1
|
Hadamitzky M, Lückemann L, Pacheco-López G, Schedlowski M. Pavlovian Conditioning of Immunological and Neuroendocrine Functions. Physiol Rev 2020; 100:357-405. [DOI: 10.1152/physrev.00033.2018] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The phenomenon of behaviorally conditioned immunological and neuroendocrine functions has been investigated for the past 100 yr. The observation that associative learning processes can modify peripheral immune functions was first reported and investigated by Ivan Petrovic Pavlov and his co-workers. Their work later fell into oblivion, also because so little was known about the immune system’s function and even less about the underlying mechanisms of how learning, a central nervous system activity, could affect peripheral immune responses. With the employment of a taste-avoidance paradigm in rats, this phenomenon was rediscovered 45 yr ago as one of the most fascinating examples of the reciprocal functional interaction between behavior, the brain, and peripheral immune functions, and it established psychoneuroimmunology as a new research field. Relying on growing knowledge about efferent and afferent communication pathways between the brain, neuroendocrine system, primary and secondary immune organs, and immunocompetent cells, experimental animal studies demonstrate that cellular and humoral immune and neuroendocrine functions can be modulated via associative learning protocols. These (from the classical perspective) learned immune responses are clinically relevant, since they affect the development and progression of immune-related diseases and, more importantly, are also inducible in humans. The increased knowledge about the neuropsychological machinery steering learning and memory processes together with recent insight into the mechanisms mediating placebo responses provide fascinating perspectives to exploit these learned immune and neuroendocrine responses as supportive therapies, the aim being to reduce the amount of medication required, diminishing unwanted drug side effects while maximizing the therapeutic effect for the patient’s benefit.
Collapse
Affiliation(s)
- Martin Hadamitzky
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, Essen, Germany; Health Sciences Department, Metropolitan Autonomous University (UAM), Campus Lerma, Mexico; and Department of Clinical Neuroscience, Osher Center for Integrative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Laura Lückemann
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, Essen, Germany; Health Sciences Department, Metropolitan Autonomous University (UAM), Campus Lerma, Mexico; and Department of Clinical Neuroscience, Osher Center for Integrative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Gustavo Pacheco-López
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, Essen, Germany; Health Sciences Department, Metropolitan Autonomous University (UAM), Campus Lerma, Mexico; and Department of Clinical Neuroscience, Osher Center for Integrative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Manfred Schedlowski
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, Essen, Germany; Health Sciences Department, Metropolitan Autonomous University (UAM), Campus Lerma, Mexico; and Department of Clinical Neuroscience, Osher Center for Integrative Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
2
|
Oberbeck R, Kromm A, Exton MS, Schade U, Schedlowski M. Pavlovian conditioning of endotoxin-tolerance in rats. Brain Behav Immun 2003; 17:20-7. [PMID: 12615046 DOI: 10.1016/s0889-1591(02)00031-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The most fascinating example of the bi-directional interaction between the central nervous system (CNS) and immune system is the behavioral conditioning of immune functions. We therefore investigated the behavioral conditioning of lipopolysaccharide (LPS)-induced endotoxin tolerance using the taste aversion paradigm. The conditioned stimulus (CS) saccharin was paired with the unconditioned stimulus (UCS) LPS over a five (CONDl) or four (COND2) days learning trial. Controls received drinking water with (SHAM) or without (UNT) LPS. Endotoxin tolerance was tested by determination of LPS-induced tumor necrosis factor (TNF)-alpha release. After the avoidance of the induced endotoxin-tolerance the CS saccharin was re-presented in all experimental groups. A the end of the re-exposure period a complete endotoxin tolerance was noticed in the CONDl- and COND2-group. In contrast, no effect of saccharin administration was observed in the SHAM- or UNT-group. Our data demonstrate for the first time the behavioral conditioning of endotoxin tolerance. Furthermore, these results contribute new aspects to the mechanisms underlying the development and modulation of endotoxin tolerance.
Collapse
Affiliation(s)
- Reiner Oberbeck
- Department of Trauma Surgery, University Hospital of Essen, Hufelandstr 55 45122 Essen, Germany.
| | | | | | | | | |
Collapse
|