cell lines.
Collapse
|
10
|
Kaur G, Lieu KG, Jans DA. 70-kDa heat shock cognate protein hsc70 mediates calmodulin-dependent nuclear import of the sex-determining factor SRY. J Biol Chem 2012; 288:4148-57. [PMID: 23235156 DOI: 10.1074/jbc.m112.436741] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We recently showed that the developmentally important family of SOX (SRY (sex determining region on the Y chromosome)-related high mobility group (HMG) box) proteins require the calcium-binding protein calmodulin (CaM) for optimal nuclear accumulation, with clinical mutations in SRY that specifically impair nuclear accumulation via this pathway resulting in XY sex reversal. However, the mechanism by which CaM facilitates nuclear accumulation is unknown. Here, we show, for the first time, that the 70-kDa heat shock cognate protein hsc70 plays a key role in CaM-dependent nuclear import of SRY. Using a reconstituted nuclear import assay, we show that antibodies to hsc70 significantly reduce nuclear accumulation of wild type SRY and mutant derivatives thereof that retain CaM-dependent nuclear import, with an increased rate of nuclear accumulation upon addition of both CaM and hsc70, in contrast to an SRY mutant derivative with impaired CaM binding. siRNA knockdown of hsc70 in intact cells showed similar results, indicating clear dependence upon hsc70 for CaM-dependent nuclear import. Analysis using the technique of fluorescence recovery after photobleaching indicated that hsc70 is required for the maximal rate of SRY nuclear import in living cells but has no impact upon SRY nuclear retention/nuclear dynamics. Finally, we demonstrate direct binding of hsc70 to the SRY·CaM complex, with immunoprecipitation experiments from cell extracts showing association of hsc70 with wild type SRY, but not with a mutant derivative with impaired CaM binding, dependent on Ca(2+). Our novel findings strongly implicate hsc70 in CaM-dependent nuclear import of SRY.
Collapse
Affiliation(s)
- Gurpreet Kaur
- Nuclear Signalling Laboratory, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | | | | |
Collapse
|
11
|
Roth DM, Moseley GW, Pouton CW, Jans DA. Mechanism of microtubule-facilitated "fast track" nuclear import. J Biol Chem 2011; 286:14335-51. [PMID: 21339293 DOI: 10.1074/jbc.m110.210302] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Although the microtubule (MT) cytoskeleton has been shown to facilitate nuclear import of specific cancer-regulatory proteins including p53, retinoblastoma protein, and parathyroid hormone-related protein (PTHrP), the MT association sequences (MTASs) responsible and the nature of the interplay between MT-dependent and conventional importin (IMP)-dependent nuclear translocation are unknown. Here we used site-directed mutagenesis, live cell imaging, and direct IMP and MT binding assays to map the MTAS of PTHrP for the first time, finding that it is within a short modular region (residues 82-108) that overlaps with the IMPβ1-recognized nuclear localization signal (residues 66-108) of PTHrP. Importantly, fluorescence recovery after photobleaching experiments indicated that disruption of the MT network or mutation of the MTAS of PTHrP decreases the rate of nuclear import by 2-fold. Moreover, MTAS functions depend on mutual exclusivity of binding of PTHrP to MTs and IMPβ1 such that, following MT-dependent trafficking toward the nucleus, perinuclear PTHrP can be displaced from MTs by IMPβ1 prior to import into the nucleus. This is the first molecular definition of an MTAS that facilitates protein nuclear import as well as the first delineation of the mechanism whereby cargo is transferred directly from the cytoskeleton to the cellular nuclear import apparatus. The results have broad significance with respect to fundamental processes regulating cell physiology/transformation.
Collapse
Affiliation(s)
- Daniela Martino Roth
- Nuclear Signalling Laboratory, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | |
Collapse
|
12
|
Shen R, Shen X, Zhang Z, Li Y, Liu S, Liu H. Multifunctional conjugates to prepare nucleolar-targeting CdS quantum dots. J Am Chem Soc 2010; 132:8627-34. [PMID: 20518506 DOI: 10.1021/ja1002668] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We used a click reaction to synthesize a bidentate 1,2,3-triazole-based ligand, TA, for use in the preparation of aqueous CdS quantum dots (QDs). TA-conjugated CdS QDs exhibited two fluorescence emission peaks, one at 540 nm arising from CdS nanocrystals and the other at approximately 670 nm arising from TA-CdS QD complexes formed via surface coordination. Coordination between TA and CdS was verified by using X-ray photoelectron (N 1s) spectra as well as Raman and NMR spectra of TA-capped QDs. Electrochemical analysis revealed that the 1,2,3-triazole moities in TA form complexes with the Cd(II) ions. The aqueous QDs protected by TA were very stable at different ionic strengths and over a broad pH range, according to fluorescence analysis. The ethidium bromide exclusion assay demonstrated that the bidentate TA ligand interacts strongly with DNA. Fluorescent micrographs and TEM images of cancer cells stained with TA-capped QDs clearly showed that the TA ligand targeted CdS QDs to the nucleoli of cells. In contrast, thioglycolic acid-capped CdS QDs just stained the cell membranes and could not pass the cell membranes to reach the cell nucleus.
Collapse
Affiliation(s)
- Ran Shen
- CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | | | | | | | | | | |
Collapse
|
13
|
Baibakov B, Murtazina R, Elowsky C, Giardiello FM, Kovbasnjuk O. Shiga toxin is transported into the nucleoli of intestinal epithelial cells via a carrier-dependent process. Toxins (Basel) 2010; 2:1318-35. [PMID: 22069640 PMCID: PMC3153243 DOI: 10.3390/toxins2061318] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 05/19/2010] [Accepted: 06/03/2010] [Indexed: 12/13/2022] Open
Abstract
Shiga toxin (Stx) produced by the invasive Shigella dysenteriae serotype 1 (S. dysenteriae1) causes gastrointestinal and kidney complications. It has been assumed that Stx is released intracellularly after enterocyte invasion by S. dysenteriae1. However, there is little information about Stx distribution inside S. dysenteriae1-infected enterocytes. Here, we use intestinal epithelial T84 cells to characterize the trafficking of Stx delivered into the cytosol, in ways that mimic aspects of S. dysenteriae1 infection. We find that cytoplasmic Stx is transported into nucleoli. Stx nucleolar movement is carrier- and energy-dependent. Stx binding to the nucleoli of normal human enterocytes in vitro supports possible roles for nucleolar trafficking in toxin-induced intestinal pathology.
Collapse
Affiliation(s)
- Boris Baibakov
- GI Division, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | | | | | | | | |
Collapse
|
14
|
Nilsson UW, Abrahamsson A, Dabrosin C. Angiogenin regulation by estradiol in breast tissue: tamoxifen inhibits angiogenin nuclear translocation and antiangiogenin therapy reduces breast cancer growth in vivo. Clin Cancer Res 2010; 16:3659-69. [PMID: 20501617 DOI: 10.1158/1078-0432.ccr-10-0501] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Angiogenin, a 14.2-kDa polypeptide member of the RNase A superfamily, has potent angiogenic effects. Nuclear accumulation of angiogenin is essential for its angiogenic activity. Increased angiogenin expression has been associated with the transition of normal breast tissue into invasive breast carcinoma. In this article, we investigated whether estradiol (E(2)) affected angiogenin in breast tissue. EXPERIMENTAL DESIGN We used microdialysis for sampling of extracellular angiogenin in vivo. In vitro cultures of whole normal breast tissue, breast cancer cells, and endothelial cells were used. RESULTS We show that extracellular angiogenin correlated significantly with E(2) in normal human breast tissue in vivo and that exposure of normal breast tissue biopsies to E(2) stimulated angiogenin secretion. In breast cancer patients, the in vivo angiogenin levels were significantly higher in tumors compared with the adjacent normal breast tissue. In estrogen receptor-positive breast cancer cells, E(2) increased and tamoxifen decreased angiogenin secretion. Moreover, E(2)-induced angiogenin derived from cancer cells significantly increased endothelial cell proliferation. Tamoxifen reversed this increase as well as inhibited nuclear translocation of angiogenin. In vivo, in experimental breast cancer, tamoxifen decreased angiogenin levels and decreased angiogenesis. Additionally, treating tumor-bearing mice with an antiangiogenin antibody resulted in tumor stasis, suggesting a role for angiogenin in estrogen-dependent breast cancer growth. CONCLUSION Our results suggest previously unknown mechanisms by which estrogen and antiestrogen regulate angiogenesis in normal human breast tissue and breast cancer. This may be important for estrogen-driven breast cancer progression and a molecular target for therapeutic interventions.
Collapse
Affiliation(s)
- Ulrika W Nilsson
- Division of Oncology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | | | | |
Collapse
|
15
|
Chumakov SP, Prassolov VS. Organization and regulation of nucleocytoplasmic transport. Mol Biol 2010; 44:186-201. [PMID: 32214470 PMCID: PMC7088953 DOI: 10.1134/s0026893310020020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Accepted: 11/03/2009] [Indexed: 01/05/2023]
Abstract
Separation of DNA replication and transcription, which occur in the nucleus, from protein synthesis, which occurs in the cytoplasm, allows a more precise regulation of these processes. Selective exchange of macromolecules between the two compartments is mediated by proteins of the nuclear pore complex (NPC). Receptor proteins of the karyopherin family interact with NPC components and transfer their cargos between the nucleus and cytoplasm. Nucleocytoplasmic transport pathways are regulated at multiple levels by modulating the expression or function of individual cargoes, transport receptors, or the transport channel. The regulatory levels have increasingly broad effects on the transport pathways and affect a wide range of processes from gene expression to development and differentiation.
Collapse
Affiliation(s)
- S P Chumakov
- 1Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991 Russia.,2Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195 USA
| | - V S Prassolov
- 1Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991 Russia
| |
Collapse
|
16
|
|
17
|
Emmott E, Hiscox JA. Nucleolar targeting: the hub of the matter. EMBO Rep 2009; 10:231-8. [PMID: 19229283 DOI: 10.1038/embor.2009.14] [Citation(s) in RCA: 218] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Accepted: 01/26/2009] [Indexed: 11/09/2022] Open
Abstract
The nucleolus is a dynamic structure that has roles in various processes, from ribosome biogenesis to regulation of the cell cycle and the cellular stress response. Such functions are frequently mediated by the sequestration or release of nucleolar proteins. Our understanding of protein targeting to the nucleolus is much less complete than our knowledge of membrane-spanning translocation systems--such as those involved in nuclear targeting--and the experimental evidence reveals that few parallels exist with these better-characterized systems. Here, we discuss the current understanding of nucleolar targeting, explore the types of sequence that control the localization of a protein to the nucleolus, and speculate that certain subsets of nucleolar proteins might act as hub proteins that are able to bind to multiple protein targets. In parallel to other subnuclear structures, such as PML bodies, the proteins that are involved in the formation and maintenance of the nucleolus are inexorably linked to nucleolar trafficking.
Collapse
Affiliation(s)
- Edward Emmott
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, Garstang Building, University of Leeds, Leeds LS2 9JT, England, UK
| | | |
Collapse
|
18
|
Abstract
Angiogenin induces angiogenesis by activating vessel endothelial and smooth muscle cells and triggering a number of biological processes, including cell migration, invasion, proliferation, and formation of tubular structures. It has been reported that angiogenin plays its functions mainly through four pathways: (1) exerting its ribonucleolytic activity; (2) binding to membrane actin and then inducing basement membrane degradation; (3) binding to a putative 170-kDa protein and subsequently transducing signal into cytoplasm; and (4) translocating into the nucleus of target cells directly and then enhancing ribosomal RNA transcription. Angiogenin can also translocate into the nucleus of cancer cells and induces the corresponding cell proliferation. Furthermore, angiogenin has neuroprotective activities in the central nervous system and the loss of its function may be related to amyotrophic lateral sclerosis. This review intends to conclude the mechanisms underlying these actions of angiogenin and give a perspective on future research.
Collapse
Affiliation(s)
- Xiangwei Gao
- Research Center for Environmental Genomics, Bioelectromagnetics Laboratory, Zhejiang University School of Medicine, Hangzhou 310058, China
| | | |
Collapse
|
19
|
Sorokin AV, Kim ER, Ovchinnikov LP. Nucleocytoplasmic transport of proteins. BIOCHEMISTRY (MOSCOW) 2008; 72:1439-57. [PMID: 18282135 DOI: 10.1134/s0006297907130032] [Citation(s) in RCA: 168] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In eukaryotic cells, the movement of macromolecules between the nucleus and cytoplasm occurs through the nuclear pore complex (NPC)--a large protein complex spanning the nuclear envelope. The nuclear transport of proteins is usually mediated by a family of transport receptors known as karyopherins. Karyopherins bind to their cargoes via recognition of nuclear localization signal (NLS) for nuclear import or nuclear export signal (NES) for export to form a transport complex. Its transport through NPC is facilitated by transient interactions between the karyopherins and NPC components. The interactions of karyopherins with their cargoes are regulated by GTPase Ran. In the current review, we describe the NPC structure, NLS, and NES, as well as the model of classic Ran-dependent transport, with special emphasis on existing alternative mechanisms; we also propose a classification of the basic mechanisms of protein transport regulation.
Collapse
Affiliation(s)
- A V Sorokin
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| | | | | |
Collapse
|
20
|
Osorio DS, Antunes A, Ramos MJ. Structural and functional implications of positive selection at the primate angiogenin gene. BMC Evol Biol 2007; 7:167. [PMID: 17883850 PMCID: PMC2194721 DOI: 10.1186/1471-2148-7-167] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Accepted: 09/20/2007] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Angiogenesis, the formation of new blood vessels, is a primordial process in development and its dysregulation has a central role in the pathogenesis of many diseases. Angiogenin (ANG), a peculiar member of the RNase A superfamily, is a potent inducer of angiogenesis involved in many different types of cancer, amyotrophic lateral sclerosis and also with a possible role in the innate immune defense. The evolutionary path of this family has been a highly dynamic one, where positive selection has played a strong role. In this work we used a combined gene and protein level approach to determine the main sites under diversifying selection on the primate ANG gene and analyze its structural and functional implications. RESULTS We obtained evidence for positive selection in the primate ANG gene. Site specific analysis pointed out 15 sites under positive selection, most of which also exhibited drastic changes in amino acid properties. The mapping of these sites in the ANG 3D-structure described five clusters, four of which were located in functional regions: two in the active site region, one in the nucleolar location signal and one in the cell-binding site. Eight of the 15 sites under selection in the primate ANG gene were highly or moderately conserved in the RNase A family, suggesting a directed event and not a simple consequence of local structural or functional permissiveness. Moreover, 11 sites were exposed to the surface of the protein indicating that they may influence the interactions performed by ANG. CONCLUSION Using a maximum likelihood gene level analysis we identified 15 sites under positive selection in the primate ANG genes, that were further corroborated through a protein level analysis of radical changes in amino acid properties. These sites mapped onto the main functional regions of the ANG protein. The fact that evidence for positive selection is present in all ANG regions required for angiogenesis may be a good indication that angiogenesis is the process under selection. However, other possibilities to be considered arise from the possible involvement of ANG in innate immunity and the potential influence or co-evolution with its interacting proteins and ligands.
Collapse
Affiliation(s)
- Daniel S Osorio
- REQUIMTE, Departamento de Química, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
- INSERM UMR S 787-Groupe Myologie, Faculté de Médecine – Pitié-Salpétrière, UPMC Paris VI, 105 bd. de l'Hôpital, 75634, Paris Cedex 13, France
| | - Agostinho Antunes
- REQUIMTE, Departamento de Química, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
- CIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Rua dos Bragas, 177, 4050-123 Porto, Portugal
| | - Maria J Ramos
- REQUIMTE, Departamento de Química, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| |
Collapse
|
21
|
Wagstaff KM, Glover DJ, Tremethick DJ, Jans DA. Histone-mediated transduction as an efficient means for gene delivery. Mol Ther 2007; 15:721-31. [PMID: 17327830 DOI: 10.1038/sj.mt.6300093] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Gene delivery into the nucleus of eukaryotic cells is inefficient, largely because of the significant barriers within the target cell of the plasma membrane and nuclear envelope. Recently, a group of basic proteins, including the HIV-1 Tat protein and the four core histones, have been shown to enter cells through a novel energy- and receptor-independent manner. Here, we show that engineered histone H2B proteins are able to mediate the efficient delivery of either green fluorescent protein or DNA into HeLa cells through the process of "Histone-Mediated Transduction" (HMT), with further enhancement achieved by utilizing a dimer of histones H2B and H2A. Subsequent nuclear delivery was accelerated approximately two-fold by the addition of an optimized nuclear localization signal to histone H2B, thereby increasing the affinity of interaction with components of the cellular nuclear import machinery, resulting in increased expression of a reporter gene. Further, we demonstrate that the domains responsible for this histone transduction are located in the N-terminal tail and globular regions of histone H2B. HMT represents a new, efficient, and technically non-demanding means to deliver DNA to the nucleus of intact cells, including embryonic stem cells, which has important applications in gene therapy and cancer therapeutics.
Collapse
Affiliation(s)
- Kylie M Wagstaff
- Nuclear Signalling Laboratory, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | | | | | | |
Collapse
|
22
|
Ghildyal R, Ho A, Jans DA. Central role of the respiratory syncytial virus matrix protein in infection. FEMS Microbiol Rev 2006; 30:692-705. [PMID: 16911040 DOI: 10.1111/j.1574-6976.2006.00025.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Respiratory syncytial virus is the major respiratory pathogen of infants and children worldwide, with no effective treatment or vaccine available. Steady progress has been made in understanding the respiratory syncytial virus life cycle and the consequences of infection, but many areas of respiratory syncytial virus biology remain poorly understood, including the role of subcellular localisation of respiratory syncytial virus gene products such as the matrix protein in the infected host cell. The matrix protein plays a central role in viral assembly and, intriguingly, has been observed to traffic into and out of the nucleus at specific times during the respiratory syncytial virus infectious cycle. Further, the matrix protein has been shown to be able to inhibit transcription, which may be a key to respiratory syncytial virus pathogenesis. This review will focus on the role of the matrix protein in respiratory syncytial virus infection and what is known of its nucleocytoplasmic trafficking, the understanding of which may lead to new therapeutic approaches to combat respiratory syncytial virus, and/or vaccine development.
Collapse
Affiliation(s)
- Reena Ghildyal
- Department of Respiratory and Sleep Medicine, Monash Medical Centre, Clayton, Australia
| | | | | |
Collapse
|
23
|
Ghorbel S, Sinha-Datta U, Dundr M, Brown M, Franchini G, Nicot C. Human T-cell leukemia virus type I p30 nuclear/nucleolar retention is mediated through interactions with RNA and a constituent of the 60 S ribosomal subunit. J Biol Chem 2006; 281:37150-8. [PMID: 17008317 DOI: 10.1074/jbc.m603981200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Human T-cell leukemia virus type I is the etiological agent of adult T-cell leukemia/lymphoma, an aggressive and fatal lymphoproliferative malignancy. The virus has evolved strategies to escape immune clearance by remaining latent in most infected cells in vivo. We demonstrated previously that virally encoded p30 protein is a potent post-transcriptional inhibitor of virus replication (Nicot, C., Dundr, M., Johnson, J. M., Fullen, J. R., Alonzo, N., Fukumoto, R., Princler, G. L., Derse, D., Misteli, T., and Franchini, G. (2004) Nat. Med. 10, 197-201). p30 is unable to shuttle out of the nucleus in heterokaryon assays, suggesting the existence of specific retention signals. Because suppression of virus replication relies on nuclear retention of the tax/rex mRNA by p30, determining the retention features of p30 will offer hints to break latency in infected cells and insights into new therapeutic approaches. In this study, we used live cell imaging technologies to study the kinetics of p30 and to delineate its retention signals and their function in virus replication. Notably, this is the first study to identify p30 nucleolar retention domains. Using mutants of p30 that localized in different cellular compartments, we show that post-transcriptional control of virus replication by p30 occurs in the nucleoplasm. We further demonstrate that p30 nuclear/nucleolar retention is dependent upon de novo RNA transcripts and interactions with components of the ribosomal machinery.
Collapse
Affiliation(s)
- Sofiane Ghorbel
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, Kansas 66160-7420, USA
| | | | | | | | | | | |
Collapse
|
24
|
Reed ML, Dove BK, Jackson RM, Collins R, Brooks G, Hiscox JA. Delineation and modelling of a nucleolar retention signal in the coronavirus nucleocapsid protein. Traffic 2006; 7:833-48. [PMID: 16734668 PMCID: PMC7488588 DOI: 10.1111/j.1600-0854.2006.00424.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Unlike nuclear localization signals, there is no obvious consensus sequence for the targeting of proteins to the nucleolus. The nucleolus is a dynamic subnuclear structure which is crucial to the normal operation of the eukaryotic cell. Studying nucleolar trafficking signals is problematic as many nucleolar retention signals (NoRSs) are part of classical nuclear localization signals (NLSs). In addition, there is no known consensus signal with which to inform a study. The avian infectious bronchitis virus (IBV), coronavirus nucleocapsid (N) protein, localizes to the cytoplasm and the nucleolus. Mutagenesis was used to delineate a novel eight amino acid motif that was necessary and sufficient for nucleolar retention of N protein and colocalize with nucleolin and fibrillarin. Additionally, a classical nuclear export signal (NES) functioned to direct N protein to the cytoplasm. Comparison of the coronavirus NoRSs with known cellular and other viral NoRSs revealed that these motifs have conserved arginine residues. Molecular modelling, using the solution structure of severe acute respiratory (SARS) coronavirus N‐protein, revealed that this motif is available for interaction with cellular factors which may mediate nucleolar localization. We hypothesise that the N‐protein uses these signals to traffic to and from the nucleolus and the cytoplasm.
Collapse
Affiliation(s)
- Mark L. Reed
- Institute of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Brian K. Dove
- Institute of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Richard M. Jackson
- Institute of Molecular and Cellular Biology, University of Leeds, Leeds, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Rebecca Collins
- Institute of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Gavin Brooks
- School of Pharmacy, University of Reading, Reading, UK
| | - Julian A. Hiscox
- Institute of Molecular and Cellular Biology, University of Leeds, Leeds, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| |
Collapse
|
25
|
Wagstaff KM, Dias MM, Alvisi G, Jans DA. Quantitative analysis of protein-protein interactions by native page/fluorimaging. J Fluoresc 2005; 15:469-73. [PMID: 16167204 DOI: 10.1007/s10895-005-2819-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2005] [Accepted: 05/04/2005] [Indexed: 10/25/2022]
Abstract
We have developed a new quantitative native PAGE mobility shift assay, which allows for the measurement of binding affinities for interacting protein pairs, one of which is fluorescently labelled. We have used it to examine recognition of the Simian virus 40 (SV40) large tumour T-antigen (T-ag) nuclear localisation sequence (NLS) by members of the importin (Imp) superfamily of nuclear transport proteins. We demonstrate that the T-ag NLS binds to the Imp alpha/beta heterodimer in NLS-dependent manner, determining that it binds with eight-fold higher affinity (340 nM), when compared to Imp alpha alone, consistent with autoinhibition of Imp alpha when not complexed with Imp beta. The mobility shift assay is able to detect nM binding affinities, making it a sensitive and useful tool to analyse protein-protein interactions in solution.
Collapse
Affiliation(s)
- Kylie M Wagstaff
- Department of Biochemistry and Molecular Biology, Nuclear Signalling Laboratory, Monash University, Clayton, VIC 3800, Australia
| | | | | | | |
Collapse
|
26
|
De Ganck A, Hubert T, Van Impe K, Geelen D, Vandekerckhove J, De Corte V, Gettemans J. A monopartite nuclear localization sequence regulates nuclear targeting of the actin binding protein myopodin. FEBS Lett 2005; 579:6673-80. [PMID: 16309678 DOI: 10.1016/j.febslet.2005.10.054] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Revised: 09/09/2005] [Accepted: 10/27/2005] [Indexed: 11/29/2022]
Abstract
Myopodin is an actin bundling protein that shuttles between nucleus and cytoplasm in response to cell stress or during differentiation. Here, we show that the myopodin sequence 58KKRRRRARK66, when tagged to either enhanced green fluorescent protein (EGFP) or to enhanced cyan fluorescent protein-CapG (ECFPCapG), is able to target these proteins to the nucleolus in HeLa or HEK293T cells. By contrast, 58KKRR61-ECFP-CapG accumulates in the nucleus. Mutation of 58KKRRRRARK66 into alanine residues blocks myopodin nuclear import and promotes formation of cytoplasmic actin filaments. A second putative nuclear localization sequence, 612KTSKKKGKK620, displays much weaker activity in a heterologous context, and appears not to be functional in the full length protein. Thus myopodin nuclear translocation is dependent on a monopartite nuclear localization sequence.
Collapse
Affiliation(s)
- Ariane De Ganck
- Department of Medical Protein Research, Flanders Interuniversity Institute for Biotechnology (V.I.B.), Ghent University, Faculty of Medicine and Health Sciences, Albert Baertsoenkaai 3, B-9000 Ghent, Belgium
| | | | | | | | | | | | | |
Collapse
|
27
|
Wagstaff KM, Jans DA. Intramolecular masking of nuclear localization signals: analysis of importin binding using a novel AlphaScreen-based method. Anal Biochem 2005; 348:49-56. [PMID: 16300722 DOI: 10.1016/j.ab.2005.10.029] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2005] [Revised: 09/29/2005] [Accepted: 10/14/2005] [Indexed: 10/25/2022]
Abstract
Active nuclear import of proteins requires the recognition of a nuclear localization sequence (NLS) by members of the importin (IMP) family of proteins. We have developed a modified AlphaScreen-based assay able to estimate the solution binding affinities of such interactions using biotinylated IMPs and His6-tagged NLS-containing proteins. We describe this assay in detail as well as its application in documenting the phenomenon of intramolecular masking of NLSs using recombinant green fluorescent protein (GFP) fusion proteins containing sequences from the SV40 large tumor T antigen (T-ag). We also use it to examine, for the first time, IMP binding to the cancer cell-specific proapoptotic factor viral protein 3 (VP3) from the chicken anemia virus (CAV). High-affinity binding of the IMPalpha/beta heterodimer to the T-ag NLS was observed when the GFP tag was fused to its N terminus but not to its C terminus. Effects of flanking residues were also observed in GFP-T-ag fusion derivatives containing the Thr128 NLS-inactivating mutation, whereby the absence of flanking sequences N terminal to the T-ag NLS appeared to decrease the specificity of the mutation in terms of oblating IMPalpha/beta binding. IMPbeta, but not IMPalpha or the IMPalpha/beta heterodimer, was found to bind to CAV VP3 with high affinity. Interestingly, GFP-VP3(74-121) bound to IMPbeta with threefold higher affinity than the full-length protein, GFP-VP3(1-121), implying that the NLS is masked to a significant extent in the context of full-length protein. This may represent a regulatory mechanism to control nuclear import in a tumor cell-specific fashion.
Collapse
Affiliation(s)
- Kylie M Wagstaff
- Nuclear Signalling Laboratory, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | | |
Collapse
|
28
|
Russo G, Cuccurese M, Monti G, Russo A, Amoresano A, Pucci P, Pietropaolo C. Ribosomal protein L7a binds RNA through two distinct RNA-binding domains. Biochem J 2005; 385:289-99. [PMID: 15361074 PMCID: PMC1134697 DOI: 10.1042/bj20040371] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The human ribosomal protein L7a is a component of the major ribosomal subunit. We previously identified three nuclear-localization-competent domains within L7a, and demonstrated that the domain defined by aa (amino acids) 52-100 is necessary, although not sufficient, to target the L7a protein to the nucleoli. We now demonstrate that L7a interacts in vitro with a presumably G-rich RNA structure, which has yet to be defined. We also demonstrate that the L7a protein contains two RNA-binding domains: one encompassing aa 52-100 (RNAB1) and the other encompassing aa 101-161 (RNAB2). RNAB1 does not contain any known nucleic-acid-binding motif, and may thus represent a new class of such motifs. On the other hand, a specific region of RNAB2 is highly conserved in several other protein components of the ribonucleoprotein complex. We have investigated the topology of the L7a-RNA complex using a recombinant form of the protein domain that encompasses residues 101-161 and a 30mer poly(G) oligonucleotide. Limited proteolysis and cross-linking experiments, and mass spectral analyses of the recombinant protein domain and its complex with poly(G) revealed the RNA-binding region.
Collapse
Affiliation(s)
- Giulia Russo
- *Dipartimento di Biochimica e Biotecnologie Mediche, Università Federico II, Via Sergio Pansini 5 Napoli, I-80131 Italy
| | - Monica Cuccurese
- *Dipartimento di Biochimica e Biotecnologie Mediche, Università Federico II, Via Sergio Pansini 5 Napoli, I-80131 Italy
| | - Gianluca Monti
- †Dipartimento di Chimica Organica e Biologica, Università Federico II, Complesso Universitario Monte S. Angelo, Via Cinthia 4, I-80126 Italy
| | - Annapina Russo
- *Dipartimento di Biochimica e Biotecnologie Mediche, Università Federico II, Via Sergio Pansini 5 Napoli, I-80131 Italy
| | - Angela Amoresano
- †Dipartimento di Chimica Organica e Biologica, Università Federico II, Complesso Universitario Monte S. Angelo, Via Cinthia 4, I-80126 Italy
| | - Pietro Pucci
- †Dipartimento di Chimica Organica e Biologica, Università Federico II, Complesso Universitario Monte S. Angelo, Via Cinthia 4, I-80126 Italy
- ‡CEINGE Biotecnologie Avanzate S.C.a.r.l., Via Comunale Margherita 482 Napoli, I-80145 Italy
| | - Concetta Pietropaolo
- *Dipartimento di Biochimica e Biotecnologie Mediche, Università Federico II, Via Sergio Pansini 5 Napoli, I-80131 Italy
- To whom correspondence should be addressed (email )
| |
Collapse
|
29
|
Abstract
Transport of macromolecules into and out of the nucleus is generally effected by targeting signals that are recognized by specific members of the importin/exportin transport receptor family. The latter mediate passage through the nuclear envelope-embedded nuclear pore complexes (NPCs) by conferring interaction with NPC constituents, as well as with other components of the nuclear transport machinery, including the guanine nucleotide-binding protein Ran. Importantly, nuclear transport is regulated at multiple levels via a diverse range of mechanisms, such as the modulation of the accessibility and affinity of target signal recognition by importins/exportins, with phosphorylation/dephosphorylation as a major mechanism. Alteration of the level of the expression of components of the nuclear transport machinery also appears to be a key determinant of transport efficiency, having central importance in development, differentiation and transformation.
Collapse
Affiliation(s)
- Ivan K H Poon
- Department for Biochemistry and Molecular Biology, Nuclear Signalling Laboratory, Box 13D, Monash University, Clayton, Victoria 3168, Australia
| | | |
Collapse
|
30
|
Pavlov N, Hatzi E, Bassaglia Y, Frendo JL, Evain-Brion D, Badet J. Angiogenin distribution in human term placenta, and expression by cultured trophoblastic cells. Angiogenesis 2004; 6:317-30. [PMID: 15166501 PMCID: PMC1997312 DOI: 10.1023/b:agen.0000029412.95244.81] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Human angiogenin is a 14-kDa secreted protein with angiogenic and ribonucleolytic activities. Angiogenin is associated with tumour development but is also present in normal biological fluids and tissues. To further address the physiological role of angiogenin, we studied its expression in situ and in vitro, using the human term placenta as a model of physiological angiogenesis. Angiogenin was immunodetected by light and transmission electron microscopy, and its cellular distribution was established by double immunolabelling with cell markers including von Willebrand factor, platelet/endothelial cell adhesion molecule-1 (PECAM-1), CD34, Tie-2, vascular endothelial cadherin (VE-cadherin), vascular endothelial growth factor receptor-2 (VEGF-R2), erythropoeitin receptor (Epo-R), alpha-smooth muscle actin, CD45, cytokeratin 7, and Ki-67. Angiogenin immunoreactivity was detected in villous and extravillous trophoblasts, the trophoblast basement membrane, the endothelial basal lamina, foetal blood vessels, foetal and maternal red blood cells, and amnionic cells. Its expression was confirmed by in situ hybridisation with a digoxygenin-labelled cDNA probe and reverse transcriptase-polymerase chain reaction amplification. Villous cytotrophoblasts, isolated and differentiated in vitro into a functional syncytiotrophoblast, expressed and secreted angiogenin. Given its known biological activities in vitro and its observed pattern of expression, these data suggest that, in human placenta, angiogenin has a role not only in angiogenesis but also in vascular and tissue homeostasis, maternal immune tolerance of the foetus, and host defences.
Collapse
Affiliation(s)
- Nadine Pavlov
- Développement humain : Croissance et différenciation
INSERM : U427 IFR71Université René Descartes - Paris VFaculté Sc Pharmaceutiques et biologiques
4, avenue de l'observatoire
75270 PARIS CEDEX 06,FR
| | | | - Yann Bassaglia
- Laboratoire de recherche sur la croissance cellulaire, la réparation et la régénération tissulaires
CNRS : FRE2412Université Paris XII Val de MarneFaculté des sciences
61 Av du général de Gaulle
94000 CRETEIL,FR
| | - Jean-Louis Frendo
- Développement humain : Croissance et différenciation
INSERM : U427 IFR71Université René Descartes - Paris VFaculté Sc Pharmaceutiques et biologiques
4, avenue de l'observatoire
75270 PARIS CEDEX 06,FR
| | - Danièle Evain-Brion
- Développement humain : Croissance et différenciation
INSERM : U427 IFR71Université René Descartes - Paris VFaculté Sc Pharmaceutiques et biologiques
4, avenue de l'observatoire
75270 PARIS CEDEX 06,FR
| | - Josette Badet
- Développement humain : Croissance et différenciation
INSERM : U427 IFR71Université René Descartes - Paris VFaculté Sc Pharmaceutiques et biologiques
4, avenue de l'observatoire
75270 PARIS CEDEX 06,FR
- * Correspondence should be adressed to: Josette Badet
| |
Collapse
|
31
|
Squatrito M, Mancino M, Donzelli M, Areces LB, Draetta GF. EBP1 is a nucleolar growth-regulating protein that is part of pre-ribosomal ribonucleoprotein complexes. Oncogene 2004; 23:4454-65. [PMID: 15064750 DOI: 10.1038/sj.onc.1207579] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
EBP1 was identified as a protein that interacts with the ErbB-3 receptor and possibly contributes to transducing growth regulatory signals. The existence of EBP1 homologs across species from simple eukaryotes to humans and its wide tissue expression pattern suggest that EBP1 acts as a general signaling molecule. We provide evidence that EBP1 is localized to the cytoplasm and to the nucleolus, and that its nucleolar localization requires amino-acid sequences present at both the amino- and carboxy-terminus of the molecule. We also show that EBP1 overexpression inhibits proliferation of human fibroblasts, and that this effect is linked to its nucleolar localization. Using mass spectrometry we demonstrate that EBP1 is part of ribonucleoprotein complexes and associates with different rRNA species. It is becoming clear that cell growth and proliferation are actively coordinated with rRNA processing and ribosome assembly. Our findings indicate that EBP1 is a nucleolar growth-regulating protein, and we propose that it could represent a new link between ribosome biosynthesis and cell proliferation.
Collapse
Affiliation(s)
- Massimo Squatrito
- European Institute of Oncology, 435 Via Ripamonti, 20141 Milan, Italy
| | | | | | | | | |
Collapse
|
32
|
Rowland RRR, Schneider P, Fang Y, Wootton S, Yoo D, Benfield DA. Peptide domains involved in the localization of the porcine reproductive and respiratory syndrome virus nucleocapsid protein to the nucleolus. Virology 2003; 316:135-45. [PMID: 14599798 PMCID: PMC7125632 DOI: 10.1016/s0042-6822(03)00482-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The nucleocapsid (N) protein of porcine reproductive and respiratory syndrome virus (PRRSV) is the principal component of the viral nucleocapsid and localizes to the nucleolus. Peptide sequence analysis of the N protein of several North American isolates identified two potential nuclear localization signal (NLS) sequences located at amino acids 10–13 and 41–42, which were labeled NLS-1 and NLS-2, respectively. Peptides containing NLS-1 or NLS-2 were sufficient to accumulate enhanced green fluorescent protein (EGFP) in the nucleus. The inactivation of NLS-1 by site-directed mutagenesis or the deletion of the first 14 amino acids did not affect N protein localization to the nucleolus. The substitution of key lysine residues with uncharged amino acids in NLS-2 blocked nuclear/nucleolar localization. Site-directed mutagenesis within NLS-2 identified the sequence, KKNKK, as forming the core localization domain within NLS-2. Using an in vitro pull-down assay, the N protein was able to bind importin-α, importin-β nuclear transport proteins. The localization pattern of N-EGFP fusion peptides represented by a series of deletions from the C- and N-terminal ends of the N protein identified a region covering amino acids 41–72, which contained a nucleolar localization signal (NoLS) sequence. The 41–72 N peptide when fused to EGFP mimicked the nucleolar–cytoplasmic distribution of native N. These results identify a single NLS involved in the transport of N from the cytoplasm and into nucleus. An additional peptide sequence, overlapping NLS-2, is involved in the further targeting of N to the nucleolus.
Collapse
Affiliation(s)
- Raymond R R Rowland
- Department of Diagnostic Medicine and Pathobiology, 1800 Denison Avenue, Kansas State University, Manhattan, KS 66506, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Li XN, Ding YQ, Liu GB. Transcriptional gene expression profiles of HGF/SF-met signaling pathway in colorectal carcinoma. World J Gastroenterol 2003; 9:1734-8. [PMID: 12918110 PMCID: PMC4611533 DOI: 10.3748/wjg.v9.i8.1734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore the transcriptional gene expression profiles of HGF/SF-met signaling pathway in colorectal carcinoma to understand mechanisms of the signaling pathway at so gene level.
METHODS: Total RNA was isolated from human colorectal carcinoma cell line LoVo treated with HGF/SF (80 ng/L) for 48 h. Fluorescent probes were prepared from RNA labeled with cy3-dUTP for the control groups and with cy5-dUTP for the HGF/SF-treated groups through reverse-transcription. The probes were mixed and hybridized on the microarray at 60 °C for 15-20 h, then the microarray was scanned by laser scanner (GenePix 4000B). The intensity of each spot and ratios of Cy5/Cy3 were analyzed and finally the differentially expressed genes were selected by GenePix Pro 3.0 software. 6 differential expression genes (3 up-regulated genes and 3 down-regulated genes) were selected randomly and analyzed by β-actin semi-quantitative RT-PCR.
RESULTS: The fluorescent intensities of built-in negative control spots were less than 200, and the fluorescent intensities of positive control spots were more than 5000. Of the 4004 human genes analyzed by microarray, 129 genes (holding 3.22% of the investigated genes) revealed differential expression in HGF/SF-treated groups compared with the control groups, of which 61 genes were up-regulated (holding 1.52% of the investigated genes) and 68 genes were down-regulated (holding 1.70% of the investigated genes), which supplied abundant information about target genes of HGF/SF-met signaling.
CONCLUSION: HGF/SF-met signaling may up-regulate oncogenes, signal transduction genes, apoptosis-related genes, metastasis related genes, and down-regulate a number of genes. The complexity of HGF/SF-met signaling to control the gene expression is revealed as a whole by the gene chip technology.
Collapse
Affiliation(s)
- Xue-Nong Li
- Department of Pathology, First Military Medical University, Guangzhou 510515, Guangdong Province, China.
| | | | | |
Collapse
|
34
|
Jans DA, Thomas RJ, Gillespie MT. Parathyroid hormone-related protein (PTHrP): a nucleocytoplasmic shuttling protein with distinct paracrine and intracrine roles. VITAMINS AND HORMONES 2003; 66:345-84. [PMID: 12852260 DOI: 10.1016/s0083-6729(03)01010-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Parathyroid hormone-related protein (PTHrP) was first discovered as a circulating factor secreted by certain cancers responsible for the syndrome of humoral hypercalcemia of malignancy. PTHrP possesses distinct paracrine and intracrine signaling roles. The similarity of its N-terminus to that of parathyroid hormone (PTH) enables it to share PTH's paracrine signaling properties, whereas the rest of the molecule possesses other functions, largely relating to an intracrine signaling role in the nucleus/nucleolus in regulating apoptosis and cell proliferation. Recent advances have shown that intracellularly expressed PTHrP is able to shuttle in cell-cycle- and signal-dependent fashion between nucleus and cytoplasm through the action of the distinct intracellular transport receptors importin beta 1 and exportin 1 (Crm1) mediating nuclear import and export of PTHrP, respectively. Together, the import and export pathways constitute an integrated system for PTHrP subcellular localization. Intriguingly, PTHrP nuclear/nucleolar import is dependent on microtubule integrity, transport to the nucleus appearing to occur in vectorial fashion along microtubules, mediated in part by the action of importin beta 1. PTHrP has recently been shown to be able to bind to RNA, meaning that PTHrP's nucleocytoplasmic shuttling ability may relate to a specific role within the nucleus/nucleolus to regulate RNA synthesis and/or transport.
Collapse
Affiliation(s)
- David A Jans
- Nuclear Signalling Laboratory, Department of Biochemistry and Molecular Biology, Monash University, Monash University 3800, Australia
| | | | | |
Collapse
|
35
|
Abstract
Betanodavirus greasy grouper (Epinephelus tauvina) nervous necrosis viruses (GGNNV) protein alpha, a virus capsid protein, was detected in both nucleolus and cytoplasm of infected cells of Asian sea bass (SB) and transfected cells of SB and Cos-7 with pcDNA3.1/RNA2. To study its subcellular localization, ORF of protein alpha with 338 aa was fused with enhanced green fluorescent protein (EGFP) gene and was detected in transfected cells in the absence of other viral proteins. In both SB and Cos-7 cells, protein alpha was found to localize EGFP to the nucleolus and cytoplasm. Deletion mutants of protein alpha indicated that N-terminal 43 amino acid residues were required to import EGFP-alpha protein into the nucleolus. Further deletions within the 43 amino acid backbone, EGFP/33aa(1-33) and EGFP/30aa(14-43), localized to the nucleolus, suggesting that the 20 amino acids from 14 to 33 of protein alpha were the domain of nucleolus localization. To further determine the nucleolus targeting sequence, deletion mutations within the 20 amino acids of protein alpha were constructed. It was found that the deletion of (23)RRR(25), (29)RRR(31), or (23)RRRANNRRR(31) prevented the accumulation of EGFP fusion proteins into the nucleolus, demonstrating that (23)RRRANNRRR(31) contain the signal required for nucleolar localization. A similar distribution pattern of localization of protein alpha and its deletion mutants in SB and Cos-7 cells suggested that N-terminal residues of protein alpha (23)RRRANNRRR(31) constitute a nucleolus localization signal that functions in both fish and mammalian cells.
Collapse
Affiliation(s)
- Yan Xiang Guo
- Temasek Life Sciences Laboratory, The National University of Singapore, 117604, Singapore
| | | | | |
Collapse
|
36
|
Xu ZP, Tsuji T, Riordan JF, Hu GF. The nuclear function of angiogenin in endothelial cells is related to rRNA production. Biochem Biophys Res Commun 2002; 294:287-92. [PMID: 12051708 DOI: 10.1016/s0006-291x(02)00479-5] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Angiogenin is a potent angiogenic protein whose inhibition is known to prevent human tumor growth in athymic mice. It is secreted by both tumor and normal cells; and interacts with endothelial and smooth muscle cells to induce a wide range of cellular responses including cell migration and invasion, proliferation, and formation of tubular structures. Angiogenin is rapidly endocytosed and translocated to the cell nucleus where it accumulates in the nucleolus and binds to DNA. Although nuclear translocation is necessary for its angiogenic activity, the nuclear function of angiogenin is unclear. Here we report that exogenous angiogenin enhances the production of 45S rRNA in endothelial cells, and reduction of endogenous angiogenin inhibits its transcription. In a nuclear run-on assay, angiogenin stimulates RNA synthesis including that containing the initiation site sequences of 45S rRNA. This suggests that the nuclear function of angiogenin relates to its capacity to induce rRNA synthesis. Because rRNA transcription is essential for the synthesis of new ribosomes that are necessary for protein translation and cell growth, inhibition of angiogenin-stimulated transcription of rRNA may inhibit angiogenesis and therefore, would serve as a molecular target for therapeutic intervention.
Collapse
MESH Headings
- Amanitins/pharmacology
- Cell Line
- Cell Nucleus/chemistry
- Cell Nucleus/drug effects
- Cell Nucleus/metabolism
- Endothelium, Vascular/cytology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Neovascularization, Physiologic/physiology
- Nucleic Acid Synthesis Inhibitors/pharmacology
- Oligonucleotides, Antisense/pharmacology
- RNA, Ribosomal/biosynthesis
- Ribonuclease, Pancreatic/antagonists & inhibitors
- Ribonuclease, Pancreatic/genetics
- Ribonuclease, Pancreatic/metabolism
- Ribonuclease, Pancreatic/pharmacology
- Transcription, Genetic/drug effects
Collapse
Affiliation(s)
- Zheng-ping Xu
- Center for Biochemical and Biophysical Sciences and Medicine, Harvard Medical School, One Kendall Square, Building 600, 3rd Floor, Cambridge, MA 02139, USA
| | | | | | | |
Collapse
|
37
|
Forwood JK, Harley V, Jans DA. The C-terminal nuclear localization signal of the sex-determining region Y (SRY) high mobility group domain mediates nuclear import through importin beta 1. J Biol Chem 2001; 276:46575-82. [PMID: 11535586 DOI: 10.1074/jbc.m101668200] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The sex-determining factor SRY is a DNA-binding protein that diverts primordial gonads from the ovarian pathway toward male differentiation to form testes. It gains access to the nucleus through two distinct nuclear localization signals (NLSs) that flank the high mobility group (HMG) DNA-binding domain, but the mechanisms through which these NLSs operate have not been studied. In this study, we reconstitute the nuclear import of SRY in vitro, demonstrating a lack of requirement for exogenous factors for nuclear accumulation and a significant reduction in nuclear transport in the presence of antibodies to importin beta but not importin alpha. Using a range of quantitative binding assays including enzyme-linked immunosorbent assay, fluorescence polarization, and native gel mobility electrophoresis, we assess the binding of importins to SRY, demonstrating a high affinity recognition (in the low nm range) by Imp beta independent of Imp alpha. In assessing the contribution of each NLS, we found that the N-terminal NLS was recognized poorly by importins, whereas the C-terminal NLS was bound by importin beta with similar affinity to SRY. We also found that RanGTP, but not RanGDP, could dissociate the SRY-importin beta complex in solution using FP. We describe a novel double-fluorescent label DNA binding assay to demonstrate mutual exclusivity between importin beta recognition and DNA binding on the part of SRY, which may represent an alternative release mechanism upon nuclear entry. This study represents the first characterization of the nuclear import pathway for a HMG domain-containing protein. Importantly, it demonstrates for the first time that recognition of SRY by Imp beta is of comparable affinity to that with which Imp alpha/beta recognizes conventional NLS-containing substrates.
Collapse
Affiliation(s)
- J K Forwood
- Nuclear Signaling Laboratory, Division for Biochemistry and Molecular Biology, John Curtin School of Medical Research, Canberra City 2601, Australia
| | | | | |
Collapse
|