1
|
Gibson JS, Rees DC. Emerging drug targets for sickle cell disease: shedding light on new knowledge and advances at the molecular level. Expert Opin Ther Targets 2023; 27:133-149. [PMID: 36803179 DOI: 10.1080/14728222.2023.2179484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
INTRODUCTION In sickle cell disease (SCD), a single amino acid substitution at β6 of the hemoglobin (Hb) chain replaces glutamate with valine, forming HbS instead of the normal adult HbA. Loss of a negative charge, and the conformational change in deoxygenated HbS molecules, enables formation of HbS polymers. These not only distort red cell morphology but also have other profound effects so that this simple etiology belies a complex pathogenesis with multiple complications. Although SCD represents a common severe inherited disorder with life-long consequences, approved treatments remain inadequate. Hydroxyurea is currently the most effective, with a handful of newer treatments, but there remains a real need for novel, efficacious therapies. AREAS COVERED This review summarizes important early events in pathogenesis to highlight key targets for novel treatments. EXPERT OPINION A thorough understanding of early events in pathogenesis closely associated with the presence of HbS is the logical starting point for identification of new targets rather than concentrating on more downstream effects. We discuss ways of reducing HbS levels, reducing the impact of HbS polymers, and of membrane events perturbing cell function, and suggest using the unique permeability of sickle cells to target drugs specifically into those more severely compromised.
Collapse
Affiliation(s)
- John S Gibson
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - David C Rees
- Department of Paediatric Haematology, King's College Hospital, London, UK
| |
Collapse
|
2
|
Microfluidic Microcirculation Mimetic as a Tool for the Study of Rheological Characteristics of Red Blood Cells in Patients with Sickle Cell Anemia. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Sickle cell disorder (SCD) is a multisystem disease with heterogeneous phenotypes. Although all patients have the mutated hemoglobin (Hb) in the SS phenotype, the severity and frequency of complications are variable. When exposed to low oxygen tension, the Hb molecule becomes dense and forms tactoids, which lead to the peculiar sickled shapes of the affected red blood cells, giving the disorder its name. This sickle cell morphology is responsible for the profound and widespread pathologies associated with this disorder, such as vaso-occlusive crisis (VOC). How much of the clinical manifestation is due to sickled erythrocytes and what is due to the relative contributions of other elements in the blood, especially in the microcapillary circulation, is usually not visualized and quantified for each patient during clinical management. Here, we used a microfluidic microcirculation mimetic (MMM), which has 187 capillary-like constrictions, to impose deformations on erythrocytes of 25 SCD patients, visualizing and characterizing the morpho-rheological properties of the cells in normoxic, hypoxic (using sodium meta-bisulfite) and treatment conditions (using hydroxyurea). The MMM enabled a patient-specific quantification of shape descriptors (circularity and roundness) and transit time through the capillary constrictions, which are readouts for morpho-rheological properties implicated in VOC. Transit times varied significantly (p < 0.001) between patients. Our results demonstrate the feasibility of microfluidics-based monitoring of individual patients for personalized care in the context of SCD complications such as VOC, even in resource-constrained settings.
Collapse
|
3
|
Lin Z, McIntyre T, Jiang D, Cannon A, Liu P, Tekes A, Casella JF, Slifer K, Lu H, Lance E. Brain Oxygen Extraction and Metabolism in Pediatric Patients With Sickle Cell Disease: Comparison of Four Calibration Models. Front Physiol 2022; 13:814979. [PMID: 35222083 PMCID: PMC8874251 DOI: 10.3389/fphys.2022.814979] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/21/2022] [Indexed: 12/11/2022] Open
Abstract
Sickle cell disease (SCD) is an inherited hemoglobinopathy with an increased risk of neurological complications. Due to anemia and other factors related to the underlying hemoglobinopathy, cerebral blood flow (CBF) increases as compensation; however, the nature of alterations in oxygen extraction fraction (OEF) and cerebral metabolic rate of oxygen (CMRO2) in SCD remains controversial, largely attributed to the different calibration models. In addition, limited studies have been done to investigate oxygen metabolism in pediatric patients. Thus, this study used a non-invasive T2-based MR oximetry, T2-Relaxation-Under-Spin-Tagging (TRUST) MRI, to measure oxygen homeostasis in pediatric patients with SCD using four different calibration models and examined its relationship to hematological measures. It was found that, compared with controls, SCD patients showed an increased CBF, unchanged total oxygen delivery and increased venous blood T2. The results of OEF and CMRO2 were dependent on the calibration models used. When using sickle-specific, hemoglobin S (HbS) level-dependent calibration, there was a decreased OEF and CMRO2, while the bovine model showed an opposite result. OEF and CMRO2 were also associated with hemoglobin and HbS level; the direction of the relationship was again dependent on the model. Future studies with in vivo calibration are needed to provide more accurate information on the T2-Yv relationship.
Collapse
Affiliation(s)
- Zixuan Lin
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Tiffany McIntyre
- Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Dengrong Jiang
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Alicia Cannon
- Department of Neuropsychology, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Peiying Liu
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Aylin Tekes
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - James F. Casella
- Division of Pediatric Hematology, Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Keith Slifer
- Department of Behavioral Psychology, Kennedy Krieger Institute, Baltimore, MD, United States
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Hanzhang Lu
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Eboni Lance
- Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, MD, United States
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- *Correspondence: Eboni Lance,
| |
Collapse
|
4
|
Chow PH, Cox CD, Pei JV, Anabaraonye N, Nourmohammadi S, Henderson SW, Martinac B, Abdulmalik O, Yool AJ. Inhibition of the Aquaporin-1 Cation Conductance by Selected Furan Compounds Reduces Red Blood Cell Sickling. Front Pharmacol 2022; 12:794791. [PMID: 35111062 PMCID: PMC8801817 DOI: 10.3389/fphar.2021.794791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
In sickle cell disease (SCD), the pathological shift of red blood cells (RBCs) into distorted morphologies under hypoxic conditions follows activation of a cationic leak current (Psickle) and cell dehydration. Prior work showed sickling was reduced by 5-hydroxylmethyl-2-furfural (5-HMF), which stabilized mutant hemoglobin and also blocked the Psickle current in RBCs, though the molecular basis of this 5-HMF-sensitive cation current remained a mystery. Work here is the first to test the hypothesis that Aquaporin-1 (AQP1) cation channels contribute to the monovalent component of Psickle. Human AQP1 channels expressed in Xenopus oocytes were evaluated for sensitivity to 5-HMF and four derivatives known to have differential efficacies in preventing RBC sickling. Ion conductances were measured by two-electrode voltage clamp, and osmotic water permeability by optical swelling assays. Compounds tested were: 5-HMF; 5-PMFC (5-(phenoxymethyl)furan-2-carbaldehyde); 5-CMFC (5-(4-chlorophenoxymethyl)furan-2-carbaldehyde); 5-NMFC (5-(2-nitrophenoxymethyl)-furan-2-carbaldehyde); and VZHE006 (tert-butyl (5-formylfuran-2-yl)methyl carbonate). The most effective anti-sickling agent, 5-PMFC, was the most potent inhibitor of the AQP1 ion conductance (98% block at 100 µM). The order of sensitivity of the AQP1 conductance to inhibition was 5-PMFC > VZHE006 > 5-CMFC ≥ 5-NMFC, which corresponded with effectiveness in protecting RBCs from sickling. None of the compounds altered AQP1 water channel activity. Combined application of a selective AQP1 ion channel blocker AqB011 (80 µM) with a selective hemoglobin modifying agent 5-NMFC (2.5 mM) increased anti-sickling effectiveness in red blood cells from human SCD patients. Another non-selective cation channel known to be expressed in RBCs, Piezo1, was unaffected by 2 mM 5-HMF. Results suggest that inhibition of AQP1 ion channels and capacity to modify hemoglobin are combined features of the most effective anti-sickling agents. Future therapeutics aimed at both targets could hold promise for improved treatments for SCD.
Collapse
Affiliation(s)
- Pak Hin Chow
- Aquaporin Physiology and Drug Discovery Program, School of Biomedicine, University of Adelaide, Adelaide, SA, Australia
| | - Charles D Cox
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia.,St Vincent's Clinical School, University of New South Wales, Darlinghurst, NSW, Australia
| | - Jinxin V Pei
- Research School of Biology, College of Science, Australian National University, Canberra, ACT, Australia
| | - Nancy Anabaraonye
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Saeed Nourmohammadi
- Aquaporin Physiology and Drug Discovery Program, School of Biomedicine, University of Adelaide, Adelaide, SA, Australia
| | - Sam W Henderson
- Aquaporin Physiology and Drug Discovery Program, School of Biomedicine, University of Adelaide, Adelaide, SA, Australia
| | - Boris Martinac
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia.,St Vincent's Clinical School, University of New South Wales, Darlinghurst, NSW, Australia
| | - Osheiza Abdulmalik
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Andrea J Yool
- Aquaporin Physiology and Drug Discovery Program, School of Biomedicine, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
5
|
Lu DCY, Wadud R, Hannemann A, Rees DC, Brewin JN, Gibson JS. Pathophysiological Relevance of Renal Medullary Conditions on the Behaviour of Red Cells From Patients With Sickle Cell Anaemia. Front Physiol 2021; 12:653545. [PMID: 33815154 PMCID: PMC8017214 DOI: 10.3389/fphys.2021.653545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 02/25/2021] [Indexed: 11/13/2022] Open
Abstract
Red cells from patients with sickle cell anaemia (SCA) contain the abnormal haemoglobin HbS. Under hypoxic conditions, HbS polymerises and causes red cell sickling, a rise in intracellular Ca2+ and exposure of phosphatidylserine (PS). These changes make sickle cells sticky and liable to lodge in the microvasculature, and so reduce their lifespan. The aim of the present work was to investigate how the peculiar conditions found in the renal medulla - hypoxia, acidosis, lactate, hypertonicity and high levels of urea - affect red cell behaviour. Results show that the first four conditions all increased sickling and PS exposure. The presence of urea at levels found in a healthy medulla during antidiuresis, however, markedly reduced sickling and PS exposure and would therefore protect against red cell adherence. Loss of the ability to concentrate urine, which occurs in sickle cell nephropathy would obviate this protective effect and may therefore contribute to pathogenesis.
Collapse
Affiliation(s)
- David C-Y Lu
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Rasiqh Wadud
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Anke Hannemann
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - David C Rees
- Department of Paediatric Haematology, King's College Hospital, London, United Kingdom
| | - John N Brewin
- Department of Paediatric Haematology, King's College Hospital, London, United Kingdom
| | - John Stanley Gibson
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
6
|
Wadud R, Hannemann A, Rees DC, Brewin JN, Gibson JS. Yoda1 and phosphatidylserine exposure in red cells from patients with sickle cell anaemia. Sci Rep 2020; 10:20110. [PMID: 33208899 PMCID: PMC7674503 DOI: 10.1038/s41598-020-76979-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/01/2020] [Indexed: 01/27/2023] Open
Abstract
Phosphatidylserine (PS) exposure is increased in red cells from sickle cell anaemia (SCA) patients. Externalised PS is prothrombotic and attractive to phagocytes and activated endothelial cells and thus contributes to the anaemic and ischaemic complications of SCA. The mechanism of PS exposure remains uncertain but it can follow increased intracellular Ca2+ concentration ([Ca2+]i). Normally, [Ca2+]i is maintained at very low levels but in sickle cells, Ca2+ permeability is increased, especially following deoxygenation and sickling, mediated by a pathway sometimes called Psickle. The molecular identity of Psickle is also unclear but recent work has implicated the mechanosensitive channel, PIEZO1. We used Yoda1, an PIEZO1 agonist, to investigate its role in sickle cells. Yoda1 caused an increase in [Ca2+]i and PS exposure, which was inhibited by its antagonist Dooku1 and the PIEZO1 inhibitor GsMTx4, consistent with functional PIEZO1. However, PS exposure did not necessitate an increase in [Ca2+]i. Two PKC inhibitors were also tested, chelerytherine chloride and calphostin C. Both reduced PS exposure whilst chelerytherine chloride also reduced Yoda1-induced increases in [Ca2+]i. Findings are therefore consistent with the presence of PIEZO1 in sickle cells, able to mediate Ca2+ entry but that PKC was also involved in both Ca2+ entry and PS exposure.
Collapse
Affiliation(s)
- R Wadud
- Department of Veterinary Medicine, Madingley Road, Cambridge, CB3 0ES, UK
| | - A Hannemann
- Department of Veterinary Medicine, Madingley Road, Cambridge, CB3 0ES, UK
| | - D C Rees
- Department of Paediatric Haematology, King's College Hospital, Denmark Hill, London, SE5 5RL, UK
| | - J N Brewin
- Department of Paediatric Haematology, King's College Hospital, Denmark Hill, London, SE5 5RL, UK
| | - J S Gibson
- Department of Veterinary Medicine, Madingley Road, Cambridge, CB3 0ES, UK.
| |
Collapse
|
7
|
Devarajan S, Meurer M, van Roermund CWT, Chen X, Hettema EH, Kemp S, Knop M, Williams C. Proteasome-dependent protein quality control of the peroxisomal membrane protein Pxa1p. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183342. [PMID: 32416190 DOI: 10.1016/j.bbamem.2020.183342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/02/2020] [Accepted: 05/04/2020] [Indexed: 10/24/2022]
Abstract
Peroxisomes are eukaryotic organelles that function in numerous metabolic pathways and defects in peroxisome function can cause serious developmental brain disorders such as adrenoleukodystrophy (ALD). Peroxisomal membrane proteins (PMPs) play a crucial role in regulating peroxisome function. Therefore, PMP homeostasis is vital for peroxisome function. Recently, we established that certain PMPs are degraded by the Ubiquitin Proteasome System yet little is known about how faulty/non-functional PMPs undergo quality control. Here we have investigated the degradation of Pxa1p, a fatty acid transporter in the yeast Saccharomyces cerevisiae. Pxa1p is a homologue of the human protein ALDP and mutations in ALDP result in the severe disorder ALD. By introducing two corresponding ALDP mutations into Pxa1p (Pxa1MUT), fused to mGFP, we show that Pxa1MUT-mGFP is rapidly degraded from peroxisomes in a proteasome-dependent manner, while wild type Pxa1-mGFP remains relatively stable. Furthermore, we identify a role for the ubiquitin ligase Ufd4p in Pxa1MUT-mGFP degradation. Finally, we establish that inhibiting Pxa1MUT-mGFP degradation results in a partial rescue of Pxa1p activity in cells. Together, our data demonstrate that faulty PMPs can undergo proteasome-dependent quality control. Furthermore, our observations may provide new insights into the role of ALDP degradation in ALD.
Collapse
Affiliation(s)
- S Devarajan
- Department of Cell Biochemistry, University of Groningen, the Netherlands
| | - M Meurer
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - C W T van Roermund
- Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centres, the Netherlands
| | - X Chen
- Department of Cell Biochemistry, University of Groningen, the Netherlands
| | - E H Hettema
- Department of Molecular Biology, University of Sheffield, Sheffield, United Kingdom
| | - S Kemp
- Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centres, the Netherlands
| | - M Knop
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany; Cell Morphogenesis and Signal Transduction, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - C Williams
- Department of Cell Biochemistry, University of Groningen, the Netherlands.
| |
Collapse
|
8
|
Hegedűs L, Zámbó B, Pászty K, Padányi R, Varga K, Penniston JT, Enyedi Á. Molecular Diversity of Plasma Membrane Ca2+ Transporting ATPases: Their Function Under Normal and Pathological Conditions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:93-129. [DOI: 10.1007/978-3-030-12457-1_5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
9
|
Mroczko B, Groblewska M, Litman-Zawadzka A. The Role of Protein Misfolding and Tau Oligomers (TauOs) in Alzheimer's Disease (AD). Int J Mol Sci 2019; 20:E4661. [PMID: 31547024 PMCID: PMC6802364 DOI: 10.3390/ijms20194661] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 11/25/2022] Open
Abstract
Although the causative role of the accumulation of amyloid β 1-42 (Aβ42) deposits in the pathogenesis of Alzheimer's disease (AD) has been under debate for many years, it is supposed that the toxicity soluble oligomers of Tau protein (TauOs) might be also the pathogenic factor acting on the initial stages of this disease. Therefore, we performed a thorough search for literature pertaining to our investigation via the MEDLINE/PubMed database. It was shown that soluble TauOs, especially granular forms, may be the most toxic form of this protein. Hyperphosphorylated TauOs can reduce the number of synapses by missorting into axonal compartments of neurons other than axon. Furthermore, soluble TauOs may be also responsible for seeding Tau pathology within AD brains, with probable link to AβOs toxicity. Additionally, the concentrations of TauOs in the cerebrospinal fluid (CSF) and plasma of AD patients were higher than in non-demented controls, and revealed a negative correlation with mini-mental state examination (MMSE) scores. It was postulated that adding the measurements of TauOs to the panel of CSF biomarkers could improve the diagnosis of AD.
Collapse
Affiliation(s)
- Barbara Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, 15-269 Białystok, Poland.
- Department of Biochemical Diagnostics, University Hospital of Białystok, 15-269 Białystok, Poland.
| | - Magdalena Groblewska
- Department of Biochemical Diagnostics, University Hospital of Białystok, 15-269 Białystok, Poland.
| | - Ala Litman-Zawadzka
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, 15-269 Białystok, Poland.
| |
Collapse
|
10
|
Rooks H, Brewin J, Gardner K, Chakravorty S, Menzel S, Hannemann A, Gibson J, Rees DC. A gain of function variant in PIEZO1 (E756del) and sickle cell disease. Haematologica 2018; 104:e91-e93. [PMID: 30237267 DOI: 10.3324/haematol.2018.202697] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Helen Rooks
- Red Cell Biology Group, King's College Hospital, Denmark Hill, London
| | - John Brewin
- Red Cell Biology Group, King's College Hospital, Denmark Hill, London
| | - Kate Gardner
- Red Cell Biology Group, King's College Hospital, Denmark Hill, London
| | | | - Stephan Menzel
- Red Cell Biology Group, King's College Hospital, Denmark Hill, London
| | - Anke Hannemann
- Department of Veterinary Medicine, Cambridge University, UK
| | - John Gibson
- Department of Veterinary Medicine, Cambridge University, UK
| | - David C Rees
- Red Cell Biology Group, King's College Hospital, Denmark Hill, London
| |
Collapse
|
11
|
Bush AM, Coates TD, Wood JC. Diminished cerebral oxygen extraction and metabolic rate in sickle cell disease using T2 relaxation under spin tagging MRI. Magn Reson Med 2018; 80:294-303. [PMID: 29194727 PMCID: PMC5876140 DOI: 10.1002/mrm.27015] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/26/2017] [Accepted: 10/26/2017] [Indexed: 11/09/2022]
Abstract
PURPOSE T2 MRI oximetry can noninvasively determine oxygen saturation (Y) but requires empirical MR calibration models to convert the measured blood transverse relaxation (T2b ) into Y. The accuracy of existing T2b models in the presence of blood disorders such as sickle cell disease (SCD) remains unknown. METHODS A Carr Purcell Meiboom Gill T2 preparation sequence was used to make 83 whole blood measurements from 11 subjects with SCD to derive an ex vivo sickle hemoglobin (HbS) T2b model. Forearm venous blood gas, sagittal sinus T2 (T2 Relaxation Under Spin Tagging) and total brain blood flow (phase contrast MRI) were measured in 37 healthy controls and 33 SCD subjects (age 24.6 ± 10.2 years). Cerebral oxygen saturation, extraction fraction, and metabolic rate estimates were calculated using three separate T2b models. Cerebral and forearm oxygen extraction fraction were compared. RESULTS Ex vivo, SCD blood had greater saturation dependent relaxivity than control blood, with a weak dependence on HbS and no dependence on hematocrit. In vivo, the HbS T2b model predicted Yv values with lowest coefficient of variation (compared with existing T2b models) and the strongest correlation with peripheral venous oximetry (r2 = .29). The HbS T2b model predicted systematically higher Yv measurements in SCD patients (73 ± 5 and 61 ± 6; P < 0.0001) which was mirrored by peripheral venous measurements (75 ± 20 and 45 ± 20; P < 0.0001). CONCLUSION Cerebral and peripheral oxygen extraction are decreased in SCD patients, suggesting either blood flow is increased beyond metabolic demands or the presence of physiological arterial-venous shunting. Magn Reson Med 80:294-303, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Adam M Bush
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Thomas D Coates
- Division of Hematology/Oncology, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - John C Wood
- Division of Cardiology, Children's Hospital Los Angeles, Los Angeles, California, USA
| |
Collapse
|
12
|
Al Balushi HWM, Wali Y, Al Awadi M, Al-Subhi T, Rees DC, Brewin JN, Hannemann A, Gibson JS. The super sickling haemoglobin HbS-Oman: a study of red cell sickling, K + permeability and associations with disease severity in patients heterozygous for HbA and HbS-Oman (HbA/S-Oman genotype). Br J Haematol 2017; 179:256-265. [PMID: 28699687 DOI: 10.1111/bjh.14851] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 06/04/2017] [Indexed: 11/30/2022]
Abstract
Studying different sickle cell genotypes may throw light on the pathogenesis of sickle cell disease (SCD). Here, the clinical profile, red cell sickling and K+ permeability in 29 SCD patients (15 patients with severe disease and 14 with a milder form) of HbA/S-Oman genotype were analysed. The super sickling nature of this Hb variant was confirmed. The red cell membrane permeability to K+ was markedly abnormal with elevated activities of Psickle , Gardos channel and KCl cotransporter (KCC). Results were consistent with Ca2+ entry and Mg2+ loss via Psickle stimulating Gardos channel and KCC activities. The abnormal red cell behaviour was similar to that in the commonest genotype of SCD, HbSS, in which the level of mutated Hb is considerably higher. Although activities of all three K+ transporters also correlated with the level of HbS-Oman, there was no association between transport phenotype and disease severity. The super sickling behaviour of HbS-Oman may obviate the need for solute loss and red cell dehydration to encourage Hb polymerisation, required in other SCD genotypes. Disease severity was reduced by concurrent α thalassaemia, as observed in other SCD genotypes, and represents an obvious genetic marker for prognostic tests of severity in young SCD patients of the HbA/S-Oman genotype.
Collapse
Affiliation(s)
| | - Yasser Wali
- Department of Child Health, Sultan Qaboos University, Muscat, Oman
| | - Maha Al Awadi
- Department of Genetics, Sultan Qaboos University, Muscat, Oman
| | | | - David C Rees
- Department of Paediatric Haematology, King's College Hospital, King's College London School of Medicine, London, UK
| | - John N Brewin
- Department of Paediatric Haematology, King's College Hospital, King's College London School of Medicine, London, UK
| | - Anke Hannemann
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - John S Gibson
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
13
|
Fernandes Q. Therapeutic strategies in Sickle Cell Anemia: The past present and future. Life Sci 2017; 178:100-108. [PMID: 28435037 DOI: 10.1016/j.lfs.2017.03.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 03/22/2017] [Accepted: 03/22/2017] [Indexed: 01/15/2023]
Abstract
Sickle Cell Anemia (SCA) was one of the first hemoglobinopathies to be discovered. It is distinguished by the mutation-induced expression of a sickle cell variant of hemoglobin (HbS) that triggers erythrocytes to take a characteristic sickled conformation. The complex physiopathology of the disease and its associated clinical complications has initiated multi-disciplinary research within its field. This review attempts to lay emphasis on the evolution, current standpoint and future scope of therapeutic strategies in SCA.
Collapse
|
14
|
Hannemann A, Rees D, Tewari S, Gibson J. Cation Homeostasis in Red Cells From Patients With Sickle Cell Disease Heterologous for HbS and HbC (HbSC Genotype). EBioMedicine 2015; 2:1669-76. [PMID: 26870793 PMCID: PMC4740305 DOI: 10.1016/j.ebiom.2015.09.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/07/2015] [Accepted: 09/15/2015] [Indexed: 11/24/2022] Open
Abstract
Sickle cell disease (SCD) in patients of HbSC genotype is considered similar, albeit milder, to that in homozygous HbSS individuals--but with little justification. In SCD, elevated red cell cation permeability is critical as increased solute loss causes dehydration and encourages sickling. Recently, we showed that the KCl cotransporter (KCC) activity in red cells from HbSC patients correlated significantly with disease severity, but that in HbSS patients did not. Two transporters involved in red cell dehydration, the conductive channels Psickle and the Gardos channel, behaved similarly in red cells from the two genotypes, but were significantly less active in HbSC patients. By contrast, KCC activity was quantitatively greater in HbSC red cells. Results suggest that KCC is likely to have greater involvement in red cell dehydration in HbSC patients, which could explain its association with disease severity in this genotype. This work supports the hypothesis that SCD in HbSC patients is a distinct disease entity to that in HbSS patients. Results suggest the possibility of designing specific treatments of particular benefit to HbSC patients and a rationale for the development of prognostic markers, to inform early treatment of children likely to develop more severe complications of the disease.
Collapse
Affiliation(s)
- A. Hannemann
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - D.C. Rees
- Department of Paediatric Haematology, King's College London School of Medicine, King's College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK
| | - S. Tewari
- Department of Paediatric Haematology, King's College London School of Medicine, King's College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK
| | - J.S. Gibson
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| |
Collapse
|
15
|
Hannemann A, Cytlak UM, Rees DC, Tewari S, Gibson JS. Effects of 5-hydroxymethyl-2-furfural on the volume and membrane permeability of red blood cells from patients with sickle cell disease. J Physiol 2014; 592:4039-49. [PMID: 25015917 PMCID: PMC4198013 DOI: 10.1113/jphysiol.2014.277681] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 07/04/2014] [Indexed: 12/14/2022] Open
Abstract
The heterocyclic aldehyde 5-hydroxymethyl-2-furfural (5HMF) interacts allosterically with the abnormal form of haemoglobin (Hb), HbS, in red blood cells (RBCs) from patients with sickle cell disease (SCD), thereby increasing oxygen affinity and decreasing HbS polymerization and RBC sickling during hypoxia. We hypothesized that should 5HMF also inhibit the main cation pathways implicated in the dehydration of RBCs from SCD patients - the deoxygenation-induced cation pathway (Psickle), the Ca(2+)-activated K(+) channel (the Gardos channel) and the K(+)-Cl(-) cotransporter (KCC) - it would have a synergistic effect in protection against sickling, directly through interacting with HbS, and indirectly through maintaining hydration and reducing [HbS]. This study was therefore designed to investigate the effects of 5HMF on RBC volume and K(+) permeability in vitro. 5HMF markedly reduced the deoxygenation-induced dehydration of RBCs whether in response to maintained deoxygenation or to cyclical deoxygenation/re-oxygenation. 5HMF was found to inhibit Psickle, an effect which correlated with its effects on sickling. Deoxygenation-induced activation of the Gardos channel and exposure of phosphatidylserine were also inhibited, probably indirectly via reduced entry of Ca(2+) through the Psickle pathway. Effects of 5HMF on KCC were more modest with a slight inhibition in N-ethylmaleimide (NEM, 1 mm)-treated RBCs and stimulation in RBCs untreated with NEM. These findings support the hypothesis that 5HMF may also be beneficial through effects on RBC ion and water homeostasis.
Collapse
Affiliation(s)
- Anke Hannemann
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Urszula M Cytlak
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - David C Rees
- Department of Paediatric Haematology, King's College London School of Medicine, King's College Hospital NHS Foundation Trust, London, UK
| | - Sanjay Tewari
- Department of Paediatric Haematology, King's College London School of Medicine, King's College Hospital NHS Foundation Trust, London, UK
| | - John S Gibson
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
16
|
Abstract
For a protein to function appropriately, it must first achieve its proper conformation and location within the crowded environment inside the cell. Multiple chaperone systems are required to fold proteins correctly. In addition, degradation pathways participate by destroying improperly folded proteins. The intricacy of this multisystem process provides many opportunities for error. Furthermore, mutations cause misfolded, nonfunctional forms of proteins to accumulate. As a result, many pathological conditions are fundamentally rooted in the protein-folding problem that all cells must solve to maintain their function and integrity. Here, to illustrate the breadth of this phenomenon, we describe five examples of protein-misfolding events that can lead to disease: improper degradation, mislocalization, dominant-negative mutations, structural alterations that establish novel toxic functions, and amyloid accumulation. In each case, we will highlight current therapeutic options for battling such diseases.
Collapse
Affiliation(s)
- Julie S Valastyan
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | | |
Collapse
|
17
|
Hannemann A, Cytlak UMC, Gbotosho OT, Rees DC, Tewari S, Gibson JS. Effects of o-vanillin on K⁺ transport of red blood cells from patients with sickle cell disease. Blood Cells Mol Dis 2014; 53:21-6. [PMID: 24594314 PMCID: PMC4039999 DOI: 10.1016/j.bcmd.2014.02.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 01/24/2014] [Indexed: 01/26/2023]
Abstract
Aromatic aldehydes like o-vanillin were designed to reduce the complications of sickle cell disease (SCD) by interaction with HbS, to reduce polymerisation and RBC sickling. Present results show that o-vanillin also directly affects RBC membrane permeability. Both the K(+)-Cl(-) cotransporter (KCC) and the Ca(2+)-activated K(+) channel (or Gardos channel) were inhibited with IC50 of about 0.3 and 1 mM, respectively, with activities almost completely abolished by 5 mM. Similar effects were observed in RBCs treated with the thiol reacting reagent N-ethylmaleimide or with the Ca(2+) ionophore A23187, to circumvent any action via HbS polymerisation. The deoxygenation-induced cation conductance (sometimes termed P(sickle)) was partially inhibited, whilst deoxygenation-induced exposure of phosphatidylserine was completely abrogated. Na(+)/K(+) pump activity was also reduced. Notwithstanding, o-vanillin stimulated K(+) efflux through an unidentified pathway and resulted in reduction in cell volume (as measured by wet weight-dry weight). These actions are relevant to understanding how aromatic aldehydes may affect RBC membrane permeability per se as well as HbS polymerisation and thereby inform design of compounds most efficacious in ameliorating the complications of SCD.
Collapse
Affiliation(s)
- A Hannemann
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, United Kingdom
| | - U M C Cytlak
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, United Kingdom
| | - O T Gbotosho
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, United Kingdom
| | - D C Rees
- Department of Paediatric Haematology, King's College London School of Medicine, King's College Hospital NHS Foundation Trust, Denmark Hill, London, SE5 9RS, United Kingdom
| | - S Tewari
- Department of Paediatric Haematology, King's College London School of Medicine, King's College Hospital NHS Foundation Trust, Denmark Hill, London, SE5 9RS, United Kingdom
| | - J S Gibson
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, United Kingdom.
| |
Collapse
|
18
|
Milligan C, Rees DC, Ellory JC, Osei A, Browning JA, Hannemann A, Gibson JS. A non-electrolyte haemolysis assay for diagnosis and prognosis of sickle cell disease. J Physiol 2013; 591:1463-74. [PMID: 23297308 PMCID: PMC3607166 DOI: 10.1113/jphysiol.2012.246579] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Red blood cells (RBCs) from patients with sickle cell disease (SCD) lyse in deoxygenated isosmotic non-electrolyte solutions. Haemolysis has features which suggest that it is linked to activation of the pathway termed Psickle. This pathway is usually described as a non-specific cationic conductance activated by deoxygenation, HbS polymerisation and RBC sickling. The current work addresses the hypothesis that this haemolysis will provide a novel diagnostic and prognostic test for SCD, dependent on the altered properties of the RBC membrane resulting from HbS polymerisation. A simple test represented by this haemolysis assay would be useful especially in less affluent deprived areas of the world where SCD is most prevalent. RBCs from HbSS and most HbSC individuals showed progressive lysis in deoxygenated isosmotic sucrose solution at pH 7.4 to a level greater than that observed with RBCs from HbAS or HbAA individuals. Cytochalasin B prevented haemolysis. Haemolysis was temperature- and pH-dependent. It required near physiological temperatures to occur in deoxygenated sucrose solutions at pH 7.4. At pH 6, haemolysis occurred even in oxygenated samples. Haemolysis was reduced in patients on long-term (>5 months) hydroxyurea treatment. Several manoeuvres which stabilise soluble HbS (aromatic aldehydes o-vanillin or 5-hydroxymethyl, and urea) reduced haemolysis, an effect not due to increased oxygen affinity. Conditions designed to elicit HbS polymerisation in cells from sickle trait patients (deoxygenated hyperosmotic sucrose solutions at pH 6) supported their haemolysis. These findings are consistent with haemolysis requiring HbS polymerisation and support the hypothesis that this may be used as a test for SCD.
Collapse
Affiliation(s)
- C Milligan
- Department of Veterinary Medicine, Madingley Road, Cambridge CB3 0ES, UK
| | | | | | | | | | | | | |
Collapse
|
19
|
Ma YL, Rees DC, Gibson JS, Ellory JC. The conductance of red blood cells from sickle cell patients: ion selectivity and inhibitors. J Physiol 2012; 590:2095-105. [PMID: 22411011 DOI: 10.1113/jphysiol.2012.229609] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The abnormally high cation permeability in red blood cells (RBCs) from patients with sickle cell disease (SCD) occupies a central role in pathogenesis. Sickle RBC properties are notably heterogeneous, however, thus limiting conventional flux techniques that necessarily average out the behaviour of millions of cells. Here we use the whole-cell patch configuration to characterise the permeability of single RBCs from patients with SCD in more detail. A non-specific cation conductance was reversibly induced upon deoxygenation and was permeable to both univalent (Na+, K+, Rb+) and also divalent (Ca2+, Mg2+) cations. It was sensitive to the tarantula spider toxin GsMTx-4. Mn2+ caused partial, reversible inhibition. The aromatic aldehyde o-vanillin also irreversibly inhibited the deoxygenation-induced conductance, partially at 1mM and almost completely at 5mM. Nifedipine, amiloride and ethylisopropylamiloride were ineffective. In oxygenated RBCs, the current was pH sensitive showing a marked increase as pH fell from 7.4 to 6, with no change apparent when pH was raised from 7.4 to 8. The effects of acidification and deoxygenation together were not additive. Many features of this deoxygenation-induced conductance (non-specificity for cations, permeability toCa2+ andMg2+, pH sensitivity, reversibility, partial inhibition by DIDS and Mn2+) are shared with the flux pathway sometimes referred to as Psickle. Sensitivity to GsMTx-4 indicates its possible identity as a stretch-activated channel. Sensitivity to o-vanillin implies that activation requires HbS polymerisation but since the conductance was observed in whole-cell patches, results suggest that bulk intracellular Hb is not involved; rather a membrane-bound subfraction is responsible for channel activation. The ability to record P(sickle)-like activity in single RBCs will facilitate further studies and eventual molecular identification of the pathway involved.
Collapse
Affiliation(s)
- Y-L Ma
- Department of Physiology, Anatomy & Genetics, Oxford, UK
| | | | | | | |
Collapse
|
20
|
|
21
|
Effects of disodium cromoglycate on cationic exchange of deoxygenated sickle cells. Eur J Pharmacol 2011; 665:13-8. [PMID: 21586281 DOI: 10.1016/j.ejphar.2011.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 05/03/2011] [Indexed: 10/18/2022]
Abstract
In the present work, we explored the way in which cromoglycate, a drug used to treat allergies acts on ion movements in sickle cells. Cells were either slowly deoxygenated by overnight exposure to nitrogen or acutely deoxygenated by exposure to metabisulfite, a strong reducing agent which induces sickling of red blood sickle cells. Flushing the cells with nitrogen increased the intracellular concentration of Na(+) and decreased the intracellular concentration of K(+) and the sum of the concentrations of the two cations. One hundred nM cromoglycate inhibited the decrease of intracellular K(+) and the increase of intracellular Na(+) induced by deoxygenation (n=17). Metabisulfite (100mM) increased the intracellular concentration of Ca(2+) (measured by Fura Red) (n=15) and the shape of the cells (measured by light scattering) (n=9). One μM cromoglycate partially inhibited these two responses. In conclusion, cromoglycate partially inhibits abnormal K(+) loss, Ca(2+) entry pathways or Ca(2+) channels opened by cell deoxygenation and ensuing membrane modifications and prevents cell sickling.
Collapse
|
22
|
The Properties of Red Blood Cells from Patients Heterozygous for HbS and HbC (HbSC Genotype). Anemia 2010; 2011:248527. [PMID: 21490760 PMCID: PMC3066570 DOI: 10.1155/2011/248527] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 09/02/2010] [Accepted: 09/08/2010] [Indexed: 02/02/2023] Open
Abstract
Sickle cell disease (SCD) is one of the commonest severe inherited disorders, but specific treatments are lacking and the pathophysiology remains unclear. Affected individuals account for well over 250,000 births yearly, mostly in the Tropics, the USA, and the Caribbean, also in Northern Europe as well. Incidence in the UK amounts to around 12-15,000 individuals and is increasing, with approximately 300 SCD babies born each year as well as with arrival of new immigrants. About two thirds of SCD patients are homozygous HbSS individuals. Patients heterozygous for HbS and HbC (HbSC) constitute about a third of SCD cases, making this the second most common form of SCD, with approximately 80,000 births per year worldwide. Disease in these patients shows differences from that in homozygous HbSS individuals. Their red blood cells (RBCs), containing approximately equal amounts of HbS and HbC, are also likely to show differences in properties which may contribute to disease outcome. Nevertheless, little is known about the behaviour of RBCs from HbSC heterozygotes. This paper reviews what is known about SCD in HbSC individuals and will compare the properties of their RBCs with those from homozygous HbSS patients. Important areas of similarity and potential differences will be emphasised.
Collapse
|
23
|
Ellory JC, Guizouarn H, Borgese F, Bruce LJ, Wilkins RJ, Stewart GW. Review. Leaky Cl--HCO3- exchangers: cation fluxes via modified AE1. Philos Trans R Soc Lond B Biol Sci 2009; 364:189-94. [PMID: 18957374 DOI: 10.1098/rstb.2008.0154] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The abundant membrane protein AE1 normally functions as an obligate anion exchanger, with classical carrier properties, in human red blood cells. Recently, four single point mutations of hAE1 have been identified that have lost the anion exchange function, and act as non-selective monovalent cation channels, as shown in both red cell flux and oocyte expression studies. The red cell transport function shows a paradoxical temperature dependence, and is associated with spherocytic and stomatocytic red cell defects, and haemolytic anaemias. Other forms of AE1, including the native AE1 in trout red cells, and the human mutation R760Q show both channel-like and anion exchange properties. The present results point to membrane domains 9 and 10 being important in the functional modification of AE1 activity.
Collapse
Affiliation(s)
- J C Ellory
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
| | | | | | | | | | | |
Collapse
|
24
|
Ellory JC, Sequeira R, Constantine A, Wilkins RJ, Gibson JS. Non-electrolyte permeability of deoxygenated sickle cells compared. Blood Cells Mol Dis 2008; 41:44-9. [PMID: 18456522 DOI: 10.1016/j.bcmd.2008.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Accepted: 03/18/2008] [Indexed: 11/20/2022]
Abstract
The passive permeability pathways of red cells are poorly defined, with the exception of the Gardos channel. Several cation and anion pathways can be induced by a variety of manoeuvres, however, including treatment with oxidants, low ionic strength (LIS), shrinkage, swelling and also infection with the intra-erythrocytic malaria parasite. Several of these stimuli (malaria, swelling, LIS), in addition, also activate a non-electrolyte this permeability. Sickle cells uniquely show a deoxygenation-induced pathway, which is termed P(sickle) and is usually considered to be a conductive cationic pathway. In this report, we explore further the extent to which this permeability pathway of deoxygenated sickle cells is available for non-electrolyte transport. We show that a number of solutes are permeable, with greater permeability to sugars (notably lactose and maltose) and smaller molecules, and less to charged or zwitterionic species. Red cells from heterozygous HbSC patients also showed deoxygenation-induced haemolysis in isosmotic sucrose solution, though to a slightly lesser extent than for red cells from homozygous sickle cell patients. In contrast to sickle cells, red cells from beta-thalassaemic patients did not show haemolysis in isosmotic sucrose solutions, regardless of the O(2) tension. Of the secondary cellular changes resulting from incubation in non-electrolyte solutions (which include imposition of a highly positive membrane potential, marked intracellular alkalinisation and cell shrinkage), none appear to correlate with activation of the non-electrolyte permeability. Rather, findings indicate that it is low ionic strength per se that is responsible. Normal red cells also show changes in ionic and non-electrolyte permeability in low ionic strength media, and these permeabilities are compared to those found in deoxygenated sickle cells. The extent to which these different permeabilities in normal and sickle red cells can be ascribed to one or more common pathways remains to be determined.
Collapse
Affiliation(s)
- J C Ellory
- Department of Physiology, Anatomy and Genetics, Parks Road, Oxford, OX1 3PT, UK.
| | | | | | | | | |
Collapse
|
25
|
Muzyamba MC, Campbell EH, Gibson JS. Effect of intracellular magnesium and oxygen tension on K+-Cl- cotransport in normal and sickle human red cells. Cell Physiol Biochem 2006; 17:121-8. [PMID: 16543728 PMCID: PMC1475928 DOI: 10.1159/000092073] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In red cells from normal individuals (HbA cells), the K+-Cl- cotransporter (KCC) is inactivated by low O2 tension whilst in those from sickle cell patients (HbS cells), it remains fully active. Changes in free intracellular [Mg2+] have been proposed as a mechanism. In HbA cells, KCC activity was stimulated by Mg2+ depletion and inhibited by Mg2+ loading but the effect of O2 was independent of Mg2+. At all [Mg2+]is, the transporter was stimulated in oxygenated cells, minimally active in deoxygenated ones. By contrast, the stimulatory effects of O2 was abolished by inhibitors of protein (de)phosphorylation. HbS cells had elevated KCC activity, which was of similar magnitude in oxygenated and deoxygenated cells, regardless of Mg2+ clamping. In deoxygenated cells, the antisickling agent dimethyl adipimidate inhibited sickling, Psickle and KCC. Results indicate a role for protein phosphorylation in O2 dependence of KCC, with different activities of the relevant enzymes in HbA and HbS cells, probably dependent on Hb.
Collapse
Affiliation(s)
| | | | - John S. Gibson
- Department of Veterinary Medicine, Madingley Road, Cambridge, CB3 0ES
| |
Collapse
|
26
|
Abstract
With the global scope of sickle-cell disease, knowledge of the countless clinical presentations and treatment of this disorder need to be familiar to generalists, haematologists, internists, and paediatricians alike. Additionally, an underlying grasp of sickle-cell pathophysiology, which has rapidly accrued new knowledge in areas related to erythrocyte and extra-erythrocyte events, is crucial to an understanding of the complexity of this molecular disease with protean manifestations. We highlight studies from past decades related to such translational research as the use of hydroxyurea in treatment, as well as the therapeutic promise of red-cell ion-channel blockers, and antiadhesion and anti-inflammatory therapy. The novel role of nitric oxide in sickle-cell pathophysiology and the range of its potential use in treatment are also reviewed. Understanding of disease as the result of a continuing interaction between basic scientists and clinical researchers is best exemplified by this entity.
Collapse
Affiliation(s)
- Marie J Stuart
- Department of Pediatrics, Division of Hematology, the Marian Anderson Sickle Cell Anemia Research Hematology Laboratories, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | | |
Collapse
|
27
|
Drew C, Ball V, Robinson H, Clive Ellory J, Gibson JS. Oxygen sensitivity of red cell membrane transporters revisited. Bioelectrochemistry 2004; 62:153-8. [PMID: 15039019 DOI: 10.1016/j.bioelechem.2003.07.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2003] [Revised: 07/23/2003] [Accepted: 07/25/2003] [Indexed: 11/17/2022]
Abstract
In this paper, we provide an update on O2-dependent membrane transport in red cells. O2-sensitive membrane transport was compared in nucleated (chicken) and enucleated (human) red cells, to investigate effects on organic (glucose transporter [GLUT]) and inorganic (K(+)-Cl- cotransporter [KCC]/Na(+)-K(+)-2Cl- cotransporter [NKCC]) transporters, to study the response of so-called "housekeeping" transporters (Na+/K+ pump and anion exchanger [AE]) and, finally, to compare O2 sensitivity in normal human red cells with those from sickle cell patients. The Na+/K+ pump showed no change in activity between oxygenated and deoxygenated cells in any of the samples. KCC in normal human red cells had the greatest O2 sensitivity, being stimulated some 20-fold on oxygenation. It was more modestly stimulated by O2 in chicken red cells and HbS cells. By contrast, NKCC was stimulated by deoxygenation in all cases. GLUT showed little response to O2 tension, other than a small stimulation in deoxygenated chicken red cells. Finally, AE1 was stimulated by oxygenation in HbA cells, but this stimulation by O2 was absent in HbS cells and pink ghosts prepared from HbA cells. The significance of these findings is discussed.
Collapse
Affiliation(s)
- Clare Drew
- University Laboratory of Physiology, Parks Road, Oxford OX1 3PT, UK
| | | | | | | | | |
Collapse
|
28
|
Khan AI, Drew C, Ball SE, Ball V, Ellory JC, Gibson JS. Oxygen dependence of K(+)-Cl- cotransport in human red cell ghosts and sickle cells. Bioelectrochemistry 2004; 62:141-6. [PMID: 15039017 DOI: 10.1016/j.bioelechem.2003.07.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2003] [Revised: 07/23/2003] [Accepted: 07/25/2003] [Indexed: 11/26/2022]
Abstract
KCC activity in normal human red cells (containing haemoglobin A, HbA, and termed HbA cells) is O2-dependent, being active in oxygenated cells but inactive in deoxygenated ones. The mechanism for O2 dependence is unknown but a role for Hb has been suggested. In this paper, we address two main questions. First, do membrane ghosts prepared from HbA cells retain an O2-sensitive KCC activity? Second, how is the response of KCC to changes in O2 tension altered in sickle cell patients heterozygous for HbS and HbC? We found that substantial Cl(-)-dependent K+ influx, indicative of KCC activity, was present in both pink (5-10% normal Hb complement) and white (no measurable Hb) ghosts when equilibrated with air. KCC responded to deoxygenation in pink ghosts only (86 +/- 10% inhibition, mean+/-S.E.M., n = 3), whilst KCC activity in white ghosts remained high (23 +/- 8% inhibition). Results indicate that pink ghosts retain an O2-dependent KCC activity but that this is lost in white ghosts. Second, HbSC-containing red cells showed sickling (88 +/- 3%) when deoxygenated, together with activation of the deoxygenation-induced cation pathway (Psickle) and the Gardos channel. KCC activity, however, was elevated in oxygenated HbSC cells, but inhibited by deoxygenation. Thus Hb polymerisation and sickling could be dissociated from the abnormal response of KCC to deoxygenation observed in HbS-containing red cells. These preparations provide a useful system with which to study the components involved in O2-sensitive membrane transport and why it is perturbed in certain pathological conditions (such as sickle cell disease and oxidant toxicity).
Collapse
Affiliation(s)
- Asif I Khan
- University Laboratory of Physiology, Parks Road, Oxford OX1 3PT, UK
| | | | | | | | | | | |
Collapse
|
29
|
Gibson JS, Muzyamba MC. Modulation of Gardos channel activity by oxidants and oxygen tension: effects of 1-chloro-2,4-dinitrobenzene and phenazine methosulphate. Bioelectrochemistry 2004; 62:147-52. [PMID: 15039018 DOI: 10.1016/j.bioelechem.2003.07.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2003] [Revised: 07/23/2003] [Accepted: 07/25/2003] [Indexed: 01/29/2023]
Abstract
We compare the effects of 1-chloro-2,4-dinitrobenzene (CDNB) and phenazine methosulphate (PMS) on Gardos channel activity in normal human red cells. Both stimulate channel activity, both are dependent on the presence of extracellular Ca2+, and neither is affected by inhibitors of protein (de)phosphorylation. Of the two, PMS has a considerably greater effect. In addition, a major difference is that whilst CDNB has a greater stimulatory effect in oxygenated cells, by contrast, PMS is more effective in deoxygenated cells. These actions are correlated with ca. 30% inhibition of the plasma membrane Ca2+ pump (PMCA) and an increased sensitivity of the Gardos channel to Ca2+ (EC50 falling to about 150 nM). These findings are important in understanding how oxidants alter red cell cation permeability and may be relevant to the abnormal permeability phenotype shown by deoxygenated sickle cells.
Collapse
Affiliation(s)
- John S Gibson
- Department of Clinical Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK.
| | | |
Collapse
|
30
|
Muzyamba MC, Gibson JS. Effect of 1-chloro-2,4-dinitrobenzene on K+ transport in normal and sickle human red blood cells. J Physiol 2003; 547:903-11. [PMID: 12576491 PMCID: PMC2342731 DOI: 10.1113/jphysiol.2002.036467] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
1-Chloro-2,4-dinitrobenzene (CDNB), which causes oxidative stress through depletion of reduced glutathione (GSH), increases the passive K+ permeability of red cells. In this paper, we investigated the effects of CDNB (1 mM) on the activities of the K+-Cl- cotransporter (KCC; measured as Cl--dependent K+ influx) and the Gardos channel (taken as clotrimazole-sensitive K+ influx, 5 microM) in human red cells, using 86Rb+ as a K+ congener. 45Ca2+ was used to study passive Ca2+ entry and active Ca2+ efflux via the plasma membrane Ca2+ pump. Both the Gardos channel and KCC were stimulated in both normal and sickle red cells. In sickle cells, stimulation of KCC was similar in oxygenated and deoxygenated cells; that of the Gardos channel was greater in deoxygenated cells. In normal red cells, stimulation of both pathways was greater in oxygenated cells (by 4 +/- 1-fold; all means +/- S.E.M., n = 3). The effects on the Gardos channel were dependent on extracellular Ca2+ and were associated with inhibition of the plasma membrane Ca2+ pump (by 29 +/- 3 %, P < 0.01) and increased Ca2+ sensitivity of the channel (EC50 for [Ca2+]i reduced from 260 +/- 26 to 175 +/- 15 nM; P < 0.05). Cell volume, pHi, ATP levels and passive Ca2+ entry were not affected by CDNB. The effects on KCC were inhibited (93 +/- 6 %) by prior treatment with the protein phosphatase inhibitor calyculin A (100 nM) and were not additive with stimulation by N-ethylmaleimide (1 mM), regardless of the order of addition. These findings are therefore consistent with inhibition of a regulatory protein kinase, although stimulation of the conjugate protein phosphatase(s) may also occur. KCC stimulation was also Ca2+ dependent. These findings are important for understanding how GSH depletion alters membrane permeability and how to protect against red cell dehydration.
Collapse
Affiliation(s)
- M C Muzyamba
- Department of Clinical Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | | |
Collapse
|