1
|
Tobita H, Kiuchi T. Knockout of cryptochrome 1 disrupts circadian rhythm and photoperiodic diapause induction in the silkworm, Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 172:104153. [PMID: 38964485 DOI: 10.1016/j.ibmb.2024.104153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Most insects enter diapause, a state of physiological dormancy crucial for enduring harsh seasons, with photoperiod serving as the primary cue for its induction, ensuring proper seasonal timing of the process. Although the involvement of the circadian clock in the photoperiodic time measurement has been demonstrated through knockdown or knockout of clock genes, the involvement of clock gene cryptochrome 1 (cry1), which functions as a photoreceptor implicated in photoentrainment of the circadian clock across various insect species, remains unclear. In bivoltine strains of the silkworm, Bombyx mori, embryonic diapause is maternally controlled and affected by environmental conditions experienced by mother moths during embryonic and larval stages. Previous research highlighted the role of core clock genes, including period (per), timeless (tim), Clock (Clk) and cycle (cyc), in photoperiodic diapause induction in B. mori. In this study, we focused on the involvement of cry1 gene in B. mori photoperiodism. Phylogenetic analysis and conserved domain identification confirmed the presence of both Drosophila-type cry (cry1) and mammalian-type cry (cry2) genes in the B. mori genome, akin to other lepidopterans. Temporal expression analysis revealed higher cry1 gene expression during the photophase and lower expression during the scotophase, with knockouts of core clock genes (per, tim, Clk and cyc) disrupting this temporal expression pattern. Using CRISPR/Cas9-mediated genome editing, we established a cry1 knockout strain in p50T, a bivoltine strain exhibiting clear photoperiodism during both embryonic and larval stages. Although the wild-type strain displayed circadian rhythm in eclosion under continuous darkness, the cry1 knockout strain exhibited arrhythmic eclosion, implicating B. mori cry1 in the circadian clock feedback loop governing behavior rhythms. Females of the cry1 knockout strain failed to control photoperiodic diapause induction during both embryonic and larval stages, mirroring the diapause phenotype of the wild-type individuals reared under constant darkness, indicating that B. mori CRY1 contributes to photoperiodic time measurement as a photoreceptor. Furthermore, photoperiodic diapause induction during the larval stage was abolished in a cry1/tim double-knockout strain, suggesting that photic information received by CRY1 is relayed to the circadian clock. Overall, this study represents the first evidence of cry1 involvement in insect photoperiodism, specifically in diapause induction.
Collapse
Affiliation(s)
- Hisashi Tobita
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan.
| | - Takashi Kiuchi
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
2
|
Sondhi Y, Messcher RL, Bellantuono AJ, Storer CG, Cinel SD, Godfrey RK, Mongue AJ, Weng YM, Glass D, St Laurent RA, Hamilton CA, Earl C, Brislawn CJ, Kitching IJ, Bybee SM, Theobald JC, Kawahara AY. Day-night gene expression reveals circadian gene disco as a candidate for diel-niche evolution in moths. Proc Biol Sci 2024; 291:20240591. [PMID: 39194299 DOI: 10.1098/rspb.2024.0591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 08/29/2024] Open
Abstract
Temporal ecological niche partitioning is an underappreciated driver of speciation. While insects have long been models for circadian biology, the genes and circuits that allow adaptive changes in diel-niches remain poorly understood. We compared gene expression in closely related day- and night-active non-model wild silk moths, with otherwise similar ecologies. Using an ortholog-based pipeline to compare RNA-Seq patterns across two moth species, we find over 25 pairs of gene orthologs showing differential expression. Notably, the gene disco, involved in circadian control, optic lobe and clock neuron development in Drosophila, shows robust adult circadian mRNA cycling in moth heads. Disco is highly conserved in moths and has additional zinc-finger domains with specific nocturnal and diurnal mutations. We propose disco as a candidate gene for the diversification of temporal diel-niche in moths.
Collapse
Affiliation(s)
- Yash Sondhi
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida , Gainesville, FL 32611, USA
- Department of Biology, Florida International University , Miami, FL 33174, USA
- Institute for Environment, Florida International University , Miami, FL 33174, USA
| | - Rebeccah L Messcher
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida , Gainesville, FL 32611, USA
| | | | - Caroline G Storer
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida , Gainesville, FL 32611, USA
| | - Scott D Cinel
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida , Gainesville, FL 32611, USA
| | - R Keating Godfrey
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida , Gainesville, FL 32611, USA
- Department of Biology, Florida International University , Miami, FL 33174, USA
| | - Andrew J Mongue
- Department of Entomology and Nematology, University of Florida , Gainesville, FL 32611, USA
| | - Yi-Ming Weng
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida , Gainesville, FL 32611, USA
| | - Deborah Glass
- School of Life Sciences, University of Sussex, Sussex House , Brighton BN1 9RH, UK
- Natural History Museum, Cromwell Road , London SW7 5BD, UK
| | - Ryan A St Laurent
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida , Gainesville, FL 32611, USA
- Department of Entomology, Smithsonian Institution, National Museum of Natural History , Washington, DC, USA
| | - Chris A Hamilton
- Department of Entomology, Plant Pathology & Nematology, University of Idaho , Moscow, ID 83844, USA
| | - Chandra Earl
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida , Gainesville, FL 32611, USA
- Biodiversity Knowledge Integration Center, School of Life Sciences, Arizona State University , Tempe, AZ 852281, USA
| | | | - Ian J Kitching
- Natural History Museum, Cromwell Road , London SW7 5BD, UK
| | - Seth M Bybee
- Department of Biology, Monte L. Bean Museum, Brigham Young University, 4102 Life Science Building , Provo, UT 84602, USA
| | - Jamie C Theobald
- Department of Biology, Florida International University , Miami, FL 33174, USA
- Institute for Environment, Florida International University , Miami, FL 33174, USA
| | - Akito Y Kawahara
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida , Gainesville, FL 32611, USA
| |
Collapse
|
3
|
Shimizu I. Photoperiodism of Diapause Induction in the Silkworm, Bombyx mori. Zoolog Sci 2024; 41:141-158. [PMID: 38587909 DOI: 10.2108/zs230036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 11/08/2023] [Indexed: 04/10/2024]
Abstract
The silkworm Bombyx mori exhibits a photoperiodic response (PR) for embryonic diapause induction. This article provides a comprehensive review of literature on the silkworm PR, starting from early works on population to recent studies uncovering the molecular mechanism. Makita Kogure (1933) conducted extensive research on the PR, presenting a pioneering paper on insect photoperiodism. In the 1970s and 80s, artificial diets were developed, and the influence of nutrition on PR was well documented. The photoperiodic photoreceptor has been investigated from organ to molecular level in the silkworm. Culture experiments demonstrated that the photoperiodic induction can be programmed in an isolated brain (Br)-subesophageal ganglion (SG) complex with corpora cardiaca (CC)-corpora allata (CA). The requirement of dietary vitamin A for PR suggests the involvement of opsin pigment in the photoperiodic reception, and a cDNA encoding an opsin (Boceropsin) was cloned from the brain. The effector system concerning the production and secretion of diapause hormone (DH) has also been extensively investigated in the silkworm. DH is produced in a pair of posterior cells of SG, transported to CC by nervi corporis cardiaci, and ultimately released into the hemolymph. Possible involvement of GABAergic and corazonin (Crz) signal pathways was suggested in the control of DH secretion. Knockout (KO) experiments of GABA transporter (GAT) and circadian clock genes demonstrated that GAT plays a crucial role in PR through circadian control. A model outlining the PR mechanism, from maternal photoperiodic light reception to DH secretion, has been proposed.
Collapse
Affiliation(s)
- Isamu Shimizu
- Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan,
| |
Collapse
|
4
|
Vöcking O, Macias-Muñoz A, Jaeger SJ, Oakley TH. Deep Diversity: Extensive Variation in the Components of Complex Visual Systems across Animals. Cells 2022; 11:cells11243966. [PMID: 36552730 PMCID: PMC9776813 DOI: 10.3390/cells11243966] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/19/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
Understanding the molecular underpinnings of the evolution of complex (multi-part) systems is a fundamental topic in biology. One unanswered question is to what the extent do similar or different genes and regulatory interactions underlie similar complex systems across species? Animal eyes and phototransduction (light detection) are outstanding systems to investigate this question because some of the genetics underlying these traits are well characterized in model organisms. However, comparative studies using non-model organisms are also necessary to understand the diversity and evolution of these traits. Here, we compare the characteristics of photoreceptor cells, opsins, and phototransduction cascades in diverse taxa, with a particular focus on cnidarians. In contrast to the common theme of deep homology, whereby similar traits develop mainly using homologous genes, comparisons of visual systems, especially in non-model organisms, are beginning to highlight a "deep diversity" of underlying components, illustrating how variation can underlie similar complex systems across taxa. Although using candidate genes from model organisms across diversity was a good starting point to understand the evolution of complex systems, unbiased genome-wide comparisons and subsequent functional validation will be necessary to uncover unique genes that comprise the complex systems of non-model groups to better understand biodiversity and its evolution.
Collapse
Affiliation(s)
- Oliver Vöcking
- Department of Biology, University of Kentucky, Lexington, KY 40508, USA
| | - Aide Macias-Muñoz
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106, USA
| | - Stuart J. Jaeger
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106, USA
| | - Todd H. Oakley
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106, USA
- Correspondence:
| |
Collapse
|
5
|
Giraldo-Calderón GI, Zanis MJ, Hill CA. Retention of duplicated long-wavelength opsins in mosquito lineages by positive selection and differential expression. BMC Evol Biol 2017; 17:84. [PMID: 28320313 PMCID: PMC5359912 DOI: 10.1186/s12862-017-0910-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 02/09/2017] [Indexed: 12/02/2022] Open
Abstract
Background Opsins are light sensitive receptors associated with visual processes. Insects typically possess opsins that are stimulated by ultraviolet, short and long wavelength (LW) radiation. Six putative LW-sensitive opsins predicted in the yellow fever mosquito, Aedes aegypti and malaria mosquito, Anopheles gambiae, and eight in the southern house mosquito, Culex quinquefasciatus, suggest gene expansion in the Family Culicidae (mosquitoes) relative to other insects. Here we report the first detailed molecular and evolutionary analyses of LW opsins in three mosquito vectors, with a goal to understanding the molecular basis of opsin-mediated visual processes that could be exploited for mosquito control. Results Time of divergence estimates suggest that the mosquito LW opsins originated from 18 or 19 duplication events between 166.9/197.5 to 1.07/0.94 million years ago (MY) and that these likely occurred following the predicted divergence of the lineages Anophelinae and Culicinae 145–226 MY. Fitmodel analyses identified nine amino acid residues in the LW opsins that may be under positive selection. Of these, eight amino acids occur in the N and C termini and are shared among all three species, and one residue in TMIII was unique to culicine species. Alignment of 5′ non-coding regions revealed potential Conserved Non-coding Sequences (CNS) and transcription factor binding sites (TFBS) in seven pairs of LW opsin paralogs. Conclusions Our analyses suggest opsin gene duplication and residues possibly associated with spectral tuning of LW-sensitive photoreceptors. We explore two mechanisms - positive selection and differential expression mediated by regulatory units in CNS – that may have contributed to the retention of LW opsin genes in Culicinae and Anophelinae. We discuss the evolution of mosquito LW opsins in the context of major Earth events and possible adaptation of mosquitoes to LW-dominated photo environments, and implications for mosquito control strategies based on disrupting vision-mediated behaviors. Electronic supplementary material The online version of this article (doi:10.1186/s12862-017-0910-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gloria I Giraldo-Calderón
- Department of Entomology, Purdue University, West Lafayette, IN, 47907-2089, USA.,Present Address: Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Michael J Zanis
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907-2089, USA.,Present Address: Department of Biology, Seattle University, Seattle, WA, 98122, USA
| | - Catherine A Hill
- Department of Entomology, Purdue University, West Lafayette, IN, 47907-2089, USA. .,Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, 47907-2089, USA.
| |
Collapse
|
6
|
Kanost MR, Arrese EL, Cao X, Chen YR, Chellapilla S, Goldsmith MR, Grosse-Wilde E, Heckel DG, Herndon N, Jiang H, Papanicolaou A, Qu J, Soulages JL, Vogel H, Walters J, Waterhouse RM, Ahn SJ, Almeida FC, An C, Aqrawi P, Bretschneider A, Bryant WB, Bucks S, Chao H, Chevignon G, Christen JM, Clarke DF, Dittmer NT, Ferguson LCF, Garavelou S, Gordon KHJ, Gunaratna RT, Han Y, Hauser F, He Y, Heidel-Fischer H, Hirsh A, Hu Y, Jiang H, Kalra D, Klinner C, König C, Kovar C, Kroll AR, Kuwar SS, Lee SL, Lehman R, Li K, Li Z, Liang H, Lovelace S, Lu Z, Mansfield JH, McCulloch KJ, Mathew T, Morton B, Muzny DM, Neunemann D, Ongeri F, Pauchet Y, Pu LL, Pyrousis I, Rao XJ, Redding A, Roesel C, Sanchez-Gracia A, Schaack S, Shukla A, Tetreau G, Wang Y, Xiong GH, Traut W, Walsh TK, Worley KC, Wu D, Wu W, Wu YQ, Zhang X, Zou Z, Zucker H, Briscoe AD, Burmester T, Clem RJ, Feyereisen R, Grimmelikhuijzen CJP, Hamodrakas SJ, Hansson BS, Huguet E, Jermiin LS, Lan Q, Lehman HK, Lorenzen M, Merzendorfer H, Michalopoulos I, Morton DB, Muthukrishnan S, Oakeshott JG, Palmer W, Park Y, Passarelli AL, Rozas J, Schwartz LM, Smith W, Southgate A, Vilcinskas A, Vogt R, Wang P, Werren J, Yu XQ, Zhou JJ, Brown SJ, Scherer SE, Richards S, Blissard GW. Multifaceted biological insights from a draft genome sequence of the tobacco hornworm moth, Manduca sexta. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 76:118-147. [PMID: 27522922 PMCID: PMC5010457 DOI: 10.1016/j.ibmb.2016.07.005] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/27/2016] [Accepted: 07/14/2016] [Indexed: 05/19/2023]
Abstract
Manduca sexta, known as the tobacco hornworm or Carolina sphinx moth, is a lepidopteran insect that is used extensively as a model system for research in insect biochemistry, physiology, neurobiology, development, and immunity. One important benefit of this species as an experimental model is its extremely large size, reaching more than 10 g in the larval stage. M. sexta larvae feed on solanaceous plants and thus must tolerate a substantial challenge from plant allelochemicals, including nicotine. We report the sequence and annotation of the M. sexta genome, and a survey of gene expression in various tissues and developmental stages. The Msex_1.0 genome assembly resulted in a total genome size of 419.4 Mbp. Repetitive sequences accounted for 25.8% of the assembled genome. The official gene set is comprised of 15,451 protein-coding genes, of which 2498 were manually curated. Extensive RNA-seq data from many tissues and developmental stages were used to improve gene models and for insights into gene expression patterns. Genome wide synteny analysis indicated a high level of macrosynteny in the Lepidoptera. Annotation and analyses were carried out for gene families involved in a wide spectrum of biological processes, including apoptosis, vacuole sorting, growth and development, structures of exoskeleton, egg shells, and muscle, vision, chemosensation, ion channels, signal transduction, neuropeptide signaling, neurotransmitter synthesis and transport, nicotine tolerance, lipid metabolism, and immunity. This genome sequence, annotation, and analysis provide an important new resource from a well-studied model insect species and will facilitate further biochemical and mechanistic experimental studies of many biological systems in insects.
Collapse
Affiliation(s)
- Michael R Kanost
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA.
| | - Estela L Arrese
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Xiaolong Cao
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Yun-Ru Chen
- Boyce Thompson Institute at Cornell University, Tower Road, Ithaca, NY, 14853, USA
| | - Sanjay Chellapilla
- KSU Bioinformatics Center, Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Marian R Goldsmith
- Biological Sciences Department, University of Rhode Island, Kingston, RI, 02881, USA
| | - Ewald Grosse-Wilde
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knoell-Strasse, 8, D-07745, Jena, Germany
| | - David G Heckel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745, Jena, Germany
| | - Nicolae Herndon
- KSU Bioinformatics Center, Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Alexie Papanicolaou
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| | - Jiaxin Qu
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Jose L Soulages
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Heiko Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745, Jena, Germany
| | - James Walters
- Department of Ecology and Evolutionary Biology, Univ. Kansas, Lawrence, KS, 66045, USA
| | - Robert M Waterhouse
- Department of Genetic Medicine and Development, University of Geneva Medical School, rue Michel-Servet 1, 1211, Geneva, Switzerland; Swiss Institute of Bioinformatics, rue Michel-Servet 1, 1211, Geneva, Switzerland; Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 32 Vassar Street, Cambridge, MA, 02139, USA; The Broad Institute of MIT and Harvard, Cambridge, 415 Main Street, MA, 02142, USA
| | - Seung-Joon Ahn
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745, Jena, Germany
| | - Francisca C Almeida
- Departament de Genètica and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Chunju An
- Department of Entomology, China Agricultural University, Beijing, China
| | - Peshtewani Aqrawi
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Anne Bretschneider
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745, Jena, Germany
| | - William B Bryant
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Sascha Bucks
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knoell-Strasse, 8, D-07745, Jena, Germany
| | - Hsu Chao
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Germain Chevignon
- Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS 7261, UFR Sciences et Techniques, Université François-Rabelais, Tours, France
| | - Jayne M Christen
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | - David F Clarke
- CSIRO Land and Water, Clunies Ross St, Acton, ACT, 2601, Australia
| | - Neal T Dittmer
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | | | - Spyridoula Garavelou
- Centre of Systems Biology, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Karl H J Gordon
- CSIRO Health and Biosecurity, Clunies Ross St, Acton, ACT, 2601, Australia
| | - Ramesh T Gunaratna
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Yi Han
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Frank Hauser
- Center for Functional and Comparative Insect Genomics, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-21oo, Copenhagen, Denmark
| | - Yan He
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Hanna Heidel-Fischer
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745, Jena, Germany
| | - Ariana Hirsh
- Department of Biology, Barnard College, Columbia University, 3009 Broadway, New York, NY, 10027, USA
| | - Yingxia Hu
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Hongbo Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400715, China
| | - Divya Kalra
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Christian Klinner
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knoell-Strasse, 8, D-07745, Jena, Germany
| | - Christopher König
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knoell-Strasse, 8, D-07745, Jena, Germany
| | - Christie Kovar
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Ashley R Kroll
- Department of Biology, Reed College, Portland, OR, 97202, USA
| | - Suyog S Kuwar
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745, Jena, Germany
| | - Sandy L Lee
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Rüdiger Lehman
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Bioresources Project Group, Winchesterstrasse 2, 35394, Gießen, Germany
| | - Kai Li
- College of Chemistry, Chemical Engineering, and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Zhaofei Li
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hanquan Liang
- McDermott Center for Human Growth and Development, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Shanna Lovelace
- Department of Biological Sciences, University of Southern Maine, Portland, ME, 04104, USA
| | - Zhiqiang Lu
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jennifer H Mansfield
- Department of Biology, Barnard College, Columbia University, 3009 Broadway, New York, NY, 10027, USA
| | - Kyle J McCulloch
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, 92697, USA
| | - Tittu Mathew
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Brian Morton
- Department of Biology, Barnard College, Columbia University, 3009 Broadway, New York, NY, 10027, USA
| | - Donna M Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - David Neunemann
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745, Jena, Germany
| | - Fiona Ongeri
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Yannick Pauchet
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745, Jena, Germany
| | - Ling-Ling Pu
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Ioannis Pyrousis
- Centre of Systems Biology, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Xiang-Jun Rao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China
| | - Amanda Redding
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Charles Roesel
- Department of Marine and Environmental Sciences, Northeastern University, Boston, MA, 02115, USA
| | - Alejandro Sanchez-Gracia
- Departament de Genètica and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Sarah Schaack
- Department of Biology, Reed College, Portland, OR, 97202, USA
| | - Aditi Shukla
- Department of Biology, Barnard College, Columbia University, 3009 Broadway, New York, NY, 10027, USA
| | - Guillaume Tetreau
- Department of Entomology, Cornell University, New York State Agricultural Experiment Station, Geneva, NY, 14456, USA
| | - Yang Wang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Guang-Hua Xiong
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Walther Traut
- Institut fuer Biologie, Universitaet Luebeck, D-23538, Luebeck, Germany
| | - Tom K Walsh
- CSIRO Land and Water, Clunies Ross St, Acton, ACT, 2601, Australia
| | - Kim C Worley
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Di Wu
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | - Wenbi Wu
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Yuan-Qing Wu
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Xiufeng Zhang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hannah Zucker
- Neuroscience Program, Hamilton College, Clinton, NY, 13323, USA
| | - Adriana D Briscoe
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, 92697, USA
| | | | - Rollie J Clem
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - René Feyereisen
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Cornelis J P Grimmelikhuijzen
- Center for Functional and Comparative Insect Genomics, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-21oo, Copenhagen, Denmark
| | - Stavros J Hamodrakas
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Athens, Greece
| | - Bill S Hansson
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knoell-Strasse, 8, D-07745, Jena, Germany
| | - Elisabeth Huguet
- Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS 7261, UFR Sciences et Techniques, Université François-Rabelais, Tours, France
| | - Lars S Jermiin
- CSIRO Land and Water, Clunies Ross St, Acton, ACT, 2601, Australia
| | - Que Lan
- Department of Entomology, University of Wisconsin, Madison, USA
| | - Herman K Lehman
- Biology Department and Neuroscience Program, Hamilton College, Clinton, NY, 13323, USA
| | - Marce Lorenzen
- Dept. Entomology, North Carolina State Univ., Raleigh, NC, 27695, USA
| | - Hans Merzendorfer
- University of Siegen, School of Natural Sciences and Engineering, Institute of Biology - Molecular Biology, Adolf-Reichwein-Strasse. 2, AR-C3010, 57076 Siegen, Germany
| | - Ioannis Michalopoulos
- Centre of Systems Biology, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - David B Morton
- Department of Integrative Biosciences, School of Dentistry, BRB421, L595, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, 97239, USA
| | - Subbaratnam Muthukrishnan
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | - John G Oakeshott
- CSIRO Land and Water, Clunies Ross St, Acton, ACT, 2601, Australia
| | - Will Palmer
- Department of Genetics, University of Cambridge, Downing St, Cambridge, CB2 3EH, UK
| | - Yoonseong Park
- Department of Entomology, Kansas State University, Manhattan, KS, 66506, USA
| | | | - Julio Rozas
- Departament de Genètica and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | | | - Wendy Smith
- Department of Biology, Northeastern University, Boston, MA, 02115, USA
| | - Agnes Southgate
- Department of Biology, College of Charleston, Charleston, SC, 29424, USA
| | - Andreas Vilcinskas
- Institute for Insect Biotechnology, Justus-Liebig-University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Richard Vogt
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29205, USA
| | - Ping Wang
- Department of Entomology, Cornell University, New York State Agricultural Experiment Station, Geneva, NY, 14456, USA
| | - John Werren
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Xiao-Qiang Yu
- University of Missouri-Kansas City, 5007 Rockhill Road, Kansas City, MO, 64110, USA
| | - Jing-Jiang Zhou
- Department of Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden, Herts, AL5 2JQ, UK
| | - Susan J Brown
- KSU Bioinformatics Center, Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Steven E Scherer
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Stephen Richards
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Gary W Blissard
- Boyce Thompson Institute at Cornell University, Tower Road, Ithaca, NY, 14853, USA
| |
Collapse
|
7
|
Tierney SM, Cooper SJB, Saint KM, Bertozzi T, Hyde J, Humphreys WF, Austin AD. Opsin transcripts of predatory diving beetles: a comparison of surface and subterranean photic niches. ROYAL SOCIETY OPEN SCIENCE 2015; 2:140386. [PMID: 26064586 DOI: 10.5061/dryad.0dq8s] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 12/22/2014] [Indexed: 05/22/2023]
Abstract
The regressive evolution of eyes has long intrigued biologists yet the genetic underpinnings remain opaque. A system of discrete aquifers in arid Australia provides a powerful comparative means to explore trait regression at the genomic level. Multiple surface ancestors from two tribes of diving beetles (Dytiscidae) repeatedly invaded these calcrete aquifers and convergently evolved eye-less phenotypes. We use this system to assess transcription of opsin photoreceptor genes among the transcriptomes of two surface and three subterranean dytiscid species and test whether these genes have evolved under neutral predictions. Transcripts for UV, long-wavelength and ciliary-type opsins were identified from the surface beetle transcriptomes. Two subterranean beetles showed parallel loss of all opsin transcription, as expected under 'neutral' regressive evolution. The third species Limbodessus palmulaoides retained transcription of a long-wavelength opsin (lwop) orthologue, albeit in an aphotic environment. Tests of selection on lwop indicated no significant differences between transcripts derived from surface and subterranean habitats, with strong evidence for purifying selection acting on L. palmulaoides lwop. Retention of sequence integrity and the lack of evidence for neutral evolution raise the question of whether we have identified a novel pleiotropic role for lwop, or an incipient phase of pseudogene development.
Collapse
Affiliation(s)
- Simon M Tierney
- Australian Centre for Evolutionary Biology and Biodiversity and School of Biological Sciences , University of Adelaide , South Australia 5005, Australia
| | - Steven J B Cooper
- Australian Centre for Evolutionary Biology and Biodiversity and School of Biological Sciences , University of Adelaide , South Australia 5005, Australia ; Evolutionary Biology Unit , South Australian Museum, North Terrace , Adelaide, South Australia 5000, Australia
| | - Kathleen M Saint
- Evolutionary Biology Unit , South Australian Museum, North Terrace , Adelaide, South Australia 5000, Australia
| | - Terry Bertozzi
- Australian Centre for Evolutionary Biology and Biodiversity and School of Biological Sciences , University of Adelaide , South Australia 5005, Australia ; Evolutionary Biology Unit , South Australian Museum, North Terrace , Adelaide, South Australia 5000, Australia
| | - Josephine Hyde
- Australian Centre for Evolutionary Biology and Biodiversity and School of Biological Sciences , University of Adelaide , South Australia 5005, Australia
| | - William F Humphreys
- Australian Centre for Evolutionary Biology and Biodiversity and School of Biological Sciences , University of Adelaide , South Australia 5005, Australia ; Terrestrial Zoology , Western Australian Museum, Locked Bag 49, Welshpool DC , Western Australia 6986, Australia ; School of Animal Biology , University of Western Australia , Nedlands, Western Australia 6907, Australia
| | - Andrew D Austin
- Australian Centre for Evolutionary Biology and Biodiversity and School of Biological Sciences , University of Adelaide , South Australia 5005, Australia
| |
Collapse
|
8
|
Tierney SM, Cooper SJB, Saint KM, Bertozzi T, Hyde J, Humphreys WF, Austin AD. Opsin transcripts of predatory diving beetles: a comparison of surface and subterranean photic niches. ROYAL SOCIETY OPEN SCIENCE 2015; 2:140386. [PMID: 26064586 PMCID: PMC4448788 DOI: 10.1098/rsos.140386] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 12/22/2014] [Indexed: 05/05/2023]
Abstract
The regressive evolution of eyes has long intrigued biologists yet the genetic underpinnings remain opaque. A system of discrete aquifers in arid Australia provides a powerful comparative means to explore trait regression at the genomic level. Multiple surface ancestors from two tribes of diving beetles (Dytiscidae) repeatedly invaded these calcrete aquifers and convergently evolved eye-less phenotypes. We use this system to assess transcription of opsin photoreceptor genes among the transcriptomes of two surface and three subterranean dytiscid species and test whether these genes have evolved under neutral predictions. Transcripts for UV, long-wavelength and ciliary-type opsins were identified from the surface beetle transcriptomes. Two subterranean beetles showed parallel loss of all opsin transcription, as expected under 'neutral' regressive evolution. The third species Limbodessus palmulaoides retained transcription of a long-wavelength opsin (lwop) orthologue, albeit in an aphotic environment. Tests of selection on lwop indicated no significant differences between transcripts derived from surface and subterranean habitats, with strong evidence for purifying selection acting on L. palmulaoides lwop. Retention of sequence integrity and the lack of evidence for neutral evolution raise the question of whether we have identified a novel pleiotropic role for lwop, or an incipient phase of pseudogene development.
Collapse
Affiliation(s)
- Simon M. Tierney
- Australian Centre for Evolutionary Biology and Biodiversity and School of Biological Sciences, University of Adelaide, South Australia 5005, Australia
- Authors for correspondence: Simon M. Tierney e-mail:
| | - Steven J. B. Cooper
- Australian Centre for Evolutionary Biology and Biodiversity and School of Biological Sciences, University of Adelaide, South Australia 5005, Australia
- Evolutionary Biology Unit, South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia
- Authors for correspondence: Steven J. B. Cooper e-mail:
| | - Kathleen M. Saint
- Evolutionary Biology Unit, South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia
| | - Terry Bertozzi
- Australian Centre for Evolutionary Biology and Biodiversity and School of Biological Sciences, University of Adelaide, South Australia 5005, Australia
- Evolutionary Biology Unit, South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia
| | - Josephine Hyde
- Australian Centre for Evolutionary Biology and Biodiversity and School of Biological Sciences, University of Adelaide, South Australia 5005, Australia
| | - William F. Humphreys
- Australian Centre for Evolutionary Biology and Biodiversity and School of Biological Sciences, University of Adelaide, South Australia 5005, Australia
- Terrestrial Zoology, Western Australian Museum, Locked Bag 49, Welshpool DC, Western Australia 6986, Australia
- School of Animal Biology, University of Western Australia, Nedlands, Western Australia 6907, Australia
| | - Andrew D. Austin
- Australian Centre for Evolutionary Biology and Biodiversity and School of Biological Sciences, University of Adelaide, South Australia 5005, Australia
| |
Collapse
|
9
|
Tian K, Xu WH. High expression of PP2A-Aα is associated with diapause induction during the photoperiod-sensitive stage of the cotton bollworm, Helicoverpa armigera. JOURNAL OF INSECT PHYSIOLOGY 2013; 59:588-594. [PMID: 23557680 DOI: 10.1016/j.jinsphys.2013.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 03/19/2013] [Accepted: 03/20/2013] [Indexed: 06/02/2023]
Abstract
Protein phosphatase 2A (PP2A) is a major serine-threonine protein phosphatase which regulates metabolism, transcription, RNA splicing, translation, differentiation, cell cycle, oncogenic transformation and signal transduction. PP2A-Aα, an isoform of PP2A-A, is a structural subunit of the PP2A complex. We identified the photoperiod-sensitive stage for pupal diapause induction to be from the fifth instar to the early sixth instar larvae in the cotton bollworm, Helicoverpa armigera. PP2A-Aα cDNA from brains of diapause-destined fifth instar larvae was obtained by suppressive subtractive hybridization using nondiapause-destined larval brains as a control. Developmental expression of PP2A-Aα mRNA during the photoperiod-sensitive stage was higher in brains of diapause-destined larvae, and the PP2A-Aα protein showed a similar expression pattern as the mRNA. When larvae were transferred from diapause-inducing short days to long days during the diapause-sensitive stage, both PP2A-Aα mRNA and protein decreased significantly, and diapause incidence was also reduced. Thus, high PP2A-Aα expression during the diapause-sensitive stage may play a crucial role in photoperiodic induction of diapause, suggesting that it may be a new player involved in the molecular mechanism for diapause induction.
Collapse
Affiliation(s)
- Ke Tian
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | | |
Collapse
|
10
|
Porter ML, Blasic JR, Bok MJ, Cameron EG, Pringle T, Cronin TW, Robinson PR. Shedding new light on opsin evolution. Proc Biol Sci 2011; 279:3-14. [PMID: 22012981 DOI: 10.1098/rspb.2011.1819] [Citation(s) in RCA: 176] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Opsin proteins are essential molecules in mediating the ability of animals to detect and use light for diverse biological functions. Therefore, understanding the evolutionary history of opsins is key to understanding the evolution of light detection and photoreception in animals. As genomic data have appeared and rapidly expanded in quantity, it has become possible to analyse opsins that functionally and histologically are less well characterized, and thus to examine opsin evolution strictly from a genetic perspective. We have incorporated these new data into a large-scale, genome-based analysis of opsin evolution. We use an extensive phylogeny of currently known opsin sequence diversity as a foundation for examining the evolutionary distributions of key functional features within the opsin clade. This new analysis illustrates the lability of opsin protein-expression patterns, site-specific functionality (i.e. counterion position) and G-protein binding interactions. Further, it demonstrates the limitations of current model organisms, and highlights the need for further characterization of many of the opsin sequence groups with unknown function.
Collapse
Affiliation(s)
- Megan L Porter
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, USA.
| | | | | | | | | | | | | |
Collapse
|
11
|
Koštál V. Insect photoperiodic calendar and circadian clock: independence, cooperation, or unity? JOURNAL OF INSECT PHYSIOLOGY 2011; 57:538-556. [PMID: 21029738 DOI: 10.1016/j.jinsphys.2010.10.006] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 10/19/2010] [Accepted: 10/19/2010] [Indexed: 05/30/2023]
Abstract
The photoperiodic calendar is a seasonal time measurement system which allows insects to cope with annual cycles of environmental conditions. Seasonal timing of entry into diapause is the most often studied photoperiodic response of insects. Research on insect photoperiodism has an approximately 80-year-old tradition. Despite that long history, the physiological mechanisms underlying functionality of the photoperiodic calendar remain poorly understood. Thus far, a consensus has not been reached on the role of another time measurement system, the biological circadian clock, in the photoperiodic calendar. Are the two systems physically separated and functionally independent, or do they cooperate, or is it a single system with dual output? The relationship between calendar and clock functions are the focus of this review, with particular emphasis on the potential roles of circadian clock genes, and the circadian clock system as a whole, in the transduction pathway for photoperiodic token stimulus to the overt expression of facultative diapause.
Collapse
Affiliation(s)
- Vladimír Koštál
- Institute of Entomology, Academy of Sciences of the Czech Republic, Department of Ecophysiology, Branišovská 31, 370 05 České Budějovice, Czech Republic.
| |
Collapse
|
12
|
Saunders DS, Bertossa RC. Deciphering time measurement: the role of circadian 'clock' genes and formal experimentation in insect photoperiodism. JOURNAL OF INSECT PHYSIOLOGY 2011; 57:557-566. [PMID: 21295039 DOI: 10.1016/j.jinsphys.2011.01.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 01/18/2011] [Accepted: 01/19/2011] [Indexed: 05/30/2023]
Abstract
This review examines possible role(s) of circadian 'clock' genes in insect photoperiodism against a background of many decades of formal experimentation and model building. Since ovarian diapause in the genetic model organism Drosophila melanogaster has proved to be weak and variable, recent attention has been directed to species with more robust photoperiodic responses. However, no obvious consensus on the problem of time measurement in insect photoperiodism has yet to emerge and a variety of mechanisms are indicated. In some species, expression patterns of clock genes and formal experiments based on the canonical properties of the circadian system have suggested that a damped oscillator version of Pittendrigh's external coincidence model is appropriate to explain the measurement of seasonal changes in night length. In other species extreme dampening of constituent oscillators may give rise to apparently hourglass-like photoperiodic responses, and in still others there is evidence for dual oscillator (dawn and dusk) photoperiodic mechanisms of the internal coincidence type. Although the exact role of circadian rhythmicity and of clock genes in photoperiodism is yet to be settled, Bünning's general hypothesis (Bünning, 1936) remains the most persuasive unifying principle. Observed differences between photoperiodic clocks may be reflections of underlying differences in the clock genes in their circadian feedback loops.
Collapse
|
13
|
Saunders DS. Controversial aspects of photoperiodism in insects and mites. JOURNAL OF INSECT PHYSIOLOGY 2010; 56:1491-1502. [PMID: 20471388 DOI: 10.1016/j.jinsphys.2010.05.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Accepted: 05/03/2010] [Indexed: 05/29/2023]
Abstract
This review examines several controversial aspects of photoperiodism in insects and mites including the role of the circadian system in night length measurement, the nature of apparent hourglass-like responses, and whether or not the circadian component in photoperiodism is the same as that in overt behavioural rhythms. These aspects of the phenomenon are discussed in terms of the entrainment of circadian oscillations by cycles of light and temperature. There is considerable variety of photoperiodic response within the insects (and other arthropods) to show, inter alia, circannual rhythms, internal and external coincidence night length timers, and in some species, non-circadian hourglass-like devices. Many apparent hourglass-like responses, however, could be circadian 'clocks' of the external coincidence type involving oscillations that dampen below threshold in extended periods of darkness. The review also concludes that there is little evidence in favour of the "Hourglass clock-oscillator counter" model proposed for the mite Tetranychus urticae by Vaz Nunes and Veerman (1982a). The responses of this species to complex light and temperature cycles may also be interpreted in terms of a damped oscillator version of external coincidence.
Collapse
|
14
|
Goto SG, Numata H. Possible involvement of distinct photoreceptors in the photoperiodic induction of diapause in the flesh fly Sarcophaga similis. JOURNAL OF INSECT PHYSIOLOGY 2009; 55:401-7. [PMID: 19084533 DOI: 10.1016/j.jinsphys.2008.11.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Revised: 11/07/2008] [Accepted: 11/13/2008] [Indexed: 05/12/2023]
Abstract
Physiological characteristics of the photoreceptors involved in the photoperiodic induction of diapause were investigated in the flesh fly Sarcophaga similis. Both the early and late phases of scotophase were sensitive to light and a light pulse during each of these phases prevented diapause. Certain physiological differences between the phases were, nevertheless, detected. Compared with early scotophase, late scotophase required a light pulse with a long period and a large number of night interruption photoperiodic cycles in order to effectively prevent diapause. The diapause-averting effects of a light pulse during early scotophase were canceled by an additional long dark period, but those during late scotophase were not. Thus, the diapause-averting effects produced during early scotophase are different to those produced during late scotophase. The early scotophase was sensitive to light at wavelengths of 470nm or shorter, but not to light of 583nm or longer. In contrast, the late scotophase was sensitive to light of a broad range of wavelengths, ranging from 395 to 660nm. Furthermore, the early scotophase was considerably more sensitive to monochromatic light with low photon flux density than the late scotophase. These results suggest that different types of photoreceptor are involved in the photoperiodic response.
Collapse
Affiliation(s)
- Shin G Goto
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, Osaka 558-8585, Japan.
| | | |
Collapse
|
15
|
Briscoe AD. Reconstructing the ancestral butterfly eye: focus on the opsins. ACTA ACUST UNITED AC 2008; 211:1805-13. [PMID: 18490396 DOI: 10.1242/jeb.013045] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The eyes of butterflies are remarkable, because they are nearly as diverse as the colors of wings. Much of eye diversity can be traced to alterations in the number, spectral properties and spatial distribution of the visual pigments. Visual pigments are light-sensitive molecules composed of an opsin protein and a chromophore. Most butterflies have eyes that contain visual pigments with a wavelength of peak absorbance, lambda(max), in the ultraviolet (UV, 300-400 nm), blue (B, 400-500 nm) and long wavelength (LW, 500-600 nm) part of the visible light spectrum, respectively, encoded by distinct UV, B and LW opsin genes. In the compound eye of butterflies, each individual ommatidium is composed of nine photoreceptor cells (R1-9) that generally express only one opsin mRNA per cell, although in some butterfly eyes there are ommatidial subtypes in which two opsins are co-expressed in the same photoreceptor cell. Based on a phylogenetic analysis of opsin cDNAs from the five butterfly families, Papilionidae, Pieridae, Nymphalidae, Lycaenidae and Riodinidae, and comparative analysis of opsin gene expression patterns from four of the five families, I propose a model for the patterning of the ancestral butterfly eye that is most closely aligned with the nymphalid eye. The R1 and R2 cells of the main retina expressed UV-UV-, UV-B- or B-B-absorbing visual pigments while the R3-9 cells expressed a LW-absorbing visual pigment. Visual systems of existing butterflies then underwent an adaptive expansion based on lineage-specific B and LW opsin gene multiplications and on alterations in the spatial expression of opsins within the eye. Understanding the molecular sophistication of butterfly eye complexity is a challenge that, if met, has broad biological implications.
Collapse
Affiliation(s)
- Adriana D Briscoe
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
16
|
Yu X, Zhou Q, Li SC, Luo Q, Cai Y, Lin WC, Chen H, Yang Y, Hu S, Yu J. The silkworm (Bombyx mori) microRNAs and their expressions in multiple developmental stages. PLoS One 2008; 3:e2997. [PMID: 18714353 PMCID: PMC2500172 DOI: 10.1371/journal.pone.0002997] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2008] [Accepted: 07/28/2008] [Indexed: 12/21/2022] Open
Abstract
Background MicroRNAs (miRNAs) play crucial roles in various physiological processes through post-transcriptional regulation of gene expressions and are involved in development, metabolism, and many other important molecular mechanisms and cellular processes. The Bombyx mori genome sequence provides opportunities for a thorough survey for miRNAs as well as comparative analyses with other sequenced insect species. Methodology/Principal Findings We identified 114 non-redundant conserved miRNAs and 148 novel putative miRNAs from the B. mori genome with an elaborate computational protocol. We also sequenced 6,720 clones from 14 developmental stage-specific small RNA libraries in which we identified 35 unique miRNAs containing 21 conserved miRNAs (including 17 predicted miRNAs) and 14 novel miRNAs (including 11 predicted novel miRNAs). Among the 114 conserved miRNAs, we found six pairs of clusters evolutionarily conserved cross insect lineages. Our observations on length heterogeneity at 5′ and/or 3′ ends of nine miRNAs between cloned and predicted sequences, and three mature forms deriving from the same arm of putative pre-miRNAs suggest a mechanism by which miRNAs gain new functions. Analyzing development-related miRNAs expression at 14 developmental stages based on clone-sampling and stem-loop RT PCR, we discovered an unusual abundance of 33 sequences representing 12 different miRNAs and sharply fluctuated expression of miRNAs at larva-molting stage. The potential functions of several stage-biased miRNAs were also analyzed in combination with predicted target genes and silkworm's phenotypic traits; our results indicated that miRNAs may play key regulatory roles in specific developmental stages in the silkworm, such as ecdysis. Conclusions/Significance Taking a combined approach, we identified 118 conserved miRNAs and 151 novel miRNA candidates from the B. mori genome sequence. Our expression analyses by sampling miRNAs and real-time PCR over multiple developmental stages allowed us to pinpoint molting stages as hotspots of miRNA expression both in sorts and quantities. Based on the analysis of target genes, we hypothesized that miRNAs regulate development through a particular emphasis on complex stages rather than general regulatory mechanisms.
Collapse
Affiliation(s)
- Xiaomin Yu
- Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Qing Zhou
- Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Sung-Chou Li
- Institute of BioMedical Informatics, National Yang-Ming University, Taipei, Taiwan
- Bioinformatics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
| | - Qibin Luo
- Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- James D. Watson Institute of Genome Sciences, Zhejiang University, Hangzhou, China
| | - Yimei Cai
- Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Wen-chang Lin
- Institute of BioMedical Informatics, National Yang-Ming University, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Huan Chen
- Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- James D. Watson Institute of Genome Sciences, Zhejiang University, Hangzhou, China
| | - Yue Yang
- Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Songnian Hu
- Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Jun Yu
- Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
17
|
Iwai S, Thi Dieu Trang L, Sehadova H, Takeda M. Expression analyses of casein kinase 2alpha and casein kinase 2beta in the silkmoth, Bombyx mori. Comp Biochem Physiol B Biochem Mol Biol 2007; 149:38-46. [PMID: 17888702 DOI: 10.1016/j.cbpb.2007.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2007] [Revised: 08/01/2007] [Accepted: 08/07/2007] [Indexed: 11/27/2022]
Abstract
A period-timeless (per-tim) based feedback loop is considered to be essential in generating circadian rhythms in Drosophila melanogaster. In addition to transcriptional regulation, the post-transcriptional modification is essential to the circadian oscillation of core clock proteins in the circadian system. Here we present expression profiles of the catalytic subunit of casein kinase 2alpha (ck2alpha) and casein kinase 2beta (ck2beta) in Bombyx mori. Southern blot analyses showed that ck2alpha and ck2beta of B. mori were single copy genes. Northern blot analyses demonstrated that both subunits were expressed in eggs, larval heads, adult heads, testes and ovaries. In situ hybridization analyses indicated that subunits were expressed in brain neurons expressing PER-like protein. Surprisingly, antisense RNAs of ck2alpha and ck2beta were also detected in the putative clock neurons. Temporal expressions of ck2alpha and ck2beta mRNAs were constant in adult heads under LD12:12. The core clock genes per and tim showed daily fluctuations of mRNA abundance in the embryonic stage that is photoperiod sensitive period to determine egg diapause in the next generation whereas the expression of ck2alpha and ck2beta was constant. No evidence supports that ck2alpha and ck2beta of B. mori were transcriptionally regulated by circadian oscillation, but histological data show a close association of ck2alpha and ck2beta with circadian system in B. mori.
Collapse
Affiliation(s)
- Sachio Iwai
- Division of Molecular Science, Graduate School of Science and Technology, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe 657-8567, Japan
| | | | | | | |
Collapse
|
18
|
Abstract
The anatomical locations of three components of insect photoperiodism--the photoperiodic photoreceptor, photoperiodic clock and hormonal effector--are summarized and compared between species. Among photoperiodic photoreceptors, either the retinal or extraretinal types or both are operative, and there is no general relationship between phylogeny and photoreceptor type. The photoperiodic clock comprises time measurement and counter systems. Currently, it is generally accepted that circadian oscillators are involved in the photoperiodic clock. Several recent studies have raised the possibility that timeless, a circadian clock gene, plays a role in the photoperiodic clock in flies. The dorsal protocerebrum has been identified as an important region regulating the endocrine system for adult, pupal and embryonic diapause controlled by photoperiod. In the blow fly Protophormia terraenovae, neural connections between circadian clock neurons and indispensable neurons in the pars lateralis for diapause induction in the dorsal protocerebrum have been demonstrated. This neural network may provide the access needed to investigate the neural components of the photoperiodic clock.
Collapse
Affiliation(s)
- Sakiko Shiga
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, Osaka, Japan.
| | | |
Collapse
|
19
|
Iwai S, Fukui Y, Fujiwara Y, Takeda M. Structure and expressions of two circadian clock genes, period and timeless in the commercial silkmoth, Bombyx mori. JOURNAL OF INSECT PHYSIOLOGY 2006; 52:625-37. [PMID: 16626732 DOI: 10.1016/j.jinsphys.2006.03.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2005] [Revised: 02/28/2006] [Accepted: 03/02/2006] [Indexed: 05/08/2023]
Abstract
We cloned two circadian clock genes period (Bmper) and timeless (Bmtim) from the commercial silkmoth, Bombyx mori. Sequence analysis revealed a high degree of conservation among insects for both genes. BmPER predicted from the DNA sequence is a polypeptide of 1, 113 amino acids with functional domains such as PAS, PAC, nuclear localization signal (NLS) and cytoplasmic localization domain (CLD). Deduced BmTIM consists of 997 amino acids with PER interaction site (PIS) as well as NLS and CLD. Southern blot analyses revealed that Bmper and Bmtim are single copy genes. Northern blot analysis demonstrated that Bmper and Bmtim are expressed both in the head and peripheral tissues. We also examined temporal profiles of Bmper and Bmtim expressions in the head, flight muscle, testis and antenna of adult males under LD12:12 and LD16:8 by Real-Time PCR assays. Our data show that photoperiod differentially affects the temporal expression patterns of Bmper and Bmtim. The mRNA expression of Bmper and Bmtim in the head had a phase lead under LD12:12 compared to that under LD16:8, whereas photoperiod did not affect expression patterns in peripheral tissues relative to light-on. Photoperiod affected not only the phase relationship but also the expression level. In the testis and antenna, the level of transcription of Bmtim was low in LD12:12 but high in LD16:8. The daily differences in amplitudes of the Bmper and Bmtim expression rhythms were 2-fold in the head and 1.5-2.5 folds in the peripheral tissues examined.
Collapse
Affiliation(s)
- Sachio Iwai
- Division of Molecular Science, Graduate School of Science and Technology, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe 657-8567, Japan
| | | | | | | |
Collapse
|
20
|
Spaethe J, Briscoe AD. Molecular characterization and expression of the UV opsin in bumblebees: three ommatidial subtypes in the retina and a new photoreceptor organ in the lamina. ACTA ACUST UNITED AC 2005; 208:2347-61. [PMID: 15939775 DOI: 10.1242/jeb.01634] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ultraviolet-sensitive photoreceptors have been shown to be important for a variety of visual tasks performed by bees, such as orientation, color and polarization vision, yet little is known about their spatial distribution in the compound eye or optic lobe. We cloned and sequenced a UV opsin mRNA transcript from Bombus impatiens head-specific cDNA and, using western blot analysis, detected an eye protein band of approximately 41 kDa, corresponding to the predicted molecular mass of the encoded opsin. We then characterized UV opsin expression in the retina, ocelli and brain using immunocytochemistry. In the main retina, we found three different ommatidial types with respect to the number of UV opsin-expressing photoreceptor cells, namely ommatidia containing two, one or no UV opsin-immunoreactive cells. We also observed UV opsin expression in the ocelli. These results indicate that the cloned opsin probably encodes the P350 nm pigment, which was previously characterized by physiological recordings. Surprisingly, in addition to expression in the retina and ocelli, we found opsin expression in different parts of the brain. UV opsin immunoreactivity was detected in the proximal rim of the lamina adjacent to the first optic chiasm, which is where studies in other insects have found expression of proteins involved in the circadian clock, period and cryptochrome. We also found UV opsin immunoreactivity in the core region of the antennal lobe glomeruli and different clusters of perikarya within the protocerebrum, indicating a putative function of these brain regions, together with the lamina organ, in the entrainment of circadian rhythms. In order to test for a possible overlap of clock protein and UV opsin spatial expression, we also examined the expression of the period protein in these regions.
Collapse
Affiliation(s)
- Johannes Spaethe
- Comparative and Evolutionary Physiology Group, Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA
| | | |
Collapse
|
21
|
Lampel J, Briscoe AD, Wasserthal LT. Expression of UV-, blue-, long-wavelength-sensitive opsins and melatonin in extraretinal photoreceptors of the optic lobes of hawk moths. Cell Tissue Res 2005; 321:443-58. [PMID: 16034628 DOI: 10.1007/s00441-004-1069-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2004] [Accepted: 12/03/2004] [Indexed: 10/25/2022]
Abstract
Lepidopterans display biological rhythms associated with egg laying, eclosion and flight activity but the photoreceptors that mediate these behavioural patterns are largely unknown. To further our progress in identifying candidate light-input channels for the lepidopteran circadian system, we have developed polyclonal antibodies against ultraviolet (UV)-, blue- and extraretinal long-wavelength (LW)-sensitive opsins and examined opsin immunoreactivity in the adult optic lobes of four hawk moths, Manduca sexta, Acherontia atropos, Agrius convolvuli and Hippotion celerio. Outside the retina, UV and blue opsin protein expression is restricted to the adult stemmata, with no apparent expression elsewhere in the brain. Melatonin, which is known to have a seasonal influence on reproduction and behaviour, is expressed with opsins in adult stemmata together with visual arrestin and chaoptin. By contrast, the LW opsin protein is not expressed in the retina or stemmata but rather exhibits a distinct and widespread distribution in dorsal and ventral neurons of the optic lobes. The lamina, medulla, lobula and lobula plate, accessory medulla and adjacent neurons innervating this structure also exhibit strong LW opsin immunoreactivity. Together with the adult stemmata, these neurons appear to be functional photoreceptors, as visual arrestin, chaoptin and melatonin are also co-expressed with LW opsin. These findings are the first to suggest a role for three spectrally distinct classes of opsin in the extraretinal detection of changes in ambient light and to show melatonin-mediated neuroendocrine output in the entrainment of sphingid moth circadian and/or photoperiodic rhythms.
Collapse
Affiliation(s)
- Jochen Lampel
- Institut für Zoologie 1, Universität Erlangen-Nürnberg, Staudtstr. 5, 91058 Erlangen, Germany.
| | | | | |
Collapse
|
22
|
Saunders DS. Erwin Bünning and Tony Lees, two giants of chronobiology, and the problem of time measurement in insect photoperiodism. JOURNAL OF INSECT PHYSIOLOGY 2005; 51:599-608. [PMID: 15993124 DOI: 10.1016/j.jinsphys.2004.12.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2004] [Revised: 11/30/2004] [Accepted: 12/01/2004] [Indexed: 05/03/2023]
Abstract
This paper examines the views of Erwin Bünning and Tony Lees on the mechanism of photoperiodic time measurement, the former advocating a circadian basis for the phenomenon and the latter a non-circadian hourglass-like timer. This difference in opinion led to a protracted split among workers on photoperiodism, some supporting an oscillatory clock and others an "hourglass", and gave rise to the often stated opinion that the two forms of time measurement were mutually exclusive. This paper, however, suggests that both oscillatory and hourglass-like properties are to be seen in insect photoperiodism. Furthermore, the differences between the two apparently conflicting models may be resolved if, following Bünning, "hourglasses" are regarded as damping circadian oscillators, with the more self-sustained (clearly oscillatory) and more highly damped (hourglass-like) responses being parts of a continuous series. Since circadian rhythmicity is an all-pervading and fundamental aspect of insect biology, currently opening up to genetic and molecular analysis, recognition of the basic similarity of a wide range of insect photoperiodic timers may help to unravel the biochemical nature of the mechanism(s) involved.
Collapse
Affiliation(s)
- D S Saunders
- Institute of Cell, Animal and Population Biology, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, Scotland, UK.
| |
Collapse
|
23
|
Briscoe AD, Bernard GD. Eyeshine and spectral tuning of long wavelength-sensitive rhodopsins: no evidence for red-sensitive photoreceptors among five Nymphalini butterfly species. J Exp Biol 2005; 208:687-96. [PMID: 15695761 DOI: 10.1242/jeb.01453] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYSpectral tuning of rhodopsins commonly refers to the effects of opsin amino acid substitutions on the wavelength for peak sensitivity of the rhodopsin absorption spectrum. Nymphalini butterflies provide an opportunity for identifying some of the amino acid substitutions responsible for insect rhodopsin spectral tuning because the majority of photoreceptor cells (R3-9)in the adult retina express only a single long wavelength-sensitive (LWS)opsin mRNA transcript. Therefore, the opsin genotype can be directly correlated with its phenotype. We determined the LWS opsin gene sequence from cDNA of the mourning cloak Nymphalis antiopa, and from genomic DNA of the malachite Siproeta stelenes and the peacock Inachis io.Using an epi-microspectrophotometer we examined each butterfly's eyeshine for photochemical evidence of multiple LWS rhodopsins and found only one. We then performed partial-bleaching experiments to obtain absorbance spectra for the LWS rhodopsins of all three species as well as from another nymphalid, the buckeye Junonia coenia. The isolated LWS opsin gene sequences varied in length from 1437-1612 bp and encode rhodopsins R522 (S. stelenes),R530 (I. io), R534 (N. antiopa) and, together with a previously published sequence, R510 (J. coenia). Comparative sequence analysis indicates that the S. stelenes rhodopsin is slightly blue-shifted compared to the typical 530 nm lepidopteran rhodopsin because of the presence of a S138A substitution at a homologous site that in mammalian MWS/LWS rhodopsins causes a 5 nm blue-shift. The difference in peak absorption between R522 of S. stelenes and R530 of Inachis io is therefore largely accounted for by this substitution. This suggests that spectral tuning mechanisms employing the S138A may have evolved in parallel in mammalian and butterfly MWS/LWS rhodopsins across 500 million years of evolution.
Collapse
Affiliation(s)
- Adriana D Briscoe
- Comparative and Evolutionary Physiology Group, Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA.
| | | |
Collapse
|
24
|
Taylor SD, de la Cruz KD, Porter ML, Whiting MF. Characterization of the Long-Wavelength Opsin from Mecoptera and Siphonaptera: Does a Flea See? Mol Biol Evol 2005; 22:1165-74. [PMID: 15703237 DOI: 10.1093/molbev/msi110] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mecoptera and Siphonaptera represent two insect orders that have largely been overlooked in the study of insect vision. Recent phylogenetic evidence demonstrates that Mecoptera (scorpionflies) is paraphyletic, with the order Siphonaptera (fleas) nesting as sister to the family Boreidae (snow fleas), showing an evolutionary trend towards reduction in gross eye morphology within fleas. We provide the first molecular characterization of long-wavelength opsins from these three lineages (opsin gene from fleas [FL-Opsin], the Boreidae [B-Opsin], and a mecopteran family [M-Opsin]) and assess the effects of loss of visual acuity on the structure and function of the opsin gene. Phylogenetic analysis implies a physiological sensitivity in the red-green spectrum for these opsins. Analysis of intron splice sites reveals a high degree of similarity between FL-Opsin and B-Opsin as well as conserved splice sites across insect blue-green and long-wavelength opsins. Calculated rates of evolution and tests for destabilizing selection indicate that FL-Opsin, B-Opsin, and M-Opsin are evolving at similar rates with no radical selective pressures, implying conservative evolution and functional constraint across all three lineages.
Collapse
Affiliation(s)
- Sean D Taylor
- Brigham Young University, Department of Integrative Biology, USA
| | | | | | | |
Collapse
|
25
|
Yasuyama K, Okada Y, Hamanaka Y, Shiga S. Synaptic connections between eyelet photoreceptors and pigment dispersing factor-immunoreactive neurons of the blowflyProtophormia terraenovae. J Comp Neurol 2005; 494:331-44. [PMID: 16320242 DOI: 10.1002/cne.20812] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Studies using various mutants of Drosophila melanogaster bearing defects in their visual system, including those of the retinal and extraretinal photoreceptor systems, have indicated that the extraretinal photoreceptor known as the Hofbauer-Buchner (H-B) eyelet plays an active, if subsidiary, role in the entrainment of circadian rhythms. In the present study, in the context of unraveling the function of extraretinal photoreception on circadian rhythms and photoperiodic responses, we searched for extraretinal photoreceptors in the blowfly, Protophormia terraenovae, and found that this fly has a homolog of the H-B eyelet. In addition, we show morphologically direct synaptic connections between the eyelet of P. terraenovae (called here Pt-eyelet, after the species' name) and pigment-dispersing factor (PDF)-immunoreactive neurons, which are putative circadian pacemaker neurons, by immunogold electron microscopy combined with intracellular dye injection. The Pt-eyelet was found to reside in the middle of the posterior surface of the optic lobe between the retina and the lamina, as does the H-B eyelet. This extraretinal photoreceptor was composed of at least four photoreceptor cells equipped with well-organized microvillar rhabdomeres. Rhodopsin 6-like immunoreactivity and also the response to light stimuli clearly showed the Pt-eyelet to be functional. The Pt-eyelet terminals in the accessory medulla exhibited synaptic bouton-like appearances and formed divergent multiple-contact output synapses. Synaptic contacts from the Pt-eyelet terminal to the PDF-immunoreactive neurons were identified by the presence of presynaptic ribbons and accumulated synaptic vesicles. Their possible function is discussed in relation to previous studies on circadian rhythm and photoperiodic response of P. terraenovae.
Collapse
Affiliation(s)
- Kouji Yasuyama
- Department of Biology, Kawasaki Medical School, Kurashiki 701-0192, Japan.
| | | | | | | |
Collapse
|
26
|
Veerman A, Veenendaal RL. Experimental evidence for a non-clock role of the circadian system in spider mite photoperiodism. JOURNAL OF INSECT PHYSIOLOGY 2003; 49:727-732. [PMID: 12880652 DOI: 10.1016/s0022-1910(03)00097-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In the spider mite Tetranychus urticae photoperiodic time measurement proceeds accurately in orange-red light of 580 nm and above in light/dark cycles with a period length of 20 h but not in 'natural' cycles with a period length of 24 h. To explain these results it is hypothesized that the photoperiodic clock in the spider mite is sensitive to orange-red light, but the Nanda-Hamner rhythm (a circadian rhythm with a free-running period tau of 20 h involved in the photoperiodic response) is not and consequently free runs in orange-red light. To test this hypothesis a zeitgeber was sought that could entrain the Nanda-Hamner rhythm to a 24-h cycle without inducing diapause itself, in order to manipulate the rhythm independently from the orange-red sensitive photoperiodic clock. A suitable zeitgeber was found to be a thermoperiod with a 12-h warm phase and a 12-h cold phase. Combining the thermoperiod with the long-night orange-red light/dark regime, both with a cycle length of 24 h, resulted in a high diapause incidence, although neither regime was capable of inducing diapause on its own. The conclusion is that the Nanda-Hamner rhythm is necessary for the realization of the photoperiodic response, but is not part of the photoperiodic clock, because photoperiodic time measurement takes place in orange-red light whereas the rhythm is not able to 'see' the orange-red light. It is speculated that the Nanda-Hamner rhythm is involved in the timely synthesis of a substrate for the photoperiodic clock in the spider mite.
Collapse
Affiliation(s)
- Alfred Veerman
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Kruislaan 320, 1098 SM Amsterdam, The Netherlands.
| | | |
Collapse
|