1
|
Mahadik R, Kiptoo P, Tolbert T, Siahaan TJ. Immune Modulation by Antigenic Peptides and Antigenic Peptide Conjugates for Treatment of Multiple Sclerosis. MEDICAL RESEARCH ARCHIVES 2022; 10:10.18103/mra.v10i5.2804. [PMID: 36381196 PMCID: PMC9648198 DOI: 10.18103/mra.v10i5.2804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The immune system defends our body by fighting infection from pathogens utilizing both the innate and adaptive immune responses. The innate immune response is generated rapidly as the first line of defense. It is followed by the adaptive immune response that selectively targets infected cells. The adaptive immune response is generated more slowly, but selectively, by targeting a wide range of foreign particles (i.e., viruses or bacteria) or molecules that enter the body, known as antigens. Autoimmune diseases are the results of immune system glitches, where the body's adaptive system recognizes self-antigens as foreign. Thus, the host immune system attacks the self-tissues or organs with a high level of inflammation and causes debilitation in patients. Many current treatments for autoimmune diseases (i.e., multiple sclerosis (MS), rheumatoid arthritis (RA)) have been effective but lead to adverse side effects due to general immune system suppression, which makes patients vulnerable to opportunistic infections. To counter these negative effects, many different avenues of antigen specific treatments are being developed to selectively target the autoreactive immune cells for a specific self-antigen or set of self-antigens while not compromising the general immune system. These approaches include soluble antigenic peptides, bifunctional peptide inhibitors (BPI) including IDAC and Fc-BPI, polymer conjugates, and peptide-drug conjugates. Here, various antigen-specific methods of potential treatments, their efficacy, and limitations will be discussed along with the potential mechanisms of action.
Collapse
Affiliation(s)
- Rucha Mahadik
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, 2093 Constant Avenue, Lawrence, KS 66047
| | | | - Tom Tolbert
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, 2093 Constant Avenue, Lawrence, KS 66047
| | - Teruna J Siahaan
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, 2093 Constant Avenue, Lawrence, KS 66047
| |
Collapse
|
2
|
Chen XY, Du GS, Sun X. Targeting Lymphoid Tissues to Promote Immune Tolerance. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiao Yan Chen
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University No.17, Block 3, Southern Renmin Road Chengdu 610041 China
| | - Guang Sheng Du
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University No.17, Block 3, Southern Renmin Road Chengdu 610041 China
| | - Xun Sun
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University No.17, Block 3, Southern Renmin Road Chengdu 610041 China
| |
Collapse
|
3
|
Apostolopoulos V, Bojarska J, Chai TT, Elnagdy S, Kaczmarek K, Matsoukas J, New R, Parang K, Lopez OP, Parhiz H, Perera CO, Pickholz M, Remko M, Saviano M, Skwarczynski M, Tang Y, Wolf WM, Yoshiya T, Zabrocki J, Zielenkiewicz P, AlKhazindar M, Barriga V, Kelaidonis K, Sarasia EM, Toth I. A Global Review on Short Peptides: Frontiers and Perspectives. Molecules 2021; 26:E430. [PMID: 33467522 PMCID: PMC7830668 DOI: 10.3390/molecules26020430] [Citation(s) in RCA: 170] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/23/2020] [Accepted: 01/09/2021] [Indexed: 12/13/2022] Open
Abstract
Peptides are fragments of proteins that carry out biological functions. They act as signaling entities via all domains of life and interfere with protein-protein interactions, which are indispensable in bio-processes. Short peptides include fundamental molecular information for a prelude to the symphony of life. They have aroused considerable interest due to their unique features and great promise in innovative bio-therapies. This work focusing on the current state-of-the-art short peptide-based therapeutical developments is the first global review written by researchers from all continents, as a celebration of 100 years of peptide therapeutics since the commencement of insulin therapy in the 1920s. Peptide "drugs" initially played only the role of hormone analogs to balance disorders. Nowadays, they achieve numerous biomedical tasks, can cross membranes, or reach intracellular targets. The role of peptides in bio-processes can hardly be mimicked by other chemical substances. The article is divided into independent sections, which are related to either the progress in short peptide-based theranostics or the problems posing challenge to bio-medicine. In particular, the SWOT analysis of short peptides, their relevance in therapies of diverse diseases, improvements in (bio)synthesis platforms, advanced nano-supramolecular technologies, aptamers, altered peptide ligands and in silico methodologies to overcome peptide limitations, modern smart bio-functional materials, vaccines, and drug/gene-targeted delivery systems are discussed.
Collapse
Affiliation(s)
- Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (V.A.); (J.M.); (V.B.)
| | - Joanna Bojarska
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland
| | - Tsun-Thai Chai
- Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia;
| | - Sherif Elnagdy
- Botany and Microbiology Department, Faculty of Science, Cairo University, Gamaa St., Giza 12613, Egypt; (S.E.); (M.A.)
| | - Krzysztof Kaczmarek
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland; (K.K.); (J.Z.)
| | - John Matsoukas
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (V.A.); (J.M.); (V.B.)
- NewDrug, Patras Science Park, 26500 Patras, Greece;
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Roger New
- Vaxcine (UK) Ltd., c/o London Bioscience Innovation Centre, London NW1 0NH, UK;
- Faculty of Science & Technology, Middlesex University, The Burroughs, London NW4 4BT, UK;
| | - Keykavous Parang
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA;
| | - Octavio Paredes Lopez
- Centro de Investigación y de Estudios Avanzados del IPN, Departamento de Biotecnología y Bioquímica, Irapuato 36824, Guanajuato, Mexico;
| | - Hamideh Parhiz
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6073, USA;
| | - Conrad O. Perera
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand;
| | - Monica Pickholz
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina;
- Instituto de Física de Buenos Aires (IFIBA, UBA-CONICET), Argentina, Buenos Aires 1428, Argentina
| | - Milan Remko
- Remedika, Luzna 9, 85104 Bratislava, Slovakia;
| | - Michele Saviano
- Institute of Crystallography (CNR), Via Amendola 122/o, 70126 Bari, Italy;
| | - Mariusz Skwarczynski
- School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; (M.S.); (I.T.)
| | - Yefeng Tang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (MOE), School of Pharma Ceutical Sciences, Tsinghua University, Beijing 100084, China;
| | - Wojciech M. Wolf
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland
| | | | - Janusz Zabrocki
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland; (K.K.); (J.Z.)
| | - Piotr Zielenkiewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland;
- Department of Systems Biology, Institute of Experimental Plant Biology and Biotechnology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Maha AlKhazindar
- Botany and Microbiology Department, Faculty of Science, Cairo University, Gamaa St., Giza 12613, Egypt; (S.E.); (M.A.)
| | - Vanessa Barriga
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (V.A.); (J.M.); (V.B.)
| | | | | | - Istvan Toth
- School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; (M.S.); (I.T.)
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| |
Collapse
|
4
|
Passerini L, Gregori S. Induction of Antigen-Specific Tolerance in T Cell Mediated Diseases. Front Immunol 2020; 11:2194. [PMID: 33133064 PMCID: PMC7550404 DOI: 10.3389/fimmu.2020.02194] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/11/2020] [Indexed: 12/22/2022] Open
Abstract
The development of novel approaches to control unwanted immune responses represents an ambitious goal in the management of a number of clinical conditions, including autoimmunity, autoinflammatory diseases, allergies and replacement therapies, in which the T cell response to self or non-harmful antigens threatens the physiological function of tissues and organs. Current treatments for these conditions rely on the use of non-specific immunosuppressive agents and supportive therapies, which may efficiently dampen inflammation and compensate for organ dysfunction, but they require lifelong treatments not devoid of side effects. These limitations induced researchers to undertake the development of definitive and specific solutions to these disorders: the underlying principle of the novel approaches relies on the idea that empowering the tolerogenic arm of the immune system would restore the immune homeostasis and control the disease. Researchers effort resulted in the development of cell-free strategies, including gene vaccination, protein-based approaches and nanoparticles, and an increasing number of clinical trials tested the ability of adoptive transfer of regulatory cells, including T and myeloid cells. Here we will provide an overview of the most promising approaches currently under development, and we will discuss their potential advantages and limitations. The field is teaching us that the success of these strategies depends primarily on our ability to dampen antigen-specific responses without impairing protective immunity, and to manipulate directly or indirectly the immunomodulatory properties of antigen presenting cells, the ultimate in vivo mediators of tolerance.
Collapse
Affiliation(s)
- Laura Passerini
- Mechanisms of Peripheral Tolerance Unit, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Gregori
- Mechanisms of Peripheral Tolerance Unit, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
5
|
Cyclic citrullinated MBP 87-99 peptide stimulates T cell responses: Implications in triggering disease. Bioorg Med Chem 2016; 25:528-538. [PMID: 27908754 DOI: 10.1016/j.bmc.2016.11.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 11/11/2016] [Indexed: 11/20/2022]
Abstract
Amino acid mutations to agonist peptide epitopes of myelin proteins have been used to modulate immune responses and experimental autoimmune encephalomyelitis (EAE, animal model of multiple sclerosis). Such amino acid alteration are termed, altered peptide ligands (APL). We have shown that the agonist myelin basic protein (MBP) 87-99 epitope (MBP87-99) with crucial T cell receptor (TCR) substitutions at positions 91 and 96 (K91,P96 (TCR contact residues) to R91,A96; [R91,A96]MBP87-99) results in altered T cell responses and inhibits EAE symptoms. In this study, the role of citrullination of arginines in [R91,A96]MBP87-99 peptide analog was determined using in vivo experiments in combination with computational studies. The immunogenicity of linear [Cit91,A96,Cit97]MBP87-99 and its cyclic analog - cyclo(87-99)[Cit91,A96,Cit97]MBP87-99 when conjugated to the carrier mannan (polysaccharide) were studied in SJL/J mice. It was found that mannosylated cyclo(87-99)[Cit91,A96,Cit97]MBP87-99 peptide induced strong T cell proliferative responses and IFN-gamma cytokine secretion compared with the linear one. Moreover, the interaction of linear and cyclic peptide analogs with the major histocompatibility complex (MHC II, H2-IAs) and TCR was analyzed using molecular dynamics simulations at the receptor level, in order to gain a better understanding of the molecular recognition mechanisms that underly the different immunological profiles of citrullinated peptides compared to its agonist native counterpart MBP87-99 epitope. The results demonstrate that the citrullination of arginine in combination with the backbone conformation of mutated linear and cyclic analogs are significant elements for the immune response triggering the induction of pro-inflammatory cytokines.
Collapse
|
6
|
Arbour N, Rastikerdar E, McCrea E, Lapierre Y, Dörr J, Bar-Or A, Antel JP. Upregulation of TRAIL expression on human T lymphocytes by interferon b and glatiramer acetate. Mult Scler 2016; 11:652-7. [PMID: 16320724 DOI: 10.1191/1352458505ms1222oa] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We measured the in vivo and in vitro effects of interferon (IFN)b and glatiramer acetate (GA) on the expression of the regulatory molecule, tumor necrosis factor related apoptosis inducing ligand (TRAIL), in patients with multiple sclerosis (MS). We confirmed the prior observation that TRAIL is enhanced on anti-CD3 activated T cells by the in vitro addition of IFNβ. T cells from IFNβ-treated patients stimulated with anti-CD3 only, had higher levels of TRAIL than untreated patients, suggesting that in vivo IFNβ exposure has an effect on TRAIL expression in association with T cell activation. In vitro IFNβ-induced TRAIL upregulation on anti-CD3 or phytohemagglutinin-activated T cells was comparable for IFNβ-treated and non-treated MS patients and controls, indicating that IFN receptors were neither saturated nor down-regulated by current IFNβ therapy. Although GAin vivo orin vitro did not induce TRAIL, the IFNβ-GA combination in vitro enhanced TRAIL expression to higher levels than IFNβ alone on CD4+ T cells obtained from MS patients, regardless of GA treatment status, and healthy donors, and on GA reactive T cell lines derived from GA-treated patients or controls. Whether any observed therapeutic effects of GA/IFNβ combination therapy will correlate with TRAIL expression and function remains to be determined.
Collapse
Affiliation(s)
- N Arbour
- Neuroimmunology Unit, Montreal Neurological Institute, McGill University, QC, Canada
| | | | | | | | | | | | | |
Collapse
|
7
|
Sauer EL, Cloake NC, Greer JM. Taming the TCR: antigen-specific immunotherapeutic agents for autoimmune diseases. Int Rev Immunol 2015; 34:460-85. [PMID: 25970132 DOI: 10.3109/08830185.2015.1027822] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Current treatments for autoimmune diseases are typically non-specific anti-inflammatory agents that affect not only the autoreactive cells but also the parts of the immune system that are required to maintain health. There is a need for the development of antigen-specific therapeutic agents that can effectively prevent the autoimmune attack while leaving the rest of the immune system functioning as normal. The simplest way to achieve this is using the autoantigen itself as a tolerizing agent; however, there is some risk involved with administering a potentially pathogenic antigen. In this review, we focus instead on the development and use of modified T cell receptor (TCR) ligands, in which the peptide ligand is modified to change the response by the T cell from a disease inducing to a protective response, and still retain the antigen-specificity necessary to target the autoreactive T cells. We review the use of modified TCR ligands as therapeutic agents in animal models of autoimmunity and in human autoimmune disease, and finally consider how they need to be improved in order to use them effectively in patients with autoimmune disease.
Collapse
Affiliation(s)
- Evan L Sauer
- a UQ Centre for Clinical Research , The University of Queensland , Brisbane , Queensland , Australia
| | - Nancy C Cloake
- a UQ Centre for Clinical Research , The University of Queensland , Brisbane , Queensland , Australia
| | - Judith M Greer
- a UQ Centre for Clinical Research , The University of Queensland , Brisbane , Queensland , Australia
| |
Collapse
|
8
|
Katsara M, Deraos S, Tselios TV, Pietersz G, Matsoukas J, Apostolopoulos V. Immune responses of linear and cyclic PLP139-151 mutant peptides in SJL/J mice: peptides in their free state versus mannan conjugation. Immunotherapy 2015; 6:709-24. [PMID: 25186603 DOI: 10.2217/imt.14.42] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND The predominant proteins of the CNS are myelin basic protein, proteolipid protein (PLP) and myelin oligodendrocyte glycoprotein. PLP139-151 is one of the major encephalitogenic epitopes of PLP. The epitope PLP139-151 binds to MHC class II (I-A(s)) of SJL/J mice and induces Th1 responses. AIM The aim was to synthesize and test the immunological activity and cyclic analogs of PLP139-151 peptide and determine the immunological differences between adjuvant and conjugation to mannan. Materials & methods: We designed and synthesized cyclic peptides based on the linear PLP139-151 epitope by mutating critical T-cell receptor contact sites of residues W(144) and H(147), resulting in the mutant peptides PLP139-151, [L(144), R(147)]PLP139-151 or cyclo(139-151)PLP139-151 and cyclo(139-151) [L(144), R(147)]PLP139-151. In this study, mice were immunized with mutant peptides either emulsified in complete Freund's adjuvant or conjugated to reduced mannan and responses were assessed. RESULTS Linear double-mutant peptide [L(144), R(147)]PLP139-151 induced high levels of IL-4 responses and low levels of IgG total, and cyclization of this analog elicited low levels of IFN-γ. Moreover, linear [L(144), R(147)]PLP139-151 conjugated to reduced mannan did not induce IFN-γ, whilst both linear agonist PLP139-151 and cyclic agonist cyclo(139-151)PLP139-151 induced IFN-γ-secreting T cells. Molecular dynamics simulations of linear and cyclic(139-151)PLP139-151 analogs indicated the difference in topology of the most important for biological activity amino acids. CONCLUSION Cyclic double-mutant analog cyclo(139-151) [L(144), R(147)]PLP139-151 has potential for further studies for the immunotherapy of multiple sclerosis.
Collapse
Affiliation(s)
- Maria Katsara
- Burnet Institute, Centre for Immunology, Immunology & Vaccine Laboratory, Melbourne, VIC, Australia
| | | | | | | | | | | |
Collapse
|
9
|
Abstract
Alzheimer's disease (AD) is a common and devastating neurodegenerative disease. The incidence of AD is increasing in Western societies. The current treatment of AD is mostly symptomatic and ineffective in stopping or reversing the cognitive impairment. One of the exciting and effective new treatments developed in experimental AD is immunization against amyloid-beta peptide. This article provides an overview of immunization therapy in AD and examines the future prospects of this therapeutic modality.
Collapse
Affiliation(s)
- Felix Mor
- Tel-Aviv University, Weizmann Institute of Science Department of Immunology, Rehovot, Israel.
| | | |
Collapse
|
10
|
Tian DH, Perera CJ, Apostolopoulos V, Moalem-Taylor G. Effects of vaccination with altered Peptide ligand on chronic pain in experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis. Front Neurol 2013; 4:168. [PMID: 24194728 PMCID: PMC3810649 DOI: 10.3389/fneur.2013.00168] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 10/16/2013] [Indexed: 12/28/2022] Open
Abstract
Neuropathic pain is a chronic symptom of multiple sclerosis (MS) and affects nearly half of all MS sufferers. A key instigator of this pain is the pro-inflammatory response in MS. We investigated the behavioral effects of immunization with a mutant peptide of myelin basic protein (MBP), termed altered peptide ligand (APL), known to initiate immune deviation from a pro-inflammatory state to an anti-inflammatory response in experimental autoimmune encephalomyelitis (EAE), an animal model of MS. Male and female Lewis rats were injected with vehicle control or with varying doses of 50 or 100 μg guinea pig MBP in combination with or without APL. APL-treated animals established significantly lower disease severity compared to encephalitogenic MBP-treated animals. Animals with EAE developed mechanical, but not thermal pain hypersensitivity. Mechanical pain sensitivities were either improved or normalized during periods of clinical disease in male and female APL-treated animals as compared to the encephalitogenic group. No significant changes to thermal latency were observed upon co-immunization with APL. Together these data indicate that APL ameliorates disease states and selectively mediates an analgesic effect on EAE animals.
Collapse
Affiliation(s)
- David H Tian
- School of Medical Sciences, University of New South Wales , Sydney, NSW , Australia
| | | | | | | |
Collapse
|
11
|
Turner DA, Haile Y, Giuliani F. IL-25 prevents T cell-mediated neurotoxicity by decreasing LFA-1 expression. J Neuroimmunol 2013; 265:11-9. [PMID: 24196277 DOI: 10.1016/j.jneuroim.2013.10.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 10/11/2013] [Accepted: 10/14/2013] [Indexed: 11/29/2022]
Abstract
Autoimmune diseases such as multiple sclerosis (MS) are thought to develop due to a dysregulation in the normal T(H)1-T(H)17/T(H)2 immune system balance, where pro-inflammatory responses with a T(H)1/T(H)17 prevalence develop. Some therapeutic treatments in MS promote a shift toward a TH2-prevalent environment and this has been shown to be protective. However, not all patients respond to current immunomodulatory treatments in MS so that new immunomodulatory drugs that can promote a shift of the immune system into an anti-inflammatory T(H)2 status are needed. IL-25 is a cytokine of the IL-17 family with powerful anti-inflammatory properties. This study demonstrates that IL-25 exerts neuroprotective functions by reducing T cell-mediated killing of human fetal neurons. The mechanism of action of this IL-25-mediated neuroprotective effect appears to be linked to reduction in the expression of the adhesion molecule LFA-1, which is relevant in stabilizing the immune synapse during cytotoxicity.
Collapse
Affiliation(s)
- Diane A Turner
- Centre for Neuroscience, Department of Medicine, University of Alberta, Edmonton, Alberta T6G 3G3, Canada
| | | | | |
Collapse
|
12
|
Ireland SJ, Blazek M, Harp CT, Greenberg B, Frohman EM, Davis LS, Monson NL. Antibody-independent B cell effector functions in relapsing remitting Multiple Sclerosis: Clues to increased inflammatory and reduced regulatory B cell capacity. Autoimmunity 2012; 45:400-14. [DOI: 10.3109/08916934.2012.665529] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
13
|
Myers LK, Cullins DL, Brand DD, Kleinau S, Stuart JM, Kang AH. T cells stimulated with an analog peptide of type II collagen require the Fc receptor γ-chain to secrete interleukin-4 and suppress autoimmune arthritis in mice. ACTA ACUST UNITED AC 2011; 63:2661-70. [PMID: 21590683 DOI: 10.1002/art.30454] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE To explore the characteristics of the T cell population that responds to an analog peptide (A9) of type II collagen and regulates autoimmunity, using the collagen-induced arthritis (CIA) model. METHODS Analog peptide A9 is a 26-amino acid peptide analogous to the sequence of a segment of type II collagen (CII245-270) but with substitutions at amino acid positions 260 (alanine for isoleucine), 261 (hydroxyproline for alanine), and 263 (asparagine for phenylalanine). We previously showed that A9 profoundly suppressed CIA and immune responses to type II collagen. In order to determine the mechanism of suppression, we used transgenic mice whose T cells express a type II collagen-specific receptor (T cell receptor) and performed passive cell transfer experiments. RESULTS The results demonstrated that suppression of CIA by A9 is dependent on T cells. Using multiparameter flow cytometry, we determined that the cells responsible for suppression were CD4+ and expressed high levels of Fcε receptor Iγ chain (FcRγ). To establish the significance of this finding, we obtained mice genetically deficient in FcRγ in order to perform passive transfer experiments. The resulting FcRγ-/- CD4+ T cells, when primed by culture with A9, could not transfer the suppression of arthritis or secrete cytokines in response to A9. CONCLUSION Taken together, the results of this study suggest that the suppression of arthritis and the Th2 cytokine profile elicited by A9 is dependent on the presence of FcRγ in T cells. These findings are novel and may have therapeutic potential for patients with autoimmune arthritis.
Collapse
|
14
|
Abstract
T cell recognition of antigen is a crucial aspect of the adaptive immune response. One of the most common means of pathogen immune evasion is mutation of T cell epitopes. T cell recognition of such ligands can result in a variety of outcomes including activation, apoptosis and anergy. The ability of a given T cell to respond to a specific peptide-MHC ligand is regulated by a number of factors, including the affinity, on- and off-rates and half-life of the TCR-peptide-MHC interaction. Interaction of T cells with low-potency ligands results in unique signaling patterns and requires engagement with a larger number of T cell receptors than agonist ligands. This review will address these aspects of T cell interaction with weak ligands and the ways in which these ligands have been utilized therapeutically.
Collapse
|
15
|
Sun J, Jia Y, Li R, Guo J, Sun X, Liu Y, Li Y, Yao H, Liu X, Zhao J, Li Z. Altered influenza virus haemagglutinin (HA)-derived peptide is potent therapy for CIA by inducing Th1 to Th2 shift. Cell Mol Immunol 2011; 8:348-58. [PMID: 21383676 DOI: 10.1038/cmi.2011.5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
There has been an increase in interest in the use of altered peptides as antigen-specific therapeutic agents in autoimmune diseases. Here we investigated the inhibitory effect and possible mechanism of an altered influenza virus haemagglutinin (HA)-derived peptide in collagen-induced arthritis (CIA). CIA was induced in DBA/1 mice by immunisation with type II collagen (CII). Altered HA308-317, wild-type HA308-317 or irrelevant peptide was administered intranasally beginning from arthritis onset. Clinical and histological scores were assessed, and cytokine levels in the serum or supernatants from splenocytes were determined. The percentages of Th1 and Th2 cells in response to different peptides were analysed by FACS both in vivo and in vitro. Our results showed that intranasal administration of altered HA308-317 peptide significantly ameliorated CIA. The therapeutic effect of altered HA308-317 peptide was associated with a substantial decrease in production of interferon (IFN)-γ, interleukin (IL)-6, monocyte chemoattractant protein (MCP)-1, anti-CII IgG, IgG1 and IgG2a antibodies, and an markedly increase in production of IL-10 and IL-4 in serum or supernatants from splenocytes treated with altered HA308-317 peptide. The percentage of Th2 (CD4(+)IL-4(+)) cells was upregulated significantly by altered HA308-317 peptide with a decreased percentage of Th1 (T helper 1; CD4(+)INF-γ(+)) cells both in vivo and in vitro. These findings suggest that altered HA308-317 peptide might be a promising candidate for rheumatoid arthritis (RA) treatment.
Collapse
Affiliation(s)
- Jian Sun
- Department of Rheumatology and Immunology, Clinical Immunology Center, Peking University People's Hospital, Beijing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Muir MT, Lovett-Racke AE, Racke MK. Novel therapeutic strategies targeting the pathogenic T-cells in multiple sclerosis. Expert Rev Clin Immunol 2010; 1:345-55. [PMID: 20476986 DOI: 10.1586/1744666x.1.3.345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Multiple sclerosis is a chronic disease in which immune cells incite inflammation in the central nervous system, ultimately resulting in the destruction of the myelin nerve sheath. Pathogenic CD4+ T-cells are believed to be responsible for initiating this process. Recent advances in molecular biology, such as transgenic and knockout animal models, genomics and proteomics, have allowed for a much greater understanding of the cellular and subcellular pathways involved in autoimmunity. The end result is an ever more specific array of potential therapeutic agents, each designed to target one component of the dysregulated immune system and in some cases, specific to each individual patient. The mechanisms, promises and pitfalls of these various strategies for the treatment of multiple sclerosis are the topic of this review.
Collapse
Affiliation(s)
- Mark T Muir
- University of Texas Southwestern Medical Center at Dallas, Department of Neurology, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390-9036, USA.
| | | | | |
Collapse
|
17
|
Abstract
BACKGROUND If found to be effective, antigen-specific therapies in MS hold the promise of selectively targeting pathogenic effector cells, while leaving the rest of immune system undisturbed. OBJECTIVE To review the principles and challenges of antigen-specific therapies of the past and those presently under development, and how the lessons learnt can guide us moving forward. METHODS We review past and current antigen-specific strategies for the treatment of MS, including their successes and challenges, as well as the lessons we have learnt from them about MS pathophysiology. RESULTS Several antigen-specific therapies may accomplish the desired balance between safety and efficacy, although significant challenges remain for this class of therapeutics.
Collapse
Affiliation(s)
- Paul S Giacomini
- McGill University, Montreal Neurological Hospital and Institute, Multiple Sclerosis Clinic, McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery, 3801, University St, Room WB 327, Montreal, Que. H3A 2B4, Canada
| | | |
Collapse
|
18
|
Tang B, Zhou J, Park JE, Cullins D, Yi AK, Kang AH, Stuart JM, Myers LK. T cell receptor signaling induced by an analog peptide of type II collagen requires activation of Syk. Clin Immunol 2009; 133:145-53. [PMID: 19596610 DOI: 10.1016/j.clim.2009.06.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 06/11/2009] [Accepted: 06/15/2009] [Indexed: 12/27/2022]
Abstract
We have previously described an analog peptide of type II collagen (CII) that can suppress collagen-induced arthritis (CIA). This analog peptide represents CII(245-270), the immunodominant epitope of CII, but with substitutions at 260, 261, and 263 - CII(245-270) (A(260), B(261), and N(263)) (A9). To elucidate the mechanisms responsible for suppression, we used mice transgenic for a collagen-specific T cell receptor (TCR). When we found that APCs pulsed with A9 failed to induce T cell phosphorylation of TCR-zeta and ZAP-70, we explored alternative signaling pathways. We determined that A9 instead induced phosphorylation of spleen tyrosine kinase (Syk). The importance of Syk was confirmed by the use of chemical Syk inhibitors, which blocked both cytokine secretion and activation of GATA-3 mediated by peptide A9. In summary, T cells use an alternative pathway in response to A9 that involves Syk. This novel T cell pathway may represent an important means for altering T cell phenotypes.
Collapse
Affiliation(s)
- Bo Tang
- Department of Medicine, University of Tennessee, Memphis TN, 38163, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Katsara M, Minigo G, Plebanski M, Apostolopoulos V. The good, the bad and the ugly: how altered peptide ligands modulate immunity. Expert Opin Biol Ther 2009; 8:1873-84. [PMID: 18990075 DOI: 10.1517/14712590802494501] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND The basis of T cell immune responses is the specific recognition of an immunogenic peptide epitope by a T cell receptor. Peptide alterations of such T cell epitopes with single or few amino acid variations can have drastic effects on the outcome of this recognition. These altered peptide ligands can act as modulators of immune responses as they are capable of downregulating or upregulating responses. OBJECTIVE/METHODS We review how altered peptide ligands can have 'good' 'bad' and 'ugly' outcomes in treating diseases. RESULTS/CONCLUSION Altered peptide ligands have been used as immunotherapeutics in autoimmune (and allergic) diseases, infectious diseases and cancer. In the next five years we anticipate seeing a number of altered peptide ligands in clinical trials, progressing from contradictory classifications of good, bad or ugly, to the exciting outcome of 'useful'.
Collapse
Affiliation(s)
- Maria Katsara
- Immunology and Vaccine Laboratory, The Macfarlane Burnet Institute incorporating The Austin Research Institute, Studley Road, Heidelberg, VIC 3084, Australia
| | | | | | | |
Collapse
|
20
|
A double mutation of MBP(83-99) peptide induces IL-4 responses and antagonizes IFN-gamma responses. J Neuroimmunol 2008; 200:77-89. [PMID: 18675465 DOI: 10.1016/j.jneuroim.2008.06.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Revised: 06/05/2008] [Accepted: 06/09/2008] [Indexed: 11/20/2022]
Abstract
A number of treatment options are available to multiple sclerosis patients, however this needs to be improved. Herein, we designed and synthesized a number of peptides by mutating principal TCR contact residues based on MBP(83-99) peptide epitope. Immunization of SJL/J mice with MBP(83-99) and mutant [A(91)]MBP(83-99), [E(91)]MBP(83-99), [F(91)]MBP(83-99), [Y(91)]MBP(83-99), and [R(91), A(96)]MBP(83-99) peptides, induced IFN-gamma, and only [R(91), A(96)]MBP(83-99) mutant peptide was able to induce IL-4 secretion by T cells. T cells against the native MBP(83-99) peptide cross-reacted with all peptides except [Y(91)]MBP(83-99) and [R(91),A(96)]MBP(83-99). The double mutant [R(91), A(96)]MBP(83-99) was able to antagonize IFN-gamma production in vitro by T cells against the native MBP(83-99) peptide. Antibodies generated to [R(91), A(96)]MBP(83-99) did not cross-react with whole MBP protein. Molecular modeling between peptide analogs and H2 I-A(s) demonstrated novel interactions. The [R(91), A(96)]MBP(83-99) double mutant peptide analog is the most promising for further therapeutic studies.
Collapse
|
21
|
Deraos G, Chatzantoni K, Matsoukas MT, Tselios T, Deraos S, Katsara M, Papathanasopoulos P, Vynios D, Apostolopoulos V, Mouzaki A, Matsoukas J. Citrullination of Linear and Cyclic Altered Peptide Ligands from Myelin Basic Protein (MBP87−99) Epitope Elicits a Th1 Polarized Response by T Cells Isolated from Multiple Sclerosis Patients: Implications in Triggering Disease. J Med Chem 2008; 51:7834-42. [DOI: 10.1021/jm800891n] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- George Deraos
- Department of Chemistry, University of Patras, Patras 26500, Greece, Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras 26110, Greece, Neurology Clinic, Medical School and University Hospital, University of Patras, Patras 26500, Greece, and Immunology and Vaccine Laboratory, Burnet Institute (Austin Campus), Heidelberg, Victoria 3084, Australia
| | - Kokona Chatzantoni
- Department of Chemistry, University of Patras, Patras 26500, Greece, Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras 26110, Greece, Neurology Clinic, Medical School and University Hospital, University of Patras, Patras 26500, Greece, and Immunology and Vaccine Laboratory, Burnet Institute (Austin Campus), Heidelberg, Victoria 3084, Australia
| | - Minos-Timotheos Matsoukas
- Department of Chemistry, University of Patras, Patras 26500, Greece, Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras 26110, Greece, Neurology Clinic, Medical School and University Hospital, University of Patras, Patras 26500, Greece, and Immunology and Vaccine Laboratory, Burnet Institute (Austin Campus), Heidelberg, Victoria 3084, Australia
| | - Theodore Tselios
- Department of Chemistry, University of Patras, Patras 26500, Greece, Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras 26110, Greece, Neurology Clinic, Medical School and University Hospital, University of Patras, Patras 26500, Greece, and Immunology and Vaccine Laboratory, Burnet Institute (Austin Campus), Heidelberg, Victoria 3084, Australia
| | - Spyros Deraos
- Department of Chemistry, University of Patras, Patras 26500, Greece, Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras 26110, Greece, Neurology Clinic, Medical School and University Hospital, University of Patras, Patras 26500, Greece, and Immunology and Vaccine Laboratory, Burnet Institute (Austin Campus), Heidelberg, Victoria 3084, Australia
| | - Maria Katsara
- Department of Chemistry, University of Patras, Patras 26500, Greece, Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras 26110, Greece, Neurology Clinic, Medical School and University Hospital, University of Patras, Patras 26500, Greece, and Immunology and Vaccine Laboratory, Burnet Institute (Austin Campus), Heidelberg, Victoria 3084, Australia
| | - Panagiotis Papathanasopoulos
- Department of Chemistry, University of Patras, Patras 26500, Greece, Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras 26110, Greece, Neurology Clinic, Medical School and University Hospital, University of Patras, Patras 26500, Greece, and Immunology and Vaccine Laboratory, Burnet Institute (Austin Campus), Heidelberg, Victoria 3084, Australia
| | - Demitrios Vynios
- Department of Chemistry, University of Patras, Patras 26500, Greece, Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras 26110, Greece, Neurology Clinic, Medical School and University Hospital, University of Patras, Patras 26500, Greece, and Immunology and Vaccine Laboratory, Burnet Institute (Austin Campus), Heidelberg, Victoria 3084, Australia
| | - Vasso Apostolopoulos
- Department of Chemistry, University of Patras, Patras 26500, Greece, Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras 26110, Greece, Neurology Clinic, Medical School and University Hospital, University of Patras, Patras 26500, Greece, and Immunology and Vaccine Laboratory, Burnet Institute (Austin Campus), Heidelberg, Victoria 3084, Australia
| | - Athanasia Mouzaki
- Department of Chemistry, University of Patras, Patras 26500, Greece, Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras 26110, Greece, Neurology Clinic, Medical School and University Hospital, University of Patras, Patras 26500, Greece, and Immunology and Vaccine Laboratory, Burnet Institute (Austin Campus), Heidelberg, Victoria 3084, Australia
| | - John Matsoukas
- Department of Chemistry, University of Patras, Patras 26500, Greece, Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras 26110, Greece, Neurology Clinic, Medical School and University Hospital, University of Patras, Patras 26500, Greece, and Immunology and Vaccine Laboratory, Burnet Institute (Austin Campus), Heidelberg, Victoria 3084, Australia
| |
Collapse
|
22
|
Katsara M, Matsoukas J, Deraos G, Apostolopoulos V. Towards immunotherapeutic drugs and vaccines against multiple sclerosis. Acta Biochim Biophys Sin (Shanghai) 2008; 40:636-42. [PMID: 18604455 DOI: 10.1111/j.1745-7270.2008.00444.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune, demyelinating disease of the central nervous system. Numerous treatment options are available to MS patients; however, these options need to be improved. Herein, we review the current drugs and therapeutic approaches available to MS patients, preclinical trial interventions and recent animal model studies for the potential therapy of MS. Since the current treatment of MS remains elusive and is limited, animal studies and clinical research offers an optimistic outlook.
Collapse
Affiliation(s)
- Maria Katsara
- Burnet Institute, Austin Campus, Immunology and Vaccine Laboratory, Studley Road, Heidelberg, Victoria 3084, Australia
| | | | | | | |
Collapse
|
23
|
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the CNS, characterized pathologically by a perivascular infiltrate consisting predominantly of T cells and macrophages. Although its aetiology remains unknown, several lines of evidence support the hypothesis that autoimmune mechanisms play a major role in the development of the disease. Several widely used disease-modifying agents are approved for the treatment of MS. However, these agents are only partially effective and their ability to attenuate the more progressive phases of the disease is not clear at this time. Therefore, there is a need to develop improved treatment options for MS. This article reviews the role of several novel, selective vaccine strategies that are currently under investigation, including: (i) T-cell vaccination (TCV); (ii) T-cell receptor (TCR) peptide vaccination; (iii) DNA vaccination; and (iv) altered peptide ligand (APL) vaccination. The administration of attenuated autoreactive T cells induces regulatory networks to specifically suppress pathogenic T cells in MS, a strategy named TCV. The concept of TCV was based on the experience of vaccination against aetiological agents of infectious diseases in which individuals are purposely exposed to an attenuated microbial pathogen, which then instructs the immune system to recognize and neutralize it in its virulent form. In regard to TCV, attenuated, pathogenic T cells are similarly used to instruct the immune system to recognize and neutralize disease-inducing T cells. In experimental allergic encephalomyelitis (EAE), an animal model for MS, pathogenic T cells use a strikingly limited number of variable-region elements (V region) to form TCR specific for defined autoantigens. Thus, vaccination with peptides directed against these TCR structures may induce immunoregulatory mechanisms, thereby preventing EAE. However, unlike EAE, myelin-reactive T cells derived from MS patients utilize a broad range of different V regions, challenging the clinical utility of this approach. Subsequently, the demonstration that injection of plasmid DNA encoding a reporter gene into skeletal muscle results in expression of the encoded proteins, as well as in the induction of immune responses in animal models of autoimmunity, was explored as another strategy to re-establish self-tolerance. This approach has promise for the treatment of MS and, therefore, warrants further investigation. APLs are molecules in which the native encephalitogenic peptides are modified by substitution(s) of one or a few amino acids critical for contact with the TCR. Depending on the substitution(s) at the TCR contact residues of the cognate peptide, an APL can induce immune responses that can protect against or reverse EAE. However, the heterogeneity of the immune response in MS patients requires further study to determine which patients are most likely to benefit from APL therapy. Other potential approaches for vaccines in MS include vaccination against axonal growth inhibitors associated with myelin, use of dendritic cells pulsed with specific antigens, and active vaccination against proinflammatory cytokines. Overall, vaccines for MS represent promising approaches for the treatment of this devastating disease, as well as other autoimmune diseases.
Collapse
Affiliation(s)
- Jorge Correale
- Department of Neurology, Raúl Carrea Institute for Neurological Research, Buenos Aires, Argentina.
| | | | | |
Collapse
|
24
|
Boots AMH, Hubers H, Kouwijzer M, den Hoed-van Zandbrink L, Westrek-Esselink BM, van Doorn C, Stenger R, Bos ES, van Lierop MJC, Verheijden GF, Timmers CM, van Staveren CJ. Identification of an altered peptide ligand based on the endogenously presented, rheumatoid arthritis-associated, human cartilage glycoprotein-39(263-275) epitope: an MHC anchor variant peptide for immune modulation. Arthritis Res Ther 2008; 9:R71. [PMID: 17645792 PMCID: PMC2206373 DOI: 10.1186/ar2269] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Revised: 06/25/2007] [Accepted: 07/23/2007] [Indexed: 11/28/2022] Open
Abstract
We sought to identify an altered peptide ligand (APL) based on the endogenously expressed synovial auto-epitope of human cartilage glycoprotein-39 (HC gp-39) for modulation of cognate, HLA-DR4-restricted T cells. For this purpose we employed a panel of well-characterized T cell hybridomas generated from HC gp-39-immunized HLA-DR4 transgenic mice. The hybridomas all respond to the HC gp-39(263–275) epitope when bound to HLA-DR4(B1*0401) but differ in their fine specificities. First, the major histocompatibility complex (MHC) and T-cell receptor (TCR) contact residues were identified by analysis of single site substituted analogue peptides for HLA-DR4 binding and cognate T cell recognition using both T hybridomas and polyclonal T cells from peptide-immunized HLA-DR4 transgenic mice. Analysis of single site substituted APL by cognate T cells led to identification of Phe265 as the dominant MHC anchor. The amino acids Ala268, Ser269, Glu271 and Thr272 constituted the major TCR contact residues, as substitution at these positions did not affect HLA-DR4(B1*0401) binding but abrogated T cell responses. A structural model for visualisation of TCR recognition was derived. Second, a set of non-classical APLs, modified at the MHC key anchor position but with unaltered TCR contacts, was developed. When these APLs were analysed, a partial TCR agonist was identified and found to modulate the HC gp-39(263–275)-specific, pro-inflammatory response in HLA-DR4 transgenic mice. We identified a non-classical APL by modification of the p1 MHC anchor in a synovial auto-epitope. This APL may qualify for rheumatoid arthritis immunotherapy.
Collapse
Affiliation(s)
| | - Henk Hubers
- NV Organon, Research Laboratories, Oss, The Netherlands
| | | | | | | | | | | | - Ebo S Bos
- NV Organon, Research Laboratories, Oss, The Netherlands
| | | | | | | | | |
Collapse
|
25
|
Sabatino JJ, Shires J, Altman JD, Ford ML, Evavold BD. Loss of IFN-gamma enables the expansion of autoreactive CD4+ T cells to induce experimental autoimmune encephalomyelitis by a nonencephalitogenic myelin variant antigen. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 180:4451-7. [PMID: 18354166 DOI: 10.4049/jimmunol.180.7.4451] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
MHC variant peptides are analogues of immunogenic peptides involving alterations of the MHC-binding residues, thereby altering the affinity of the peptide for the MHC molecule. Recently, our laboratory demonstrated that immunization of WT B6 mice with 45D, a low-affinity MHC variant peptide of MOG(35-55), results in significantly attenuated experimental autoimmune encephalomyelitis (EAE), yet IFN-gamma production is comparable to myelin oligodendrocyte glycoprotein (MOG)(35-55)-immunized mice. In light of these findings, we asked whether IFN-gamma was required for the reduced encephalitogenicity of the weak ligand 45D in EAE. In this study, we report that immunization of mice deficient in IFN-gamma or its receptor with 45D exhibit significant EAE signs compared with 45D-immunized wild-type B6 mice. Moreover, 45D-immunized IFN-gamma(-/-) and IFN-gammaR(-/-) mice demonstrate MOG tetramer-positive CD4(+) T cells within the CNS and display substantial numbers of MOG-specific CD4(+) T cells in the periphery. In contrast, wild-type mice immunized with 45D exhibit reduced numbers of MOG-specific CD4(+) T cells in the periphery and lack MOG tetramer- positive CD4(+) T cells in the CNS. Importantly, the increased encephalitogenicity of 45D in mice lacking IFN-gamma or IFN-gammaR was not due to deviation toward an enhanced IL-17-secreting phenotype. These findings demonstrate that IFN-gamma significantly attenuates the encephalitogenicity of 45D and are the first to highlight the importance of IFN-gamma signaling in setting the threshold level of responsiveness of autoreactive CD4(+) T cells to weak ligands.
Collapse
MESH Headings
- Animals
- Autoimmunity/immunology
- CD4-Positive T-Lymphocytes/cytology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Cell Proliferation
- Cells, Cultured
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Female
- Histocompatibility Antigens/immunology
- Interferon-gamma/deficiency
- Interferon-gamma/genetics
- Interferon-gamma/metabolism
- Interleukin-17/biosynthesis
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Myelin Proteins
- Myelin-Associated Glycoprotein/metabolism
- Myelin-Oligodendrocyte Glycoprotein
- Receptors, Interferon/deficiency
- Receptors, Interferon/genetics
- Receptors, Interferon/metabolism
- Interferon gamma Receptor
Collapse
Affiliation(s)
- Joseph J Sabatino
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322, USA
| | | | | | | | | |
Collapse
|
26
|
Saarelainen SA, Kinnunen TT, Buhot C, Närvänen ATO, Kauppinen AK, Rytkönen-Nissinen MA, Maillere B, Virtanen TI. Immunotherapeutic potential of the immunodominant T-cell epitope of lipocalin allergen Bos d 2 and its analogues. Immunology 2007; 123:358-66. [PMID: 17944901 DOI: 10.1111/j.1365-2567.2007.02699.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Lipocalin allergens, which contain most of the important animal-derived respiratory sensitizers, induce T helper type 2 (Th2) deviation, but the reasons for this are not clear. To explore the prospects for peptide-based allergen immunotherapy and to elucidate the characteristics of the immunodominant epitope of Bos d 2, BALB/c mice were immunized with a peptide containing the epitope, peptides containing its analogues, peptides from the corresponding regions of other lipocalin proteins, and peptides with a homologous sequence. We observed that murine spleen cells recognized the immunodominant epitope of Bos d 2, p127-142, in almost the same way as human Bos d 2-specific T cells did. Enzyme-linked immunosorbent spot-forming cell assay (ELISPOT) analyses showed that p127-142 and a corresponding peptide from horse Equ c 1 induced a Th2-deviated cellular response, whereas a homologous bacterial peptide from Spiroplasma citri induced a Th0-type response. Interestingly, the spleen cell response to the bacterial peptide and p127-142 was cross-reactive, that is, able to induce reciprocally the proliferation and cytokine production of primed spleen cells in vitro. More importantly, the peptides were able to skew the phenotype of T cells primed with the other peptide. Our results suggest that modified peptides can be useful in allergen immunotherapy.
Collapse
|
27
|
Abstract
The adaptive immune response in multiple sclerosis (MS) targets various myelin proteins and even some inducible heat shock proteins. A few attempts have been made to tolerize relapsing-remitting patients with MS to either full-length myelin basic protein or to a key peptide epitope between residues 83-99. These trials have demonstrated that this approach may potentially provide benefit to patients with relapsing- remitting MS. However, manipulation of responses to myelin proteins can have deleterious effects. The immune response to myelin components is positioned at a key tipping point in the pathophysiology of the disease. Clarification of the key target antigens in MS, and better understanding of practical methods to attain tolerance to a wide variety of myelin and neuronal molecules will provide the basis for the ultimately successful antigen specific therapy.
Collapse
Affiliation(s)
- Lawrence Steinman
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
28
|
Li R, Li X, Li Z. Altered collagen II peptides inhibited T-cell activation in rheumatoid arthritis. Clin Immunol 2006; 118:317-23. [PMID: 16343992 DOI: 10.1016/j.clim.2005.09.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2005] [Revised: 09/15/2005] [Accepted: 09/21/2005] [Indexed: 10/25/2022]
Abstract
It has been reported that collagen II (CII)-derived peptide induced T-cell activation via its amino acids responsible for T-cell receptor (TCR) recognition. In this study, three altered CII263-272 peptide ligands (APL) containing multiple substitutions of TCR contact residues were synthesized. Their roles in inhibition of T-cell activation were evaluated in peripheral blood lymphocytes (PBL) of rheumatoid arthritis (RA) in vitro. It was shown that 41% (25/61) of RA patients were responsive to the wild-type antigenic CII263-272. In contrast, marginal or silent T-cell responses to the three APLs were found, accompanied by inhibitory effects on secretion of Th1 type cytokines and expression of cell surface markers, CD69 and CD25. In addition, T-cell activation induced by the wild-type antigenic CII263-272 was inhibited by all the three APLs in a dose-dependent manner. It is demonstrated that APLs with substitutions of TCR contact residues are capable of down-regulating T-cell responses in PBLs of RA, suggesting that the CII-derived APLs are potentially therapeutic in RA.
Collapse
MESH Headings
- Adult
- Aged
- Antigens, CD/biosynthesis
- Antigens, CD/genetics
- Antigens, Differentiation, T-Lymphocyte/biosynthesis
- Antigens, Differentiation, T-Lymphocyte/genetics
- Arthritis, Rheumatoid/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Cell Proliferation
- Cells, Cultured
- Collagen Type II/immunology
- Collagen Type II/metabolism
- Cytokines/metabolism
- Female
- HLA-DR4 Antigen/immunology
- HLA-DR4 Antigen/metabolism
- Humans
- Immunosuppressive Agents/pharmacology
- Lectins, C-Type
- Ligands
- Lymphocyte Activation/immunology
- Male
- Middle Aged
- Peptide Fragments/immunology
- Peptide Fragments/metabolism
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Interleukin-2/biosynthesis
- Receptors, Interleukin-2/genetics
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Ru Li
- Department of Rheumatology and Immunology, People's Hospital, Beijing University Medical School, 11 Xizhimen South St., Beijing 100044, China
| | | | | |
Collapse
|
29
|
Li X, Li R, Li Z. Inhibitory effects on HLA-DR1-specific T-cell activation by influenza virus haemagglutinin-derived peptides. ACTA ACUST UNITED AC 2006; 67:45-52. [PMID: 16451200 DOI: 10.1111/j.1399-0039.2005.00509.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Collagen (CII) 263-272 peptide, an autoantigen in rheumatoid arthritis, is a specific human leukocyte antigen (HLA)-DR1/4-binding peptide recognized by T-cell receptors (TCR). The affinity of influenza virus haemagglutinin (HA) 306-318 peptide for the antigen-binding groove of HLA-DR1/4 molecules is higher than that of CII263-272. The HLA-DR1/4-binding residues of HA306-318 are located in the region 308-317. Altered HA308-317 peptides with substitutions of TCR-contact residues may inhibit HLA-DR1/4-specific T-cell activation by blocking the antigen-binding site of HLA-DR1/4 molecules. To evaluate the role of altered HA308-317 peptides in HLA-DR1-restricted T-cell activation, we synthesized three altered HA308-317 peptides. The specific binding of altered HA308-317 peptides to HLA-DR1 molecules was examined using flow cytometry. Effects of altered HA308-317 peptides on HLA-DR1-specific T-cell hybridoma were studied by measuring T-cell proliferation and surface expression of CD69 or CD25. The results showed that altered HA308-317 peptides were able to bind to HLA-DR1 molecules and competed with CII263-272 or wildtype HA308-317 peptide. Compared with wildtype CII263-272 or HA308-317, altered HA308-317 peptides did not stimulate significant T-cell proliferation and CD69 or CD25 expression. Furthermore, the altered HA308-317 peptides inhibited HLA-DR1-specific T-cell activation induced by CII263-272 or wildtype HA308-317 peptide, which may suggest an effective therapeutic strategy in inhibition of HLA-DR1-specific T-cell responses in autoimmunity.
Collapse
Affiliation(s)
- X Li
- Department of Rheumatology and Immunology, People's Hospital, Beijing University, China
| | | | | |
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW The aim of this article is to describe recent observations regarding the basis for the initiation and disease evolution of multiple sclerosis. RECENT FINDINGS A current debate is where and what initiates the neuroinflammatory reaction that characterizes the acute multiple sclerosis lesion. Immune sensitization to neural antigens could develop within the systemic compartment consequent to exposure to cross-reacting, possibly viral derived, peptides (molecular mimicry). Although CD4 T cells are considered central to initiating central nervous system inflammation, the actual extent and specificity of tissue injury reflects the array of adaptive (CD8 T cells and antibody) and innate (microglia/macrophages) immune constituents present in the lesions. Neuropathologic studies indicate that lethal changes in neural cells (oligodendrocytes) could also be the initiating event, reflecting as yet unidentified acquired insults (e.g. exogenous virus or reactivated endogenous retrovirus) or intrinsic abnormalities ('neurodegenerative' hypothesis). Recurrence or persistence of the disease process can reflect events occurring at multiple sites including expansion of the immune repertoire in response to neural antigens transported to regional lymph nodes (determinant spreading), especially if immune regulatory mechanisms are defective; alterations in blood-brain barrier properties consequent to initial cellular transmigration; and participation of endogenous (microglia, astrocytes) or long lived infiltrating cells (macrophages, B cells in ectopic germinal centers) in regulating and effecting immune functions within the central nervous system. Accumulating neurologic deficit reflects the balance between injury and repair; the latter also being negatively or positively (trophic support and clearance of tissue debris) impacted by inflammatory processes. SUMMARY Understanding the full spectrum of multiple sclerosis presents a continuing challenge for both immunology and neurobiology.
Collapse
Affiliation(s)
- Alexandre Prat
- Neuroimmunology Laboratory and Multiple Sclerosis Clinic, CHUM Notre-Dame Hospital, Montreal, Quebec, Canada
| | | |
Collapse
|
31
|
Patke DS, Farber DL. Modulation of Memory CD4 T Cell Function and Survival Potential by Altering the Strength of the Recall Stimulus. THE JOURNAL OF IMMUNOLOGY 2005; 174:5433-43. [PMID: 15843542 DOI: 10.4049/jimmunol.174.9.5433] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Optimization of long term immunity depends on the functional persistence of memory T cells; however, there are no defined strategies for promoting memory T cell function and survival. In this study, we hypothesized that varying the strength of the recall stimulus could modulate the function and survival potential of memory CD4 T cells. We tested the ability of peptide variants of influenza hemagglutinin (HA) exhibiting strong and weak avidity for an HA-specific TCR, to modulate HA-specific memory CD4 T cells in vitro and in vivo. In vitro stimulation with a weak avidity peptide (L115) uncoupled memory CD4 T proliferation from effector cytokine production with low apoptosis, whereas stimulation with a strong avidity peptide (Y117) fully recalled memory T cell functions but triggered increased apoptosis. To determine how differential recall would affect memory T cells in vivo, we boosted BALB/c hosts of transferred, CFSE-labeled HA-specific memory CD4 T cells with native HA, Y117, and L115 variant peptides and found differences in early Ag-driven memory T cell proliferation and IL-7R expression, with subsequent changes in memory T cell yield. High avidity boosting resulted in rapid proliferation, extensive IL-7R down-regulation, and the lowest yield of HA-specific memory cells, whereas low avidity boosting triggered low in vivo proliferation, maintenance of IL-7R expression, and the highest memory T cell yield. Our results indicate that memory CD4 T cell function and survival can be modulated at the recall level, and can be optimized by low level stimulation that minimizes apoptosis and enhances responses to survival factors.
Collapse
MESH Headings
- Animals
- CD4-Positive T-Lymphocytes/cytology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Cell Proliferation
- Cell Survival/immunology
- Epitopes, T-Lymphocyte/administration & dosage
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/metabolism
- Hemagglutinin Glycoproteins, Influenza Virus/administration & dosage
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/metabolism
- Immunization, Secondary/methods
- Immunologic Memory/immunology
- Ligands
- Liver/cytology
- Liver/immunology
- Liver/metabolism
- Lung/cytology
- Lung/immunology
- Lung/metabolism
- Lymphocyte Activation/immunology
- Lymphoid Tissue/cytology
- Lymphoid Tissue/immunology
- Lymphoid Tissue/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, Knockout
- Mice, Transgenic
- Peptide Fragments/administration & dosage
- Peptide Fragments/immunology
- Peptide Fragments/metabolism
- Receptors, Antigen, T-Cell/administration & dosage
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
Collapse
Affiliation(s)
- Deepa S Patke
- Division of Transplantation, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | |
Collapse
|
32
|
Gebe JA, Masewicz SA, Kochik SA, Reijonen H, Nepom GT. Inhibition of altered peptide ligand-mediated antagonism of human GAD65-responsive CD4+ T?cells by non-antagonizable T?cells. Eur J Immunol 2004; 34:3337-45. [PMID: 15549775 DOI: 10.1002/eji.200425535] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Altered peptide ligands derived from T cell-reactive self antigens have been shown to be protective therapeutic agents in animal models of autoimmunity. In this study we identified several altered peptide ligands derived from the type 1 diabetes-associated autoantigen human glutamic acid decarboxylase 65 (hGAD65) epitope that were capable of antagonizing a subset of a panel of human CD4(+) GAD65 (555-567)-responsive T cell clones derived from a diabetic individual. While no altered peptide ligand was able to antagonize all six clones in the T cell panel, a single-substituted peptide of isoleucine to methionine at position 561, which resides at the TCR contact p5 position, was able to antagonize five out of the six hGAD65-responsive clones. In a mixed T cell culture system we observed that altered peptide ligand-mediated antagonism is inhibited in a dose-dependent manner by the presence of non-antagonizable hGAD65 (555-567)-responsive T cells. From an analysis of the cytokines present in the mixed T cell cultures, interleukin-2 was sufficient to inhibit altered peptide ligand-induced antagonism. The inhibition of altered peptide ligand-mediated antagonism of self-antigen-responsive T cells by non-antagonizable T cells has implications in altered peptide ligand therapy where T cell antagonism is the goal.
Collapse
Affiliation(s)
- John A Gebe
- Benaroya Research Institute at Virginia Mason, Seattle, USA.
| | | | | | | | | |
Collapse
|
33
|
Hohlfeld R, Wekerle H. Autoimmune concepts of multiple sclerosis as a basis for selective immunotherapy: from pipe dreams to (therapeutic) pipelines. Proc Natl Acad Sci U S A 2004; 101 Suppl 2:14599-606. [PMID: 15306684 PMCID: PMC521993 DOI: 10.1073/pnas.0404874101] [Citation(s) in RCA: 173] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Autoimmune T and B cell responses to CNS antigen(s) are thought to drive the pathogenesis of multiple sclerosis (MS), and thus are logical targets for therapy. Indeed, several immunomodulatory agents, including IFN-beta 1b, IFN-beta 1a, glatiramer acetate, and mitoxantrone, have had beneficial clinical effects in different forms of MS. However, because the available treatments are only partially effective, MS therapy needs to be further improved. Selective (antigen-specific) immunotherapies are especially appealing because in theory they combine maximal efficacy with minimal side effects. Indeed, several innovative immunotherapies have been successfully applied in experimental autoimmune encephalomyelitis. For example, autoreactive T cells can be selectively targeted by means of antigen, T cell receptor, or activation markers. However, experimental autoimmune encephalomyelitis is far from being a perfect approximation of MS because MS is more heterogeneous and the target antigen(s) is (are) not known. Further advances in MS therapy will depend on our growing understanding of the pathogenesis of this still incurable disease.
Collapse
Affiliation(s)
- Reinhard Hohlfeld
- Department of Neuroimmunology, Max Planck Institute for Neurobiology, Am Klopferspitz, D-82152 Martinsried, Germany.
| | | |
Collapse
|
34
|
Kim HJ, Ifergan I, Antel JP, Seguin R, Duddy M, Lapierre Y, Jalili F, Bar-Or A. Type 2 monocyte and microglia differentiation mediated by glatiramer acetate therapy in patients with multiple sclerosis. THE JOURNAL OF IMMUNOLOGY 2004; 172:7144-53. [PMID: 15153538 DOI: 10.4049/jimmunol.172.11.7144] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Glatiramer acetate (GA) therapy of patients with multiple sclerosis (MS) represents a unique setting in which in vivo Th2 deviation of T cells is consistently observed and associated with clinical benefit in a human autoimmune disease. We postulated that APCs are important targets of GA therapy and demonstrate that treatment of MS patients with GA reciprocally regulates the IL-10/IL-12 cytokine network of monocytes in vivo. We further show that Th1- or Th2-polarized GA-reactive T cells isolated from untreated or treated MS patients mediate type 1 and 2 APC differentiation of human monocytes, based on their ability to efficiently induce subsequent Th1 and Th2 deviation of naive T cells, respectively. These observations are extended to human microglia, providing the first demonstration of type 2 differentiation of CNS-derived APCs. Finally, we confirm that the fundamental capacity of polarized T cells to reciprocally modulate APC function is not restricted to GA-reactive T cells, thereby defining a novel and dynamic positive feedback loop between human T cell and APC responses. In the context of MS, we propose that GA therapy results in the generation of type 2 APCs, contributing to Th2 deviation both in the periphery and in the CNS of MS patients. In addition to extending insights into the therapeutic mode of action of GA, our findings revisit the concept of bystander suppression and underscore the potential of APCs as attractive targets for therapeutic immune modulation.
Collapse
Affiliation(s)
- Ho Jin Kim
- Neuroimmunology Unit, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Sitaru AG, Timmermann W, Ulrichs K, Otto C. Allogeneic core amino acids of an immunodominant allopeptide are important for MHC binding and TCR recognition. Hum Immunol 2004; 65:817-25. [PMID: 15336783 DOI: 10.1016/j.humimm.2004.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2004] [Revised: 05/11/2004] [Accepted: 05/18/2004] [Indexed: 10/26/2022]
Abstract
The indirect alloimmune response seems to be restricted to a few dominant major histocompatibility complex (MHC)-derived peptides responsible for T-cell activation in allograft rejection. The molecular mechanisms of indirect T-cell activation have been studied using peptide analogues derived from the dominant allopeptide in vitro, whereas the in vivo effects of peptide analogues have not been well characterized yet. In the present study, we generated allochimeric peptide analogues by replacing the three allogeneic amino acids 5L, 9L, and 10T in the sequence of the dominant MHC class I allopeptide P1. These allochimeric peptide analogues were used to define the allogeneic amino acids critical for the MHC binding and TCR recognition. We found that position 5 (5L) of the dominant allopeptide acts as an MHC-binding residue, while the other two allogeneic positions, 9 and 10, are important for the T-cell receptor (TCR) recognition. A peptide containing the MHC-binding residue 5L, as the only different amino acid between donor (RT1.A(u)) and recipient (RT1.A(l)) sequences, did not induce proliferation of lymph node cells primed with the dominant peptide and prevented dominant peptide-induced acceleration of allograft rejection. Identification of MHC and TCR contact residues should facilitate the development of antigen-specific therapies to inhibit or regulate the indirect alloimmune response.
Collapse
|
36
|
Kim HJ, Biernacki K, Prat A, Antel JP, Bar-Or A. Inflammatory potential and migratory capacities across human brain endothelial cells of distinct glatiramer acetate-reactive T cells generated in treated multiple sclerosis patients. Clin Immunol 2004; 111:38-46. [PMID: 15093550 DOI: 10.1016/j.clim.2004.01.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2003] [Accepted: 01/14/2004] [Indexed: 10/26/2022]
Abstract
We asked whether GA-reactive T cells with distinct cytokine profiles (Th2 versus Th1/Th0), induced during GA therapy of multiple sclerosis (MS) patients, have different migratory capacities across human brain endothelial cells (HBECs), and distinct effects on inflammatory responses at the level of the blood-brain barrier (BBB). We confirmed that GA therapy induces a range of GA-reactive T cells defined by distinct profiles of cytokine expression. Supernatants from Th0/Th1 GA-reactive cells significantly upregulated pro-inflammatory chemokine and adhesion molecule expression in HBECs. Post-treatment Th2-polarized GA-reactive cells were significantly less pro-inflammatory but did not suppress the effects induced by Th1 cells. All lines migrated across a HBEC/fibronectin-based model of the BBB with similar efficiencies. We conclude that the spectrum of GA-reactive T cells induced in treated MS patients may differentially impact inflammatory responses at the BBB level. Future studies will determine whether this could contribute to variable clinical response to GA therapy.
Collapse
Affiliation(s)
- Ho Jin Kim
- Department of Neurology, Neuroimmunology Unit, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
37
|
Abstract
Multiple sclerosis (MS), the most common central nervous system (CNS) demyelinating disease, is thought to be mediated in part by CNS autoantigen-specific T cells. The aetiology of the disease is unclear, but includes genetic and environmental factors. The disease onset often occurs in young adults and is characterised by bouts of neurological symptoms such as numbness, weakness, imbalance or visual difficulties that may not be recovered from. Sometimes the course is more progressive. Since the disease can be disabling, several treatments have been developed that reduce the risk of relapse and progression of sustained disability. Although earlier treatment is encouraged, currently approved disease modifying therapies for MS are only partially effective, administered parenterally and associated with significant side effects and potential toxicities. Therefore, many promising new therapies are under development that target various goals, including immunosuppression, immunomodulation, cell traffic through the blood-brain barrier (BBB), neuroprotection and enhancement of CNS repair.
Collapse
Affiliation(s)
- Emmanuelle Waubant
- UCSF MS Center, 350 Parnassus Street, Suite 908, San Francisco, CA 94117, USA.
| |
Collapse
|
38
|
Abstract
Although neurodegenerative diseases such as Alzheimer's disease are not classically considered mediated by inflammation or the immune system, in some instances the immune system may play an important role in the degenerative process. Furthermore, it has become clear that the immune system itself may have beneficial effects in nervous system diseases considered neurodegenerative. Immunotherapeutic approaches designed to induce a humoral immune response have recently been developed for the treatment of Alzheimer's disease. These studies have led to human trials that resulted in both beneficial and adverse effects. In animal models, it has also been shown that immunotherapy designed to induce a cellular immune response may be of benefit in central nervous system injury, although T cells may have either a beneficial or detrimental effect depending on the type of T cell response induced. These areas provide a new avenue for exploring immune system-based therapy of neurodegenerative diseases and will be discussed here with a primary focus on Alzheimer's disease. We will also discuss how these approaches affect microglia activation, which plays a key role in therapy of such diseases.
Collapse
Affiliation(s)
- Alon Monsonego
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|
39
|
Baker D, Hankey DJR. Gene therapy in autoimmune, demyelinating disease of the central nervous system. Gene Ther 2003; 10:844-53. [PMID: 12732870 DOI: 10.1038/sj.gt.3302025] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Multiple sclerosis (MS) is an immune-mediated disease of the central nervous system (CNS), where suspected autoimmune attack causes nerve demyelination and progressive neurodegeneration and should benefit from both anti-inflammatory and neuroprotective strategies. Although neuroprotection strategies are relatively unexplored in MS, systemic delivery of anti-inflammatory agents to people with MS has so far been relatively disappointing. This is most probably because of the limited capacity of these molecules to enter the target tissue, because of exclusion by the blood-brain barrier. The complex natural history of MS also means that any therapeutic agents will have to be administered long-term. Gene therapy offers the possibility of site-directed, long-term expression, and is currently being preclinically investigated in experimental autoimmune encephalomyelitis (EAE), an animal model of MS. While some immune effects may be targeted in the periphery using DNA vaccination, strategies both viral and nonviral are being developed to target agents into the CNS either via direct delivery or using the trafficking properties of cell-carrier systems. Targeting of leucocyte activation, cytokines and nerve growth factors have shown some promising benefit in animal EAE systems, the challenge will be their application in clinical use.
Collapse
Affiliation(s)
- David Baker
- Institute of Neurology, University College London, UK
| | | |
Collapse
|