1
|
Santus P, Signorello JC, Danzo F, Lazzaroni G, Saad M, Radovanovic D. Anti-Inflammatory and Anti-Oxidant Properties of N-Acetylcysteine: A Fresh Perspective. J Clin Med 2024; 13:4127. [PMID: 39064168 PMCID: PMC11278452 DOI: 10.3390/jcm13144127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
N-acetyl-L-cysteine (NAC) was initially introduced as a treatment for mucus reduction and widely used for chronic respiratory conditions associated with mucus overproduction. However, the mechanism of action for NAC extends beyond its mucolytic activity and is complex and multifaceted. Contrary to other mucoactive drugs, NAC has been found to exhibit antioxidant, anti-infective, and anti-inflammatory activity in pre-clinical and clinical reports. These properties have sparked interest in its potential for treating chronic lung diseases, including chronic obstructive pulmonary disease (COPD), bronchiectasis (BE), cystic fibrosis (CF), and idiopathic pulmonary fibrosis (IPF), which are associated with oxidative stress, increased levels of glutathione and inflammation. NAC's anti-inflammatory activity is noteworthy, and it is not solely secondary to its antioxidant capabilities. In ex vivo models of COPD exacerbation, the anti-inflammatory effects have been observed even at very low doses, especially with prolonged treatment. The mechanism involves the inhibition of the activation of NF-kB and neurokinin A production, resulting in a reduction in interleukin-6 production, a cytokine abundantly present in the sputum and breath condensate of patients with COPD and correlates with the number of exacerbations. The unique combination of mucolytic, antioxidant, anti-infective, and anti-inflammatory properties positions NAC as a safe, cost-effective, and efficacious therapy for a plethora of respiratory conditions.
Collapse
Affiliation(s)
- Pierachille Santus
- Division of Respiratory Diseases, “L. Sacco” University Hospital, Università degli Studi di Milano, 20122 Milano, Italy; (J.C.S.); (F.D.); (G.L.); (D.R.)
| | - Juan Camilo Signorello
- Division of Respiratory Diseases, “L. Sacco” University Hospital, Università degli Studi di Milano, 20122 Milano, Italy; (J.C.S.); (F.D.); (G.L.); (D.R.)
| | - Fiammetta Danzo
- Division of Respiratory Diseases, “L. Sacco” University Hospital, Università degli Studi di Milano, 20122 Milano, Italy; (J.C.S.); (F.D.); (G.L.); (D.R.)
| | - Giada Lazzaroni
- Division of Respiratory Diseases, “L. Sacco” University Hospital, Università degli Studi di Milano, 20122 Milano, Italy; (J.C.S.); (F.D.); (G.L.); (D.R.)
| | - Marina Saad
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20122 Milano, Italy;
| | - Dejan Radovanovic
- Division of Respiratory Diseases, “L. Sacco” University Hospital, Università degli Studi di Milano, 20122 Milano, Italy; (J.C.S.); (F.D.); (G.L.); (D.R.)
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20122 Milano, Italy;
| |
Collapse
|
2
|
Padalhin A, Abueva C, Ryu HS, Yoo SH, Seo HH, Park SY, Chung PS, Woo SH. Impact of Thermo-Responsive N-Acetylcysteine Hydrogel on Dermal Wound Healing and Oral Ulcer Regeneration. Int J Mol Sci 2024; 25:4835. [PMID: 38732054 PMCID: PMC11084650 DOI: 10.3390/ijms25094835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
This study investigates the efficacy of a thermo-responsive N-acetylcysteine (NAC) hydrogel on wound healing and oral ulcer recovery. Formulated by combining NAC with methylcellulose, the hydrogel's properties were assessed for temperature-induced gelation and cell viability using human fibroblast cells. In vivo experiments on Sprague Dawley rats compared the hydrogel's effects against saline, NAC solution, and a commercial NAC product. Results show that a 5% NAC and 1% methylcellulose solution exhibited optimal outcomes. While modest improvements in wound healing were observed, significant enhancements were noted in oral ulcer recovery, with histological analyses indicating fully regenerated mucosal tissue. The study concludes that modifying viscosity enhances NAC retention, facilitating tissue regeneration. These findings support previous research on the beneficial effects of antioxidant application on damaged tissues, suggesting the potential of NAC hydrogels in improving wound care and oral ulcer treatment.
Collapse
Affiliation(s)
- Andrew Padalhin
- Beckman Laser Institute Korea, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea; (A.P.); (C.A.); (H.S.R.); (S.Y.P.); (P.-S.C.)
| | - Celine Abueva
- Beckman Laser Institute Korea, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea; (A.P.); (C.A.); (H.S.R.); (S.Y.P.); (P.-S.C.)
- Medical Laser Research Center, Dankook University, Cheonan 31116, Republic of Korea
| | - Hyun Seok Ryu
- Beckman Laser Institute Korea, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea; (A.P.); (C.A.); (H.S.R.); (S.Y.P.); (P.-S.C.)
| | - Seung Hyeon Yoo
- School of Medical Lasers, Dankook University, Cheonan 31116, Republic of Korea; (S.H.Y.); (H.H.S.)
| | - Hwee Hyon Seo
- School of Medical Lasers, Dankook University, Cheonan 31116, Republic of Korea; (S.H.Y.); (H.H.S.)
| | - So Young Park
- Beckman Laser Institute Korea, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea; (A.P.); (C.A.); (H.S.R.); (S.Y.P.); (P.-S.C.)
| | - Phil-Sang Chung
- Beckman Laser Institute Korea, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea; (A.P.); (C.A.); (H.S.R.); (S.Y.P.); (P.-S.C.)
- Medical Laser Research Center, Dankook University, Cheonan 31116, Republic of Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Seung Hoon Woo
- Beckman Laser Institute Korea, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea; (A.P.); (C.A.); (H.S.R.); (S.Y.P.); (P.-S.C.)
- Medical Laser Research Center, Dankook University, Cheonan 31116, Republic of Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
3
|
Montero P, Roger I, Estornut C, Milara J, Cortijo J. Influence of dose and exposition time in the effectiveness of N-Acetyl-l-cysteine treatment in A549 human epithelial cells. Heliyon 2023; 9:e15613. [PMID: 37144195 PMCID: PMC10151372 DOI: 10.1016/j.heliyon.2023.e15613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 05/06/2023] Open
Abstract
N-Acetyl-l-cysteine (NAC) acts as a precursor of the tripeptide glutathione (GSH), one of the principal cell mechanisms for reactive oxygen species (ROS) detoxification. Chronic obstructive pulmonary disease (COPD) is associated with enhanced inflammatory response and oxidative stress and NAC has been used to suppress various pathogenic processes in this disease. Studies show that the effects of NAC are dose-dependent, and it appears that the efficient doses in vitro are usually higher than the achieved in vivo plasma concentrations. However, to date, the inconsistencies between the in vitro NAC antioxidant and anti-inflammatory in vitro effects, by reproducing the in vivo NAC plasma concentrations as well as high NAC concentrations. To do so, A549 were transfected with polyinosinic-polycytidylic acid (Poly (I:C)) and treated with NAC at different treatment periods. Oxidative stress, release of proinflammatory mediators and NFkB activation were analyzed. Results suggest that NAC at low doses in chronic administration has sustained antioxidant and anti-inflammatory effects, while acute treatment with high dose NAC exerts a strong antioxidant and anti-inflammatory response.
Collapse
Affiliation(s)
- Paula Montero
- Department of Pharmacology, Faculty of Medicine, University of Valencia, 46010, Valencia, Spain
- Faculty of Health Sciences, Universidad Europea de Valencia, 46010, Valencia, Spain
- Corresponding author. Department of Pharmacology, Faculty of Medicine, University of Valencia, 46010, Valencia, Spain.
| | - Inés Roger
- Department of Pharmacology, Faculty of Medicine, University of Valencia, 46010, Valencia, Spain
- Faculty of Health Sciences, Universidad Europea de Valencia, 46010, Valencia, Spain
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Health Institute Carlos III, 28029, Madrid, Spain
| | - Cristina Estornut
- Faculty of Health Sciences, Universidad Europea de Valencia, 46010, Valencia, Spain
| | - Javier Milara
- Department of Pharmacology, Faculty of Medicine, University of Valencia, 46010, Valencia, Spain
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Health Institute Carlos III, 28029, Madrid, Spain
- Pharmacy Unit, University General Hospital Consortium, 46014, Valencia, Spain
| | - Julio Cortijo
- Department of Pharmacology, Faculty of Medicine, University of Valencia, 46010, Valencia, Spain
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Health Institute Carlos III, 28029, Madrid, Spain
- Research and Teaching Unit, University General Hospital Consortium, 46014, Valencia, Spain
| |
Collapse
|
4
|
Guerini M, Condrò G, Friuli V, Maggi L, Perugini P. N-acetylcysteine (NAC) and Its Role in Clinical Practice Management of Cystic Fibrosis (CF): A Review. Pharmaceuticals (Basel) 2022; 15:ph15020217. [PMID: 35215328 PMCID: PMC8879903 DOI: 10.3390/ph15020217] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/03/2022] [Accepted: 02/08/2022] [Indexed: 12/16/2022] Open
Abstract
N-acetylcysteine is the acetylated form of the amino acid L-cysteine and a precursor to glutathione (GSH). It has been known for a long time as a powerful antioxidant and as an antidote for paracetamol overdose. However, other activities related to this molecule have been discovered over the years, making it a promising drug for diseases such as cystic fibrosis (CF). Its antioxidant activity plays a key role in CF airway inflammation and redox imbalance. Furthermore, this molecule appears to play an important role in the prevention and eradication of biofilms resulting from CF airway infections, in particular that of Pseudomonas aeruginosa. The aim of this review is to provide an overview of CF and the role that NAC could play in preventing and eliminating biofilms, as a modulator of inflammation and as an antioxidant, restoring the redox balance within the airways in CF patients. To do this, NAC can act alone, but it can also be used as an adjuvant molecule to known drugs (antibiotics/anti-inflammatories) to increase their activity.
Collapse
Affiliation(s)
- Marta Guerini
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy; (G.C.); (V.F.); (L.M.); (P.P.)
- Correspondence:
| | - Giorgia Condrò
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy; (G.C.); (V.F.); (L.M.); (P.P.)
| | - Valeria Friuli
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy; (G.C.); (V.F.); (L.M.); (P.P.)
| | - Lauretta Maggi
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy; (G.C.); (V.F.); (L.M.); (P.P.)
| | - Paola Perugini
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy; (G.C.); (V.F.); (L.M.); (P.P.)
- Etichub, Academic Spin-Off, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
5
|
Calzetta L, Matera MG, Rogliani P, Cazzola M. Multifaceted activity of N-acetyl-l-cysteine in chronic obstructive pulmonary disease. Expert Rev Respir Med 2018; 12:693-708. [DOI: 10.1080/17476348.2018.1495562] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Luigino Calzetta
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy
| | - Maria Gabriella Matera
- Department of Experimental Medicine, Unit of Pharmacology, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Paola Rogliani
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy
| | - Mario Cazzola
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
6
|
Cazzola M, Calzetta L, Facciolo F, Rogliani P, Matera MG. Pharmacological investigation on the anti-oxidant and anti-inflammatory activity of N-acetylcysteine in an ex vivo model of COPD exacerbation. Respir Res 2017; 18:26. [PMID: 28118826 PMCID: PMC5260037 DOI: 10.1186/s12931-016-0500-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 12/29/2016] [Indexed: 12/20/2022] Open
Abstract
Background Oxidative stress is recognized to be one of predisposing factor in the pathogenesis of COPD. The oxidant/antioxidant imbalance is significantly pronounced in patients with COPD exacerbation. N-acetylcysteine (NAC) seems to be able to reduce COPD exacerbations by modulating the oxidative stress in addition to its well-known mucolytic activity, but there are discordant findings on the actual anti-oxidant activity of NAC. Methods The anti-oxidant effect of NAC and its impact on the inflammatory response have been pharmacologically characterized on a human ex vivo model of COPD exacerbation induced by lipopolysaccharide (LPS). Results NAC prevented the desensitization induced by LPS incubation on the contractile tone in linear concentration-response manner. Concentrations of NAC ≥1 μM reduced the pro-oxidant response (peroxidase activity, hydrogen peroxide, malondialdehyde, nitric oxide), and improved the anti-oxidant response (total anti-oxidant capacity, glutathione, superoxide dismutase) induced by LPS. Lower concentrations of NAC (<1 μM) did not modulate the bronchial oxidative imbalance. Concentrations of NAC ≥300 μM inhibited the inflammatory response (release of IL-1β, IL-8, and TNF-α) of human airways induced by the overnight stimulation with LPS, whereas lower concentrations of NAC (≥1 μM) were sufficient to reduce the release of IL-6 elicited by LPS. Both the anti-oxidant effect and the anti-inflammatory effect of NAC were inversely correlated with the release of NKA. Conclusions The findings of this study suggest that NAC may have a role in modulating the detrimental effect induced by LPS in course of COPD exacerbation. It may elicit both anti-oxidant and anti-inflammatory effects when administered at high concentrations.
Collapse
Affiliation(s)
- Mario Cazzola
- Department of Systems Medicine, Chair of Respiratory Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Luigino Calzetta
- Department of Systems Medicine, Chair of Respiratory Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy.
| | - Francesco Facciolo
- Regina Elena National Cancer Institute, Thoracic Surgery Unit, Rome, Italy
| | - Paola Rogliani
- Department of Systems Medicine, Chair of Respiratory Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Maria Gabriella Matera
- Department of Experimental Medicine, Unit of Pharmacology, Second University of Naples, Naples, Italy
| |
Collapse
|
7
|
Sanguinetti CM. N-acetylcysteine in COPD: why, how, and when? Multidiscip Respir Med 2016; 11:8. [PMID: 26855777 PMCID: PMC4744393 DOI: 10.1186/s40248-016-0039-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 01/05/2016] [Indexed: 12/23/2022] Open
Abstract
Oxidants have long been recognized to have an important role in the pathogenesis of COPD, and in this cigarette smoke has a strong responsibility, because it generates a conspicuous amount of oxidant radicals able to modify the structure of the respiratory tract and to enhance several mechanisms that sustain lung inflammation in COPD. In fact, oxidative stress is highly increased in COPD and natural antioxidant capacities, mainly afforded by reduced glutathione, are often overcome. Thus an exogenous supplementation of antioxidant compounds is mandatory to at least partially counteract the oxidative stress. For this purpose N-acetylcysteine has great potentialities due to its capacity of directly contrasting oxidants with its free thiols, and to the possibility it has of acting as donor of cysteine precursors aimed at glutathione restoration. Many studies in vitro and in vivo have already demonstrated the antioxidant capacity of NAC. Many clinical studies have long been performed to explore the efficacy of NAC in COPD with altern results, especially when the drug was used at very low dosage and/or for a short period of time. More recently, several trials have been conducted to verify the appropriateness of using high-dose NAC in COPD, above all to decrease the exacerbations rate. The results have been encouraging, even if some of the data come from the most widely sized trials that have been conducted in Chinese populations. Although other evidence should be necessary to confirm the results in other populations of patients, high-dose oral NAC nevertheless offers interesting perspectives as add-on therapy for COPD patients.
Collapse
|
8
|
Bach N, Bølling AK, Brinchmann BC, Totlandsdal AI, Skuland T, Holme JA, Låg M, Schwarze PE, Øvrevik J. Cytokine responses induced by diesel exhaust particles are suppressed by PAR-2 silencing and antioxidant treatment, and driven by polar and non-polar soluble constituents. Toxicol Lett 2015; 238:72-82. [PMID: 26160521 DOI: 10.1016/j.toxlet.2015.07.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 07/01/2015] [Accepted: 07/02/2015] [Indexed: 12/14/2022]
Abstract
Adsorbed soluble organics seem to be the main drivers of inflammatory responses induced by diesel exhaust particles (DEP). The specific compounds contributing to this process and the cellular mechanisms behind DEP-induced inflammation are not well known. We have assessed pro-inflammatory effects of DEP and various soluble DEP fractions, in human bronchial epithelial cells (BEAS-2B). DEP increased the expression of interleukin (IL)-6 and CXCL8. Silencing of the aryl hydrocarbon receptor (AhR) by siRNA or pretreatment with AhR-antagonists did not attenuate DEP-induced IL-6 and CXCL8 responses. However, the halogenated aromatic hydrocarbon (HAH)-selective AhR antagonist CH223191 caused a considerable reduction in DEP-induced CYP1A1 expression indicating that this response may be due to dioxin or dioxin-like constituents in DEP. Knock-down of protease activated receptor (PAR)-2 attenuated IL-6 responses without affecting CXCL8. Antioxidants did not affect IL-6 expression after 4h DEP-exposure and only partly reduced CXCL8 expression. However, after 24h exposure antioxidant treatment partly suppressed IL-6 protein release and completely blocked CXCL8 release. Furthermore, a heptane-soluble (non-polar) extract of DEP induced both IL-6 and CXCL8 release, whereas a PBS-soluble (highly polar) extract induced only IL-6. Thus, pro-inflammatory responses in DEP-exposed epithelial cells appear to be the result of both reactive oxygen species and receptor signaling, mediated through combinatorial effects between both non-polar and polar constituents adhered to the particle surface.
Collapse
Affiliation(s)
- Nicolai Bach
- Department of Air Pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, Norway; Department of Biology, Faculty of Mathematics and Natural Sciences, University of Oslo, Norway
| | - Anette Kocbach Bølling
- Department of Air Pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, Norway
| | - Bendik C Brinchmann
- Department of Air Pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, Norway
| | - Annike I Totlandsdal
- Department of Air Pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, Norway
| | - Tonje Skuland
- Department of Air Pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, Norway
| | - Jørn A Holme
- Department of Air Pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, Norway
| | - Marit Låg
- Department of Air Pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, Norway
| | - Per E Schwarze
- Department of Air Pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, Norway
| | - Johan Øvrevik
- Department of Air Pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, Norway.
| |
Collapse
|
9
|
Øvrevik J, Refsnes M, Låg M, Holme JA, Schwarze PE. Activation of Proinflammatory Responses in Cells of the Airway Mucosa by Particulate Matter: Oxidant- and Non-Oxidant-Mediated Triggering Mechanisms. Biomolecules 2015; 5:1399-440. [PMID: 26147224 PMCID: PMC4598757 DOI: 10.3390/biom5031399] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 06/16/2015] [Accepted: 06/16/2015] [Indexed: 12/23/2022] Open
Abstract
Inflammation is considered to play a central role in a diverse range of disease outcomes associated with exposure to various types of inhalable particulates. The initial mechanisms through which particles trigger cellular responses leading to activation of inflammatory responses are crucial to clarify in order to understand what physico-chemical characteristics govern the inflammogenic activity of particulate matter and why some particles are more harmful than others. Recent research suggests that molecular triggering mechanisms involved in activation of proinflammatory genes and onset of inflammatory reactions by particles or soluble particle components can be categorized into direct formation of reactive oxygen species (ROS) with subsequent oxidative stress, interaction with the lipid layer of cellular membranes, activation of cell surface receptors, and direct interactions with intracellular molecular targets. The present review focuses on the immediate effects and responses in cells exposed to particles and central down-stream signaling mechanisms involved in regulation of proinflammatory genes, with special emphasis on the role of oxidant and non-oxidant triggering mechanisms. Importantly, ROS act as a central second-messenger in a variety of signaling pathways. Even non-oxidant mediated triggering mechanisms are therefore also likely to activate downstream redox-regulated events.
Collapse
Affiliation(s)
- Johan Øvrevik
- Department of Air Pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, N-0403 Oslo, Norway.
| | - Magne Refsnes
- Department of Air Pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, N-0403 Oslo, Norway.
| | - Marit Låg
- Department of Air Pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, N-0403 Oslo, Norway.
| | - Jørn A Holme
- Department of Air Pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, N-0403 Oslo, Norway.
| | - Per E Schwarze
- Department of Air Pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, N-0403 Oslo, Norway.
| |
Collapse
|
10
|
Mossman BT, Glenn RE. Bioreactivity of the crystalline silica polymorphs, quartz and cristobalite, and implications for occupational exposure limits (OELs). Crit Rev Toxicol 2013; 43:632-60. [PMID: 23863112 DOI: 10.3109/10408444.2013.818617] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Silica or silicon dioxides (SiO₂) are naturally occurring substances that comprise the vast majority of the earth's crust. Because of their prevalence and commercial applications, they have been widely studied for their potential to induce pulmonary fibrosis and other disorders. Historically, the focus in the workplace has been on the development of inflammation and fibrotic lung disease, the basis for promulgating workplace standards to protect workers. Crystalline silica (CS) polymorphs, predominantly quartz and cristobalite, are used in industry but are different in their mineralogy, chemistry, surface features, size dimensions and association with other elements naturally and during industrial applications. Epidemiologic, clinical and experimental studies in the literature historically have predominantly focused on quartz polymorphs. Thus, in this review, we summarize past scientific evaluations and recent peer-reviewed literature with an emphasis on cristobalite, in an attempt to determine whether quartz and cristobalite polymorphs differ in their health effects, toxicity and other properties that may dictate the need for various standards of protection in the workplace. In addition to current epidemiological and clinical reports, we review in vivo studies in rodents as well as cell culture studies that shed light on mechanisms intrinsic to the toxicity, altered cell responses and protective or defense mechanisms in response to these minerals. The medical and scientific literature indicates that the mechanisms of injury and potential causation of inflammation and fibrotic lung disease are similar for quartz and cristobalite. Our analysis of these data suggests similar occupational exposure limits (OELs) for these minerals in the workplace.
Collapse
Affiliation(s)
- Brooke T Mossman
- Department of Pathology, University of Vermont College of Medicine, Burlington, VT 05405-0068, USA.
| | | |
Collapse
|
11
|
Abstract
Silicon is the second most abundant element in nature behind oxygen. As a metalloid, silicon has been used in many industrial applications including use as an additive in the food and beverage industry. As a result, humans come into contact with silicon through both environmental exposures but also as a dietary component. Moreover, many forms of silicon, that is, Si bound to oxygen, are water-soluble, absorbable, and potentially bioavailable to humans presumably with biological activity. However, the specific biochemical or physiological functions of silicon, if any, are largely unknown although generally thought to exist. As a result, there is growing interest in the potential therapeutic effects of water-soluble silica on human health. For example, silicon has been suggested to exhibit roles in the structural integrity of nails, hair, and skin, overall collagen synthesis, bone mineralization, and bone health and reduced metal accumulation in Alzheimer's disease, immune system health, and reduction of the risk for atherosclerosis. Although emerging research is promising, much additional, corroborative research is needed particularly regarding speciation of health-promoting forms of silicon and its relative bioavailability. Orthosilicic acid is the major form of bioavailable silicon whereas thin fibrous crystalline asbestos is a health hazard promoting asbestosis and significant impairment of lung function and increased cancer risk. It has been proposed that relatively insoluble forms of silica can also release small but meaningful quantities of silicon into biological compartments. For example, colloidal silicic acid, silica gel, and zeolites, although relatively insoluble in water, can increase concentrations of water-soluble silica and are thought to rely on specific structural physicochemical characteristics. Collectively, the food supply contributes enough silicon in the forms aforementioned that could be absorbed and significantly improve overall human health despite the negative perception of silica as a health hazard. This review discusses the possible biological potential of the metalloid silicon as bioavailable orthosilicic acid and the potential beneficial effects on human health.
Collapse
Affiliation(s)
- Keith R Martin
- School of Nutrition and Health Promotion, Healthy Lifestyles Research Center, Arizona State University, 500 North 3rd Street, Phoenix, AZ, 85004, USA,
| |
Collapse
|
12
|
Gulumian M, Borm PJA, Vallyathan V, Castranova V, Donaldson K, Nelson G, Murray J. Mechanistically identified suitable biomarkers of exposure, effect, and susceptibility for silicosis and coal-worker's pneumoconiosis: a comprehensive review. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2006; 9:357-95. [PMID: 16990219 DOI: 10.1080/15287390500196537] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Clinical detection of silicosis is currently dependent on radiological and lung function abnormalities, both late manifestations of disease. Markers of prediction and early detection of pneumoconiosis are imperative for the implementation of timely intervention strategies. Understanding the underlying mechanisms of the etiology of coal workers pneumoconiosis (CWP) and silicosis was essential in proposing numerous biomarkers that have been evaluated to assess effects following exposure to crystalline silica and/or coal mine dust. Human validation studies have substantiated some of these proposed biomarkers and argued in favor of their use as biomarkers for crystalline silica- and CWP-induced pneumoconiosis. A number of "ideal" biological markers of effect were identified, namely, Clara cell protein-16 (CC16) (serum), tumor necrosis factor-alpha (TNF-alpha) (monocyte release), interleukin-8 (IL-8) (monocyte release), reactive oxygen species (ROS) measurement by chemiluminescence (neutrophil release), 8-isoprostanes (serum), total antioxidant levels measured by total equivalent antioxidant capacity (TEAC), glutathione, glutathione peroxidase activity, glutathione S-transferase activity, and platelet-derived growth factor (PDGF) (serum). TNF-alpha polymorphism (blood cellular DNA) was identified as a biomarker of susceptibility. Further studies are planned to test the validity and feasibility of these biomarkers to detect either high exposure to crystalline silica and early silicosis or susceptibility to silicosis in gold miners in South Africa.
Collapse
Affiliation(s)
- M Gulumian
- Department of Toxicology and Biochemistry Research, National Institute for Occupational Health, Johannesburg, South Africa.
| | | | | | | | | | | | | |
Collapse
|
13
|
Sadowska AM, Manuel-Y-Keenoy B, De Backer WA. Antioxidant and anti-inflammatory efficacy of NAC in the treatment of COPD: discordant in vitro and in vivo dose-effects: a review. Pulm Pharmacol Ther 2006; 20:9-22. [PMID: 16458553 DOI: 10.1016/j.pupt.2005.12.007] [Citation(s) in RCA: 234] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2005] [Accepted: 12/16/2005] [Indexed: 01/07/2023]
Abstract
In order to develop efficient therapeutic regimes for chronic obstructive pulmonary disease (COPD), N-acetylcysteine (NAC) has been tested as a medication which can suppress various pathogenic processes in this disease. Besides its well-known and efficient mucolytic action, NAC meets these needs by virtue of its antioxidant and anti-inflammatory modes of action. NAC is a thiol compound which by providing sulfhydryl groups, can act both as a precursor of reduced glutathione and as a direct ROS scavenger, hence regulating the redox status in the cells. In this way it can interfere with several signaling pathways that play a role in regulating apoptosis, angiogenesis, cell growth and arrest and inflammatory response. Overall, the antioxidant effects of NAC are well documented in in vivo and in vitro studies. It successfully inhibits oxidative stress at both high and low concentrations, under acute (in vitro) and chronic administration (in vivo). With regard to its anti-inflammatory action, in contrast, the effects of NAC differ in vivo and in vitro and are highly dose-dependent. In the in vitro settings anti-inflammatory effects are seen at high but not at low concentrations. On the other hand, some long-term effectiveness is reported in several in vivo studies even at low dosages. Increasing the dose seems to improve NAC bioavailability and may also consolidate some of its effects. In this way, the effects that are observed in the clinical and in vivo studies do not always reflect the success of the in vitro experiments. Furthermore, the results obtained with healthy volunteers do not always provide incontrovertible proof of its usefulness in COPD especially when number of exacerbations and changes in lung function are chosen as the primary outcomes. Despite these considerations and in view of the present lack of effective therapies to inhibit disease progression in COPD, NAC and its derivatives, because of their multiple molecular modes of action, remain promising medication once doses and route of administration are optimized.
Collapse
Affiliation(s)
- A M Sadowska
- Department of Respiratory Medicine, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium.
| | | | | |
Collapse
|
14
|
Sadowska AM, Verbraecken J, Darquennes K, De Backer WA. Role of N-acetylcysteine in the management of COPD. Int J Chron Obstruct Pulmon Dis 2006; 1:425-34. [PMID: 18044098 PMCID: PMC2707813 DOI: 10.2147/copd.2006.1.4.425] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The importance of the underlying local and systemic oxidative stress and inflammation in chronic obstructive pulmonary disease (COPD) has long been established. In view of the lack of therapy that might inhibit the progress of the disease, there is an urgent need for a successful therapeutic approach that, through affecting the pathological processes, will influence the subsequent issues in COPD management such as lung function, airway clearance, dyspnoea, exacerbation, and quality of life. N-acetylcysteine (NAC) is a mucolytic and antioxidant drug that may also influence several inflammatory pathways. It provides the sulfhydryl groups and acts both as a precursor of reduced glutathione and as a direct reactive oxygen species (ROS) scavenger, hence regulating the redox status in the cells. The changed redox status may, in turn, influence the inflammation-controlling pathways. Moreover, as a mucolytic drug, it may, by means of decreasing viscosity of the sputum, clean the bronchi leading to a decrease in dyspnoea and improved lung function. Nevertheless, as successful as it is in the in vitro studies and in vivo studies with high dosage, its actions at the dosages used in COPD management are debatable. It seems to influence exacerbation rate and limit the number of hospitalization days, however, with little or no influence on the lung function parameters. Despite these considerations and in view of the present lack of effective therapies to inhibit disease progression in COPD, NAC and its derivatives with their multiple molecular modes of action remain promising medication once doses and route of administration are optimized.
Collapse
Affiliation(s)
- Anna M Sadowska
- Department of Pulmonary Medicine, University of Antwerp, Antwerp, Belgium.
| | | | | | | |
Collapse
|
15
|
Convit J, Ulrich M, Pérez M, Hung J, Castillo J, Rojas H, Viquez A, Araya LN, Lima HD. Atypical cutaneous leishmaniasis in Central America: possible interaction between infectious and environmental elements. Trans R Soc Trop Med Hyg 2005; 99:13-7. [PMID: 15550256 DOI: 10.1016/j.trstmh.2004.02.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2004] [Revised: 02/11/2004] [Accepted: 02/11/2004] [Indexed: 11/23/2022] Open
Abstract
Biopsies of 71 cases of atypical cutaneous leishmaniasis from Costa Rican patients were evaluated by histopathological procedures and attempts were made to culture Leishmania from nine biopsies. Leishmanin skin tests were carried out in 31 patients and 112 healthy individuals. Additional biopsies from 19 patients from Nicaragua were evaluated by routine histopathology. Ten biopsies were studied by confocal and nine by scanning electron microscopy. Inorganic material was analysed using an electron probe for microanalysis. Leishmania parasites were isolated from only two biopsies, but 90.3% of the patients from Costa Rica were leishmanin-positive, as were 27.7% of healthy individuals. Routine histopathological studies revealed naked granulomas formed by differentiated macrophages. Abundant inorganic material was observed in sections examined by confocal microscopy. Electron probe analysis revealed that silica and aluminium were the predominant elements in large particles. We postulate that the presence of this inorganic material, possibly of volcanic origin, in the skin may modulate the immunological response to Leishmania and may inhibit visceralization in the cases caused by Leishmania chagasi.
Collapse
Affiliation(s)
- J Convit
- Instituto de Biomedicina, Universidad Central de Venezuela/Ministerio de Salud y Desarrollo Social, Apartado 4043, Caracas 1010A, Venezuela.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Castranova V. Signaling pathways controlling the production of inflammatory mediators in response to crystalline silica exposure: role of reactive oxygen/nitrogen species. Free Radic Biol Med 2004; 37:916-25. [PMID: 15336307 DOI: 10.1016/j.freeradbiomed.2004.05.032] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2003] [Revised: 05/07/2004] [Accepted: 05/28/2004] [Indexed: 11/30/2022]
Abstract
Occupational exposure to crystalline silica has been linked to pulmonary fibrosis and lung cancer. Surface properties of crystalline silica are critical to the production of oxidant species, chemokines, inflammatory cytokines, and proliferative factors involved in the initiation and progression of silica-induced damage, inflammation, alveolar type II cell hyperplasia, fibroblast activation, and disease. The transcription factors nuclear factor kappaB (NF-kappaB) and activator protein 1 (AP-1) have been shown to play key roles in gene promotion for inflammatory mediators, oncogenes, and growth factors. This review summarizes evidence that in vitro and in vivo exposure to crystalline silica results in activation of NF-kappaB and AP-1. Signaling pathways for activation of these transcription factors are described. In addition, the role of silica-induced reactive oxygen species and nitric oxide in the activation of these signaling events is presented. Last, the generalizability of mechanisms regulating silica-induced pulmonary responses to pulmonary reactions to other occupational particles is discussed.
Collapse
Affiliation(s)
- Vincent Castranova
- National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| |
Collapse
|
17
|
Desaki M, Okazaki H, Sunazuka T, Omura S, Yamamoto K, Takizawa H. Molecular mechanisms of anti-inflammatory action of erythromycin in human bronchial epithelial cells: possible role in the signaling pathway that regulates nuclear factor-kappaB activation. Antimicrob Agents Chemother 2004; 48:1581-5. [PMID: 15105108 PMCID: PMC400526 DOI: 10.1128/aac.48.5.1581-1585.2004] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Long-term macrolide therapy has been proven to improve survival in patients with diffuse panbronchiolitis. Although its mechanisms remain unknown, previous studies have suggested the effects of macrolide might be anti-inflammatory rather than antibacterial. To elucidate the molecular mechanisms of its action, we studied here the effects of erythromycin (EM) and its new derivative, EM703, which shows no antibacterial action, on the activation of the transcription factor nuclear factor-kappaB (NF-kappaB) in human bronchial epithelial cells. Western blotting analysis showed that EM did not inhibit the degradation of IkappaBalpha, suggesting the molecular target for EM was not the dissociation of NF-kappaB from IkappaB. An electrophoretic mobility shift assay showed that EM did not interrupt the NF-kappaB DNA-binding activity in the nucleus under the conditions tested. Moreover, not only EM but also EM703 suppressed the activation of NF-kappaB and the production of interleukin-8, demonstrating that the anti-inflammatory action of the macrolide is independent of its antibacterial activity. Taken together, these data suggest EM has an anti-inflammatory action, presumably via an interaction with the NF-kappaB signaling pathway in the downstream of the dissociation from IkappaB, resulting in the inhibition of NF-kappaB.
Collapse
Affiliation(s)
- Masashi Desaki
- Department of Respiratory Medicine, University of Tokyo Graduate School of Medicine. Kitasato Medical Institute, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
18
|
Cho H, Lee J, Kwak NJ, Lee KH, Rha S, Kim YH, Cho YY, Yang KH, Kim K, Lim Y. Silica induces nuclear factor-kappaB activation through TAK1 and NIK in Rat2 cell line. Toxicol Lett 2003; 143:323-30. [PMID: 12849693 DOI: 10.1016/s0378-4274(03)00193-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Silica has been known to be a factor in acute cell injury and chronic pulmonary fibrosis. In Rat2 fibroblasts, silica induced the activation of nuclear factor-kappa B (NF-kappaB), which plays a crucial role in regulating the expression of many genes involved in the subsequent inflammatory response. In addition, we observed that transforming growth factor-beta activated kinase 1 (TAK1) and NF-kappaB-inducing kinase (NIK) were involved in silica-mediated NF-kappaB activation in Rat2 cells. The dominant negative mutant forms of TAK1 and NIK inhibited the silica-induced NF-kappaB activation in Rat2 cells. Furthermore, we demonstrated that endogenous TAK1 is phosphorylated in silica-stimulated Rat2 cells. These results indicate that TAK1 functions as a critical mediator in the silica-induced signaling pathway.
Collapse
Affiliation(s)
- HyeYoung Cho
- Department of Occupational and Environmental Medicine, College of Medicine, The Catholic University of Korea, Youngdunpo-gu, Seoul, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Desaki M, Sugawara I, Iwakura Y, Yamamoto K, Takizawa H. Role of interferon-gamma in the development of murine bronchus-associated lymphoid tissues induced by silica in vivo. Toxicol Appl Pharmacol 2002; 185:1-7. [PMID: 12460731 DOI: 10.1006/taap.2002.9511] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Exposure to silica is associated with the development of chronic airflow obstruction as well as pulmonary fibrosis, probably mediated in part by silica-induced small airway disease. To elucidate the mechanism of mucosal immune responses in the small airways, we analyzed the roles of interferon-gamma (IFN-gamma) using mice deficient of this cytokine in silicotic lung. IFN-gamma knockout mice (-/-) and wild-type C57BL/6 mice were treated with either a single fibrogenic dose of silica or an equivalent volume of saline and euthanized 21 days after intratracheal instillation. Total cell counts in bronchoalveolar lavage fluids increased in silica-instilled mice compared to saline-instilled mice, but there were no significant differences between IFN-gamma knockout mice and wild-type mice treated with silica. Morphometric estimation for fibrotic lesions within the lung did not show any differences between these mice. However, bronchus-associated lymphoid tissues (BALT), which are known to be involved in the mucosal immune responses, were significantly larger in the lungs of IFN-gamma knockout mice than in those of wild-type mice treated with silica. In addition, we evaluated the development of BALT in interleukin 4 (IL-4) knockout mice in order to clarify the effect of Th2 cytokine. Morphometric estimation for BALT did not show any differences between IL-4 knockout mice and wild-type mice in silicotic lung. These results suggest that IFN-gamma has an inhibitory effect on the development of BALT and may be involved in small airway disease in silicotic lung.
Collapse
Affiliation(s)
- Masashi Desaki
- Department of Respiratory Medicine, Graduate School of Medicine, Instutute of Medical Science, University of Tokyo, Tokyo, Japan
| | | | | | | | | |
Collapse
|