1
|
Andrews PC, Dravid SM. An emerging map of glutamate delta 1 receptors in the forebrain. Neuropharmacology 2021; 192:108587. [PMID: 33992669 DOI: 10.1016/j.neuropharm.2021.108587] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/15/2021] [Accepted: 04/20/2021] [Indexed: 11/19/2022]
Abstract
Glutamate delta 1 (GluD1) and glutamate delta 2 (GluD2) form the delta family of ionotropic glutamate receptors; these proteins plays widespread roles in synaptic architecture, motor behavior, and cognitive function. Though the role of GluD2 at cerebellar parallel fiber-Purkinje cell synapses is well established, attention now turns to the function of GluD receptors in the forebrain. GluD1 regulates synaptic assembly and modulation in multiple higher brain regions, acting as a postsynaptic cell adhesion molecule with effects on both excitatory and inhibitory transmission. Furthermore, variations and mutations in the GRID1 gene, which codes for GluD1, and in genes which code for proteins functionally linked to GluD1, are associated with mental disorders including autism, schizophrenia, bipolar disorder, and major depression. Cerebellin (Cbln) family proteins, the primary binding partners of delta receptors, are secreted C1q-like proteins which also bind presynaptic neurexins (NRXNs), forming a tripartite synaptic bridge. Published research explores this bridge's function in regions including the striatum, hippocampus, cortex, and cerebellum. In this review, we summarize region- and circuit-specific functions and expression patterns for GluD1 and its related proteins, and their implications for behavior and disease.
Collapse
Affiliation(s)
- Patrick C Andrews
- Department of Pharmacology and Neuroscience, Creighton University, 2500 California Plaza, Omaha, NE, USA
| | - Shashank M Dravid
- Department of Pharmacology and Neuroscience, Creighton University, 2500 California Plaza, Omaha, NE, USA.
| |
Collapse
|
2
|
Glutamate-receptor-like molecule GluRδ2 involved in synapse formation at parallel fiber-Purkinje neuron synapses. THE CEREBELLUM 2012; 11:71-7. [PMID: 20387025 DOI: 10.1007/s12311-010-0170-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Glutamate-receptor-like molecule δ2 (GluRδ2, GluD2) has been classified as an ionotropic glutamate receptor subunit. It is selectively expressed on the postsynaptic membrane at parallel fiber-Purkinje neuron synapses in the cerebellum. Mutant mice deficient in GluRδ2 show impaired synaptic plasticity, the decrease in the number of parallel fiber-Purkinje neuron synapses, multiple innervation of climbing fibers on a Purkinje neuron, and defects in motor control and learning. Thus, GluRδ2 plays crucial roles in the cerebellar function. Recent studies on GluRδ2 have shown that it has synaptogenic activity. GluRδ2 expressed in a non-neuronal cell induces presynaptic differentiation of granule neurons in a co-culture preparation. This synaptogenic activity depends on an extracellular N-terminal leucine/isoleucine/valine binding protein-like domain of GluRδ2. GluRδ2 plays critical roles in formation, maturation, and/or maintenance of granule neuron-Purkinje neuron synapses.
Collapse
|
3
|
Swerdlow NR, Shilling PD, Breier M, Trim RS, Light GA, Saint Marie R. Fronto-temporal-mesolimbic gene expression and heritable differences in amphetamine-disrupted sensorimotor gating in rats. Psychopharmacology (Berl) 2012; 224:349-62. [PMID: 22700037 PMCID: PMC5215002 DOI: 10.1007/s00213-012-2758-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 05/25/2012] [Indexed: 10/28/2022]
Abstract
RATIONALE Differences in sensitivity to the prepulse inhibition (PPI)-disruptive effects of D2-family agonists in Sprague-Dawley (SD) vs. Long Evans (LE) rats are heritable, reflect differential activation of DA signaling in the nucleus accumbens (NAC), and are associated with differences in expression of specific NAC genes. These differences may inform us about the biology of PPI deficits in disorders such as schizophrenia. OBJECTIVES After confirming these strain-based PPI differences, we measured expression of four genes in NAC and other regions that regulate PPI: medial prefrontal cortex and ventral hippocampus (VH). METHODS Startle and PPI were assessed in SD and LE rats administered D-amphetamine (0 vs. 4.5 mg/kg, sc). Two weeks later, brain tissue was processed for comt, nrg1, grid2, and csnk1e expression; blood comt expression was also tested. RESULTS Data confirmed expected PPI phenotypes. Gene expression levels differed across strains, sexes, and brain regions, with LE > SD expression in most genes and regions, and female > male expression for all NAC genes. Within any brain region, expression of the four genes was highly inter-correlated; across regions, correlations were less robust, reflecting distinct strain- or sex-based subgroups. PPI amphetamine sensitivity at 120 ms correlated significantly with NAC nrg1 expression, while amphetamine sensitivity for 30 ms PPI and startle magnitude correlated significantly with VH nrg1 and blood comt expression. CONCLUSIONS Rat strains differing in a schizophrenia-linked phenotype also differ in expression levels of genes associated both with that phenotype, and with schizophrenia, within brain regions associated with that phenotype and schizophrenia.
Collapse
Affiliation(s)
- Neal R. Swerdlow
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA 92093-0804, USA
| | - Paul D. Shilling
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA 92093-0804, USA
| | - Michelle Breier
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA 92093-0804, USA
| | - Ryan S. Trim
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA 92093-0804, USA
| | - Gregory A. Light
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA 92093-0804, USA,VA San Diego Healthcare System, San Diego, CA, USA,VISN 22, Mental Illness Research, Education and Clinical Center (MIRECC), San Diego, CA, USA
| | - Richard Saint Marie
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA 92093-0804, USA
| |
Collapse
|
4
|
Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK, Hansen KB, Yuan H, Myers SJ, Dingledine R. Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev 2010; 62:405-96. [PMID: 20716669 PMCID: PMC2964903 DOI: 10.1124/pr.109.002451] [Citation(s) in RCA: 2612] [Impact Index Per Article: 186.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The mammalian ionotropic glutamate receptor family encodes 18 gene products that coassemble to form ligand-gated ion channels containing an agonist recognition site, a transmembrane ion permeation pathway, and gating elements that couple agonist-induced conformational changes to the opening or closing of the permeation pore. Glutamate receptors mediate fast excitatory synaptic transmission in the central nervous system and are localized on neuronal and non-neuronal cells. These receptors regulate a broad spectrum of processes in the brain, spinal cord, retina, and peripheral nervous system. Glutamate receptors are postulated to play important roles in numerous neurological diseases and have attracted intense scrutiny. The description of glutamate receptor structure, including its transmembrane elements, reveals a complex assembly of multiple semiautonomous extracellular domains linked to a pore-forming element with striking resemblance to an inverted potassium channel. In this review we discuss International Union of Basic and Clinical Pharmacology glutamate receptor nomenclature, structure, assembly, accessory subunits, interacting proteins, gene expression and translation, post-translational modifications, agonist and antagonist pharmacology, allosteric modulation, mechanisms of gating and permeation, roles in normal physiological function, as well as the potential therapeutic use of pharmacological agents acting at glutamate receptors.
Collapse
Affiliation(s)
- Stephen F Traynelis
- Department of Pharmacology, Emory University School of Medicine, Rollins Research Center, 1510 Clifton Road, Atlanta, GA 30322-3090, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Santos S, Carvalho A, Caldeira M, Duarte C. Regulation of AMPA receptors and synaptic plasticity. Neuroscience 2009; 158:105-25. [DOI: 10.1016/j.neuroscience.2008.02.037] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 01/02/2008] [Accepted: 02/13/2008] [Indexed: 10/22/2022]
|
6
|
To gate or not to gate: are the delta subunits in the glutamate receptor family functional ion channels? Mol Neurobiol 2008; 37:126-41. [PMID: 18521762 DOI: 10.1007/s12035-008-8025-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Accepted: 05/09/2008] [Indexed: 01/01/2023]
Abstract
The two delta receptor subunits remain the most puzzling enigma within the ionotropic glutamate receptor family. Despite the recent elucidation of the ligand-binding domain structure of delta2, many fundamental questions with regard to the subunits' mechanism of function still remain unanswered. Of necessity, the majority of studies on delta receptors focused on the metabotropic function of delta2, since electrophysiological approaches to date are limited to the characterization of spontaneous currents through the delta2-lurcher mutant. Indeed, accumulated evidence primarily from delta2-deficient transgenic mice suggest that major physiological roles of delta2 are mediated via metabotropic signaling by the subunit's C terminus. Why then would the subunits retain a conserved ion channel domain if they do not form functional ion channels? Any progress with regard to ionotropic function of the two delta subunits has been hampered by their largely unknown pharmacology. Even now that a pharmacological profile for delta2 is being established on the basis of the ligand-binding domain structure, wild-type delta2 channels in heterologous expression systems stay closed in the presence of molecules that have been demonstrated to bind to the receptor's ligand-binding domain. In this paper, we review the current knowledge of delta subunits focusing on the disputed ionotropic function.
Collapse
|
7
|
Houtman SH, Rutteman M, De Zeeuw CI, French PJ. Echinoderm microtubule-associated protein like protein 4, a member of the echinoderm microtubule-associated protein family, stabilizes microtubules. Neuroscience 2007; 144:1373-82. [PMID: 17196341 DOI: 10.1016/j.neuroscience.2006.11.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2006] [Revised: 10/31/2006] [Accepted: 11/01/2006] [Indexed: 11/19/2022]
Abstract
Echinoderm microtubule-associated protein (EMAP) is the major microtubule binding protein in dividing sea urchin (Strongylocentrotus purpuratus) eggs. Echinoderm microtubule-associated protein like protein 4 (Eml4, restrictedly overexpressed proliferation-associated protein 120 kDa (Ropp120)) is one of the five mammalian EMAP homologues, the cellular function of which remains to be elucidated. In our first set of experiments we determined the spatio-temporal expression pattern of Eml4 in mouse brain. Our results demonstrate that Eml4 is a highly developmentally regulated gene with high expression levels in the developing nervous system of E11 embryos declining to low levels in adult. Spatially, Eml4 expression becomes restricted to the olfactory bulb, hippocampus and cerebellum. Transient transfection of a fusion construct of full-length mouse Eml4 with green fluorescent protein (GFP-Eml4) into Cos7 and HeLa cells resulted in colocalization of GFP-Eml4 with microtubules. This colocalization was observed both with microtubules of non-dividing cells and with the mitotic spindle of dividing cells. In addition, transient overexpression of GFP-Eml4 in Cos7 cells resulted in microtubules that were resistant to nocodazole treatment suggesting that Eml4 stabilizes microtubules. A consequence of microtubule stabilization is a net reduction in the amount of free tubulin. Microtubule stabilizing proteins therefore are expected to indirectly decrease the microtubule growth rate. Indeed, transient transfection of GFP-Eml4 resulted in a marked decrease in the microtubule growth rate, which is in line with our hypothesis that Eml4 functions as a microtubule stabilizing protein. In summary, our results suggest that Eml4 is a developmentally regulated protein that colocalizes with and stabilizes microtubules.
Collapse
Affiliation(s)
- S H Houtman
- Department of Neuroscience, Erasmus MC, PO Box 2040, 3000 DR Rotterdam, The Netherlands.
| | | | | | | |
Collapse
|
8
|
Yawata S, Tsuchida H, Kengaku M, Hirano T. Membrane-proximal region of glutamate receptor delta2 subunit is critical for long-term depression and interaction with protein interacting with C kinase 1 in a cerebellar Purkinje neuron. J Neurosci 2006; 26:3626-33. [PMID: 16597715 PMCID: PMC6674140 DOI: 10.1523/jneurosci.4183-05.2006] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The glutamate receptor delta2 subunit (GluRdelta2) is selectively expressed in cerebellar Purkinje neurons (PNs) and is involved in the long-term depression (LTD). However, little is known about the mechanism of its action. Acute expression of the wild-type GluRdelta2 in the GluRdelta2-deficient PN rescued the induction of LTD, suggesting the direct role of GluRdelta2 in LTD. To identify the critical region of GluRdelta2 necessary for LTD, we constructed and expressed various mutant GluRdelta2 proteins in the GluRdelta2-deficient PNs. The mutant GluRdelta2 possessing the membrane-proximal 21 aa residues in the C-terminal cytoplasmic region rescued the induction of LTD, whereas the mutant with membrane-proximal 13 aa failed. In addition, overexpression of 865 approximately 871 aa of GluRdelta2 (corresponding to membrane-proximal 14-20 aa) fused to EGFP (enhanced green fluorescent protein) suppressed LTD in a wild-type PN. These results suggest that 865 approximately 871 aa of GluRdelta2 play an essential role in LTD. We next identified protein interacting with C kinase 1 (PICK1) as a molecule interacting with the membrane-proximal C-terminal region of GluRdelta2 by yeast two-hybrid screening. PICK1 plays an essential role in LTD. It colocalized with GluRdelta2 at spines of PNs, and immunoprecipitation assays showed that GluRdelta2 bound to PICK1 mainly through 865-871 aa. These results indicate that 865-871 aa of GluRdelta2 are essential for both LTD and interaction with PICK1, and suggest that interaction between GluRdelta2 and PICK1 might be critical for the induction of LTD.
Collapse
|
9
|
Abstract
In recent years great progress has been made in understanding the function of ionotropic and metabotropic glutamate receptors; their pharmacology and potential therapeutic applications. It should be stressed that there are already N-methyl-D-aspartate (NMDA) antagonists in clinical use, such as memantine, which proves the feasibility of their therapeutic potential. It seems unlikely that competitive NMDA receptor antagonists and high-affinity channel blockers will find therapeutic use due to limiting side-effects, whereas agents acting at the glycineB site, NMDA receptor subtype-selective agents and moderate-affinity channel blockers are far more promising. This is supported by the fact that there are several glycineB antagonists, NMDA moderate-affinity channel blockers and NR2B-selective agents under development. Positive and negative modulators of AMPA receptors such as the AMPAkines and 2,3-benzodiazepines also show more promise than e.g. competitive antagonists. Great progress has also been made in the field of metabotropic glutamate receptors since the discovery of novel, allosteric modulatory sites for these receptors. Selective agents acting at these transmembrane sites have been developed that are more drug-like and have a much better access to the central nervous system than their competitive counterparts. The chapter will critically review preclinical and scarce clinical experience in the development of new ionotropic and metabotropic glutamate receptor modulators according to the following scheme: rational, preclinical findings in animal models and finally clinical experience, where available.
Collapse
Affiliation(s)
- C G Parsons
- Max Planck Institute of Psychiatry, Kraepelinstrasse 2-10, 80804 München, Germany
| | | | | |
Collapse
|
10
|
O'Connor V, Houtman SH, De Zeeuw CI, Bliss TVP, French PJ. Eml5, a novel WD40 domain protein expressed in rat brain. Gene 2004; 336:127-37. [PMID: 15225882 DOI: 10.1016/j.gene.2004.04.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2003] [Revised: 02/04/2004] [Accepted: 04/05/2004] [Indexed: 10/26/2022]
Abstract
We have isolated a novel transcript with homology to the major microtubule-associated protein in dividing sea urchin embryos, EMAP. The protein has a predicted MW of approximately 180 kDa and we have named it Eml5 (EMAP-like protein 5). Eml5 contains 11 putative WD40 domains and 3 hydrophobic stretches of 43 aa, HELP domains, which have been suggested to be involved in microtubule binding. Eml5 appears to consist of two tandem repeats of the complete EMAP protein separated by a putative dimerization domain. Eml5 mRNA and protein is expressed at high levels in the hippocampus, cerebellum and olfactory bulb, as determined by in situ hybridization and immunocytochemistry. Eml5 transcripts can be detected in fore- and hindbrain structures from embryonic day 13 onwards. Because other EMAP-like proteins are involved in regulating microtubule dynamics, it is likely that Eml5 plays a role in the regulation of cytoskeletal rearrangements during neuronal development and in adult brain
Collapse
Affiliation(s)
- V O'Connor
- Neurophysiology Division, National Institute for Medical Research, London, UK
| | | | | | | | | |
Collapse
|
11
|
Abstract
The orphan glutamate receptor delta2 (GluRdelta2) is predominantly expressed in Purkinje cells and plays a crucial role in cerebellar functions: mice that lack the GluRdelta2 gene display ataxia and impaired synaptic plasticity. However, when expressed alone or with other glutamate receptors, GluRdelta2 does not form functional glutamate-gated ion channels nor does it bind to glutamate analogs. Therefore, the mechanisms by which GluRdelta2 participates in cerebellar functions have been elusive. Studies of mutant mice such as lurcher, hotfoot, and GluRdelta2 knockout mice have provided clues to the structure and function of GluRdelta2. GluRdelta2 has a channel pore similar to that of other glutamate receptors; the channel is functional at least when the lurcher mutation is present. GluRdelta2 must be transported to the Purkinje cell surface to function; the absence of surface GluRdelta2 causes the ataxic phenotype of hotfoot mice. In GluRdelta2-null mice, the presence of naked spines not innervated by parallel fibers may influence the sustained innervation of mutant Purkinje cells by multiple climbing fibers. From these results, several hypotheses about mechanisms by which GluRdelta2 functions are proposed in this article. Further characterization of GluRdelta2's functions will provide key insights into normal and abnormal cerebellar functions.
Collapse
Affiliation(s)
- Michisuke Yuzaki
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 332 N. Lauderdale Street, Memphis, TN 38105-2794, USA.
| |
Collapse
|