1
|
Mittal A, Chauhan A. Aspects of Biological Replication and Evolution Independent of the Central Dogma: Insights from Protein-Free Vesicular Transformations and Protein-Mediated Membrane Remodeling. J Membr Biol 2022; 255:185-209. [PMID: 35333977 PMCID: PMC8951669 DOI: 10.1007/s00232-022-00230-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/06/2022] [Indexed: 11/21/2022]
Abstract
Biological membrane remodeling is central to living systems. In spite of serving as “containers” of whole-living systems and functioning as dynamic compartments within living systems, biological membranes still find a “blue collar” treatment compared to the “white collar” nucleic acids and proteins in biology. This may be attributable to the fact that scientific literature on biological membrane remodeling is only 50 years old compared to ~ 150 years of literature on proteins and a little less than 100 years on nucleic acids. However, recently, evidence for symbiotic origins of eukaryotic cells from data only on biological membranes was reported. This, coupled with appreciation of reproducible amphiphilic self-assemblies in aqueous environments (mimicking replication), has already initiated discussions on origins of life beyond nucleic acids and proteins. This work presents a comprehensive compilation and meta-analyses of data on self-assembly and vesicular transformations in biological membranes—starting from model membranes to establishment of Influenza Hemagglutinin-mediated membrane fusion as a prototypical remodeling system to a thorough comparison between enveloped mammalian viruses and cellular vesicles. We show that viral membrane fusion proteins, in addition to obeying “stoichiometry-driven protein folding”, have tighter compositional constraints on their amino acid occurrences than general-structured proteins, regardless of type/class. From the perspective of vesicular assemblies and biological membrane remodeling (with and without proteins) we find that cellular vesicles are quite different from viruses. Finally, we propose that in addition to pre-existing thermodynamic frameworks, kinetic considerations in de novo formation of metastable membrane structures with available “third-party” constituents (including proteins) were not only crucial for origins of life but also continue to offer morphological replication and/or functional mechanisms in modern life forms, independent of the central dogma.
Collapse
Affiliation(s)
- Aditya Mittal
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi (IIT Delhi), Hauz Khas, New Delhi, 110016, India. .,Supercomputing Facility for Bioinformatics and Computational Biology (SCFBio), IIT Delhi, Hauz Khas, New Delhi, 110016, India.
| | - Akanksha Chauhan
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi (IIT Delhi), Hauz Khas, New Delhi, 110016, India
| |
Collapse
|
2
|
Tanaka H, Sakurai Y, Anindita J, Akita H. Development of lipid-like materials for RNA delivery based on intracellular environment-responsive membrane destabilization and spontaneous collapse. Adv Drug Deliv Rev 2020; 154-155:210-226. [PMID: 32650040 DOI: 10.1016/j.addr.2020.07.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/26/2020] [Accepted: 07/02/2020] [Indexed: 01/01/2023]
Abstract
Messenger RNA and small interfering RNA are attractive modalities for curing diseases by complementation or knock-down of proteins. For success of these RNAs, a drug delivery system (DDS) is required to control a pharmacokinetics, to enhance cellular uptake, to overcome biological membranes, and to release the cargo into the cytoplasm. Based on past research, developing nanoparticles that are neutrally charged have been the mainstream of their development. Also, the materials are further mounted with pH- and/or reducing environment-responsive units. In this review, we summarize progress made in the molecular design of these materials. We also focus on the importance of the hydrophobic scaffold for tissue/cell targeting, intracellular trafficking, and immune responses. As a practical example, the design concept of the SS-cleavable and pH-activated lipid-like material (ssPalm) and subsequent molecular modification tailored to the RNA-based medical application is discussed.
Collapse
|
3
|
Vanegas JM, Heinrich F, Rogers DM, Carson BD, La Bauve S, Vernon BC, Akgun B, Satija S, Zheng A, Kielian M, Rempe SB, Kent MS. Insertion of Dengue E into lipid bilayers studied by neutron reflectivity and molecular dynamics simulations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1216-1230. [PMID: 29447917 DOI: 10.1016/j.bbamem.2018.02.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 02/08/2018] [Accepted: 02/09/2018] [Indexed: 02/01/2023]
Abstract
The envelope (E) protein of Dengue virus rearranges to a trimeric hairpin to mediate fusion of the viral and target membranes, which is essential for infectivity. Insertion of E into the target membrane serves to anchor E and possibly also to disrupt local order within the membrane. Both aspects are likely to be affected by the depth of insertion, orientation of the trimer with respect to the membrane normal, and the interactions that form between trimer and membrane. In the present work, we resolved the depth of insertion, the tilt angle, and the fundamental interactions for the soluble portion of Dengue E trimers (sE) associated with planar lipid bilayer membranes of various combinations of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-rac-glycerol (POPG), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE), and cholesterol (CHOL) by neutron reflectivity (NR) and by molecular dynamics (MD) simulations. The results show that the tip of E containing the fusion loop (FL) is located at the interface of the headgroups and acyl chains of the outer leaflet of the lipid bilayers, in good agreement with prior predictions. The results also indicate that E tilts with respect to the membrane normal upon insertion, promoted by either the anionic lipid POPG or CHOL. The simulations show that tilting of the protein correlates with hydrogen bond formation between lysines and arginines located on the sides of the trimer close to the tip (K246, K247, and R73) and nearby lipid headgroups. These hydrogen bonds provide a major contribution to the membrane anchoring and may help to destabilize the target membrane.
Collapse
Affiliation(s)
- Juan M Vanegas
- Sandia National Laboratories, Albuquerque, NM, United States
| | - Frank Heinrich
- National Institute of Standards and Technology Center for Neutron Research, Gaithersburg, MD, United States; Department of Physics, Carnegie Mellon University, Pittsburgh, PA, United States
| | - David M Rogers
- Sandia National Laboratories, Albuquerque, NM, United States
| | - Bryan D Carson
- Sandia National Laboratories, Albuquerque, NM, United States
| | - Sadie La Bauve
- Sandia National Laboratories, Albuquerque, NM, United States
| | - Briana C Vernon
- Sandia National Laboratories, Albuquerque, NM, United States
| | - Bulent Akgun
- National Institute of Standards and Technology Center for Neutron Research, Gaithersburg, MD, United States
| | - Sushil Satija
- National Institute of Standards and Technology Center for Neutron Research, Gaithersburg, MD, United States
| | - Aihua Zheng
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Margaret Kielian
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Susan B Rempe
- Sandia National Laboratories, Albuquerque, NM, United States
| | - Michael S Kent
- Sandia National Laboratories, Albuquerque, NM, United States.
| |
Collapse
|
4
|
Identification and Evaluation of the Minimum Unit of a KALA Peptide Required for Gene Delivery and Immune Activation. J Pharm Sci 2017; 106:3113-3119. [DOI: 10.1016/j.xphs.2017.05.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 04/26/2017] [Accepted: 05/16/2017] [Indexed: 01/27/2023]
|
5
|
Kamada R, Nakagawa N, Oyama T, Sakaguchi K. Heterochiral Jun and Fos bZIP peptides form a coiled-coil heterodimer that is competent for DNA binding. J Pept Sci 2017; 23:644-649. [PMID: 28185384 DOI: 10.1002/psc.2985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 01/11/2017] [Accepted: 01/28/2017] [Indexed: 12/25/2022]
Abstract
Coiled coils, consisting of at least two α-helices, have important roles in the regulation of transcription, cell differentiation, and cell growth. Peptides composed of d-amino acids (d-peptides) have received great attention for their potential in biomedical applications, because they give large diversity for the design of peptidyl drug and are more resistant to proteolytic digestion than l-peptides. However, the interactions between l-peptides/l-protein and d-peptides in the formation of complex are poorly understood. In this study, stereoisomer-specific peptides were constructed corresponding to regions of the basic-leucine-zipper domains of Jun and Fos proteins. basic-leucine-zipper domains consist of an N-terminal basic domain, which is responsible for DNA binding, and a C-terminal domain that enables homodimerization or heterodimerization via formation of a coiled-coil. By combining peptides with different stereochemistries, the d-l heterochiral Jun-Fos heterodimer formation induced DNA binding by the basic domains of Jun-Fos. Our study provides new insight into the interaction between l-peptide and d-peptide enantiomers for developing d-peptide materials and drugs. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Rui Kamada
- Laboratory of Biological Chemistry, Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Natsumi Nakagawa
- Laboratory of Biological Chemistry, Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Taiji Oyama
- Laboratory of Biological Chemistry, Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Kazuyasu Sakaguchi
- Laboratory of Biological Chemistry, Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| |
Collapse
|
6
|
Tanaka H, Sato Y, Harashima H, Akita H. Cellular environment-responsive nanomaterials for use in gene and siRNA delivery: molecular design for biomembrane destabilization and intracellular collapse. Expert Opin Drug Deliv 2016; 13:1015-27. [DOI: 10.1517/17425247.2016.1154531] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Hiroki Tanaka
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Yusuke Sato
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | | | - Hidetaka Akita
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| |
Collapse
|
7
|
A novel nonviral gene delivery system: multifunctional envelope-type nano device. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2014; 119:197-230. [PMID: 19343308 DOI: 10.1007/10_2008_40] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
In this review we introduce a new concept for developing a nonviral gene delivery system which we call "Programmed Packaging." Based on this concept, we succeeded in developing a multifunctional envelope-type nano device (MEND), which exerts high transfection activities equivalent to those of an adenovirus in a dividing cell. The use of MEND has been extended to in vivo applications. PEG/peptide/DOPE ternary conjugate (PPD)-MEND, a new in vivo gene delivery system for the targeting of tumor cells that dissociates surface-modified PEG in tumor tissue by matrix metalloproteinase (MMP) and exerts significant transfection activities, was developed. In parallel with the development of MEND, a quantitative gene delivery system, Confocal Image-assisted 3-dimensionally integrated quantification (CIDIQ), also was developed. This method identified the rate-limiting step of the nonviral gene delivery system by comparing it with adenoviral-mediated gene delivery. The results of this analysis provide a new direction for the development of rational nonviral gene delivery systems.
Collapse
|
8
|
Wadhwani P, Reichert J, Bürck J, Ulrich AS. Antimicrobial and cell-penetrating peptides induce lipid vesicle fusion by folding and aggregation. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2011; 41:177-87. [PMID: 22080286 PMCID: PMC3269571 DOI: 10.1007/s00249-011-0771-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 10/06/2011] [Accepted: 10/20/2011] [Indexed: 11/28/2022]
Abstract
According to their distinct biological functions, membrane-active peptides are generally classified as antimicrobial (AMP), cell-penetrating (CPP), or fusion peptides (FP). The former two classes are known to have some structural and physicochemical similarities, but fusogenic peptides tend to have rather different features and sequences. Nevertheless, we found that many CPPs and some AMPs exhibit a pronounced fusogenic activity, as measured by a lipid mixing assay with vesicles composed of typical eukaryotic lipids. Compared to the HIV fusion peptide (FP23) as a representative standard, all designer-made peptides showed much higher lipid-mixing activities (MSI-103, MAP, transportan, penetratin, Pep1). Native sequences, on the other hand, were less fusogenic (magainin 2, PGLa, gramicidin S), and pre-aggregated ones were inactive (alamethicin, SAP). The peptide structures were characterized by circular dichroism before and after interacting with the lipid vesicles. A striking correlation between the extent of conformational change and the respective fusion activities was found for the series of peptides investigated here. At the same time, the CD data show that lipid mixing can be triggered by any type of conformation acquired upon binding, whether α-helical, β-stranded, or other. These observations suggest that lipid vesicle fusion can simply be driven by the energy released upon membrane binding, peptide folding, and possibly further aggregation. This comparative study of AMPs, CPPs, and FPs emphasizes the multifunctional aspects of membrane-active peptides, and it suggests that the origin of a peptide (native sequence or designer-made) may be more relevant to define its functional range than any given name.
Collapse
Affiliation(s)
- Parvesh Wadhwani
- Karlsruhe Institute of Technology (KIT), Institute of Biological Interfaces (IBG-2), P.O. Box 3640, 76021, Karlsruhe, Germany
| | | | | | | |
Collapse
|
9
|
Akita H, Masuda T, Nishio T, Niikura K, Ijiro K, Harashima H. Improving in Vivo Hepatic Transfection Activity by Controlling Intracellular Trafficking: The Function of GALA and Maltotriose. Mol Pharm 2011; 8:1436-42. [PMID: 21598999 DOI: 10.1021/mp200189s] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hidetaka Akita
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12 Nishi 6, Kita-Ku, Sapporo, Hokkaido, 060-0812 Japan
| | - Tomoya Masuda
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12 Nishi 6, Kita-Ku, Sapporo, Hokkaido, 060-0812 Japan
| | - Takashi Nishio
- Research Institute for Electronic Science, Hokkaido University, Kita 21 Nishi 10, Kita-Ku, Sapporo, Hokkaido, 001-0021, Japan
| | - Kenichi Niikura
- Research Institute for Electronic Science, Hokkaido University, Kita 21 Nishi 10, Kita-Ku, Sapporo, Hokkaido, 001-0021, Japan
| | - Kuniharu Ijiro
- Research Institute for Electronic Science, Hokkaido University, Kita 21 Nishi 10, Kita-Ku, Sapporo, Hokkaido, 001-0021, Japan
| | - Hideyoshi Harashima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12 Nishi 6, Kita-Ku, Sapporo, Hokkaido, 060-0812 Japan
| |
Collapse
|
10
|
Ukawa M, Akita H, Masuda T, Hayashi Y, Konno T, Ishihara K, Harashima H. 2-Methacryloyloxyethyl phosphorylcholine polymer (MPC)-coating improves the transfection activity of GALA-modified lipid nanoparticles by assisting the cellular uptake and intracellular dissociation of plasmid DNA in primary hepatocytes. Biomaterials 2010; 31:6355-62. [DOI: 10.1016/j.biomaterials.2010.04.031] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Accepted: 04/21/2010] [Indexed: 11/15/2022]
|
11
|
Is HAP2-GCS1 an ancestral gamete fusogen? Trends Cell Biol 2010; 20:134-41. [DOI: 10.1016/j.tcb.2009.12.007] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 12/17/2009] [Accepted: 12/17/2009] [Indexed: 12/31/2022]
|
12
|
Addition of a cholesterol group to an HIV-1 peptide fusion inhibitor dramatically increases its antiviral potency. Proc Natl Acad Sci U S A 2009; 106:5801-6. [PMID: 19297617 DOI: 10.1073/pnas.0901007106] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Peptides derived from the heptad repeat 2 (HR2) region of the HIV fusogenic protein gp41 are potent inhibitors of viral infection, and one of them, enfuvirtide, is used for the treatment of therapy-experienced AIDS patients. The mechanism of action of these peptides is binding to a critical intermediate along the virus-cell fusion pathway, and accordingly, increasing the affinity for the intermediate yields more potent inhibitors. We took a different approach, namely to increase the potency of the HR2 peptide inhibitor C34 by targeting it to the cell compartment where fusion occurs, and we show here that a simple, yet powerful way to accomplish this is attachment of a cholesterol group. C34 derivatized with cholesterol (C34-Chol) shows dramatically increased antiviral potency on a panel of primary isolates, with IC(90) values 15- to 300-fold lower than enfuvirtide and the second-generation inhibitor T1249, making C34-Chol the most potent HIV fusion inhibitor to date. Consistent with its anticipated mechanism of action, the antiviral activity of C34-Chol is unusually persistent: washing target cells after incubation with C34-Chol, but before triggering fusion, increases IC(50) only 7-fold, relative to a 400-fold increase observed for C34. Moreover, derivatization with cholesterol extends the half-life of the peptide in vivo. In the mouse, s.c. administration of 3.5 mg/kg C34-Chol yields a plasma concentration 24 h after injection >300-fold higher than the measured IC(90) values. Because the fusion machinery targeted by C34-Chol is similar in several other enveloped viruses, we believe that these findings may be of general utility.
Collapse
|
13
|
Akita H, Harashima H. Advances in non-viral gene delivery: using multifunctional envelope-type nano-device. Expert Opin Drug Deliv 2008; 5:847-59. [PMID: 18712995 DOI: 10.1517/17425247.5.8.847] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Low transfection efficiency is an obstacle to the clinical use of non-viral gene vectors. Effective non-viral vectors require the ability to control intracellular trafficking of gene vectors for the delivery of exogenous DNA to the nucleus. OBJECTIVE To overcome multiple intracellular barriers, various types of devices must be integrated into one nano-particle so that each device performs its function at the appropriate location at the desired time. Such a strategy requires an understanding, based on quantitative information, of the rate-limiting processes that hinder intracellular trafficking. METHODS In this review, advancements in the development of multifunctional envelope-type nano-devices (MEND) are discussed. In particular, a novel method to quantitatively evaluate the rate-limiting steps in intracellular trafficking, based on a comparison of viral and non-viral gene-delivery systems, is described. CONCLUSION MENDs are useful to integrate various kinds of devices to overcome intracellular barriers into one particle. Comparison of intracellular trafficking between adenoviruses and non-viral vectors indicates that a postnuclear delivery process is an important rate-limiting step for efficient transfection with non-viral vectors.
Collapse
|
14
|
Figueirêdo PMS, Furumura MT, Santos AM, Sousa ACT, Kota DJ, Levy CE, Yano T. Cytotoxic activity of clinical Stenotrophomonas maltophilia. Lett Appl Microbiol 2006; 43:443-9. [PMID: 16965377 DOI: 10.1111/j.1472-765x.2006.01965.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
AIMS To determine the potential virulence factors produced by culture supernatants of clinical isolates of Stenotrophomonas maltophilia. METHODS AND RESULTS Culture supernatants of clinical isolates of S. maltophilia were assayed for haemolytic, enzymatic (lipase, protease and phospholipase) and cytotoxic activity. Cytotoxic activity was assayed in Vero (African green monkey), HeLa (human cervix) and HEp-2 (human larynx epidermoid carcinoma) cells. Microscopic analyses revealed intensive rounding, loss of intercellular junctions and membrane alterations (blebbing) followed by death of HEp-2 cells. In Vero and HeLa cells, the cytotoxic effects were characterized by vigorous endocytosis and cell aggregation. The viability of cultured mammalian cells was determined with neutral red and demonstrated that the sensitivity among the cells was different. This activity was inactivated by heating at 56 degrees C for 15 min and protease inhibitors did not inhibit cytotoxic activity. The clinical S. maltophilia presented a cell-free haemolytic activity similar to the 'hot-cold' haemolysins. CONCLUSIONS S. maltophilia culture supernatants caused vigorous endocytosis and cell aggregation in HeLa and Vero cells, produced haemolytic and enzymatic activities. SIGNIFICANCE AND IMPACT OF THE STUDY This work revealed the presence of putative virulence factors that could be associated with human infections involving Stenotrophomonas maltophilia strains.
Collapse
Affiliation(s)
- P M S Figueirêdo
- Departamento de Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Fertilization is the union of a single sperm and an egg, an event that results in a diploid embryo. Animals use many mechanisms to achieve this ratio; the most prevalent involves physically blocking the fusion of subsequent sperm. Selective pressures to maintain monospermy have resulted in an elaboration of diverse egg and sperm structures. The processes employed for monospermy are as diverse as the animals that result from this process. Yet, the fundamental molecular requirements for successful monospermic fertilization are similar, implying that animals may have a common ancestral block to polyspermy. Here, we explore this hypothesis, reviewing biochemical, molecular, and genetic discoveries that lend support to a common ancestral mechanism. We also consider the evolution of alternative or radical techniques, including physiological polyspermy, with respect to our ability to describe a parsimonious guide to fertilization.
Collapse
Affiliation(s)
- Julian L Wong
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | | |
Collapse
|
16
|
Investigations of the dynamics of morphological transitions in amphiphilic systems. Curr Opin Colloid Interface Sci 2004. [DOI: 10.1016/j.cocis.2004.05.032] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
17
|
Kantchev EAB, Cheng SF, Wu CW, Huang HJ, Chang DK. Secondary structure, phospholipid membrane interactions, and fusion activity of two glutamate-rich analogs of influenza hemagglutinin fusion peptide. Arch Biochem Biophys 2004; 425:173-83. [PMID: 15111125 DOI: 10.1016/j.abb.2004.01.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2003] [Revised: 01/18/2004] [Indexed: 10/26/2022]
Abstract
Two synthetic mutants of influenza HA2 fusion peptide (residues 1-25), containing Glu on the polar (residues 4,8-E5(4,8)) or the hydrophobic (residues 3,7-E5(3,7)) face of the amphipathic helix, were synthesized and labeled with NBD at the N-terminus. Introduction of Glu residues into the fusion peptide leads to increased sensitivity of various biochemical properties to pH compared to the wild type. The E5 peptides showed a decrease of alpha-helix content and increase of beta-sheet structure. Lipid binding was diminished, but not abolished even at high pH. The E5 analogs penetrate the lipid bilayer less deeply than the wild type, especially at high pH. The N-terminal half of the peptide showed significant variation of the depth of the penetration into the lipid bilayer. Both E5 peptides were fusion active. The properties of E5(3,7) were more affected by the Glu substitution and showed greater variation with pH than E5(4,8).
Collapse
|
18
|
Stiasny K, Bressanelli S, Lepault J, Rey FA, Heinz FX. Characterization of a membrane-associated trimeric low-pH-induced Form of the class II viral fusion protein E from tick-borne encephalitis virus and its crystallization. J Virol 2004; 78:3178-83. [PMID: 14990739 PMCID: PMC353737 DOI: 10.1128/jvi.78.6.3178-3183.2004] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The interaction of a dimeric membrane anchor-free form of the envelope protein E (sE dimer) from tick-borne encephalitis virus with liposomes at acidic pH levels leads to its conversion into membrane-inserted sE trimers. Electron microscopy shows that these trimers have their long dimensions along the threefold molecular axis, which is oriented perpendicularly to the plane of the membrane, where the protein inserts via the internal fusion peptide. Liposomes containing sE at their surface display paracrystalline arrays of protein in a closely packing arrangement in which each trimer is surrounded by six others, suggesting cooperativity in the insertion process. sE trimers, solubilized with nonionic detergents, yielded three-dimensional crystals suitable for X-ray diffraction analysis.
Collapse
Affiliation(s)
- Karin Stiasny
- Institute of Virology, University of Vienna, A1095 Vienna, Austria.
| | | | | | | | | |
Collapse
|
19
|
Corcoran JA, Duncan R. Reptilian reovirus utilizes a small type III protein with an external myristylated amino terminus to mediate cell-cell fusion. J Virol 2004; 78:4342-51. [PMID: 15047847 PMCID: PMC374291 DOI: 10.1128/jvi.78.8.4342-4351.2004] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2003] [Accepted: 12/16/2003] [Indexed: 11/20/2022] Open
Abstract
Reptilian reovirus is one of a limited number of nonenveloped viruses that are capable of inducing cell-cell fusion. A small, hydrophobic, basic, 125-amino-acid fusion protein encoded by the first open reading frame of a bicistronic viral mRNA is responsible for this fusion activity. Sequence comparisons to previously characterized reovirus fusion proteins indicated that p14 represents a new member of the fusion-associated small transmembrane (FAST) protein family. Topological analysis revealed that p14 is a representative of a minor subset of integral membrane proteins, the type III proteins N(exoplasmic)/C(cytoplasmic) (N(exo)/C(cyt)), that lack a cleavable signal sequence and use an internal reverse signal-anchor sequence to direct membrane insertion and protein topology. This topology results in the unexpected, cotranslational translocation of the essential myristylated N-terminal domain of p14 across the cell membrane. The topology and structural motifs present in this novel reovirus membrane fusion protein further accentuate the diversity and unusual properties of the FAST protein family and clearly indicate that the FAST proteins represent a third distinct class of viral membrane fusion proteins.
Collapse
Affiliation(s)
- Jennifer A Corcoran
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4H7
| | | |
Collapse
|
20
|
Bahrami S, Jespersen T, Pedersen FS, Duch M. Mutational library analysis of selected amino acids in the receptor binding domain of envelope of Akv murine leukemia virus by conditionally replication competent bicistronic vectors. Gene 2004; 315:51-61. [PMID: 14557064 DOI: 10.1016/s0378-1119(03)00719-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The envelope protein of retroviruses is responsible for viral entry into host cells. Here, we describe a mutational library approach to dissect functional domains of the envelope protein involving a retroviral vector, which expresses both the envelope protein of Akv murine leukemia virus (MLV) and the neomycin phosphotransferase II (Neo) selection marker from the same transcript. Envelope expression was achieved by inserting an internal ribosome entry site (IRES) between the neo and the env genes. We found the structure of the linker between the IRES element and env to be critical for sufficient envelope expression. This vector functions as a replication competent mini-virus in a culture of NIH 3T3 derived semi-packaging cells that express the viral Gag and Pol proteins. Titers comparable to those of wild type virus were achieved by this system. To test this vector system, we created a random mutational library of Arg 85 and Asp 86 in the first variable region of Akv envelope protein. Homologous amino acids to Asp 86 in Moloney and Friend murine leukemia viruses are thought to be directly involved in receptor binding. Subsequent selection of mutants capable of infecting murine NIH 3T3 cells indicated that the wild type aspartic acid or another hydrophilic residue at position 86 is an important determinant for envelope function.
Collapse
Affiliation(s)
- Shervin Bahrami
- Department of Molecular Biology, University of Aarhus, C.F. Møllers Allé Building 130, DK-8000 Aarhus C, Denmark
| | | | | | | |
Collapse
|
21
|
Mittal A, Leikina E, Chernomordik LV, Bentz J. Kinetically differentiating influenza hemagglutinin fusion and hemifusion machines. Biophys J 2003; 85:1713-24. [PMID: 12944286 PMCID: PMC1303345 DOI: 10.1016/s0006-3495(03)74601-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Membrane fusion mediated by influenza virus hemagglutinin (HA) yields different phenotypes depending on the surface density of activated HAs. A key question is whether different phenotypes arise from different fusion machines or whether different numbers of identical fusion machines yield different probabilistic outcomes. If fusion were simply a less probable event than hemifusion, requiring a larger number of identical fusion machines to occur first, then two predictions can be made. First, fusion should have a shorter average delay time than hemifusion, since there are more machines. Second, fusion should have a longer execution time of lipid mixing after it begins than hemifusion, since the full event cannot be faster than the partial event. Using a new automated video microscopy technique, we simultaneously monitored many HA-expressing cells fusing with erythrocytes and identified individual cell pairs with either full or only partial redistribution of fluorescent lipids. The full lipid mixing phenotype also showed contents mixing, i.e., fusion. Kinetic screening of the digitized fluorescence data showed that the execution of lipid mixing after the onset is faster for fusion than hemifusion. We found no correlation between the delay times before the onset of lipid mixing and the final fusion phenotype. We also found that the execution time for fusion was faster than that for hemifusion. Thus, we provide the first experimental evidence for fusion and hemifusion arising from different machines.
Collapse
Affiliation(s)
- Aditya Mittal
- Department of Bioscience and Biotechnology, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
22
|
Bentz J, Mittal A. Architecture of the influenza hemagglutinin membrane fusion site. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1614:24-35. [PMID: 12873763 DOI: 10.1016/s0005-2736(03)00160-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The mechanism of influenza hemagglutinin (HA) mediated membrane fusion has been intensively studied for over 20 years after the bromelain-released ectodomain of HA at neutral pH was first crystallized. Nearly 10 years ago, the low-pH-induced "spring coiled" conformational change of HA was predicted from peptide chemistry and confirmed by crystallography. Other work has yielded a wealth of knowledge on the observed changes in HA fusion/hemifusion phenotypes as a function of site-specific mutations of HA, or added amphipathic molecules or particular IgGs. It is becoming clear that the conformational changes predicted by the crystallography are necessary to cause fusion and that interfering with these changes can block fusion or reduce it to hemifusion. What is not known is how the conformational changes cause fusion. In particular, while it is generally agreed that fusion requires an aggregate of HAs, how the aggregate may act to transduce the energy of the HA conformational changes to creating the initial fusion defect is not known. We have used a comprehensive mass action kinetic model of HA-mediated fusion to carry out a "meta-analysis" of several key data sets, using HA-expressing cells and using virions. The consensus result of these detailed kinetic studies was that the fusion site of influenza hemagglutinin (HA) is an aggregate with at least eight HAs. The high-energy conformational change of only two of these HAs within the aggregate permits the formation of the first fusion pore. This "8 and 2" result was required to best fit all the data. We review these studies and how this kinetic result can guide and constrain HA fusion models. The kinetic analysis suggests that the sequence of fusion intermediates starts with protein control and ends with lipid control, which makes sense. While curvature intermediates, e.g. the lipid stalk, are almost certainly within the fusion sequence, the "8 and 2" result does not suggest that they are the first step after HA aggregation. The stabilized hydrophobic defect model we have proposed as a precursor to the lipid stalk can form and is consistent with the "8 and 2" result.
Collapse
Affiliation(s)
- Joe Bentz
- Department of Bioscience and Biotechnology, Drexel University, 32nd and Chestnut Streets, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
23
|
Abstract
One approach to the understanding of fusion in cells and model membranes involves stalk formation and expansion of the hemifusion diaphragm. We predict theoretically the initiation of hemifusion by stalk expansion and the dynamics of mesoscopic hemifusion diaphragm expansion in the light of recent experiments and theory that suggested that hemifusion is driven by intramembrane tension far from the fusion zone. Our predictions include a square-root scaling of the hemifusion zone size on time as well as an estimate of the minimal tension for initiation of hemifusion. Whereas a minimal amount of pressure is evidently needed for stalk formation, it is not necessarily required for stalk expansion. The energy required for tension-induced fusion is much smaller than that required for pressure-driven fusion.
Collapse
Affiliation(s)
- Guy Hed
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100, Israel.
| | | |
Collapse
|
24
|
Engel ML, Chaboud A, Dumas C, McCormick S. Sperm cells of Zea mays have a complex complement of mRNAs. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003. [PMID: 12787250 DOI: 10.1046/j.1365-313x.2003.01761.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Although double fertilization in angiosperm was discovered in 1898, we still know nothing about the proteins that mediate gamete recognition and fusion in plants. Because sperm are small and embedded within the large vegetative cell of the pollen grain, mRNAs from sperm are poorly represented in EST databases. We optimized fluorescence-activated cell sorting (FACS) in order to isolate Zea mays sperm free of contaminating vegetative cell cytoplasm, and constructed a cDNA library. Sequencing of over 1100 cDNAs from the unamplified library revealed that sperm have a diverse complement of mRNAs. Most transcripts were singletons; the most abundant was sequenced only 17 times. About 8% of the sequences are predicted to encode secreted or plasma membrane-localized proteins and are therefore candidates that might mediate gamete interactions. About 8% of the sequences correspond to retroposons. Plant sperm have condensed chromatin and are thought to be transcriptionally inactive. We used RT-PCR and in situ hybridization to determine when selected sperm mRNAs were transcribed. Sperm transcripts encoding proteins involved in general cell functions were present throughout pollen development and were more abundant in tricellular pollen than in sperm cells, suggesting that these transcripts were also present in the larger vegetative cell. However, several transcripts, which encode proteins that are most similar to hypothetical Arabidopsis proteins, appeared to be present exclusively in the sperm cells inside mature pollen, but were already present in unicellular microspores. This suggests that certain transcripts might be transcribed early during pollen development and later partitioned into the sperm cells.
Collapse
Affiliation(s)
- Michele L Engel
- Plant Gene Expression Center, United States Department of Agriculture-Agriculture Research Service and UC-Berkeley, 800 Buchanan St., Albany, CA 94710, USA
| | | | | | | |
Collapse
|
25
|
Brandenburg K, Harris F, Dennison S, Seydel U, Phoenix D. Domain V of m-calpain shows the potential to form an oblique-orientated alpha-helix, which may modulate the enzyme's activity via interactions with anionic lipid. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:5414-22. [PMID: 12423339 DOI: 10.1046/j.1432-1033.2002.03225.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The activity of m-calpain, a heterodimeric, Ca2+-dependent cysteine protease appears to be modulated by membrane interactions involving oblique-orientated alpha-helix formation by a segment, GTAMRILGGVI, in the protein's smaller subunit. Here, graphical and hydrophobic moment-based analyses predicted that this segment may form an alpha-helix with strong structural resemblance to the influenza virus peptide, HA2, a known oblique-orientated alpha-helix former. Fourier transform infrared spectroscopy showed that a peptide homologue of the GTAMRILGGVI segment, VP1, adopted low levels of alpha-helical structure ( approximately 20%) in the presence of zwitterionic lipid and induced a minor decrease (3 degrees C) in the gel to liquid-crystalline phase transition temperature, TC, of the hydrocarbon chains of zwitterionic membranes, suggesting interaction with the lipid headgroup region. In contrast, VP1 adopted high levels of alpha-helical structure (65%) in the presence of anionic lipid, induced a large increase (10 degrees C) in the TC of anionic membranes, and showed high levels of anionic lipid monolayer penetration (DeltaSP = 5.5 mN.m-1), suggesting deep levels of membrane penetration. VP1 showed strong haemolytic ability (LD50 = 1.45 mm), but in the presence of ionic agents, this ability, and that of VP1 to penetrate anionic lipid monolayers, was greatly reduced. In combination, our results suggest that m-calpain domain V may penetrate membranes via the adoption of an oblique-orientated alpha-helix and electrostatic interactions. We speculate that these interactions may involve snorkelling by an arginine residue located in the polar face of this alpha-helix.
Collapse
|
26
|
Mittal A, Shangguan T, Bentz J. Measuring pKa of activation and pKi of inactivation for influenza hemagglutinin from kinetics of membrane fusion of virions and of HA expressing cells. Biophys J 2002; 83:2652-66. [PMID: 12414698 PMCID: PMC1302350 DOI: 10.1016/s0006-3495(02)75275-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The data for the pH dependence of lipid mixing between influenza virus (A/PR/8/34 strain) and fluorescently labeled liposomes containing gangliosides has been analyzed using a comprehensive mass action kinetic model for hemaglutinin (HA)-mediated fusion. Quantitative results obtained about the architecture of HA-mediated membrane fusion site from this analysis are in agreement with the previously reported results from analyses of data for HA-expressing cells fusing with various target membranes. Of the eight or more HAs forming a fusogenic aggregate, only two have to undergo the "essential" conformational change needed to initiate fusion. The mass action kinetic model has been extended to allow the analysis of the pKa for HA activation and pKi for HA inactivation. Inactivation and activation of HA following protonation were investigated for various experimental systems involving different strains of HA (A/PR/8/34, X:31, A/Japan). We find that the pKa for the final protonation site on each monomer of the trimer molecule is 5.6 to 5.7, irrespective of the strain. We also find that the pKi for the PR/8 strain is 4.8 to 4.9. The inactivation rate constants for HA, measured from experiments done with PR/8 virions fusing with liposomes and X:31 HA-expressing cells fusing with red blood cells, were both found to be of the order of 10(-4) s(-1). This number appears to be the minimal rate for HA's essential conformational change at low HA surface density. At high HA surface densities, we find evidence for cooperativity in the conformational change, as suggested by other studies.
Collapse
Affiliation(s)
- Aditya Mittal
- Department of Bioscience and Biotechnology, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
27
|
Tieleman DP, Bentz J. Molecular dynamics simulation of the evolution of hydrophobic defects in one monolayer of a phosphatidylcholine bilayer: relevance for membrane fusion mechanisms. Biophys J 2002; 83:1501-10. [PMID: 12202375 PMCID: PMC1302248 DOI: 10.1016/s0006-3495(02)73920-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The spontaneous formation of the phospholipid bilayer underlies the permeability barrier function of the biological membrane. Tears or defects that expose water to the acyl chains are spontaneously healed by lipid lateral diffusion. However, mechanical barriers, e.g., protein aggregates held in place, could sustain hydrophobic defects. Such defects have been postulated to occur in processes such as membrane fusion. This gives rise to a new question in bilayer structure: What do the lipids do in the absence of lipid lateral diffusion to minimize the free energy of a hydrophobic defect? As a first step to understand this rather fundamental question about bilayer structure, we performed molecular dynamic simulations of up to 10 ns of a planar bilayer from which lipids have been deleted randomly from one monolayer. In one set of simulations, approximately one-half of the lipids in the defect monolayer were restrained to form a mechanical barrier. In the second set, lipids were free to diffuse around. The question was simply whether the defects caused by removing a lipid would aggregate together, forming a large hydrophobic cavity, or whether the membrane would adjust in another way. When there are no mechanical barriers, the lipids in the defect monolayer simply spread out and thin with little effect on the other intact monolayer. In the presence of a mechanical barrier, the behavior of the lipids depends on the size of the defect. When 3 of 64 lipids are removed, the remaining lipids adjust the lower one-half of their chains, but the headgroup structure changes little and the intact monolayer is unaffected. When 6 to 12 lipids are removed, the defect monolayer thins, lipid disorder increases, and lipids from the intact monolayer move toward the defect monolayer. Whereas this is a highly simplified model of a fusion site, this engagement of the intact monolayer into the fusion defect is strikingly consistent with recent results for influenza hemagglutinin mediated fusion.
Collapse
Affiliation(s)
- D Peter Tieleman
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada.
| | | |
Collapse
|
28
|
Cicala C, Arthos J, Selig SM, Dennis G, Hosack DA, Van Ryk D, Spangler ML, Steenbeke TD, Khazanie P, Gupta N, Yang J, Daucher M, Lempicki RA, Fauci AS. HIV envelope induces a cascade of cell signals in non-proliferating target cells that favor virus replication. Proc Natl Acad Sci U S A 2002; 99:9380-5. [PMID: 12089333 PMCID: PMC123149 DOI: 10.1073/pnas.142287999] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Certain HIV-encoded proteins modify host-cell gene expression in a manner that facilitates viral replication. These activities may contribute to low-level viral replication in nonproliferating cells. Through the use of oligonucleotide microarrays and high-throughput Western blotting we demonstrate that one of these proteins, gp120, induces the expression of cytokines, chemokines, kinases, and transcription factors associated with antigen-specific T cell activation in the absence of cellular proliferation. Examination of transcriptional changes induced by gp120 in freshly isolated peripheral blood mononuclear cells and monocyte-derived-macrophages reveals a broad and complex transcriptional program conducive to productive infection with HIV. Observations include the induction of nuclear factor of activated T cells, components of the RNA polymerase II complex including TFII D, proteins localized to the plasma membrane, including several syntaxins, and members of the Rho protein family, including Cdc 42. These observations provide evidence that envelope-mediated signaling contributes to the productive infection of HIV in suboptimally activated T cells.
Collapse
Affiliation(s)
- Claudia Cicala
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Mittal A, Leikina E, Bentz J, Chernomordik LV. Kinetics of influenza hemagglutinin-mediated membrane fusion as a function of technique. Anal Biochem 2002; 303:145-52. [PMID: 11950214 DOI: 10.1006/abio.2002.5590] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Reliable techniques are required to evaluate the plausibility of proposed membrane fusion mechanisms. Here we have studied the kinetics of establishing the lipidic connection between hemagglutinin-expressing cells (HA-cells) and red blood cells (RBC) labeled with octadecylrhodamine, R18, using three different experimental approaches: (1) the most common approach of monitoring the rate of the R18 dequenching in a cuvette with a suspension of RBC/HA-cell complexes; (2) video fluorescence microscopy (VFM) to detect the waiting times before the onset of R18 redistribution, not dequenching, for each RBC attached to an adherent HA-cell; and (3) a new approach based on blockage of RBC fusion to an adherent HA-cell at different time points by lysophosphatidylcholine (LPC), so that only the cell pairs which, at the time of LPC application, had fused or were irreversibly committed to fusion contributed to the final extent of lipid mixing. The LPC blockage and VFM gave very similar estimates for the fusion kinetics, with LPC monitoring also those sites committed to the lipid mixing process. In contrast, R18 dequenching in the cuvette was much slower, i.e., it monitors a much later stage of dye redistribution.
Collapse
Affiliation(s)
- Aditya Mittal
- Department of Bioscience & Biotechnology, Drexel University, Philadelphia, Pennsylvania, 19104, USA
| | | | | | | |
Collapse
|
30
|
Mittal A, Bentz J. Comprehensive kinetic analysis of influenza hemagglutinin-mediated membrane fusion: role of sialate binding. Biophys J 2001; 81:1521-35. [PMID: 11509365 PMCID: PMC1301630 DOI: 10.1016/s0006-3495(01)75806-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The data of Danieli et al. (J. Cell Biol. 133:559-569, 1996) and Blumenthal et al. (J. Cell Biol. 135:63-71, 1996) for fusion between hemagglutinin (HA)-expressing cells and fluorescently labeled erythrocytes has been analyzed using a recently published comprehensive mass action kinetic model for HA-mediated fusion. This model includes the measurable steps in the fusion process, i.e., first pore formation, lipid mixing, and content mixing of aqueous fluorescent markers. It contains two core parameters of the fusion site architecture. The first is the minimum number of aggregated HAs needed to sustain subsequent fusion intermediates. The second is the minimal number of those HAs within the fusogenic aggregate that must undergo a slow "essential" conformational change needed to initiate bilayer destabilization. Because the kinetic model has several parameters, each data set was exhaustively fitted to obtain all best fits. Although each of the data sets required particular parameter ranges for best fits, a consensus subset of these parameter ranges could fit all of the data. Thus, this comprehensive model subsumes the available mass action kinetic data for the fusion of HA-expressing cells with erythrocytes, despite the differences in assays and experimental design, which necessitated transforming fluorescence dequenching intensities to equivalent cumulative waiting time distributions. We find that HAs bound to sialates on glycophorin can participate in fusion as members of the fusogenic aggregate, but they cannot undergo the essential conformational change that initiates bilayer destabilization, thus solving a long-standing debate. Also, the similarity in rate constants for lipid mixing and content mixing found here for HA-mediated fusion and by Lee and Lentz (Proc. Natl. Acad. Sci. U.S.A. 95:9274-9279, 1998) for PEG-induced fusion of phosphatidylcholine liposomes supports the idea that subsequent to stable fusion pore formation, the evolution of fusion intermediates is determined more by the lipids than by the proteins.
Collapse
Affiliation(s)
- A Mittal
- Department of Bioscience and Biotechnology, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|