1
|
Migita K, Oyabu K, Terada K. Rectification of ATP-gated current of rat P2X2 and P2X7 receptors depends on the cytoplasmic N-terminus. Biochem Biophys Res Commun 2023; 688:149213. [PMID: 37976814 DOI: 10.1016/j.bbrc.2023.149213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023]
Abstract
The phenotypes of ATP-gated currents thought ionotropic P2X channels depend on the composition of the oligomeric receptor. We constructed chimeric P2X2/P2X7 receptors to study the effect of cytoplasmic domains on rectification of current flow through the open channel. We found that the identity of the N-terminus determines the pattern of rectification, with chimeric receptors containing the N-terminus of the P2X2 receptor displaying inward rectification, and chimeric receptors containing the N-terminus of the P2X7 receptor displaying slightly outward rectification. In contrast, rectification of current through chimeric receptors with swapped C-termini always mimicked the wild-type receptor. Thus, our findings suggest that the N-terminus of P2X receptors regulate ion flow through the channel pore and are responsible in part for determining current rectification.
Collapse
Affiliation(s)
- Keisuke Migita
- Department of Drug Informatics, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, 814-0180, Japan.
| | - Kohei Oyabu
- Department of Drug Informatics, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, 814-0180, Japan
| | - Kazuki Terada
- Division of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Himeji, 670-8524, Japan
| |
Collapse
|
2
|
Bertin E, Martínez A, Boué-Grabot E. P2X Electrophysiology and Surface Trafficking in Xenopus Oocytes. Methods Mol Biol 2020; 2041:243-259. [PMID: 31646494 DOI: 10.1007/978-1-4939-9717-6_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Xenopus oocytes serve as a standard heterologous expression system for the study of various ligand-gated ion channels including ATP P2X receptors. Here we describe the whole-cell two-electrode voltage clamp and biotinylation/Western blotting techniques to investigate the functional properties and surface trafficking from P2X-expressing oocytes.
Collapse
Affiliation(s)
- Eléonore Bertin
- Institut des Maladies Neurodégénératives, CNRS UMR 5293, Université de Bordeaux, Bordeaux, France
| | - Audrey Martínez
- Institut des Maladies Neurodégénératives, CNRS UMR 5293, Université de Bordeaux, Bordeaux, France
| | - Eric Boué-Grabot
- Institut des Maladies Neurodégénératives, CNRS UMR 5293, Université de Bordeaux, Bordeaux, France.
| |
Collapse
|
3
|
Hausmann R, Kless A, Schmalzing G. Key sites for P2X receptor function and multimerization: overview of mutagenesis studies on a structural basis. Curr Med Chem 2015; 22:799-818. [PMID: 25439586 PMCID: PMC4460280 DOI: 10.2174/0929867322666141128163215] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 10/20/2014] [Accepted: 11/27/2014] [Indexed: 02/07/2023]
Abstract
P2X receptors constitute a seven-member family (P2X1-7) of extracellular ATP-gated cation
channels of widespread expression. Because P2X receptors have been implicated in neurological, inflammatory
and cardiovascular diseases, they constitute promising drug targets. Since the first P2X cDNA sequences
became available in 1994, numerous site-directed mutagenesis studies have been conducted to disclose
key sites of P2X receptor function and oligomerization. The publication of the 3-Å crystal structures of the zebrafish
P2X4 (zfP2X4) receptor in the homotrimeric apo-closed and ATP-bound open states in 2009 and 2012, respectively, has
ushered a new era by allowing for the interpretation of the wealth of molecular data in terms of specific three-dimensional
models and by paving the way for designing more-decisive experiments. Thanks to these structures, the last five years
have provided invaluable insight into our understanding of the structure and function of the P2X receptor class of ligandgated
ion channels. In this review, we provide an overview of mutagenesis studies of the pre- and post-crystal structure
eras that identified amino acid residues of key importance for ligand binding, channel gating, ion flow, formation of the
pore and the channel gate, and desensitization. In addition, the sites that are involved in the trimerization of P2X receptors
are reviewed based on mutagenesis studies and interface contacts that were predicted by the zfP2X4 crystal structures.
Collapse
Affiliation(s)
| | | | - Gunther Schmalzing
- Department of Molecular Pharmacology, Medical Faculty of the RWTH Aachen University, Wendlingweg 2, D-52074 Aachen, Germany.
| |
Collapse
|
4
|
Allsopp RC, Evans RJ. Contribution of the Juxtatransmembrane Intracellular Regions to the Time Course and Permeation of ATP-gated P2X7 Receptor Ion Channels. J Biol Chem 2015; 290:14556-66. [PMID: 25903136 PMCID: PMC4505523 DOI: 10.1074/jbc.m115.642033] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Indexed: 01/19/2023] Open
Abstract
P2X7 receptors are ATP-gated ion channels that contribute to inflammation and cell death. They have the novel property of showing marked facilitation to repeated applications of agonist, and the intrinsic channel pore dilates to allow the passage of fluorescent dyes. A 60-s application of ATP to hP2X7 receptors expressed in Xenopus oocytes gave rise to a current that had a biphasic time course with initial and secondary slowly developing components. A second application of ATP evoked a response with a more rapid time to peak. This facilitation was reversed to initial levels following a 10-min agonist-free interval. A chimeric approach showed that replacement of the pre-TM1 amino-terminal region with the corresponding P2X2 receptor section (P2X7–2Nβ) gave responses that quickly reached a steady state and did not show facilitation. Subsequent point mutations of variant residues identified Asn-16 and Ser-23 as important contributors to the time course/facilitation. The P2X7 receptor is unique in having an intracellular carboxyl-terminal cysteine-rich region (Ccys). Deletion of this region removed the secondary slowly developing current, and, when expressed in HEK293 cells, ethidium bromide uptake was only ∼5% that of WT levels, indicating reduced large pore formation. Dye uptake was also reduced for the P2X7–2Nβ chimera. Surprisingly, combination of the chimera and the Ccys deletion (P2X7–2NβdelCcys) restored the current rise time and ethidium uptake to WT levels. These findings suggest that there is a coevolved interaction between the juxtatransmembrane amino and carboxyl termini in the regulation of P2X7 receptor gating.
Collapse
Affiliation(s)
- Rebecca C Allsopp
- From the Department of Cell Physiology and Pharmacology, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - Richard J Evans
- From the Department of Cell Physiology and Pharmacology, University of Leicester, Leicester LE1 9HN, United Kingdom
| |
Collapse
|
5
|
Navarrete LC, Barrera NP, Huidobro-Toro JP. Vas deferens neuro-effector junction: from kymographic tracings to structural biology principles. Auton Neurosci 2014; 185:8-28. [PMID: 24956963 DOI: 10.1016/j.autneu.2014.05.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 05/14/2014] [Accepted: 05/20/2014] [Indexed: 11/29/2022]
Abstract
The vas deferens is a simple bioassay widely used to study the physiology of sympathetic neurotransmission and the pharmacodynamics of adrenergic drugs. The role of ATP as a sympathetic co-transmitter has gained increasing attention and furthered our understanding of its role in sympathetic reflexes. In addition, new information has emerged on the mechanisms underlying the storage and release of ATP. Both noradrenaline and ATP concur to elicit the tissue smooth muscle contractions following sympathetic reflexes or electrical field stimulation of the sympathetic nerve terminals. ATP and adenosine (its metabolic byproduct) are powerful presynaptic regulators of co-transmitter actions. In addition, neuropeptide Y, the third member of the sympathetic triad, is an endogenous modulator. The peptide plus ATP and/or adenosine play a significant role as sympathetic modulators of transmitter's release. This review focuses on the physiological principles that govern sympathetic co-transmitter activity, with special interest in defining the motor role of ATP. In addition, we intended to review the recent structural biology findings related to the topology of the P2X1R based on the crystallized P2X4 receptor from Danio rerio, or the crystallized adenosine A2A receptor as a member of the G protein coupled family of receptors as prototype neuro modulators. This review also covers structural elements of ectonucleotidases, since some members are found in the vas deferens neuro-effector junction. The allosteric principles that apply to purinoceptors are also reviewed highlighting concepts derived from receptor theory at the light of the current available structural elements. Finally, we discuss clinical applications of these concepts.
Collapse
Affiliation(s)
- L Camilo Navarrete
- Laboratorio de Estructura de Proteínas de Membrana y Señalización, Núcleo Milenio de Biología Estructural, NuBEs, Facultad de Ciencias Biológicas, P. Universidad Católica de Chile, Chile
| | - Nelson P Barrera
- Laboratorio de Estructura de Proteínas de Membrana y Señalización, Núcleo Milenio de Biología Estructural, NuBEs, Facultad de Ciencias Biológicas, P. Universidad Católica de Chile, Chile
| | - J Pablo Huidobro-Toro
- Laboratorio de Nucleótidos, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Chile.
| |
Collapse
|
6
|
Samways DSK, Li Z, Egan TM. Principles and properties of ion flow in P2X receptors. Front Cell Neurosci 2014; 8:6. [PMID: 24550775 PMCID: PMC3914235 DOI: 10.3389/fncel.2014.00006] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 01/06/2014] [Indexed: 12/25/2022] Open
Abstract
P2X receptors are a family of trimeric ion channels that are gated by extracellular adenosine 5′-triphosphate (ATP). These receptors have long been a subject of intense research interest by virtue of their vital role in mediating the rapid and direct effects of extracellular ATP on membrane potential and cytosolic Ca2+ concentration, which in turn underpin the ability of ATP to regulate a diverse range of clinically significant physiological functions, including those associated with the cardiovascular, sensory, and immune systems. An important aspect of an ion channel's function is, of course, the means by which it transports ions across the biological membrane. A concerted effort by investigators over the last two decades has culminated in significant advances in our understanding of how P2X receptors conduct the inward flux of Na+ and Ca2+ in response to binding by ATP. However, this work has relied heavily on results from current recordings of P2X receptors altered by site-directed mutagenesis. In the absence of a 3-dimensional channel structure, this prior work provided only a vague and indirect appreciation of the relationship between structure, ion selectivity and flux. The recent publication of the crystal structures for both the closed and open channel conformations of the zebrafish P2X4 receptor has thus proved a significant boon, and has provided an important opportunity to overview the amassed functional data in the context of a working 3-dimensional model of a P2X receptor. In this paper, we will attempt to reconcile the existing functional data regarding ion permeation through P2X receptors with the available crystal structure data, highlighting areas of concordance and discordance as appropriate.
Collapse
Affiliation(s)
| | - Zhiyuan Li
- Guangzhou Institute of Biomedicine and Health, University of Chinese Academy of Sciences Guangzhou, China
| | - Terrance M Egan
- Department of Pharmacological and Physiological Science, The Center for Excellence in Neuroscience, Saint Louis University School of Medicine St. Louis, MO, USA
| |
Collapse
|
7
|
Roberts JA, Bottrill AR, Mistry S, Evans RJ. Mass spectrometry analysis of human P2X1 receptors; insight into phosphorylation, modelling and conformational changes. J Neurochem 2012; 123:725-35. [PMID: 22971236 PMCID: PMC3532615 DOI: 10.1111/jnc.12012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 08/23/2012] [Accepted: 08/28/2012] [Indexed: 11/30/2022]
Abstract
Recombinant FlagHis6 tagged Human P2X1 receptors expressed in HEK293 cells were purified, digested with trypsin and analysed by mass spectroscopy (96% coverage following de-glycosylation and reduction). The receptor was basally phosphorylated at residues S387, S388 and T389 in the carboxyl terminus, a triple alanine mutant of these residues had a modest ∼ 25% increase in current amplitude and recovery from desensitization. Chemical modification showed that intracellular lysine residues close to the transmembrane domains and the membrane stabilization motif are accessible to the aqueous environment. The membrane-impermeant cross-linking reagent 3,3′-Dithiobis (sulfosuccinimidylpropionate) (DTSSP) reduced agonist binding and P2X1 receptor currents by > 90%, and modified lysine residues were identified by mass spectroscopy. Mutation to remove reactive lysine residues around the ATP-binding pocket had no effect on inhibtion of agonist evoked currents following DTSSP. However, agonist evoked currents were ∼ 10-fold higher than for wild type following DTSSP treatment for mutants K199R, K221R and K199R-K221R. These mutations remove reactive residues distant from the agonist binding pocket that are close enough to cross-link adjacent subunits. These results suggest that conformational change in the P2X1 receptor is required for co-ordination of ATP action.
Collapse
Affiliation(s)
- Jonathan A Roberts
- Department of Cell Physiology & Pharmacology, University of Leicester, Leicester, UK
| | | | | | | |
Collapse
|
8
|
Kaczmarek-Hájek K, Lörinczi E, Hausmann R, Nicke A. Molecular and functional properties of P2X receptors--recent progress and persisting challenges. Purinergic Signal 2012; 8:375-417. [PMID: 22547202 PMCID: PMC3360091 DOI: 10.1007/s11302-012-9314-7] [Citation(s) in RCA: 174] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 10/18/2011] [Indexed: 12/16/2022] Open
Abstract
ATP-gated P2X receptors are trimeric ion channels that assemble as homo- or heteromers from seven cloned subunits. Transcripts and/or proteins of P2X subunits have been found in most, if not all, mammalian tissues and are being discovered in an increasing number of non-vertebrates. Both the first crystal structure of a P2X receptor and the generation of knockout (KO) mice for five of the seven cloned subtypes greatly advanced our understanding of their molecular and physiological function and their validation as drug targets. This review summarizes the current understanding of the structure and function of P2X receptors and gives an update on recent developments in the search for P2X subtype-selective ligands. It also provides an overview about the current knowledge of the regulation and modulation of P2X receptors on the cellular level and finally on their physiological roles as inferred from studies on KO mice.
Collapse
Affiliation(s)
- Karina Kaczmarek-Hájek
- Max Planck Institute for Experimental Medicine, Hermann Rein Str. 3, 37075, Göttingen, Germany
| | | | | | | |
Collapse
|
9
|
Allsopp RC, Evans RJ. The intracellular amino terminus plays a dominant role in desensitization of ATP-gated P2X receptor ion channels. J Biol Chem 2011; 286:44691-701. [PMID: 22027824 PMCID: PMC3247974 DOI: 10.1074/jbc.m111.303917] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
P2X receptors show marked variations in the time-course of response to ATP application from rapidly desensitizing P2X1 receptors to relatively sustained P2X2 receptors. In this study we have used chimeras between human P2X1 and P2X2 receptors in combination with mutagenesis to address the contribution of the extracellular ligand binding loop, the transmembrane channel, and the intracellular regions to receptor time-course. Swapping either the extracellular loop or both transmembrane domains (TM1 and -2) between the P2X1 and P2X2 receptors had no effect on the time-course of ATP currents in the recipient receptor. These results suggest that the agonist binding and channel-forming portions of the receptor do not play a major role in the control of the time-course. In contrast replacing the amino terminus of the P2X1 receptor with that from the non-desensitizing P2X2 receptor (P2X1-2N) slowed desensitization, and the mirror chimera induced rapid desensitization in the P2X2-1N chimera. These reciprocal effects on time-course can be replicated by changing four variant amino acids just before the first transmembrane (TM1) segment. These pre-TM1 residues also had a dominant effect on chimeras where both TMs had been transferred; mutating the variant amino acids 21-23 to those found in the P2X2 receptor removed desensitization from the P2X1-2TM1/-2 chimera, and the reciprocal mutants induced rapid desensitization in the non-desensitizing P2X2-1TM1/-2 chimera. These results suggest that the intracellular amino terminus, in particular the region just before TM1, plays a dominant role in the regulation of the time-course of ATP evoked P2X receptor currents.
Collapse
Affiliation(s)
- Rebecca C Allsopp
- Department of Cell Physiology and Pharmacology, University of Leicester, Leicester LE1 9HN, United Kingdom
| | | |
Collapse
|
10
|
Lalo U, Roberts JA, Evans RJ. Identification of human P2X1 receptor-interacting proteins reveals a role of the cytoskeleton in receptor regulation. J Biol Chem 2011; 286:30591-30599. [PMID: 21757694 PMCID: PMC3162419 DOI: 10.1074/jbc.m111.253153] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
P2X1 receptors are ATP-gated ion channels expressed by smooth muscle and blood cells. Carboxyl-terminally His-FLAG-tagged human P2X1 receptors were stably expressed in HEK293 cells and co-purified with cytoskeletal proteins including actin. Disruption of the actin cytoskeleton with cytochalasin D inhibited P2X1 receptor currents with no effect on the time course of the response or surface expression of the receptor. Stabilization of the cytoskeleton with jasplakinolide had no effect on P2X1 receptor currents but decreased receptor mobility. P2X2 receptor currents were unaffected by cytochalasin, and P2X1/2 receptor chimeras were used to identify the molecular basis of actin sensitivity. These studies showed that the intracellular amino terminus accounts for the inhibitory effects of cytoskeletal disruption similar to that shown for lipid raft/cholesterol sensitivity. Stabilization of the cytoskeleton with jasplakinolide abolished the inhibitory effects of cholesterol depletion on P2X1 receptor currents, suggesting that lipid rafts may regulate the receptor through stabilization of the cytoskeleton. These studies show that the cytoskeleton plays an important role in P2X1 receptor regulation.
Collapse
Affiliation(s)
- Ulyana Lalo
- Department of Cell Physiology and Pharmacology, Henry Wellcome Building, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - Jonathan A Roberts
- Department of Cell Physiology and Pharmacology, Henry Wellcome Building, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - Richard J Evans
- Department of Cell Physiology and Pharmacology, Henry Wellcome Building, University of Leicester, Leicester LE1 9HN, United Kingdom.
| |
Collapse
|
11
|
Bavan S, Farmer L, Singh SK, Straub VA, Guerrero FD, Ennion SJ. The penultimate arginine of the carboxyl terminus determines slow desensitization in a P2X receptor from the cattle tick Boophilus microplus. Mol Pharmacol 2011; 79:776-85. [PMID: 21212138 DOI: 10.1124/mol.110.070037] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
P2X ion channels have been functionally characterized from a range of eukaryotes. Although these receptors can be broadly classified into fast and slow desensitizing, the molecular mechanisms underlying current desensitization are not fully understood. Here, we describe the characterization of a P2X receptor from the cattle tick Boophilus microplus (BmP2X) displaying extremely slow current kinetics, little desensitization during ATP application, and marked rundown in current amplitude between sequential responses. ATP (EC(50), 67.1 μM) evoked concentration-dependent currents at BmP2X that were antagonized by suramin (IC(50), 4.8 μM) and potentiated by the antiparasitic drug amitraz. Ivermectin did not potentiate BmP2X currents, but the mutation M362L conferred ivermectin sensitivity. To investigate the mechanisms underlying slow desensitization we generated intracellular domain chimeras between BmP2X and the rapidly desensitizing P2X receptor from Hypsibius dujardini. Exchange of N or C termini between these fast- and slow-desensitizing receptors altered the rate of current desensitization toward that of the donor channel. Truncation of the BmP2X C terminus identified the penultimate residue (Arg413) as important for slow desensitization. Removal of positive charge at this position in the mutant R413A resulted in significantly faster desensitization, which was further accentuated by the negatively charged substitution R413D. R413A and R413D, however, still displayed current rundown to sequential ATP application. Mutation to a positive charge (R413K) reconstituted the wild-type phenotype. This study identifies a new determinant of P2X desensitization where positive charge at the end of the C terminal regulates current flow and further demonstrates that rundown and desensitization are governed by distinct mechanisms.
Collapse
Affiliation(s)
- Selvan Bavan
- Department of Cell Physiology and Pharmacology, University of Leicester, Leicester, United Kingdom
| | | | | | | | | | | |
Collapse
|
12
|
Pannexin-1 hemichannel-mediated ATP release together with P2X1 and P2X4 receptors regulate T-cell activation at the immune synapse. Blood 2010; 116:3475-84. [PMID: 20660288 DOI: 10.1182/blood-2010-04-277707] [Citation(s) in RCA: 247] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Engagement of T cells with antigen-presenting cells requires T-cell receptor (TCR) stimulation at the immune synapse. We previously reported that TCR stimulation induces the release of cellular adenosine-5'-triphosphate (ATP) that regulates T-cell activation. Here we tested the roles of pannexin-1 hemichannels, which have been implicated in ATP release, and of various P2X receptors, which serve as ATP-gated Ca(2+) channels, in events that control T-cell activation. TCR stimulation results in the translocation of P2X1 and P2X4 receptors and pannexin-1 hemichannels to the immune synapse, while P2X7 receptors remain uniformly distributed on the cell surface. Removal of extracellular ATP or inhibition, mutation, or silencing of P2X1 and P2X4 receptors inhibits Ca(2+) entry, nuclear factors of activated T cells (NFAT) activation, and induction of interleukin-2 synthesis. Inhibition of pannexin-1 hemichannels suppresses TCR-induced ATP release, Ca(2+) entry, and T-cell activation. We conclude that pannexin-1 hemichannels and P2X1 and P2X4 receptors facilitate ATP release and autocrine feedback mechanisms that control Ca(2+) entry and T-cell activation at the immune synapse.
Collapse
|
13
|
|
14
|
Brown DA, Yule DI. Protein kinase A regulation of P2X(4) receptors: requirement for a specific motif in the C-terminus. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1803:275-87. [PMID: 20026202 DOI: 10.1016/j.bbamcr.2009.12.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 12/10/2009] [Accepted: 12/11/2009] [Indexed: 10/20/2022]
Abstract
The P2X purinergic receptor sub-family of ligand-gated ion channels are subject to protein kinase modulation. We have previously demonstrated that P2X(4)R signaling can be positively regulated by increasing intracellular cAMP levels. The molecular mechanism underlying this effect was, however, unknown. The present study initially addressed whether protein kinase A (PKA) activation was required. Subsequently a mutational approach was utilized to determine which region of the receptor was required for this potentiation. In both DT-40 3KO and HEK-293 cells transiently expressing P2X(4)R, forskolin treatment enhanced ATP-mediated signaling. Specific PKA inhibitors prevented the forskolin-induced enhancement of ATP-mediated inward currents in P2X(4)R expressing HEK-293 cells. To define which region of the P2X(4)R was required for the potentiation, mutations were generated in the cytoplasmic C-terminal tail. It was determined that a limited region of the C-terminus, consisting of a non-canonical tyrosine based sorting motif, was required for the effects of PKA. Of note, this region does not harbor any recognizable PKA phosphorylation motifs, and no direct phosphorylation of P2X(4)R was detected, suggesting that PKA phosphorylation of an accessory protein interacts with the endocytosis motif in the C-terminus of the P2X(4)R. In support of this notion, using Total Internal Reflection Fluorescence Microscopy (TIRF)\ P2X(4)-EGFP was shown to accumulate at/near the plasma membrane following forskolin treatment. In addition, disrupting the endocytosis machinery using a dominant-negative dynamin construct also prevented the PKA-mediated enhancement of ATP-stimulated Ca(2+) signals. Our results are consistent with a novel mechanism of P2XR regulation, whereby PKA activity, without directly phosphorylating P2X(4)R, markedly enhances ATP-stimulated P2X(4)R currents and hence cytosolic Ca(2+) signals. This may occur at least in part, by altering the trafficking of a population of P2X(4)R present at the plasma membrane.
Collapse
Affiliation(s)
- David A Brown
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | |
Collapse
|
15
|
Abstract
P2X receptors are membrane cation channels gated by extracellular ATP. Seven P2X receptor subunits (P2X(1-7)) are widely distributed in excitable and nonexcitable cells of vertebrates. They play key roles in inter alia afferent signaling (including pain), regulation of renal blood flow, vascular endothelium, and inflammatory responses. We summarize the evidence for these and other roles, emphasizing experimental work with selective receptor antagonists or with knockout mice. The receptors are trimeric membrane proteins: Studies of the biophysical properties of mutated subunits expressed in heterologous cells have indicated parts of the subunits involved in ATP binding, ion permeation (including calcium permeability), and membrane trafficking. We review our current understanding of the molecular properties of P2X receptors, including how this understanding is informed by the identification of distantly related P2X receptors in simple eukaryotes.
Collapse
Affiliation(s)
- Annmarie Surprenant
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom.
| | | |
Collapse
|
16
|
Takahashi N, Shiomi H, Kushida N, Liu F, Ishibashi K, Yanagida T, Shishido K, Aikawa K, Yamaguchi O. Obstruction alters muscarinic receptor-coupled RhoA/Rho-kinase pathway in the urinary bladder of the rat. Neurourol Urodyn 2009; 28:257-62. [DOI: 10.1002/nau.20625] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
Bavan S, Straub VA, Blaxter ML, Ennion SJ. A P2X receptor from the tardigrade species Hypsibius dujardini with fast kinetics and sensitivity to zinc and copper. BMC Evol Biol 2009; 9:17. [PMID: 19154569 PMCID: PMC2633282 DOI: 10.1186/1471-2148-9-17] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2009] [Accepted: 01/20/2009] [Indexed: 12/02/2022] Open
Abstract
Background Orthologs of the vertebrate ATP gated P2X channels have been identified in Dictyostelium and green algae, demonstrating that the emergence of ionotropic purinergic signalling was an early event in eukaryotic evolution. However, the genomes of a number of animals including Drosophila melanogaster and Caenorhabditis elegans, both members of the Ecdysozoa superphylum, lack P2X-like proteins, whilst other species such as the flatworm Schistosoma mansoni have P2X proteins making it unclear as to what stages in evolution P2X receptors were lost. Here we describe the functional characterisation of a P2X receptor (HdP2X) from the tardigrade Hypsibius dujardini demonstrating that purinergic signalling is preserved in some ecdysozoa. Results ATP (EC50 ~44.5 μM) evoked transient inward currents in HdP2X with millisecond rates of activation and desensitisation. HdP2X is antagonised by pyridoxal-phosphate-6-azophenyl-2',4' disulfonic acid (IC50 15.0 μM) and suramin (IC50 22.6 μM) and zinc and copper inhibit ATP-evoked currents with IC50 values of 62.8 μM and 19.9 μM respectively. Site-directed mutagenesis showed that unlike vertebrate P2X receptors, extracellular histidines do not play a major role in coordinating metal binding in HdP2X. However, H306 was identified as playing a minor role in the actions of copper but not zinc. Ivermectin potentiated responses to ATP with no effect on the rates of current activation or decay. Conclusion The presence of a P2X receptor in a tardigrade species suggests that both nematodes and arthropods lost their P2X genes independently, as both traditional and molecular phylogenies place the divergence between Nematoda and Arthropoda before their divergence from Tardigrada. The phylogenetic analysis performed in our study also clearly demonstrates that the emergence of the family of seven P2X channels in human and other mammalian species was a relatively recent evolutionary event that occurred subsequent to the split between vertebrates and invertebrates. Furthermore, several characteristics of HdP2X including fast kinetics with low ATP sensitivity, potentiation by ivermectin in a channel with fast kinetics and distinct copper and zinc binding sites not dependent on histidines make HdP2X a useful model for comparative structure-function studies allowing a better understanding of P2X receptors in higher organisms.
Collapse
Affiliation(s)
- Selvan Bavan
- Department of Cell Physiology and Pharmacology, University of Leicester, Leicester, UK.
| | | | | | | |
Collapse
|
18
|
Wen H, Evans RJ. Regions of the amino terminus of the P2X receptor required for modification by phorbol ester and mGluR1alpha receptors. J Neurochem 2008; 108:331-40. [PMID: 19046321 PMCID: PMC2704932 DOI: 10.1111/j.1471-4159.2008.05761.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The potentiation of P2X1 receptor currents by phorbol ester (PMA) treatment and stimulation of mGluR1α receptors was sensitive to inhibition of novel forms of protein kinase C. Potentiation was also reduced by co-expression of an amino terminal P2X1 receptor minigene. Cysteine point mutants of residues Tyr16-Gly30 were expressed in Xenopus oocytes. Peak current amplitudes to ATP for Y16C, T18C and R20C mutants were reduced, however this did not result from a decrease in surface expression of the channels. The majority of the mutants showed changes in the time-course of desensitization of ATP evoked currents indicating the important role of this region in regulation of channel properties. PMA and mGluR1α potentiation was abolished for the mutants Y16C, T18C, R20C, K27C and G30C. Minigenes incorporating either Y16C, K27C, V29C or G30C still inhibited PMA responses. However D17C, T18C or R20C mutant minigenes were no longer effective suggesting that these residues are important for interaction with regulatory factors. These results demonstrate that the conserved YXTXK/R sequence and a region with a conserved glycine residue close to the first transmembrane segment contribute to PMA and GPCR regulation of P2X1 receptors.
Collapse
Affiliation(s)
- Hairuo Wen
- Department of Cell Physiology & Pharmacology, University of Leicester, Leicester, UK
| | | |
Collapse
|
19
|
Lack of evidence for direct phosphorylation of recombinantly expressed P2X(2) and P2X (3) receptors by protein kinase C. Purinergic Signal 2007; 3:377-88. [PMID: 18404451 PMCID: PMC2072911 DOI: 10.1007/s11302-007-9067-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Accepted: 07/27/2007] [Indexed: 12/18/2022] Open
Abstract
P2X3 and P2X2+3 receptors are present on sensory neurons, where they contribute not only to transient nociceptive responses, but also to hypersensitivity underlying pathological pain states elicited by nerve injuries. Increased signalling through P2X3 and P2X2+3 receptors may arise from an increased routing to the plasma membrane and/or gain of function of pre-existing receptors. An obvious effector mechanism for functional modulation is protein kinase C (PKC)-mediated phosphorylation, since all P2X family members share a conserved consensus sequence for PKC, TXR/K, within the intracellularly located N-terminal domain. Contradictory reports have been published regarding the exact role of this motif. In the present study, we confirm that site-directed elimination of the potential phosphor-acceptor threonine or the basic residue in the P+2 position of the TXR/K sequence accelerates desensitization of P2X2 receptors and abolishes P2X3 receptor function. Moreover, the PKC activator phorbol 12-myristate 13-acetate increased P2X3 (but not P2X2) receptor-mediated currents. Biochemically, however, we were unable to demonstrate by various experimental approaches a direct phosphorylation of wild-type P2X2 and P2X3 receptors expressed in both Xenopus laevis oocytes and HEK293 cells. In conclusion, our data support the view that the TXR/K motif plays an important role in P2X function and that phorbol 12-myristate 13-acetate is capable of modulating some P2X receptor subtypes. The underlying mechanism, however, is unlikely to involve direct PKC-mediated P2X receptor phosphorylation.
Collapse
|
20
|
Wang C, Li GW, Huang LYM. Prostaglandin E2 potentiation of P2X3 receptor mediated currents in dorsal root ganglion neurons. Mol Pain 2007; 3:22. [PMID: 17692121 PMCID: PMC2063498 DOI: 10.1186/1744-8069-3-22] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Accepted: 08/10/2007] [Indexed: 02/07/2023] Open
Abstract
Prostaglandin E2 (PGE2) is a well-known inflammatory mediator that enhances the
excitability of DRG neurons. Homomeric P2X3 and heteromeric P2X2/3 receptors are
abundantly expressed in dorsal root ganglia (DRG) neurons and participate in the
transmission of nociceptive signals. The interaction between PGE2 and P2X3 receptors
has not been well delineated. We studied the actions of PGE2 on ATP-activated
currents in dissociated DRG neurons under voltage-clamp conditions. PGE2 had no
effects on P2X2/3 receptor-mediated responses, but significantly potentiated
fast-inactivating ATP currents mediated by homomeric P2X3 receptors. PGE2 exerted its
action by activating EP3 receptors. To study the mechanism underlying the action of
PGE2, we found that the adenylyl cyclase activator, forskolin and the
membrane-permeable cAMP analogue, 8-Br-cAMP increased ATP currents, mimicking the
effect of PGE2. In addition, forskolin occluded the enhancement produced by PGE2. The
protein kinase A (PKA) inhibitors, H89 and PKA-I blocked the PGE2 effect. In
contrast, the PKC inhibitor, bisindolymaleimide (Bis) did not change the potentiating
action of PGE2. We further showed that PGE2 enhanced α,β-meATP-induced
allodynia and hyperalgesia and the enhancement was blocked by H89. These observations
suggest that PGE2 binds to EP3 receptors, resulting in the activation of cAMP/PKA
signaling pathway and leading to an enhancement of P2X3 homomeric receptor-mediated
ATP responses in DRG neurons.
Collapse
Affiliation(s)
- Congying Wang
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch,
Galveston, TX 77555-1069, USA
| | - Guang-Wen Li
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch,
Galveston, TX 77555-1069, USA
| | - Li-Yen Mae Huang
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch,
Galveston, TX 77555-1069, USA
| |
Collapse
|
21
|
Vial C, Rigby R, Evans RJ. Contribution of P2X1 receptor intracellular basic residues to channel properties. Biochem Biophys Res Commun 2006; 350:244-8. [PMID: 16997281 DOI: 10.1016/j.bbrc.2006.09.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2006] [Accepted: 09/09/2006] [Indexed: 11/29/2022]
Abstract
The intracellular amino and carboxy termini of P2X receptors have been shown to contribute to the regulation of ATP evoked currents. In this study we produced, and expressed in Xenopus oocytes, individual alanine point mutants of positively charged amino acids (eight lysine, seven arginine and one histidine) in the intracellular domains of the human P2X1 receptor. The majority of these mutations had no effect on the amplitude, time-course or rectification of ATP evoked currents. In contrast the mutant K367A was expressed at normal levels at the cell surface however ATP evoked currents were reduced by >99% and desensitised more rapidly demonstrating a role of K367 in channel regulation. This is similar to that previously described for T18A mutant channels. Co-expression of T18A and K367A mutant P2X1 receptors produced larger ATP evoked responses than either mutant alone and suggests that these amino and carboxy terminal regions interact to regulate channel function.
Collapse
Affiliation(s)
- Catherine Vial
- Department of Cell Physiology and Pharmacology, Henry Wellcome Building, University of Leicester, LE1 9HN, UK
| | | | | |
Collapse
|
22
|
Brown DA, Yule DI. Protein kinase C regulation of P2X3 receptors is unlikely to involve direct receptor phosphorylation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1773:166-75. [PMID: 17052768 PMCID: PMC1861828 DOI: 10.1016/j.bbamcr.2006.09.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2006] [Revised: 08/25/2006] [Accepted: 09/13/2006] [Indexed: 11/30/2022]
Abstract
P2X receptors (P2XR) act as ligand-gated, cation-selective ion channels. A common characteristic of all seven P2X family members is a conserved consensus sequence for protein kinase C (PKC)-mediated phosphorylation in the intracellular N-terminus of the receptor. Activation of PKC has been shown to enhance currents through P2X(3)R, however the molecular mechanism of this potentiation has not been elucidated. In the present study we show that activation of PKC can enhance adenosine triphosphate (ATP)-mediated Ca(2+) signals approximately 2.5-fold in a DT-40 3KO cell culture system (P2 receptor null) transiently overexpressing P2X(3)R. ATP-activated cation currents were also directly studied using whole cell patch clamp techniques in HEK-293 cells, a null background for ionotropic P2XR. PKC activation resulted in a approximately 8.5-fold enhancement of ATP-activated current in HEK-293 cells transfected with P2X(3)R cDNA, but had no effect on currents through either P2X(4)R- or P2X(7)R-transfected cells. P2X(3)R-transfected HEK-293 cells were metabolically labeled with (32)PO(4)(-) and following treatment with phorbol-12-myristate-13-acetate (PMA) and subsequent immunoprecipitation, there was no incorporation of (32)PO(4)(-) in bands corresponding to P2X(3)R. Similarly, in vitro phosphorylation experiments, utilizing purified PKC catalytic subunits failed to establish phosphorylation of either P2X(3)R or P2X(3)R-EGFP. These data indicate that PKC activation can enhance both the Ca(2+) signal as well as the cation current through P2X(3)R, however it appears that the regulation is unlikely to be a result of direct phosphorylation of the receptor.
Collapse
Affiliation(s)
- David A. Brown
- Department of Pharmacology & Physiology, School of Medicine and Dentistry, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642
| | - David I. Yule
- Department of Pharmacology & Physiology, School of Medicine and Dentistry, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642
- *Address for correspondence: Department of Pharmacology & Physiology, School of Medicine and Dentistry, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642. Tel: 585-275-6128; Fax: 585-273-2652; E-mail:
| |
Collapse
|
23
|
Stojilkovic SS, Tomic M, He ML, Yan Z, Koshimizu TA, Zemkova H. Molecular dissection of purinergic P2X receptor channels. Ann N Y Acad Sci 2006; 1048:116-30. [PMID: 16154926 DOI: 10.1196/annals.1342.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The P2X receptors (P2XRs) are a family of ATP-gated channels expressed in the plasma membrane of numerous excitable and nonexcitable cells and play important roles in control of cellular functions, such as neurotransmission, hormone secretion, transcriptional regulation, and protein synthesis. P2XRs are homomeric or heteromeric proteins, formed by assembly of at least three of seven subunits named P2X(1)-P2X(7). All subunits possess intracellular N- and C-termini, two transmembrane domains, and a relatively large extracellular ligand-binding loop. ATP binds to still an unidentified extracellular domain, leading to a sequence of conformational transitions between closed, open, and desensitized states. Removal of extracellular ATP leads to deactivation and resensitization of receptors. Activated P2XRs generate inward currents caused by Na(+) and Ca(2+) influx through the pore of channels, and thus mediate membrane depolarization and facilitation of voltage-gated calcium entry in excitable cells. No crystal structures are available for P2XRs and these receptors have no obvious similarity to other ion channels or ATP binding proteins, which limits the progress in understanding the relationship between molecular structure and conformational transitions of receptor in the presence of agonist and after its washout. We summarize here the alternative approaches in studies on molecular properties of P2XRs, including heteromerization, chimerization, mutagenesis, and biochemical studies.
Collapse
Affiliation(s)
- Stanko S Stojilkovic
- Section on Cellular Signaling, Endocrinology and Reproduction Research Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Roberts JA, Vial C, Digby HR, Agboh KC, Wen H, Atterbury-Thomas A, Evans RJ. Molecular properties of P2X receptors. Pflugers Arch 2006; 452:486-500. [PMID: 16607539 DOI: 10.1007/s00424-006-0073-6] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Accepted: 03/10/2006] [Indexed: 12/23/2022]
Abstract
P2X receptors for adenosine tri-phosphate (ATP) are a distinct family of ligand-gated cation channels with two transmembrane domains, intracellular amino and carboxy termini and a large extracellular ligand binding loop. Seven genes (P2X(1-7)) have been cloned and the channels form as either homo or heterotrimeric channels giving rise to a wide range of phenotypes. This review aims to give an account of recent work on the molecular basis of the properties of P2X receptors. In particular, to consider emerging information on the assembly of P2X receptor subunits, channel regulation and desensitisation, targeting, the molecular basis of drug action and the functional contribution of P2X receptors to physiological processes.
Collapse
Affiliation(s)
- Jonathan A Roberts
- Department of Cell Physiology & Pharmacology, Medical Sciences Building, University of Leicester, Leicester, LE1 9HN, UK
| | | | | | | | | | | | | |
Collapse
|
25
|
Fountain SJ, North RA. A C-terminal lysine that controls human P2X4 receptor desensitization. J Biol Chem 2006; 281:15044-9. [PMID: 16533808 DOI: 10.1074/jbc.m600442200] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Receptor desensitization can determine the time course of transmitter action and profoundly alter sensitivity to drugs. Among P2X receptors, ion currents through homomeric P2X4 receptors exhibit intermediate desensitization when compared with P2X1 and P2X3 (much faster) and P2X2 and P2X7 (slower). We recorded membrane currents in HEK293 cells transfected to express the human P2X4 receptor. The decline in current during a 4-s application of ATP (100 microm) was about 30%; this was not different during whole-cell or perforated patch recording. Alanine-scanning mutagenesis of the intracellular C terminus identified two positions with much accelerated desensitization kinetics (Lys373: 92% and Tyr374: 74%). At position 373, substitution of Arg or Cys also strongly accelerated desensitization: however, in the case of K373C the wild-type phenotype was fully restored by adding ethylammonium methanethiosulfonate. At position 374, phenylalanine could replace tyrosine. These results indicate that wild-type desensitization properties requires an aromatic moiety at position 374 and an amino rather than a guanidino group at position 373. These residues lie between previously identified motifs involved in membrane trafficking (YXXXK and YXXGL) and implicates the C-terminal also in rearrangements leading to channel closing during the presence of agonist.
Collapse
Affiliation(s)
- Samuel J Fountain
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Manchester, M13 9PT, United Kingdom.
| | | |
Collapse
|
26
|
Liang SD, Xu CS, Zhou T, Liu HQ, Gao Y, Li GL. Tetramethylpyrazine inhibits ATP-activated currents in rat dorsal root ganglion neurons. Brain Res 2005; 1040:92-7. [PMID: 15804430 DOI: 10.1016/j.brainres.2005.01.076] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2004] [Revised: 01/15/2005] [Accepted: 01/21/2005] [Indexed: 10/25/2022]
Abstract
Tetramethylpyrazine (TMP) is one of the alkaloids contained in Ligustrazine which has been used in traditional Chinese medicine as an analgesic for injury and dysmenorrhea. ATP can elicit the sensation of pain. This study observed the effects of TMP on ATP-activated current (IATP) in rat DRG neurons. TMP (0.1-1 mM) concentration-dependently inhibited ATP (100 microM)-activated current in rat DRG neurons. The inhibitory time of ATP (100 microM)-activated current appeared at 15 s after preapplication of TMP and reached its peak at about 45 s. The dose-response curves for IATP in the absence and presence of 1 mM TMP showed that TMP (1 mM) shifted the concentration-response curve of IATP downward markedly and the two EC50 values were very close (75 vs. 82 microM), while the threshold value remained unchanged. Therefore, the inhibitory effect of TMP on IATP may be noncompetitive. TMP did not alter the reversal potential (0 mV) of ATP-activated current, indicating that the site of TMP action is on or near the exterior surface of channel protein and not within the channel pore. Externally applied TMP (1 mM) increases the inhibitory effect of chelerythrine (PKC inhibitor) contained in pipette solution on IATP. The site of TMP action may be the binding of TMP to an allosteric site on the large extracellular region of ATP receptor-ion channel complex (P2X receptors) or PKC site of the N-terminus of P2X receptors. The mechanism of TMP action may be the allosteric regulation via acting on the large extracellular region of ATP receptor-ion channel complex (P2X receptors) and promoting the phosphorylation of PKC site of the N-terminus of P2X receptors.
Collapse
Affiliation(s)
- S D Liang
- Department of Physiology, Jiangxi Medical College, Nanchang 330006, PR China.
| | | | | | | | | | | |
Collapse
|
27
|
Vial C, Tobin A, Evans R. G-protein-coupled receptor regulation of P2X1 receptors does not involve direct channel phosphorylation. Biochem J 2005; 382:101-10. [PMID: 15144237 PMCID: PMC1133920 DOI: 10.1042/bj20031910] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2003] [Revised: 04/21/2004] [Accepted: 05/14/2004] [Indexed: 01/26/2023]
Abstract
P2X1 receptors for ATP are ligand-gated cation channels, which mediate smooth muscle contraction, contribute to blood clotting and are co-expressed with a range of GPCRs (G-protein-coupled receptors). Stimulation of Galpha(q)-coupled mGluR1alpha (metabotropic glutamate receptor 1alpha), P2Y1 or P2Y2 receptors co-expressed with P2X(1) receptors in Xenopus oocytes evoked calcium-activated chloride currents (I(ClCa)) and potentiated subsequent P2X1-receptor-mediated currents by up to 250%. The mGluR1alpha-receptor-mediated effects were blocked by the phospholipase C inhibitor U-73122. Potentiation was mimicked by treatment with the phor-bol ester PMA. P2X receptors have a conserved intracellular PKC (protein kinase C) site; however, GPCR- and PMA-mediated potentiation was still observed with point mutants in which this site was disrupted. Similarly, the potentiation by GPCRs or PMA was unaffected by chelating the intracellular calcium rise with BAPTA/AM [bis(o-aminophenoxy)ethane-N,N,N',N'-tetra-acetic acid tetrakis-(acetoxymethyl ester)] or the PKC inhibitors Ro-32-0432 and bisindolylmaleimide I, suggesting that the regulation does not involve a calcium-sensitive form of PKC. However, both GPCR and PMA potentiation were blocked by the kinase inhibitor staurosporine. Potentiation by phorbol esters was recorded in HEK-293 cells expressing P2X1 receptors, and radiolabelling of phosphorylated proteins in these cells demonstrated that P2X1 receptors are basally phosphorylated and that this level of phosphorylation is unaffected by phorbol ester treatment. This demonstrates that P2X1 regulation does not result directly from phosphorylation of the channel, but more likely by a staurosporine-sensitive phosphorylation of an accessory protein in the P2X1 receptor complex and suggests that in vivo fine-tuning of P2X1 receptors by GPCRs may contribute to cardiovascular control and haemostasis.
Collapse
Affiliation(s)
- Catherine Vial
- Department of Cell Physiology and Pharmacology, University of Leicester, University Road, Leicester, LE1 9HN U.K
| | - Andrew B. Tobin
- Department of Cell Physiology and Pharmacology, University of Leicester, University Road, Leicester, LE1 9HN U.K
| | - Richard J. Evans
- Department of Cell Physiology and Pharmacology, University of Leicester, University Road, Leicester, LE1 9HN U.K
- To whom correspondence should be addressed (email )
| |
Collapse
|
28
|
Agboh KC, Webb TE, Evans RJ, Ennion SJ. Functional characterization of a P2X receptor from Schistosoma mansoni. J Biol Chem 2004; 279:41650-7. [PMID: 15292267 DOI: 10.1074/jbc.m408203200] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cloning and characterization of a P2X receptor (schP2X) from the parasitic blood fluke Schistosoma mansoni provides the first example of a non-vertebrate ATP-gated ion channel. A number of functionally important amino acid residues conserved throughout vertebrate P2X receptors, including 10 extracellular cysteines, aromatic and positively charged residues involved in ATP recognition, and a consensus protein kinase C site in the amino-terminal tail, are also present in schP2X. Overall, the amino acid sequence identity of schP2X with human P2X(1-7) receptors ranges from 25.8 to 36.6%. ATP evoked concentration-dependent currents at schP2X channels expressed in Xenopus oocytes with an EC(50) of 22.1 microM. 2',3'-O-(4-Benzoylbenzoyl)adenosine 5'-triphosphate (Bz-ATP) was a partial agonist (maximum response 75.4 +/- 4.4% that of ATP) with a higher potency (EC(50) of 3.6 microM) than ATP. Suramin and pyridoxal-phosphate-6-azophenyl-2',4'-disulfonic acid blocked schP2X responses to 100 microm ATP with IC(50) values of 9.6 and 0.5 microM, respectively. Ivermectin (10 microM) potentiated currents to both ATP and Bz-ATP by approximately 60% with a minimal effect on potency (EC(50) of 18.2 and 1.6 microM, respectively). The relative permeability of schP2X expressed in HEK293 cells to various cations was determined under bi-ionic conditions. schP2X has a relatively high calcium permeability (P(Ca)/P(Na) = 3.80 +/- 0.29) and an estimated minimum pore diameter similar to that of vertebrate P2X receptors. SchP2X provides a useful comparative model for the better understanding of human P2X receptor function and may also provide an alternative drug target for treatment of schistosomiasis.
Collapse
Affiliation(s)
- Kelvin C Agboh
- Department of Cell Physiology and Pharmacology, University of Leicester, P. O. Box 138, Leicester LE1 9HN, United Kingdom
| | | | | | | |
Collapse
|
29
|
Liu GJ, Brockhausen J, Bennett MR. P2X1 receptor currents after disruption of the PKC site and its surroundings by dominant negative mutations in HEK293 cells. Auton Neurosci 2004; 108:12-6. [PMID: 14614959 DOI: 10.1016/s1566-0702(03)00154-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
It has been suggested that phosphorylation at the T18P19R20 PKC sites of the P2X1 receptor regulates its functions. Here, we show that mutation at T18 (T18A and T18N) almost abolishes P2X1 current in response to ATP and that mutations of R20T but not of P19V also decrease the P2X1 current. Immunoblotting with anti-Thr(P)-Pro monoclonal antibody of membrane proteins from HEK293 cells transfected with P2X1R20T indicate the absence of Thr(P)18 which is present in HEK293 cells transfected with WT P2X1. We conclude that T18P19R20 is phosphorylated following P2X1 binding of ligand but that the three PKC sites function to different degree.
Collapse
Affiliation(s)
- Guo Jun Liu
- The Neurobiology Laboratory, Department of Physiology and Institute for Biomedical Research, University of Sydney, New South Wales 2006, Australia
| | | | | |
Collapse
|
30
|
Vial C, Pitt SJ, Roberts J, Rolf MG, Mahaut-Smith MP, Evans RJ. Lack of evidence for functional ADP-activated human P2X1 receptors supports a role for ATP during hemostasis and thrombosis. Blood 2003; 102:3646-51. [PMID: 12907444 DOI: 10.1182/blood-2003-06-1963] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Purine nucleotides acting through P2 receptors play key roles in platelet signaling. The P2X1 receptor is an adenosine triphosphate (ATP)-gated ion channel that mediates a rapid calcium influx signal, but can also synergize with subsequent adenosine diphosphate (ADP)-evoked P2Y1 receptor-mediated responses and thus may contribute to platelet activation during hemostasis. Recent studies have shown that P2X1 receptors contribute to the formation of platelet thrombi, particularly under conditions of high shear stress. Based on intracellular Ca2+ measurements a previous report has suggested that a splice variant of the P2X1 receptor, P2X1del, is expressed in platelets and, in contrast to the full-length P2X1WT receptor, is activated by ADP. In the present study we show that the P2X1del receptor fails to form functional ion channels and is below the limit of detection in human platelets. Furthermore, ADP does not contribute to the rapid ionotropic P2X receptor-mediated response in platelets. These results support the notion that ATP is the principal physiologic agonist at P2X1 receptors and that it plays a role in the activation of platelets.
Collapse
Affiliation(s)
- Catherine Vial
- Department of Cell Physiology and Pharmacology, University of Leicester, University Rd, Leicester LE1 9HN, United Kingdom
| | | | | | | | | | | |
Collapse
|
31
|
He ML, Zemkova H, Stojilkovic SS. Dependence of purinergic P2X receptor activity on ectodomain structure. J Biol Chem 2003; 278:10182-8. [PMID: 12524445 DOI: 10.1074/jbc.m209094200] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Purinergic receptors (P2XRs) activate and desensitize in response to the binding of extracellular nucleotides in a receptor- and ligand-specific manner, but the structural bases of their ligand preferences and channel kinetics have been incompletely characterized. Here we tested the hypothesis that affinity of agonists for binding domain accounts for a ligand-specific desensitization pattern. We generated chimeras using receptors with variable sensitivity to ATP in order: P2X(4)R > P2X(2a)R = P2X(2b)R P2X(7)R. Chimeras having the ectodomain Ile(66)-Tyr(310) sequence of P2X(2)R and Val(61)-Phe(313) sequence of P2X(7)R in the backbone of P2X(4)R were expressed but were non-functioning channels. P2X(2a) + X(4)R and P2X(2b) + X(4)R chimeras having the Val(66)-Tyr(315) ectodomain sequence of P2X(4)R in the backbones of P2X(2a)R and P2X(2b)R were functional and exhibited increased sensitivity to ligands as compared with both parental receptors. These chimeras also desensitized faster than parental receptors and in a ligand-nonspecific manner. However, like parental P2X(2b)R and P2X(2a)R, chimeric P2X(2b) + X(4)R desensitized more rapidly than P2X(2a) + X(4)R, and the rate of desensitization of P2X(2a)+X(4)R increased by substituting its Arg(371)-Pro(376) intracellular C-terminal sequence with the Glu(376)-Gly(381) sequence of P2X(4)R. These results indicate the relevance of interaction between the ectodomain and flanking regions around the transmembrane domains on ligand potency and receptor activation. Furthermore, the ligand potency positively correlates with the rate of receptor desensitization but does not affect the C-terminal-specific pattern of desensitization.
Collapse
Affiliation(s)
- Mu-Lan He
- Endocrinology and Reproduction Research Branch, NICHD, National Institutes of Health, Bethesda, Maryland 20892-4510, USA
| | | | | |
Collapse
|
32
|
Wibberley A, Chen Z, Hu E, Hieble JP, Westfall TD. Expression and functional role of Rho-kinase in rat urinary bladder smooth muscle. Br J Pharmacol 2003; 138:757-66. [PMID: 12642376 PMCID: PMC1573720 DOI: 10.1038/sj.bjp.0705109] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
(1) The involvement of Rho-kinase (ROCK) in the contractile mechanisms mediating smooth muscle contraction of the rat urinary bladder was investigated using expression studies and the ROCK inhibitor Y-27632. (2) Both isoforms of ROCK (ROCK I and ROCK II) were detected in high levels in rat urinary bladder. (3) Y-27632 (10 micro M) significantly attenuated contractions of rat urinary bladder strips evoked by the G-protein coupled receptor agonists carbachol (58.1+/-10.5% at 0.3 micro M) and neurokinin A (68.6+/-12.7% at 1 micro M) without affecting contractions to potassium chloride (10-100 mM). In addition, basal tone was reduced by 47.8+/-2.0% by 10 micro M Y-27632 in the absence of stimulation. (4) Contractions of urinary bladder strips evoked by the P2X receptor agonist alpha,beta-methylene ATP (alpha,beta-mATP; 10 micro M) were also attenuated by Y-27632 (30.0+/-7.2% at 10 micro M). (5) Y-27632 (10 micro M) significantly attenuated contractions evoked by electrical field stimulation (2-16 Hz). The effect of Y-27632 on the tonic portion of the neurogenic response (4-16 Hz) was not significantly different from the effect of atropine (1 micro M) alone. (6) While the mechanism underlying the ability of Y-27632 to inhibit alpha,beta-mATP-evoked contractions remains undetermined, the results of the present study clearly demonstrate a role for ROCK in the regulation of rat urinary bladder smooth muscle contraction and tone.
Collapse
Affiliation(s)
- Alexandra Wibberley
- Department of Renal & Urology Research, GlaxoSmithKline Pharmaceuticals, 709 Swedeland Road, P.O. Box 1539, King of Prussia, PA 19406-0939, USA.
| | | | | | | | | |
Collapse
|
33
|
Egan TM, Migita K, Voigt MM. Relating the Structure of ATP-Gated Ion Channel Receptors to Their Function. CURRENT TOPICS IN MEMBRANES 2003. [DOI: 10.1016/s1063-5823(03)01006-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
He ML, Koshimizu TA, Tomić M, Stojilkovic SS. Purinergic P2X(2) receptor desensitization depends on coupling between ectodomain and C-terminal domain. Mol Pharmacol 2002; 62:1187-97. [PMID: 12391283 DOI: 10.1124/mol.62.5.1187] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The wild-type P2X(2) purinergic receptor (P2X(2a)R) and its splice form lacking the intracellular Val(370)-Gln(438) C-terminal sequence (P2X(2b)R) respond to ATP stimulation with comparable EC(50) values and peak current/calcium responses but desensitize in a receptor-specific manner. P2X(2a)R desensitizes slowly and P2X(2b)R desensitizes rapidly. We studied the effects of different agonists, and of substituting the ectodomain, on the pattern of calcium signaling by P2X(2a)R and P2X(2b)R. Both receptors showed similar EC(50) values (estimated from the peak calcium response) and IC(50) values (estimated from the rate of calcium signal desensitization) for agonists, in the order 2-MeS-ATP <or= ATP <or= ATPgammaS < BzATP << alphabeta-meATP, and the IC(50) values for agonists were shifted to the right compared with their EC(50) values. Furthermore, the ATP-induced receptor-subtype specific pattern of desensitization was mimicked by high- but not by low-efficacy agonists, suggesting a ligand-specific desensitization pattern. To test this hypothesis, we generated chimeric P2X(2a)R and P2X(2b)R containing the Val(60)-Phe(301) ectodomain sequence of P2X(3)R and Val(61)-Phe(313) ectodomain sequence of P2X(7)R instead the native Ile(66)-Tyr(310) sequence. The mutated P2X(2a)+X(3)R and P2X(2b)+X(3)R exhibited comparable EC(50) values for ATP, BzATP, and alphabeta-meATP in the submicromolar concentration range and desensitized in a receptor-specific and ligand-nonspecific manner. On the other hand, the chimeric P2X(2)+X(7)R exhibited decreased sensitivity for ATP and desensitized in a receptor-nonspecific manner. These results suggest that efficacy of agonists for the ligand-binding domain of P2X(2)Rs reflects the strength of desensitization controlled by their C-terminal structures.
Collapse
Affiliation(s)
- Mu-Lan He
- Endocrinology and Reproduction Research Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-4510, USA
| | | | | | | |
Collapse
|
35
|
Abstract
P2X receptors are membrane ion channels that open in response to the binding of extracellular ATP. Seven genes in vertebrates encode P2X receptor subunits, which are 40-50% identical in amino acid sequence. Each subunit has two transmembrane domains, separated by an extracellular domain (approximately 280 amino acids). Channels form as multimers of several subunits. Homomeric P2X1, P2X2, P2X3, P2X4, P2X5, and P2X7 channels and heteromeric P2X2/3 and P2X1/5 channels have been most fully characterized following heterologous expression. Some agonists (e.g., alphabeta-methylene ATP) and antagonists [e.g., 2',3'-O-(2,4,6-trinitrophenyl)-ATP] are strongly selective for receptors containing P2X1 and P2X3 subunits. All P2X receptors are permeable to small monovalent cations; some have significant calcium or anion permeability. In many cells, activation of homomeric P2X7 receptors induces a permeability increase to larger organic cations including some fluorescent dyes and also signals to the cytoskeleton; these changes probably involve additional interacting proteins. P2X receptors are abundantly distributed, and functional responses are seen in neurons, glia, epithelia, endothelia, bone, muscle, and hemopoietic tissues. The molecular composition of native receptors is becoming understood, and some cells express more than one type of P2X receptor. On smooth muscles, P2X receptors respond to ATP released from sympathetic motor nerves (e.g., in ejaculation). On sensory nerves, they are involved in the initiation of afferent signals in several viscera (e.g., bladder, intestine) and play a key role in sensing tissue-damaging and inflammatory stimuli. Paracrine roles for ATP signaling through P2X receptors are likely in neurohypophysis, ducted glands, airway epithelia, kidney, bone, and hemopoietic tissues. In the last case, P2X7 receptor activation stimulates cytokine release by engaging intracellular signaling pathways.
Collapse
Affiliation(s)
- R Alan North
- Institute of Molecular Physiology, University of Sheffield, Western Bank, Sheffield, United Kingdom.
| |
Collapse
|