1
|
Yang H, Wang L, Zheng Y, Hu G, Ma H, Shen L. Knockdown of zinc finger protein 267 suppresses diffuse large B-cell lymphoma progression, metastasis, and cancer stem cell properties. Bioengineered 2022; 13:1686-1701. [PMID: 35001816 PMCID: PMC8805851 DOI: 10.1080/21655979.2021.2014644] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/20/2021] [Indexed: 12/12/2022] Open
Abstract
Zinc finger protein 267 (ZNF267) is a member of the Kruppel-like transcription factor family, which regulates various biological processes such as cell proliferation and differentiation. However, the biological significance of ZNF267 and its potential role in diffuse large B-cell lymphoma (DLBCL) remain to be documented. Experiments were herein conducted to study the role of ZNF267 in DLBCL. real-time quantitative reverse transcription PCR and Western blotting assays were conducted to detect the expression of ZNF267 in tissues and cells. Tissue microarray and bioinformatics analyses of public data were also done to detect the expression status and clinical significance of ZNF267. Functional cell experiments including CCK8 assay, colony formation assay, 5-ethynyl-2'-deoxyuridine (EDU) assay, terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling (TUNEL) assay, transwell assay, and wound healing assay were conducted to study the effects of ZNF267 knockdown and overexpression on cell proliferation and mobility. Xenograft assay was also conducted to confirm the effects of ZNF267 knockdown in vivo. In the present study, we found ZNF267 was significantly upregulated in DLBCL and predicted a poor survival outcome based on the bioinformatics analysis. Functionally, the knockdown of ZNF267 resulted in less cell proliferation and mobility, whereas the overexpression led to enhanced cell proliferation and mobility. Animal experiments also confirmed that ZNF267 silence contributed to less tumor growth and less lung metastasis. Further analysis showed that ZFN267 knockdown resulted in decreased epithelial-mesenchymal transition (EMT) and cancer stem cell (CSC) properties. Our results suggest that ZNF267 is an oncogene in DLBCL and its silence could compromise the aggression of DLBCL, which makes ZNF267 a promising therapeutic target.
Collapse
Affiliation(s)
- Hua Yang
- Department of Hematology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Linmei Wang
- Department of Resoiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingbin Zheng
- Department of General Surgery, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guiming Hu
- Department of Pathology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongyan Ma
- Department of Hematology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liyun Shen
- Department of Hematology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Phelan SA, Szabo E. Undergraduate lab series using the K562 human leukemia cell line: Model for cell growth, death, and differentiation in an advanced cell biology course. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 47:263-271. [PMID: 30725506 DOI: 10.1002/bmb.21222] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/10/2018] [Accepted: 01/19/2019] [Indexed: 06/09/2023]
Abstract
This sequence of labs was developed for an upper level undergraduate cell biology course at Fairfield University. The labs are based on the use of the K562 human erythroleukemia cell line, a model system that is exceptionally amenable to an undergraduate cell biology lab course due to its ease of maintenance and propagation and usefulness for studies of growth, death, and differentiation. The sequence of labs is conducted over a 6-week period, following a series of weekly cell biology labs covering basic cell and molecular biology techniques. Together, the lab series has four primary objectives 1) to teach students how to culture and maintain mammalian cells; 2) to build student competency in standard cell biology techniques; 3) to demonstrate the role of growth factors on cell proliferation and viability; and 4) to provide students with an opportunity to use these cells in an independent investigation on cell differentiation. We provide examples of student data and offer a range of experimental measurements depending on institutional capacity and facilities. Our assessment data suggest that students find great value in this lab series, enhancing their comprehension of key concepts, acquisition of important lab skills, and depth of understanding of the research process. © 2019 International Union of Biochemistry and Molecular Biology, 47(3):263-271, 2019.
Collapse
Affiliation(s)
- Shelley A Phelan
- Department of Biology, Fairfield University, Fairfield, Connecticut, 06824
| | - Elizabeth Szabo
- Department of Biology, Fairfield University, Fairfield, Connecticut, 06824
| |
Collapse
|
3
|
Deezagi A, Abedi-Tashi M. Studying the enucleation process, DNA breakdown and telomerase activity of the K562 cell lines during erythroid differentiation in vitro. In Vitro Cell Dev Biol Anim 2013; 49:122-33. [PMID: 23288413 DOI: 10.1007/s11626-012-9574-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 11/26/2012] [Indexed: 11/30/2022]
Abstract
During erythropoiesis, some organelles such as mitochondria and nucleus are lost by autophagy and enucleation processes in the presence of macrophages in vivo. In vitro production of erythrocytes has raised many questions about the mechanism of enucleation. The aim of this work was to study the DNA breakdown, enucleation, hemoglobin synthesis and telomerase activity of K562 cells during erythroid differentiation. For these purposes, K562 cells were induced to differentiate by erythropoietin + rhGM-CSF, DMSO, and sodium butyrate separately up to 14 d. In different time intervals, hemoglobin synthesis was evaluated by benzidine staining and RT-PCR for γ-globin gene expression. DNA breakdown was analyzed by 4',6-diamidino-2-phenylindole (DAPI) staining, DNA ladder electrophoresis and comet assay. The telomerase activity was evaluated by TRAP assay. Our result indicated that, sodium butyrate and DMSO inhibited K562 cell growth about 50-60% in comparison to untreated control cells. The percentage of benzidine-positive cells was about 45% in the presence of sodium butyrate after 10 d. Densitometric analysis of RT-PCR and calculated data indicated a 1.5-fold increase in relative γ-globin gene expression at 96 h, in the presence of 1 mM sodium butyrate in comparison with untreated cells. DAPI staining did not reveal any evidence of internal lysis of the nucleus during erythroid differentiation at first wk, but this was obvious in the second wk. DNA laddering pattern was not observed in differentiated cells during 14 d. In comet assay, the percentage of DNA in tail, tail length, and tail moment were significantly different between untreated and treated cells (p < 0.05). Telomerase activity was inhibited up to 90.3% during erythroid differentiation of these cells.
Collapse
Affiliation(s)
- Abdolkhaleg Deezagi
- Department of Biochemistry, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.
| | | |
Collapse
|
4
|
Liu K, Xing H, Zhang S, Liu SM, Fung MC. Cucurbitacin D induces fetal hemoglobin synthesis in K562 cells and human hematopoietic progenitors through activation of p38 pathway and stabilization of the γ-globin mRNA. Blood Cells Mol Dis 2010; 45:269-75. [PMID: 20926322 DOI: 10.1016/j.bcmd.2010.09.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Revised: 09/13/2010] [Accepted: 09/13/2010] [Indexed: 02/08/2023]
Abstract
The search for novel therapeutic candidates targeting fetal hemoglobin (HbF) activation to reduce the imbalance of globin genes is regarded as a promising approach for the clinical management of sickle cell disease and β-thalassemia. For the first time, we identified cucurbitacin D (CuD), an oxygenated tetracyclic triterpenoid, as a molecular entity inducing γ-globin gene expression and HbF synthesis in K562 cells and human hematopoietic progenitors from a β-thalassemia patient. CuD demonstrated a higher potency in HbF induction when compared with hydroxyurea, which was revealed by the evidence that CuD results in a higher fetal cell percentage and greater HbF content in K562 cells, in addition, to being less cytotoxic. Moreover, CuD also promotes higher HbF expression in primary erythroid cells. In the study to elucidate the molecular mechanisms of CuD's action, our data indicated that CuD-stimulated HbF synthesis was mediated by p38 pathway activation. At the post-transcriptional level, CuD treatment led to a significant elongation of the γ-globin mRNA half-life in K562 cells. Taken together, the results suggest that CuD may be a potential therapeutic agent for β-hemoglobinopathies, including sickle cell anemia and β-thalassemia.
Collapse
Affiliation(s)
- Kan Liu
- Department of Biology, the Chinese University of Hong Kong, Shatin, Hong Kong
| | | | | | | | | |
Collapse
|
5
|
Lim RWS, Wu JM. Molecular mechanisms regulating expression and function of transcription regulator inhibitor of differentiation 3. Acta Pharmacol Sin 2005; 26:1409-20. [PMID: 16297338 DOI: 10.1111/j.1745-7254.2005.00207.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The transcription factor antagonist inhibitor of differentiation 3 (Id3) has been implicated in many diverse developmental, physiological and pathophysiological processes. Its expression and function is subjected to many levels of complex regulation. This review summarizes the current understanding of these mechanisms and describes how they might be related to the diverse functions that have been attributed to the Id3 protein. Detailed understanding of these mechanisms should provide insights towards the development of therapeutic approaches to various diseases, including cancer and atherogenesis.
Collapse
Affiliation(s)
- Robert Wai-Sui Lim
- Department of Medical Pharmacology and Physiology, University of Missouri-Columbia, Columbia, Missouri 65212, USA.
| | | |
Collapse
|
6
|
Nikinmaa M. The Bohr effect - a discovery 100 years ago, with intensive studies about the effect of protons on haemoglobin function still going on. ACTA ACUST UNITED AC 2004; 182:213-4. [PMID: 15491401 DOI: 10.1111/j.1365-201x.2004.01389.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Addya S, Keller MA, Delgrosso K, Ponte CM, Vadigepalli R, Gonye GE, Surrey S. Erythroid-induced commitment of K562 cells results in clusters of differentially expressed genes enriched for specific transcription regulatory elements. Physiol Genomics 2004; 19:117-30. [PMID: 15252187 DOI: 10.1152/physiolgenomics.00028.2004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Understanding regulation of fetal and embryonic hemoglobin expression is critical, since their expression decreases clinical severity in sickle cell disease and beta-thalassemia. K562 cells, a human erythroleukemia cell line, can differentiate along erythroid or megakaryocytic lineages and serve as a model for regulation of fetal/embryonic globin expression. We used microarray expression profiling to characterize transcriptomes from K562 cells treated for various times with hemin, an inducer of erythroid commitment. Approximately 5,000 genes were expressed irrespective of treatment. Comparative expression analysis (CEA) identified 899 genes as differentially expressed; analysis by the self-organizing map (SOM) algorithm clustered 425 genes into 8 distinct expression patterns, 322 of which were shared by both analyses. Differential expression of a subset of genes was validated by real-time RT-PCR. Analysis of 5'-flanking regions from differentially expressed genes by PAINT v3.0 software showed enrichment in specific transcription regulatory elements (TREs), some localizing to different expression clusters. This finding suggests coordinate regulation of cluster members by specific TREs. Finally, our findings provide new insights into rate-limiting steps in the appearance of heme-containing hemoglobin tetramers in these cells.
Collapse
Affiliation(s)
- Sankar Addya
- The Cardeza Foundation for Hematologic Research and Division of Hematology, Department of Medicine, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
A detailed understanding of hemoglobin production in erythroid cells is of fundamental clinical importance for the treatment of hemoglobinopathies. Several hundred scientific reports and dozens of reviews describe this intriguing topic of research. Early studies demonstrated the temporal nature of a hemoglobin-switching phenomenon during development in the circulating erythrocytes of humans. The focus then shifted from descriptive to experimental analyses and model systems in an effort to define the switching mechanisms. The application of molecular biology in those experimental models has been a primary focus for the last two decades. Today, advances in the fields of stem cell biology and signal transduction are being integrated with those genetic studies. Genomic and proteomic approaches are also being developed to provide a more robust description of the biologic variables involved. This review highlights recent advances in erythroid genetics and cellular biology with an emphasis upon the modulation of fetal hemoglobin expression during the maturation of adult human erythrocytes.
Collapse
Affiliation(s)
- Jeffery L Miller
- Laboratory of Chemical Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| |
Collapse
|
9
|
Abstract
A partial understanding of the pathophysiology of sickle cell disease has suggested one means of treatment-increasing the distribution and concentration of fetal hemoglobin in sickle erythrocytes. Although this can be accomplished clinically with drugs like hydroxyurea, a complete understanding of the molecular and cellular basis of fetal hemoglobin regulation may suggest new and better ways of attaining this goal.
Collapse
Affiliation(s)
- M H Steinberg
- G.V. (Sonny) Montgomery Department of Veterans Affairs Medical Center, Jackson, MS 39216, USA.
| |
Collapse
|
10
|
Boye K, Hougaard DM, Ebbesen P, Vuust J, Christiansen M. Novel feto-specific mRNA species suitable for identification of fetal cells from the maternal circulation. Prenat Diagn 2001. [DOI: 10.1002/pd.141] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
11
|
Mitchell T, Plonczynski M, McCollum A, Hardy CL, Safaya S, Steinberg MH. Gene Expression Profiling during Erythroid Differentiation of K562 Cells. Blood Cells Mol Dis 2001; 27:309-19. [PMID: 11358393 DOI: 10.1006/bcmd.2000.0377] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We studied the temporal changes in gene expression in K562 cells at intervals from 2 to 48 h following induction using differential display polymerase chain reaction and gene expression arrays. More than 110 cDNA fragments representing 86 unique mRNAs were either up- or downregulated during erythroid differentiation. Sixty-one of the differentially expressed cDNA fragments had more than 95% homology to known GenBank sequences; 21 represented cDNA sequences with only dbEST or high-throughput gene-screening database matches. Four fragments had no database matches. Using gene expression arrays, 73 differentially expressed genes were observed. Unique expressed sequence tags (ESTs) were used to "clone" two novel genes from available databases and their tissue expression was examined. Erythroid maturation in induced K562 cells is associated with differential expression of many genes. Some differentially expressed clones were transcription factors and 25 expressed fragments with open reading frames were found whose function remains unknown.
Collapse
Affiliation(s)
- T Mitchell
- G.V. (Sonny) Montgomery Department of Veterans Affairs Medical Center, University of Mississippi School of Medicine, Jackson, Mississippi 39216, USA
| | | | | | | | | | | |
Collapse
|
12
|
Schäfer U, Schneider A, Neugebauer E. Identification of a nitric oxide-regulated zinc finger containing transcription factor using motif-directed differential display. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1494:269-76. [PMID: 11121585 DOI: 10.1016/s0167-4781(00)00249-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
We report here the isolation of human zinc finger 2 (HZF2), a putative zinc-finger transcription factor, by motif-directed differential display of mRNA extracted from histamine-stimulated human vein endothelial cells. The expression of HZF2 mRNA in venous endothelial cells was verified by Northern blot analysis, which also revealed an enrichment of HZF2 mRNA in lymphocytes and monocytes. Histamine induced a time- and concentration-dependent upregulation of HZF2 level with a 6-fold peak increase of mRNA at 30 min. HZF2 upregulation was abolished by different NOS isozyme inhibitors. Guanylate cyclase inhibition resulted in a significant decrease of HZF2 expression. These observations indicate HZF2 as a potentially interesting new target for studies concerning rapid NO-mediated gene regulation.
Collapse
Affiliation(s)
- U Schäfer
- Biochemical and Experimental Division, II. Department of Surgery, University of Cologne, Ostmerheimer Str. 200, 51109 Cologne, Germany.
| | | | | |
Collapse
|