1
|
Avellino A, Peng CH, Lin MD. Cell Cycle Regulation by NF-YC in Drosophila Eye Imaginal Disc: Implications for Synchronization in the Non-Proliferative Region. Int J Mol Sci 2023; 24:12203. [PMID: 37569581 PMCID: PMC10418845 DOI: 10.3390/ijms241512203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Cell cycle progression during development is meticulously coordinated with differentiation. This is particularly evident in the Drosophila 3rd instar eye imaginal disc, where the cell cycle is synchronized and arrests at the G1 phase in the non-proliferative region (NPR), setting the stage for photoreceptor cell differentiation. Here, we identify the transcription factor Nuclear Factor-YC (NF-YC) as a crucial player in this finely tuned progression, elucidating its specific role in the synchronized movement of the morphogenetic furrow. Depletion of NF-YC leads to extended expression of Cyclin A (CycA) and Cyclin B (CycB) from the FMW to the NPR. Notably, NF-YC knockdown resulted in decreased expression of Eyes absent (Eya) but did not affect Decapentaplegic (Dpp) and Hedgehog (Hh). Our findings highlight the role of NF-YC in restricting the expression of CycA and CycB in the NPR, thereby facilitating cell-cycle synchronization. Moreover, we identify the transcriptional cofactor Eya as a downstream target of NF-YC, revealing a new regulatory pathway in Drosophila eye development. This study expands our understanding of NF-YC's role from cell cycle control to encompass developmental processes.
Collapse
Affiliation(s)
- Anthony Avellino
- Department of Molecular Biology and Human Genetics, Tzu Chi University, 701 Zhongyang Rd., Sec. 3, Hualien 97004, Taiwan;
| | - Chen-Huan Peng
- Department of Orthopedics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, 707 Zhongyang Rd., Sec. 3, Hualien 97002, Taiwan;
- School of Medicine, Tzu Chi University, 701 Zhongyang Rd., Sec. 3, Hualien 97004, Taiwan
| | - Ming-Der Lin
- Department of Molecular Biology and Human Genetics, Tzu Chi University, 701 Zhongyang Rd., Sec. 3, Hualien 97004, Taiwan;
- Institute of Medical Sciences, Tzu Chi University, 701 Zhongyang Rd., Sec. 3, Hualien 97004, Taiwan
| |
Collapse
|
2
|
Weasner BP, Kumar JP. The early history of the eye-antennal disc of Drosophila melanogaster. Genetics 2022; 221:6573236. [PMID: 35460415 PMCID: PMC9071535 DOI: 10.1093/genetics/iyac041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 03/04/2022] [Indexed: 12/15/2022] Open
Abstract
A pair of eye-antennal imaginal discs give rise to nearly all external structures of the adult Drosophila head including the compound eyes, ocelli, antennae, maxillary palps, head epidermis, and bristles. In the earliest days of Drosophila research, investigators would examine thousands of adult flies in search of viable mutants whose appearance deviated from the norm. The compound eyes are dispensable for viability and perturbations to their structure are easy to detect. As such, the adult compound eye and the developing eye-antennal disc emerged as focal points for studies of genetics and developmental biology. Since few tools were available at the time, early researchers put an enormous amount of thought into models that would explain their experimental observations-many of these hypotheses remain to be tested. However, these "ancient" studies have been lost to time and are no longer read or incorporated into today's literature despite the abundance of field-defining discoveries that are contained therein. In this FlyBook chapter, I will bring these forgotten classics together and draw connections between them and modern studies of tissue specification and patterning. In doing so, I hope to bring a larger appreciation of the contributions that the eye-antennal disc has made to our understanding of development as well as draw the readers' attention to the earliest studies of this important imaginal disc. Armed with the today's toolkit of sophisticated genetic and molecular methods and using the old papers as a guide, we can use the eye-antennal disc to unravel the mysteries of development.
Collapse
Affiliation(s)
- Brandon P Weasner
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Justin P Kumar
- Department of Biology, Indiana University, Bloomington, IN 47405, USA,Corresponding author: Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
3
|
Kiparaki M, Khan C, Folgado-Marco V, Chuen J, Moulos P, Baker NE. The transcription factor Xrp1 orchestrates both reduced translation and cell competition upon defective ribosome assembly or function. eLife 2022; 11:e71705. [PMID: 35179490 PMCID: PMC8933008 DOI: 10.7554/elife.71705] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 02/09/2022] [Indexed: 11/26/2022] Open
Abstract
Ribosomal Protein (Rp) gene haploinsufficiency affects translation rate, can lead to protein aggregation, and causes cell elimination by competition with wild type cells in mosaic tissues. We find that the modest changes in ribosomal subunit levels observed were insufficient for these effects, which all depended on the AT-hook, bZip domain protein Xrp1. Xrp1 reduced global translation through PERK-dependent phosphorylation of eIF2α. eIF2α phosphorylation was itself sufficient to enable cell competition of otherwise wild type cells, but through Xrp1 expression, not as the downstream effector of Xrp1. Unexpectedly, many other defects reducing ribosome biogenesis or function (depletion of TAF1B, eIF2, eIF4G, eIF6, eEF2, eEF1α1, or eIF5A), also increased eIF2α phosphorylation and enabled cell competition. This was also through the Xrp1 expression that was induced in these depletions. In the absence of Xrp1, translation differences between cells were not themselves sufficient to trigger cell competition. Xrp1 is shown here to be a sequence-specific transcription factor that regulates transposable elements as well as single-copy genes. Thus, Xrp1 is the master regulator that triggers multiple consequences of ribosomal stresses and is the key instigator of cell competition.
Collapse
Affiliation(s)
- Marianthi Kiparaki
- Department of Genetics, Albert Einstein College of MedicineThe BronxUnited States
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center "Alexander Fleming”VariGreece
| | - Chaitali Khan
- Department of Genetics, Albert Einstein College of MedicineThe BronxUnited States
| | | | - Jacky Chuen
- Department of Genetics, Albert Einstein College of MedicineThe BronxUnited States
| | - Panagiotis Moulos
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center "Alexander Fleming”VariGreece
| | - Nicholas E Baker
- Department of Genetics, Albert Einstein College of MedicineThe BronxUnited States
- Department of Developmental and Molecular Biology, Albert Einstein College of MedicineThe BronxUnited States
- Department of Opthalmology and Visual Sciences, Albert Einstein College of MedicineThe BronxUnited States
| |
Collapse
|
4
|
Lee JEA, Parsons LM, Quinn LM. MYC function and regulation in flies: how Drosophila has enlightened MYC cancer biology. AIMS GENETICS 2021. [DOI: 10.3934/genet.2014.1.81] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AbstractProgress in our understanding of the complex signaling events driving human cancer would have been unimaginably slow without discoveries from Drosophila genetic studies. Significantly, many of the signaling pathways now synonymous with cancer biology were first identified as a result of elegant screens for genes fundamental to metazoan development. Indeed the name given to many core cancer-signaling cascades tells of their history as developmental patterning regulators in flies—e.g. Wingless (Wnt), Notch and Hippo. Moreover, astonishing insight has been gained into these complex signaling networks, and many other classic oncogenic signaling networks (e.g. EGFR/RAS/RAF/ERK, InR/PI3K/AKT/TOR), using sophisticated fly genetics. Of course if we are to understand how these signaling pathways drive cancer, we must determine the downstream program(s) of gene expression activated to promote the cell and tissue over growth fundamental to cancer. Here we discuss one commonality between each of these pathways: they are all implicated as upstream activators of the highly conserved MYC oncogene and transcription factor. MYC can drive all aspects of cell growth and cell cycle progression during animal development. MYC is estimated to be dysregulated in over 50% of all cancers, underscoring the importance of elucidating the signals activating MYC. We also discuss the FUBP1/FIR/FUSE system, which acts as a ‘cruise control’ on the MYC promoter to control RNA Polymerase II pausing and, therefore, MYC transcription in response to the developmental signaling environment. Importantly, the striking conservation between humans and flies within these major axes of MYC regulation has made Drosophila an extremely valuable model organism for cancer research. We therefore discuss how Drosophila studies have helped determine the validity of signaling pathways regulating MYC in vivo using sophisticated genetics, and continue to provide novel insight into cancer biology.
Collapse
Affiliation(s)
- Jue Er Amanda Lee
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville 3010, Melbourne, Australia
| | - Linda May Parsons
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville 3010, Melbourne, Australia
| | - Leonie M. Quinn
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville 3010, Melbourne, Australia
| |
Collapse
|
5
|
Lee CH, Kiparaki M, Blanco J, Folgado V, Ji Z, Kumar A, Rimesso G, Baker NE. A Regulatory Response to Ribosomal Protein Mutations Controls Translation, Growth, and Cell Competition. Dev Cell 2018; 46:456-469.e4. [PMID: 30078730 DOI: 10.1016/j.devcel.2018.07.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 04/24/2018] [Accepted: 07/02/2018] [Indexed: 01/12/2023]
Abstract
Ribosomes perform protein synthesis but are also involved in signaling processes, the full extent of which are still being uncovered. We report that phenotypes of mutating ribosomal proteins (Rps) are largely due to signaling. Using Drosophila, we discovered that a bZip-domain protein, Xrp1, becomes elevated in Rp mutant cells. Xrp1 reduces translation and growth, delays development, is responsible for gene expression changes, and causes the cell competition of Rp heterozygous cells from genetic mosaics. Without Xrp1, even cells homozygously deleted for Rp genes persist and grow. Xrp1 induction in Rp mutant cells depends on a particular Rp with regulatory effects, RpS12, and precedes overall changes in translation. Thus, effects of Rp mutations, even the reductions in translation and growth, depend on signaling through the Xrp1 pathway and are not simply consequences of reduced ribosome production limiting protein synthesis. One benefit of this system may be to eliminate Rp-mutant cells by cell competition.
Collapse
Affiliation(s)
- Chang-Hyun Lee
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Marianthi Kiparaki
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Jorge Blanco
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Virginia Folgado
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Zhejun Ji
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Amit Kumar
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Gerard Rimesso
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Nicholas E Baker
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| |
Collapse
|
6
|
Sarkar A, Gogia N, Farley K, Payton L, Singh A. Characterization of a morphogenetic furrow specific Gal4 driver in the developing Drosophila eye. PLoS One 2018; 13:e0196365. [PMID: 29702674 PMCID: PMC5922546 DOI: 10.1371/journal.pone.0196365] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/11/2018] [Indexed: 11/18/2022] Open
Abstract
The ability to express a gene of interest in a spatio-temporal manner using Gal4-UAS system has allowed the use of Drosophila model to study various biological phenomenon. During Drosophila eye development, a synchronous wave of differentiation called Morphogenetic furrow (MF) initiates at the posterior margin resulting in differentiation of retinal neurons. This synchronous differentiation is also observed in the differentiating retina of vertebrates. Since MF is highly dynamic, it can serve as an excellent model to study patterning and differentiation. However, there are not any Gal4 drivers available to observe the gain- of- function or loss- of- function of a gene specifically along the dynamic MF. The decapentaplegic (dpp) gene encodes a secreted protein of the transforming growth factor-beta (TGF-beta) superfamily that expresses at the posterior margin and then moves with the MF. However, unlike the MF associated pattern of dpp gene expression, the targeted dpp-Gal4 driver expression is restricted to the posterior margin of the developing eye disc. We screened GMR lines harboring regulatory regions of dpp fused with Gal4 coding region to identify MF specific enhancer of dpp using a GFP reporter gene. We employed immuno-histochemical approaches to detect gene expression. The rationale was that GFP reporter expression will correspond to the dpp expression domain in the developing eye. We identified two new dpp-Gal4 lines, viz., GMR17E04-Gal4 and GMR18D08-Gal4 that carry sequences from first intron region of dpp gene. GMR17E04-Gal4 drives expression along the MF during development and later in the entire pupal retina whereas GMR18D08-Gal4 drives expression of GFP transgene in the entire developing eye disc, which later drives expression only in the ventral half of the pupal retina. Thus, GMR18D08-Gal4 will serve as a new reagent for targeting gene expression in the ventral half of the pupal retina. We compared misexpression phenotypes of Wg, a negative regulator of eye development, using GMR17E04-Gal4, GMR18D08-Gal4 with existing dpp-Gal4 driver. The eye phenotypes generated by using our newly identified MF specific driver are not similar to the ones generated by existing dpp-Gal4 driver. It suggests that misexpression studies along MF needs revisiting using the new Gal4 drivers generated in our studies.
Collapse
Affiliation(s)
- Ankita Sarkar
- Department of Biology, University of Dayton, Dayton, OH, United States of America
| | - Neha Gogia
- Department of Biology, University of Dayton, Dayton, OH, United States of America
| | - Kevin Farley
- Department of Biology, University of Dayton, Dayton, OH, United States of America
| | - Lydia Payton
- Department of Biology, University of Dayton, Dayton, OH, United States of America
| | - Amit Singh
- Department of Biology, University of Dayton, Dayton, OH, United States of America
- Premedical Program, University of Dayton, Dayton, OH, United States of America
- Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, OH, United States of America
- The Integrative Science and Engineering Center, University of Dayton, Dayton, OH, United States of America
- Affiliate Member, Center for Genome Advocacy, Indiana State University, Terre Haute, IN, United States of America
| |
Collapse
|
7
|
Martins T, Eusebio N, Correia A, Marinho J, Casares F, Pereira PS. TGFβ/Activin signalling is required for ribosome biogenesis and cell growth in Drosophila salivary glands. Open Biol 2017; 7:rsob.160258. [PMID: 28123053 PMCID: PMC5303274 DOI: 10.1098/rsob.160258] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 12/16/2016] [Indexed: 12/30/2022] Open
Abstract
Signalling by TGFβ superfamily factors plays an important role in tissue growth and cell proliferation. In Drosophila, the activity of the TGFβ/Activin signalling branch has been linked to the regulation of cell growth and proliferation, but the cellular and molecular basis for these functions are not fully understood. In this study, we show that both the RII receptor Punt (Put) and the R-Smad Smad2 are strongly required for cell and tissue growth. Knocking down the expression of Put or Smad2 in salivary glands causes alterations in nucleolar structure and functions. Cells with decreased TGFβ/Activin signalling accumulate intermediate pre-rRNA transcripts containing internal transcribed spacer 1 regions accompanied by the nucleolar retention of ribosomal proteins. Thus, our results show that TGFβ/Activin signalling is required for ribosomal biogenesis, a key aspect of cellular growth control. Importantly, overexpression of Put enhanced cell growth induced by Drosophila Myc, a well-characterized inducer of nucleolar hypertrophy and ribosome biogenesis.
Collapse
Affiliation(s)
- Torcato Martins
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4150-180, Portugal .,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto 4150-180, Portugal.,Cell Cycle Development Group, Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Nadia Eusebio
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4150-180, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto 4150-180, Portugal
| | - Andreia Correia
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4150-180, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto 4150-180, Portugal
| | - Joana Marinho
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4150-180, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto 4150-180, Portugal
| | - Fernando Casares
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-JA-Universidad Pablo de Olavide. Ctra. de Utrera km1, Seville 41013, Spain
| | - Paulo S Pereira
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4150-180, Portugal .,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto 4150-180, Portugal
| |
Collapse
|
8
|
Richard M, Bauer R, Tavosanis G, Hoch M. The gap junction protein Innexin3 is required for eye disc growth in Drosophila. Dev Biol 2017; 425:191-207. [PMID: 28390801 DOI: 10.1016/j.ydbio.2017.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 03/30/2017] [Accepted: 04/03/2017] [Indexed: 12/23/2022]
Abstract
The Drosophila compound eye develops from a bilayered epithelial sac composed of an upper peripodial epithelium layer and a lower disc proper, the latter giving rise to the eye itself. During larval stages, complex signalling events between the layers contribute to the control of cell proliferation and differentiation in the disc. Previous work in our lab established the gap junction protein Innexin2 (Inx2) as crucial for early larval eye disc growth. By analysing the contribution of other Innexins to eye size control, we have identified Innexin3 (Inx3) as an important growth regulator. Depleting inx3 during larval eye development reduces eye size, while elevating inx3 levels increases eye size, thus phenocopying the inx2 loss- and gain-of-function situation. As demonstrated previously for inx2, inx3 regulates disc cell proliferation and interacts genetically with the Dpp pathway, being required for the proper activation of the Dpp pathway transducer Mad at the furrow and the expression of Dpp receptor Punt in the eye disc. At the developmental timepoint corresponding to eye disc growth, Inx3 colocalises with Inx2 in disc proper and peripodial epithelium cell membranes. In addition, we show that Inx3 protein levels critically depend on inx2 throughout eye development and that inx3 modulates Inx2 protein levels in the larval eye disc. Rescue experiments demonstrate that Inx3 and Inx2 cooperate functionally to enable eye disc growth in Drosophila. Finally, we demonstrate that expression of Inx3 and Inx2 is not only needed in the disc proper but also in the peripodial epithelium to regulate growth of the eye disc. Our data provide a functional demonstration that putative Inx2/Inx3 heteromeric channels regulate organ size.
Collapse
Affiliation(s)
- Mélisande Richard
- Life & Medical Sciences Institute (LIMES) Development, Genetics & Molecular Physiology Unit University of Bonn, Carl-Troll-Straße, 31 53115 Bonn, Germany
| | - Reinhard Bauer
- Life & Medical Sciences Institute (LIMES) Development, Genetics & Molecular Physiology Unit University of Bonn, Carl-Troll-Straße, 31 53115 Bonn, Germany
| | - Gaia Tavosanis
- German Center for Neurodegenerative Diseases (DZNE), Dendrite Differentiation Unit, Sigmund-Freud-Str. 27, 53127 Bonn, Germany
| | - Michael Hoch
- Life & Medical Sciences Institute (LIMES) Development, Genetics & Molecular Physiology Unit University of Bonn, Carl-Troll-Straße, 31 53115 Bonn, Germany.
| |
Collapse
|
9
|
Park SY, Stultz BG, Hursh DA. Dual Role of Jun N-Terminal Kinase Activity in Bone Morphogenetic Protein-Mediated Drosophila Ventral Head Development. Genetics 2015; 201:1411-26. [PMID: 26500262 PMCID: PMC4676534 DOI: 10.1534/genetics.115.178376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 10/13/2015] [Indexed: 01/15/2023] Open
Abstract
The Drosophila bone morphogenetic protein encoded by decapentaplegic (dpp) controls ventral head morphogenesis by expression in the head primordia, eye-antennal imaginal discs. These are epithelial sacs made of two layers: columnar disc proper cells and squamous cells of the peripodial epithelium. dpp expression related to head formation occurs in the peripodial epithelium; cis-regulatory mutations disrupting this expression display defects in sensory vibrissae, rostral membrane, gena, and maxillary palps. Here we document that disruption of this dpp expression causes apoptosis in peripodial cells and underlying disc proper cells. We further show that peripodial Dpp acts directly on the disc proper, indicating that Dpp must cross the disc lumen to act. We demonstrate that palp defects are mechanistically separable from the other mutant phenotypes; both are affected by the c-Jun N-terminal kinase pathway but in opposite ways. Slight reduction of both Jun N-terminal kinase and Dpp activity in peripodial cells causes stronger vibrissae, rostral membrane, and gena defects than Dpp alone; additionally, strong reduction of Jun N-terminal kinase activity alone causes identical defects. A more severe reduction of dpp results in similar vibrissae, rostral membrane, and gena defects, but also causes mutant maxillary palps. This latter defect is correlated with increased peripodial Jun N-terminal kinase activity and can be caused solely by ectopic activation of Jun N-terminal kinase. We conclude that formation of sensory vibrissae, rostral membrane, and gena tissue in head morphogenesis requires the action of Jun N-terminal kinase in peripodial cells, while excessive Jun N-terminal kinase signaling in these same cells inhibits the formation of maxillary palps.
Collapse
Affiliation(s)
- Sung Yeon Park
- Division of Cell and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993 BK21PLUS Biomedical Science Project, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| | - Brian G Stultz
- Division of Cell and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993
| | - Deborah A Hursh
- Division of Cell and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993
| |
Collapse
|
10
|
Richard M, Hoch M. Drosophila eye size is determined by Innexin 2-dependent Decapentaplegic signalling. Dev Biol 2015; 408:26-40. [PMID: 26455410 DOI: 10.1016/j.ydbio.2015.10.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 08/23/2015] [Accepted: 10/06/2015] [Indexed: 12/21/2022]
Abstract
Organogenesis relies on specific genetic and molecular programmes, which orchestrate growth and cellular differentiation over developmental time. This is particularly important during Drosophila eye development in which cell-cell inductive events and long-range signalling have to be integrated to regulate proper cell proliferation, differentiation and morphogenesis. How these processes are coordinated is still not very well understood. Here we identify the gap junction protein Innexin2 (Inx2) as an important regulator of eye development. Depleting inx2 during eye development reduces eye size whereas elevating inx2 levels increases eye size. Loss- and gain-of-function experiments demonstrate that inx2 is required functionally in larval eye disc cells where it localises apico-laterally. inx2 regulates disc cell proliferation as well as morphogenetic furrow movement and as a result the amount of differentiated photoreceptors. inx2 interacts genetically with the Dpp pathway and we find that proper activation of the Dpp pathway transducer Mad at the furrow and expression of Dpp receptors Thickveins and Punt in the anterior disc compartment require inx2. We further show that inx2 is required for the transcriptional activation of dpp and punt in the eye disc. Our results highlight the crucial role of gap junction proteins in regulating morphogen-dependent organ size determination.
Collapse
Affiliation(s)
- Mélisande Richard
- Life & Medical Sciences Institute (LIMES) Development, Genetics & Molecular Physiology Unit, University of Bonn, Carl-Troll-Straße, 31, D-53115 Bonn, Germany.
| | - Michael Hoch
- Life & Medical Sciences Institute (LIMES) Development, Genetics & Molecular Physiology Unit, University of Bonn, Carl-Troll-Straße, 31, D-53115 Bonn, Germany.
| |
Collapse
|
11
|
Romanova-Michaelides M, Aguilar-Hidalgo D, Jülicher F, Gonzalez-Gaitan M. The wing and the eye: a parsimonious theory for scaling and growth control? WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2015; 4:591-608. [PMID: 26108346 DOI: 10.1002/wdev.195] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 04/20/2015] [Accepted: 04/21/2015] [Indexed: 11/07/2022]
Abstract
How a developing organ grows and patterns to its final shape is an important question in developmental biology. Studies of growth and patterning in the Drosophila wing imaginal disc have identified a key player, the morphogen Decapentaplegic (Dpp). These studies provided insights into our understanding of growth control and scaling: expansion of the Dpp gradient correlated with the growth of the tissue. A recent report on growth of a Drosophila organ other than the wing, the eye imaginal disc, prompts a reconsideration of our models of growth control. Despite striking differences between the two, the Dpp gradient scales with the target tissues of both organs and the growth of both the wing and the eye is controlled by Dpp. The goal of this review is to discuss whether a parsimonious model of scaling and growth control can explain the relationship between the Dpp gradient and growth in these two different developmental systems.
Collapse
Affiliation(s)
| | - Daniel Aguilar-Hidalgo
- Department of Biological Physics, Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| | - Frank Jülicher
- Department of Biological Physics, Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| | - Marcos Gonzalez-Gaitan
- Department of Biochemistry, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| |
Collapse
|
12
|
Wittkorn E, Sarkar A, Garcia K, Kango-Singh M, Singh A. The Hippo pathway effector Yki downregulates Wg signaling to promote retinal differentiation in the Drosophila eye. Development 2015; 142:2002-13. [PMID: 25977365 DOI: 10.1242/dev.117358] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 04/16/2015] [Indexed: 01/22/2023]
Abstract
The evolutionarily conserved Hippo signaling pathway is known to regulate cell proliferation and maintain tissue homeostasis during development. We found that activation of Yorkie (Yki), the effector of the Hippo signaling pathway, causes separable effects on growth and differentiation of the Drosophila eye. We present evidence supporting a role for Yki in suppressing eye fate by downregulation of the core retinal determination genes. Other upstream regulators of the Hippo pathway mediate this effect of Yki on retinal differentiation. Here, we show that, in the developing eye, Yki can prevent retinal differentiation by blocking morphogenetic furrow (MF) progression and R8 specification. The inhibition of MF progression is due to ectopic induction of Wingless (Wg) signaling and Homothorax (Hth), the negative regulators of eye development. Modulating Wg signaling can modify Yki-mediated suppression of eye fate. Furthermore, ectopic Hth induction due to Yki activation in the eye is dependent on Wg. Last, using Cut (Ct), a marker for the antennal fate, we show that suppression of eye fate by hyperactivation of yki does not change the cell fate (from eye to antenna-specific fate). In summary, we provide the genetic mechanism by which yki plays a role in cell fate specification and differentiation - a novel aspect of Yki function that is emerging from multiple model organisms.
Collapse
Affiliation(s)
- Erika Wittkorn
- Department of Biology, University of Dayton, Dayton, OH 45469, USA
| | - Ankita Sarkar
- Department of Biology, University of Dayton, Dayton, OH 45469, USA
| | - Kristine Garcia
- Department of Biology, University of Dayton, Dayton, OH 45469, USA
| | - Madhuri Kango-Singh
- Department of Biology, University of Dayton, Dayton, OH 45469, USA Premedical Program, University of Dayton, Dayton, OH 45469, USA Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, OH 45469, USA
| | - Amit Singh
- Department of Biology, University of Dayton, Dayton, OH 45469, USA Premedical Program, University of Dayton, Dayton, OH 45469, USA Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, OH 45469, USA
| |
Collapse
|
13
|
|
14
|
Tsai YC, Grimm S, Chao JL, Wang SC, Hofmeyer K, Shen J, Eichinger F, Michalopoulou T, Yao CK, Chang CH, Lin SH, Sun YH, Pflugfelder GO. Optomotor-blind negatively regulates Drosophila eye development by blocking Jak/STAT signaling. PLoS One 2015; 10:e0120236. [PMID: 25781970 PMCID: PMC4363906 DOI: 10.1371/journal.pone.0120236] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 01/27/2015] [Indexed: 12/23/2022] Open
Abstract
Organ formation requires a delicate balance of positive and negative regulators. In Drosophila eye development, wingless (wg) is expressed at the lateral margins of the eye disc and serves to block retinal development. The T-box gene optomotor-blind (omb) is expressed in a similar pattern and is regulated by Wg. Omb mediates part of Wg activity in blocking eye development. Omb exerts its function primarily by blocking cell proliferation. These effects occur predominantly in the ventral margin. Our results suggest that the primary effect of Omb is the blocking of Jak/STAT signaling by repressing transcription of upd which encodes the Jak receptor ligand Unpaired.
Collapse
Affiliation(s)
- Yu-Chen Tsai
- Institute of Genetics, National Yang-Ming University, Taipei; Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
- Department of Life Science and Life Science Center, Tunghai University, Taichung, Taiwan, Republic of China
| | - Stefan Grimm
- Theodor-Boveri-Institut, Biozentrum, Lehrstuhl für Genetik und Neurobiologie, Universität Würzburg, Am Hubland, Würzburg, Germany
| | - Ju-Lan Chao
- Institute of Genetics, National Yang-Ming University, Taipei; Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Shih-Chin Wang
- Department of Life Science and Life Science Center, Tunghai University, Taichung, Taiwan, Republic of China
| | - Kerstin Hofmeyer
- Theodor-Boveri-Institut, Biozentrum, Lehrstuhl für Genetik und Neurobiologie, Universität Würzburg, Am Hubland, Würzburg, Germany
| | - Jie Shen
- Institut für Genetik, Universität Mainz, Mainz, Germany
- Department of Entomology, China Agricultural University, Beijing, China
| | | | | | - Chi-Kuang Yao
- Institute of Genetics, National Yang-Ming University, Taipei; Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Chih-Hsuan Chang
- Department of Life Science and Life Science Center, Tunghai University, Taichung, Taiwan, Republic of China
| | - Shih-Han Lin
- Department of Life Science and Life Science Center, Tunghai University, Taichung, Taiwan, Republic of China
| | - Y. Henry Sun
- Institute of Genetics, National Yang-Ming University, Taipei; Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
- * E-mail: (YHS); (GOP)
| | - Gert O. Pflugfelder
- Theodor-Boveri-Institut, Biozentrum, Lehrstuhl für Genetik und Neurobiologie, Universität Würzburg, Am Hubland, Würzburg, Germany
- Institut für Genetik, Universität Mainz, Mainz, Germany
- * E-mail: (YHS); (GOP)
| |
Collapse
|
15
|
Wartlick O, Jülicher F, Gonzalez-Gaitan M. Growth control by a moving morphogen gradient during Drosophila eye development. Development 2014; 141:1884-93. [PMID: 24757005 DOI: 10.1242/dev.105650] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
During morphogenesis, organs grow to stereotyped sizes, but growth control mechanisms are poorly understood. Here, we measured the signaling dynamics of the morphogen Dpp, one of several Drosophila factors controlling morphogenetic growth, in the developing eye. In this tissue, the Dpp expression domain advances from the posterior to the anterior tissue edge. In front of this moving morphogen source, signaling inputs including Dpp activate the target gene hairy in a gradient that scales with tissue size. Proliferation, in turn, occurs in a mitotic wave in front of the source, whereas behind it, cells arrest and differentiate. We found that cells divide when their signaling levels have increased by around 60%. This simple mechanism quantitatively explains the proliferation and differentiation waves in wild type and mutants. Furthermore, this mechanism may be a common feature of different growth factors, because a Dpp-independent growth input also follows this growth rule.
Collapse
Affiliation(s)
- Ortrud Wartlick
- Department of Biochemistry, Faculty of Sciences, University of Geneva, 30 Quai Ernest Ansermet, Geneva 1211, Switzerland
| | | | | |
Collapse
|
16
|
Schulte D, Frank D. TALE transcription factors during early development of the vertebrate brain and eye. Dev Dyn 2013; 243:99-116. [DOI: 10.1002/dvdy.24030] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 07/11/2013] [Accepted: 07/13/2013] [Indexed: 12/25/2022] Open
Affiliation(s)
- Dorothea Schulte
- Institute of Neurology (Edinger Institute); University Hospital Frankfurt, J.W. Goethe University; Frankfurt Germany
| | - Dale Frank
- Department of Biochemistry; The Rappaport Family Institute for Research in the Medical Sciences, Faculty of Medicine, Technion-Israel Institute of Technology; Haifa Israel
| |
Collapse
|
17
|
Spratford CM, Kumar JP. Extramacrochaetae imposes order on the Drosophila eye by refining the activity of the Hedgehog signaling gradient. Development 2013; 140:1994-2004. [PMID: 23536565 DOI: 10.1242/dev.088963] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The compound eye of Drosophila melanogaster is configured by a differentiating wave, the morphogenetic furrow, that sweeps across the eye imaginal disc and transforms thousands of undifferentiated cells into a precisely ordered repetitive array of 800 ommatidia. The initiation of the furrow at the posterior margin of the epithelium and its subsequent movement across the eye field is controlled by the activity of the Hedgehog (Hh) signaling pathway. Differentiating photoreceptors that lie behind the furrow produce and secrete the Hh morphogen, which is captured by cells within the furrow itself. This leads to the stabilization of the full-length form of the zinc-finger transcription factor Cubitus interruptus (Ci(155)), the main effector of Hh signaling. Ci(155) functions as a transcriptional activator of a number of downstream targets, including decapentaplegic (dpp), a TGFβ homolog. In this report, we describe a mechanism that is in place within the fly retina to limit Hh pathway activity within and ahead of the furrow. We demonstrate that the helix-loop-helix (HLH) protein Extramacrochaetae (Emc) regulates Ci(155) levels. Loss of emc leads to an increase in Ci(155) levels, nuclear migration, apical cell constriction and an acceleration of the furrow. We find that these roles are distinct from the bHLH protein Hairy (H), which we show restricts atonal (ato) expression ahead of the furrow. Secondary furrow initiation along the dorsal and ventral margins is blocked by the activity of the Wingless (Wg) pathway. We also show that Emc regulates and cooperates with Wg signaling to inhibit lateral furrow initiation.
Collapse
|
18
|
Stultz BG, Park SY, Mortin MA, Kennison JA, Hursh DA. Hox proteins coordinate peripodial decapentaplegic expression to direct adult head morphogenesis in Drosophila. Dev Biol 2012; 369:362-76. [PMID: 22824425 DOI: 10.1016/j.ydbio.2012.07.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 06/29/2012] [Accepted: 07/12/2012] [Indexed: 02/04/2023]
Abstract
The Drosophila BMP, decapentaplegic (dpp), controls morphogenesis of the ventral adult head through expression limited to the lateral peripodial epithelium of the eye-antennal disc by a 3.5 kb enhancer in the 5' end of the gene. We recovered a 15 bp deletion mutation within this enhancer that identified a homeotic (Hox) response element that is a direct target of labial and the homeotic cofactors homothorax and extradenticle. Expression of labial and homothorax are required for dpp expression in the peripodial epithelium, while the Hox gene Deformed represses labial in this location, thus limiting its expression and indirectly that of dpp to the lateral side of the disc. The expression of these homeodomain genes is in turn regulated by the dpp pathway, as dpp signalling is required for labial expression but represses homothorax. This Hox-BMP regulatory network is limited to the peripodial epithelium of the eye-antennal disc, yet is crucial to the morphogenesis of the head, which fate maps suggest arises primarily from the disc proper, not the peripodial epithelium. Thus Hox/BMP interactions in the peripodial epithelium of the eye-antennal disc contribute inductively to the shape of the external form of the adult Drosophila head.
Collapse
Affiliation(s)
- Brian G Stultz
- Division of Cell and Gene Therapy, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
19
|
Roignant JY, Treisman JE. Pattern formation in the Drosophila eye disc. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2009; 53:795-804. [PMID: 19557685 DOI: 10.1387/ijdb.072483jr] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Differentiation of the Drosophila compound eye from the eye imaginal disc is a progressive process: columns of cells successively differentiate in a posterior to anterior sequence, clusters of cells form at regularly spaced intervals within each column, and individual photoreceptors differentiate in a defined order within each cluster. The progression of differentiation across the eye disc is driven by a positive autoregulatory loop of expression of the secreted molecule Hedgehog, which is temporally delayed by the intercalation of a second signal, Spitz. Hedgehog refines the spatial position at which each column initiates its differentiation by inducing secondary signals that act over different ranges to control the expression of positive and negative regulators. The position of clusters within each column is controlled by secreted inhibitory signals from clusters in the preceding column, and a single founder neuron, R8, is singled out within each cluster by Notch-mediated lateral inhibition. R8 then sequentially recruits surrounding cells to differentiate by producing a short-range signal, Spitz, which induces a secondary short-range signal, Delta. Intrinsic transcription factors act in combination with these two signals to produce cell-type diversity within the ommatidium. The Hedgehog and Spitz signals are transported along the photoreceptor axons and reused within the brain as long-range and local cues to trigger the differentiation and assembly of target neurons.
Collapse
Affiliation(s)
- Jean-Yves Roignant
- Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, Department of Cell Biology, New York, 10016, USA
| | | |
Collapse
|
20
|
Schlichting K, Dahmann C. Hedgehog and Dpp signaling induce cadherin Cad86C expression in the morphogenetic furrow during Drosophila eye development. Mech Dev 2008; 125:712-28. [PMID: 18539010 DOI: 10.1016/j.mod.2008.04.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Revised: 03/28/2008] [Accepted: 04/19/2008] [Indexed: 01/09/2023]
Abstract
During Drosophila eye development, cell differentiation is preceded by the formation of a morphogenetic furrow, which progresses across the epithelium from posterior to anterior. Cells within the morphogenetic furrow are apically constricted and shortened along their apical-basal axis. However, how these cell shape changes and, thus, the progression of the morphogenetic furrow are controlled is not well understood. Here we show that cells simultaneously lacking Hedgehog and Dpp signal transduction fail to shorten and do not enter the morphogenetic furrow. Moreover, we have identified a gene, cadherin Cad86C, which is highly expressed in cells of the leading flank of the morphogenetic furrow. Ectopic activation of either the Hedgehog or Dpp signal transduction pathway results in elevated Cad86C expression. Conversely, simultaneous loss of both Hedgehog and Dpp signal transduction leads to decreased Cad86C expression. Finally, ectopic expression of Cad86C in either eye-antennal imaginal discs or wing imaginal discs results in apical constriction and shortening of cells. We conclude that Hedgehog and Dpp signaling promote the shortening of cells within the morphogenetic furrow. Induction of Cad86C expression might be one mechanism through which Hedgehog and Dpp promote these cell shape changes.
Collapse
Affiliation(s)
- Karin Schlichting
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | | |
Collapse
|
21
|
Jemc J, Rebay I. The eyes absent family of phosphotyrosine phosphatases: properties and roles in developmental regulation of transcription. Annu Rev Biochem 2007; 76:513-38. [PMID: 17341163 DOI: 10.1146/annurev.biochem.76.052705.164916] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Integration of multiple signaling pathways at the level of their transcriptional effectors provides an important strategy for fine-tuning gene expression and ensuring a proper program of development. Posttranslational modifications, such as phosphorylation, play important roles in modulating transcription factor activity. The discovery that the transcription factor Eyes absent (Eya) possesses protein phosphatase activity provides an interesting new paradigm. Eya may regulate the phosphorylation state of either itself or its transcriptional cofactors, thereby directly affecting transcriptional output. The identification of a growing number of transcription factors with enzymic activity suggests that such dual-function proteins exert greater control of signaling events than previously imagined. Given the conservation of both its phosphatase and transcription factor activity across mammalian species, Eya provides an excellent model for studying how a single protein integrates these two functions under the influence of multiple signaling pathways to promote development.
Collapse
Affiliation(s)
- Jennifer Jemc
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | | |
Collapse
|
22
|
Tsai YC, Yao JG, Chen PH, Posakony JW, Barolo S, Kim J, Sun YH. Upd/Jak/STAT signaling represses wg transcription to allow initiation of morphogenetic furrow in Drosophila eye development. Dev Biol 2007; 306:760-71. [PMID: 17498684 DOI: 10.1016/j.ydbio.2007.04.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2007] [Revised: 04/08/2007] [Accepted: 04/11/2007] [Indexed: 12/23/2022]
Abstract
The initiation of retinal development in Drosophila begins at the posterior center (PC) of the eye disc margin. The front of the differentiation wave, recognized as a morphogenetic furrow (MF), moves from posterior to anterior. What determines MF initiates from the specific PC site is still unclear. The unpaired (upd) gene is expressed at PC at early third instar, just before the time of MF initiation. Therefore, upd is expressed at the appropriate time and location for a specific role in defining the site of MF initiation. upd encodes a ligand for the Jak/STAT signaling pathway. In this report, we showed that the Upd/Jak/STAT signaling is required and sufficient to determine MF initiation. This is primarily achieved by repressing the transcription of wingless (wg), which is known to block MF initiation.
Collapse
Affiliation(s)
- Yu-Chen Tsai
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, Taiwan, Republic of China
| | | | | | | | | | | | | |
Collapse
|
23
|
Tyler DM, Baker NE. Expanded and fat regulate growth and differentiation in the Drosophila eye through multiple signaling pathways. Dev Biol 2007; 305:187-201. [PMID: 17359963 PMCID: PMC2075468 DOI: 10.1016/j.ydbio.2007.02.004] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2006] [Revised: 02/06/2007] [Accepted: 02/06/2007] [Indexed: 12/29/2022]
Abstract
Mutations in the expanded gene act as hyperplastic tumor suppressors, interfere with cell competition and elevate Dpp signaling. Unlike Dpp overexpression, ex causes few patterning defects. Our data suggest that patterning effects are partly masked by antagonistic roles of other signaling pathways that are also activated. ex causes proliferation of cells in the posterior eye disc that are normally postmitotic. ex mutations elevate Wg signaling, but Dpp signaling antagonizes patterning effects of Wg. By contrast, if Dpp signaling is blocked in ex mutant cells, the elevated Wg signaling preserves an immature developmental state and prevents retinal differentiation. An effect of ex mutations on vesicle transport is suggested by evidence for altered sterol distribution. Mutations in ft show effects on proliferation, Wg signaling and sterols very similar to those of ex mutations. During disc growth, ex was largely epistatic to ft, and the Warts pathway mutation hippo largely epistatic to ex. Our data suggest that ft and ex act partially through the Warts pathway.
Collapse
Affiliation(s)
- David M. Tyler
- Correspondence to : ,, Tel 718-430-2854, Fax 718-430-8778
| | | |
Collapse
|
24
|
Callaerts P, Clements J, Francis C, Hens K. Pax6 and eye development in Arthropoda. ARTHROPOD STRUCTURE & DEVELOPMENT 2006; 35:379-391. [PMID: 18089082 DOI: 10.1016/j.asd.2006.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2006] [Accepted: 08/16/2006] [Indexed: 05/25/2023]
Abstract
The arthropod compound eye is one of the three main types of eyes observed in the animal kingdom. Comparison of the eyes seen in Insecta, Crustacea, Myriapoda and Chelicerata reveals considerable variation in terms of overall cell number, cell positioning, and photoreceptor rhabdomeres, yet, molecular data suggest there may be unexpected similarities. We review here the role of Pax6 in eye development and evolution and the relationship of Pax6 with other retinal determination genes and signaling pathways. We then discuss how the study of changes in Pax6 primary structure, in the gene networks controlled by Pax6 and in the relationship of Pax6 with signaling pathways may contribute to our insight into the relative role of conserved molecular-genetic mechanisms and emergence of evolutionary novelty in shaping the ommatidial eyes seen in the Arthropoda.
Collapse
Affiliation(s)
- Patrick Callaerts
- Laboratory of Developmental Genetics, VIB-PRJ8, KULeuven, Center for Human Genetics, Onderwijs & Navorsing, Herestraat 49, bus 602, B-3000 Leuven, Belgium
| | | | | | | |
Collapse
|
25
|
Friedrich M. Ancient mechanisms of visual sense organ development based on comparison of the gene networks controlling larval eye, ocellus, and compound eye specification in Drosophila. ARTHROPOD STRUCTURE & DEVELOPMENT 2006; 35:357-378. [PMID: 18089081 DOI: 10.1016/j.asd.2006.08.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Accepted: 08/10/2006] [Indexed: 05/25/2023]
Abstract
Key mechanisms of development are strongly constrained, and hence often shared in the formation of highly diversified homologous organs. This diagnostic is applied to uncovering ancient gene activities in the control of visual sense organ development by comparing the gene networks, which regulate larval eye, ocellus and compound eye specification in Drosophila. The comparison reveals a suite of shared aspects that are likely to predate the diversification of arthropod visual sense organs and, consistent with this, have notable similarities in the developing vertebrate visual system: (I) Pax-6 genes participate in the patterning of primordia of complex visual organs. (II) Primordium determination and differentiation depends on formation of a transcription factor complex that contains the products of the selector genes Eyes absent and Sine oculis. (III) The TGF-beta signaling factor Decapentaplegic exerts transcriptional activation of eyes absent and sine oculis. (IV) Canonical Wnt signaling contributes to primordium patterning by repression of eyes absent and sine oculis. (V) Initiation of determination and differentiation is controlled by hedgehog signaling. (VI) Egfr signaling drives retinal cell fate specification. (VII) The proneural transcription factor atonal regulates photoreceptor specification. (VII) The zinc finger gene glass regulates photoreceptor specification and differentiation.
Collapse
Affiliation(s)
- Markus Friedrich
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI 48202, USA
| |
Collapse
|
26
|
Friedrich M. Continuity versus split and reconstitution: exploring the molecular developmental corollaries of insect eye primordium evolution. Dev Biol 2006; 299:310-29. [PMID: 16973149 DOI: 10.1016/j.ydbio.2006.08.027] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2006] [Revised: 07/31/2006] [Accepted: 08/12/2006] [Indexed: 10/24/2022]
Abstract
Holometabolous insects like Drosophila proceed through two phases of visual system development. The embryonic phase generates simple eyes of the larva. The postembryonic phase produces the adult specific compound eyes during late larval development and pupation. In primitive insects, by contrast, eye development persists seemingly continuously from embryogenesis through the end of postembryogenesis. Comparative literature suggests that the evolutionary transition from continuous to biphasic eye development occurred via transient developmental arrest. This review investigates how the developmental arrest model relates to the gene networks regulating larval and adult eye development in Drosophila, and embryonic compound eye development in primitive insects. Consistent with the developmental arrest model, the available data suggest that the determination of the anlage of the rudimentary Drosophila larval eye is homologous to the embryonic specification of the juvenile compound eye in directly developing insects while the Drosophila compound eye primordium is evolutionarily related to the yet little studied stem cell based postembryonic eye primordium of primitive insects.
Collapse
Affiliation(s)
- Markus Friedrich
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI 48202, USA.
| |
Collapse
|
27
|
Tsuda L, Kaido M, Lim YM, Kato K, Aigaki T, Hayashi S. An NRSF/REST-like repressor downstream of Ebi/SMRTER/Su(H) regulates eye development in Drosophila. EMBO J 2006; 25:3191-202. [PMID: 16763555 PMCID: PMC1500973 DOI: 10.1038/sj.emboj.7601179] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2005] [Accepted: 05/15/2006] [Indexed: 11/09/2022] Open
Abstract
The corepressor complex that includes Ebi and SMRTER is a target of epidermal growth factor (EGF) and Notch signaling pathways and regulates Delta (Dl)-mediated induction of support cells adjacent to photoreceptor neurons of the Drosophila eye. We describe a mechanism by which the Ebi/SMRTER corepressor complex maintains Dl expression. We identified a gene, charlatan (chn), which encodes a C2H2-type zinc-finger protein resembling human neuronal restricted silencing factor/repressor element RE-1 silencing transcription factor (NRSF/REST). The Ebi/SMRTER corepressor complex represses chn transcription by competing with the activation complex that includes the Notch intracellular domain (NICD). Chn represses Dl expression and is critical for the initiation of eye development. Thus, under EGF signaling, double negative regulation mediated by the Ebi/SMRTER corepressor complex and an NRSF/REST-like factor, Chn, maintains inductive activity in developing photoreceptor cells by promoting Dl expression.
Collapse
Affiliation(s)
- Leo Tsuda
- Morphogenetic Signaling Group, Riken Center for Developmental Biology, Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo, Japan
- Present address: Department of Mechanism of Aging, National Institute for Longevity Sciences, Obu, Aichi 474-8522, Japan
| | - Masako Kaido
- Morphogenetic Signaling Group, Riken Center for Developmental Biology, Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo, Japan
| | - Young-Mi Lim
- Morphogenetic Signaling Group, Riken Center for Developmental Biology, Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo, Japan
- Present address: Department of Mechanism of Aging, National Institute for Longevity Sciences, Obu, Aichi 474-8522, Japan
| | - Kagayaki Kato
- Morphogenetic Signaling Group, Riken Center for Developmental Biology, Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo, Japan
| | - Toshiro Aigaki
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji-shi, Tokyo, Japan
| | - Shigeo Hayashi
- Morphogenetic Signaling Group, Riken Center for Developmental Biology, Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo, Japan
- Department of Life Science, Kobe University Graduate School of Science and Technology, Kobe, Japan
| |
Collapse
|
28
|
Stultz BG, Lee H, Ramon K, Hursh DA. Decapentaplegic head capsule mutations disrupt novel peripodial expression controlling the morphogenesis of the Drosophila ventral head. Dev Biol 2006; 296:329-39. [PMID: 16814276 DOI: 10.1016/j.ydbio.2006.05.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Revised: 05/24/2006] [Accepted: 05/25/2006] [Indexed: 10/24/2022]
Abstract
Drosophila adult structures derive from imaginal discs, which are sacs with apposed epithelial sheets, the disc proper (DP) and the peripodial epithelium (PE). The Drosophila TGF-beta family member decapentaplegic (dpp) contributes to the development of adult structures through expression in all imaginal discs, driven by enhancers from the 3' cis-regulatory region of the gene. In the eye/antennal disc, there is 3' directed dpp expression in both the DP and PE associated with cell proliferation and eye formation. Here, we analyze a new class of dpp cis-regulatory mutations, which specifically disrupt a previously unknown region of dpp expression, controlled by enhancers in the 5' regulatory region of the gene and limited to the PE of eye/antennal discs. These are the first described Drosophila mutations that act by solely disrupting PE gene expression. The mutants display defects in the ventral adult head and alter peripodial but not DP expression of known dpp targets. However, apoptosis is observed in the underlying DP, suggesting that this peripodial dpp signaling source supports cell survival in the DP.
Collapse
Affiliation(s)
- Brian G Stultz
- Division of Cell and Gene Therapy, Cellular and Tissue Therapy Branch, Center for Biologics Evaluation and Research, Food and Drug Administration, HFM-740, Bldg. 29B, Rm. 1E16, 8800 Rockville Pike, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
29
|
Vrailas AD, Moses K. Smoothened, thickveins and the genetic control of cell cycle and cell fate in the developing Drosophila eye. Mech Dev 2006; 123:151-65. [PMID: 16412615 DOI: 10.1016/j.mod.2005.11.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Revised: 11/04/2005] [Accepted: 11/07/2005] [Indexed: 11/18/2022]
Abstract
The Hedgehog and Decapentaplegic pathways have several well-characterized functions in the developing Drosophila compound eye, including initiation and progression of the morphogenetic furrow. Other functions involve control of cell cycle and cell survival as well as cell type specification. Here we have used the mosaic clone analysis of null mutations of the smoothened and thickveins genes (which encode the receptors for these two signals) both alone and in combination, to study cell cycle and cell fate in the developing eye. We conclude that both pathways have several, but differing roles in furrow induction and cell fate and survival, but that neither directly affects cell type specification.
Collapse
Affiliation(s)
- Alysia D Vrailas
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | |
Collapse
|
30
|
Rogers EM, Brennan CA, Mortimer NT, Cook S, Morris AR, Moses K. Pointed regulates an eye-specific transcriptional enhancer in the Drosophila hedgehog gene, which is required for the movement of the morphogenetic furrow. Development 2005; 132:4833-43. [PMID: 16207753 DOI: 10.1242/dev.02061] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Drosophila development depends on stable boundaries between cellular territories, such as the embryonic parasegment boundaries and the compartment boundaries in the imaginal discs. Patterning in the compound eye is fundamentally different: the boundary is not stable, but moves (the morphogenetic furrow). Paradoxically, Hedgehog signaling is essential to both: Hedgehog is expressed in the posterior compartments in the embryo and in imaginal discs, and posterior to the morphogenetic furrow in the eye. Therefore, uniquely in the eye, cells receiving a Hedgehog signal will eventually produce the same protein. We report that the mechanism that underlies this difference is the special regulation of hedgehog (hh) transcription through the dual regulation of an eye specific enhancer. We show that this enhancer requires the Egfr/Ras pathway transcription factor Pointed. Recently, others have shown that this same enhancer also requires the eye determining transcription factor Sine oculis (So). We discuss these data in terms of a model for a combinatorial code of furrow movement.
Collapse
Affiliation(s)
- Edward M Rogers
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | |
Collapse
|
31
|
Dudu V, Pantazis P, González-Gaitán M. Membrane traffic during embryonic development: epithelial formation, cell fate decisions and differentiation. Curr Opin Cell Biol 2005; 16:407-14. [PMID: 15261673 DOI: 10.1016/j.ceb.2004.06.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The analysis of membrane trafficking has in the past mainly dealt with single cells in culture. Recent studies of membrane trafficking in Drosophila focus on how cells are organized in tissues and form epithelia during embryogenesis. During these processes, the specific involvement of distinct biosynthetic and endocytic routes is starting to be understood. Once organized in epithelia, cells communicate with each other to make cell fate decisions through morphogen gradients and lateral inhibition. Endocytosis seems to play unexpected roles in shaping morphogen gradients and in biasing lateral inhibition events. Once committed to a developmental program, cells differentiate. In the case of neurons, trafficking through the biosynthetic and endocytic pathways may give the necessary speed of response and versatility to axons that navigate through a changing environment during pathfinding.
Collapse
Affiliation(s)
- Veronica Dudu
- Max-Planck Institute for Molecular Cell Biology and Genetics, Pfotenhauerstr. 108. D-01307 Dresden, Germany
| | | | | |
Collapse
|
32
|
Thomas C, Ingham PW. Hedgehog Signaling in the Drosophila Eye and Head: An Analysis of the Effects of Differentpatched Trans-heterozygotes. Genetics 2003; 165:1915-28. [PMID: 14704176 PMCID: PMC1462905 DOI: 10.1093/genetics/165.4.1915] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AbstractCharacterization of different alleles of the Hedgehog receptor patched (ptc) indicates that they can be grouped into several classes. Most mutations result in complete loss of Ptc function. However, missense mutations located within the putative sterol-sensing domain (SSD) or C terminus of ptc encode antimorphic proteins that are unable to repress Smo activity and inhibit wild-type Ptc from doing so, but retain the ability to bind and sequester Hh. Analysis of the eye and head phenotypes of Drosophila melanogaster in various ptc/ptctuf1 heteroallelic combinations shows that these two classes of ptc allele can be easily distinguished by their eye phenotype, but not by their head phenotype. Adult eye size is inversely correlated with head vertex size, suggesting an alteration of cell fate within the eye-antennal disc. A balance between excess cell division and cell death in the mutant eye discs may also contribute to final eye size. In addition, contrary to results reported recently, the role of Hh signaling in the Drosophila head vertex appears to be primarily in patterning rather than in proliferation, with Ptc and Smo having opposing effects on formation of medial structures.
Collapse
Affiliation(s)
- Chloe Thomas
- MRC Intercellular Signalling Group, Centre for Developmental Genetics, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | | |
Collapse
|
33
|
Fu W, Baker NE. Deciphering synergistic and redundant roles of Hedgehog, Decapentaplegic and Delta that drive the wave of differentiation in Drosophila eye development. Development 2003; 130:5229-39. [PMID: 12954721 DOI: 10.1242/dev.00764] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In Drosophila, a wave of differentiation progresses across the retinal field in response to signals from posterior cells. Hedgehog (Hh), Decapentaplegic (Dpp) and Notch (N) signaling all contribute. Clones of cells mutated for receptors and nuclear effectors of one, two or all three pathways were studied to define systematically the necessary and sufficient roles of each signal. Hh signaling alone was sufficient for progressive differentiation, acting through both the transcriptional activator Ci155 and the Ci75 repressor. In the absence of Ci, Dpp and Notch signaling together provided normal differentiation. Dpp alone sufficed for some differentiation, but Notch was not sufficient alone and acted only to enhance the effect of Dpp. Notch acted in part through downregulation of Hairy; Hh signaling downregulated Hairy independently of Notch. One feature of this signaling network is to limit Dpp signaling spatially to a range coincident with Hh.
Collapse
Affiliation(s)
- Weimin Fu
- Department of Molecular Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | |
Collapse
|
34
|
Pappu KS, Chen R, Middlebrooks BW, Woo C, Heberlein U, Mardon G. Mechanism of hedgehog signaling during Drosophila eye development. Development 2003; 130:3053-62. [PMID: 12756186 DOI: 10.1242/dev.00534] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Although Hedgehog (Hh) signaling is essential for morphogenesis of the Drosophila eye, its exact link to the network of tissue-specific genes that regulate retinal determination has remained elusive. In this report, we demonstrate that the retinal determination gene eyes absent (eya) is the crucial link between the Hedgehog signaling pathway and photoreceptor differentiation. Specifically, we show that the mechanism by which Hh signaling controls initiation of photoreceptor differentiation is to alleviate repression of eya and decapentaplegic (dpp) expression by the zinc-finger transcription factor Cubitus interruptus (Ci(rep)). Furthermore, our results suggest that stabilized, full length Ci (Ci(act)) plays little or no role in Drosophila eye development. Moreover, while the effects of Hh are primarily concentration dependent in other tissues, hh signaling in the eye acts as a binary switch to initiate retinal morphogenesis by inducing expression of the tissue-specific factor Eya.
Collapse
Affiliation(s)
- Kartik S Pappu
- Program in Developmental Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
35
|
Jang CC, Chao JL, Jones N, Yao LC, Bessarab DA, Kuo YM, Jun S, Desplan C, Beckendorf SK, Sun YH. Two Pax genes, eye gone and eyeless, act cooperatively in promoting Drosophila eye development. Development 2003; 130:2939-51. [PMID: 12756177 DOI: 10.1242/dev.00522] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report the identification of a Drosophila Pax gene, eye gone (eyg), which is required for eye development. Loss-of-function eyg mutations cause reduction or absence of the eye. Similar to the Pax6 eyeless (ey) gene, ectopic expression of eyg induces extra eye formation, but at sites different from those induced by ey. Several lines of evidence suggest that eyg and ey act cooperatively: (1) eyg expression is not regulated by ey, nor does it regulate ey expression, (2) eyg-induced ectopic morphogenetic furrow formation does not require ey, nor does ey-induced ectopic eye production require eyg, (3) eyg and ey can partially substitute for the function of the other, and (4) coexpression of eyg and ey has a synergistic enhancement of ectopic eye formation. Our results also show that eyg has two major functions: to promote cell proliferation in the eye disc and to promote eye development through suppression of wg transcription.
Collapse
Affiliation(s)
- Chuen-Chuen Jang
- Institute of Genetics, National Yang-Ming University, Taipei 111, Taiwan, Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Kango-Singh M, Singh A, Henry Sun Y. Eyeless collaborates with Hedgehog and Decapentaplegic signaling in Drosophila eye induction. Dev Biol 2003; 256:49-60. [PMID: 12654291 DOI: 10.1016/s0012-1606(02)00123-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
eyeless (ey) is a key regulator of the eye development pathway in Drosophila. Ectopic expression of ey can induce the expression of several eye-specification genes (eya, so, and dac) and induce eye formation in multiple locations on the body. However, ey does not induce eye formation everywhere where it is ectopically expressed, suggesting that EY needs to collaborate with additional factors for eye induction. We examined ectopic eye induction by EY in the wing disc and found that eye induction was spatially restricted to the posterior compartment and the anterior-posterior (A/P) compartmental border, suggesting a requirement for both HH and DPP signaling. Although EY in the anterior compartment induced dpp and dac, these were not sufficient for eye induction. Coexpression experiments show that EY needs to collaborate with high level of HH and DPP to induce ectopic eye formation. Ectopic eye formation also requires the activation of an eye-specific enhancer of the endogenous hh gene.
Collapse
Affiliation(s)
- Madhuri Kango-Singh
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 11529, Taiwan, Republic of China
| | | | | |
Collapse
|
37
|
Bessa J, Gebelein B, Pichaud F, Casares F, Mann RS. Combinatorial control of Drosophila eye development by eyeless, homothorax, and teashirt. Genes Dev 2002; 16:2415-27. [PMID: 12231630 PMCID: PMC187435 DOI: 10.1101/gad.1009002] [Citation(s) in RCA: 183] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In Drosophila, the development of the compound eye depends on the movement of a morphogenetic furrow (MF) from the posterior (P) to the anterior (A) of the eye imaginal disc. We define several subdomains along the A-P axis of the eye disc that express distinct combinations of transcription factors. One subdomain, anterior to the MF, expresses two homeobox genes, eyeless (ey) and homothorax (hth), and the zinc-finger gene teashirt (tsh). We provide evidence that this combination of transcription factors may function as a complex and that it plays at least two roles in eye development: it blocks the expression of later-acting transcription factors in the eye development cascade, and it promotes cell proliferation. A key step in the transition from an immature proliferative state to a committed state in eye development is the repression of hth by the BMP-4 homolog Decapentaplegic (Dpp).
Collapse
Affiliation(s)
- Jose Bessa
- Instituto de Biologia Molecular e Celular (IBMC), 4150-180 Porto, Portugal
| | | | | | | | | |
Collapse
|
38
|
Abstract
Drosophila imaginal discs are sac-like appendage primordia comprising apposed peripodial and columnar cell layers. Cell survival in disc columnar epithelia requires the secreted signal Decapentaplegic (DPP), which also acts as a gradient morphogen during pattern formation. The distribution mechanism by which secreted DPP mediates global cell survival and graded patterning is poorly understood. Here we report detection of DPP in the lumenal cavity between apposed peripodial and columnar cell layers of both wing and eye discs. We show that peripodial cell survival hinges upon DPP signal reception and implicate DPP-dependent viability of the peripodial epithelium in growth of the entire disc. These results are consistent with lumenal transmission of the DPP survival signal during imaginal disc development.
Collapse
Affiliation(s)
- Matthew C Gibson
- Department of Zoology, University of Washington, Seattle, WA 98195, USA.
| | | | | |
Collapse
|
39
|
Shamloula HK, Mbogho MP, Pimentel AC, Chrzanowska-Lightowlers ZMA, Hyatt V, Okano H, Venkatesh TR. rugose (rg), a Drosophila A kinase anchor protein, is required for retinal pattern formation and interacts genetically with multiple signaling pathways. Genetics 2002; 161:693-710. [PMID: 12072466 PMCID: PMC1462145 DOI: 10.1093/genetics/161.2.693] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In the developing Drosophila eye, cell fate determination and pattern formation are directed by cell-cell interactions mediated by signal transduction cascades. Mutations at the rugose locus (rg) result in a rough eye phenotype due to a disorganized retina and aberrant cone cell differentiation, which leads to reduction or complete loss of cone cells. The cone cell phenotype is sensitive to the level of rugose gene function. Molecular analyses show that rugose encodes a Drosophila A kinase anchor protein (DAKAP 550). Genetic interaction studies show that rugose interacts with the components of the EGFR- and Notch-mediated signaling pathways. Our results suggest that rg is required for correct retinal pattern formation and may function in cell fate determination through its interactions with the EGFR and Notch signaling pathways.
Collapse
Affiliation(s)
- Hoda K Shamloula
- Department of Biology, City College and The Graduate Center, City University of New York, New York 10031, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Affiliation(s)
- Jeffrey D Lee
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, NYU School of Medicine, 540 First Avenue, New York, New York 10016, USA
| | | |
Collapse
|
41
|
Abstract
The near-catholic conservation of paired box gene 6 (Pax6) and its supporting cast of retinal determination genes throughout the animal kingdom has sparked a scientific war over the evolutionary origins of the eye. The battle pits those who support a polyphyletic history for the eye against those who argue for a common ancestor for all 'seeing' animals. Recent papers have shed light on how eyes in both vertebrates and invertebrates are patterned. New insights into the roles that signal-transduction cascades might have in determining the Drosophila melanogaster eye indicate that, like many developmental processes, eye specification is an inductive process.
Collapse
Affiliation(s)
- J P Kumar
- Department of Cell Biology, Emory University School of Medicine, 1648 Pierce Drive, Atlanta, Georgia 30033, USA.
| |
Collapse
|
42
|
Rangarajan R, Courvoisier H, Gaul U. Dpp and Hedgehog mediate neuron-glia interactions in Drosophila eye development by promoting the proliferation and motility of subretinal glia. Mech Dev 2001; 108:93-103. [PMID: 11578864 DOI: 10.1016/s0925-4773(01)00501-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Neuron-glia interactions are crucial for the establishment of normal connectivity in the nervous system during development, but the molecular signals involved in these interactions are largely unknown. Here we show that differentiating photoreceptors in the developing Drosophila eye influence the proliferative and migratory behavior of the subretinal glia through the diffusible factors Decapentaplegic (Dpp) and Hedgehog (Hh). We demonstrate that proliferation and migration of the glia are separable processes, and that Dpp promotes both the proliferation and motility of the glia, whereas Hh appears to promote only their motility; neither specifies the direction of migration. We present evidence that Dpp and Hh act on the glia in parallel and through the regulation of transcription. Finally, we show that ectopic migration of subretinal glia can result in the ectopic projection of photoreceptor axons. Our study suggests a novel function for Hh in regulating migratory behavior and provides further evidence for a complex mutual dependence between glial and neuronal cells during development.
Collapse
Affiliation(s)
- R Rangarajan
- Laboratory of Developmental Neurogenetics, Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | | | |
Collapse
|
43
|
Kumar JP, Moses K. The EGF receptor and notch signaling pathways control the initiation of the morphogenetic furrow duringDrosophilaeye development. Development 2001; 128:2689-97. [PMID: 11526075 DOI: 10.1242/dev.128.14.2689] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The onset of pattern formation in the developing Drosophila retina begins with the initiation of the morphogenetic furrow, the leading edge of a wave of retinal development that transforms a uniform epithelium, the eye imaginal disc into a near crystalline array of ommatidial elements. The initiation of this wave of morphogenesis is under the control of the secreted morphogens Hedgehog (Hh), Decapentaplegic (Dpp) and Wingless (Wg). We show that the Epidermal Growth Factor Receptor and Notch signaling cascades are crucial components that are also required to initiate retinal development. We also show that the initiation of the morphogenetic furrow is the sum of two genetically separable processes: (1) the ‘birth’ of pattern formation at the posterior margin of the eye imaginal disc; and (2) the subsequent ‘reincarnation’ of retinal development across the epithelium.
Collapse
Affiliation(s)
- J P Kumar
- Department of Cell Biology, Emory University School of Medicine, 1648 Pierce Drive, Atlanta, GA 30322-3030, USA
| | | |
Collapse
|
44
|
Arquier N, Perrin L, Manfruelli P, Sémériva M. TheDrosophilatumor suppressor genelethal(2)giant larvaeis required for the emission of the Decapentaplegic signal. Development 2001; 128:2209-20. [PMID: 11493541 DOI: 10.1242/dev.128.12.2209] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Drosophila tumor suppressor gene lethal(2) giant larvae (lgl) encodes a cytoskeletal protein required for the change in shape and polarity acquisition of epithelial cells, and also for asymmetric division of neuroblasts. We show here that lgl participates in the emission of Decapentaplegic (Dpp), a member of the transforming growth factor β (TGFβ) family, in various developmental processes.During embryogenesis, lgl is required for the dpp-dependent transcriptional activation of zipper (zip), which encodes the non-muscle myosin heavy chain (NMHC), in the dorsalmost ectodermal cells – the leading edge cells. The embryonic expression of known targets of the dpp signaling pathway, such as labial or tinman was abolished or strongly reduced in lgl mutants. lgl mutant cuticles exhibited phenotypes resembling those observed in mutated partners of the dpp signaling pathway. In addition, lgl was required downstream of dpp and upstream of its receptor Thickveins (Tkv) for the dorsoventral patterning of the ectoderm. During larval development, the expression of spalt, a dpp target, was abolished in mutant wing discs, while it was restored by a constitutively activated form of Tkv (TkvQ253D). Taking into account that the activation of dpp expression was unaffected in the mutant, this suggests that lgl function is not required downstream of the Dpp receptor. Finally, the function of lgl responsible for the activation of Spalt expression appeared to be required only in the cells that produce Dpp, and lgl mutant somatic clones behaved non autonomously. We therefore position the activity of lgl in the cells that produce Dpp, and not in those that respond to the Dpp signal. These results are consistent with a same role for lgl in exocytosis and secretion as that proposed for its yeast ortholog sro7/77 and lgl might function in parallel or independently of its well-documented role in the control of epithelial cell polarity.
Collapse
Affiliation(s)
- N Arquier
- Laboratoire de Génétique et de Physiologie du Développement, UMR 6545 CNRS-Université, IBDM CNRS-INSERM-Université de la Méditerranée, Campus de Luminy, 13288 Marseille cedex 09, France
| | | | | | | |
Collapse
|
45
|
Mozer BA. Dominant Drop mutants are gain-of-function alleles of the muscle segment homeobox gene (msh) whose overexpression leads to the arrest of eye development. Dev Biol 2001; 233:380-93. [PMID: 11336502 DOI: 10.1006/dbio.2001.0229] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dominant Drop (Dr) mutations are nearly eyeless and have additional recessive phenotypes including lethality and patterning defects in eye and sensory bristles due to cis-regulatory lesions in the cell cycle regulator string (stg). Genetic analysis demonstrates that the dominant small eye phenotype is the result of separate gain-of-function mutations in the closely linked muscle segment homeobox (msh) gene, encoding a homeodomain transcription factor required for patterning of muscle and nervous system. Reversion of the Dr(Mio) allele was coincident with the generation of lethal loss-of-function mutations in msh in cis, suggesting that the dominant eye phenotype is the result of ectopic expression. Molecular genetic analysis revealed that two dominant Dr alleles contain lesions upstream of the msh transcription start site. In the Dr(Mio) mutant, a 3S18 retrotransposon insertion is the target of second-site mutations (P-element insertions or deletions) which suppress the dominant eye phenotype following reversion. The pattern of 3S18 expression and the absence of msh in eye imaginal discs suggest that transcriptional activation of the msh promoter accounts for ectopic expression. Dr dominant mutations arrest eye development by blocking the progression of the morphogenetic furrow leading to photoreceptor cell loss via apoptosis. Gal4-mediated ubiquitous expression of msh in third-instar larvae was sufficient to arrest the morphogenetic furrow in the eye imaginal disc and resulted in lethality prior to eclosion. Dominant mutations in the human msx2 gene, one of the vertebrate homologs of msh, are associated with craniosynostosis, a disease affecting cranial development. The Dr mutations are the first example of gain-of-function mutations in the msh/msx gene family identified in a genetically tractible model organism and may serve as a useful tool to identify additional genes that regulate this class of homeodomain proteins.
Collapse
Affiliation(s)
- B A Mozer
- Laboratory of Molecular Biology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA.
| |
Collapse
|
46
|
Lee JD, Treisman JE. The role of Wingless signaling in establishing the anteroposterior and dorsoventral axes of the eye disc. Development 2001; 128:1519-29. [PMID: 11290291 DOI: 10.1242/dev.128.9.1519] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The posteriorly expressed signaling molecules Hedgehog and Decapentaplegic drive photoreceptor differentiation in the Drosophila eye disc, while at the anterior lateral margins Wingless expression blocks ectopic differentiation. We show here that mutations in axin prevent photoreceptor differentiation and lead to tissue overgrowth and that both these effects are due to ectopic activation of the Wingless pathway. In addition, ectopic Wingless signaling causes posterior cells to take on an anterior identity, reorienting the direction of morphogenetic furrow progression in neighboring wild-type cells. We also show that signaling by Decapentaplegic and Hedgehog normally blocks the posterior expression of anterior markers such as Eyeless. Wingless signaling is not required to maintain anterior Eyeless expression and in combination with Decapentaplegic signaling can promote its downregulation, suggesting that additional molecules contribute to anterior identity. Along the dorsoventral axis of the eye disc, Wingless signaling is sufficient to promote dorsal expression of the Iroquois gene mirror, even in the absence of the upstream factor pannier. However, Wingless signaling does not lead to ventral mirror expression, implying the existence of ventral repressors.
Collapse
Affiliation(s)
- J D Lee
- Skirball Institute for Biomolecular Medicine and Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
| | | |
Collapse
|
47
|
Affiliation(s)
- U Heberlein
- Department of Anatomy, University of California, San Francisco 94143-0452, USA
| | | |
Collapse
|
48
|
Treisman J. Drosophila homologues of the transcriptional coactivation complex subunits TRAP240 and TRAP230 are required for identical processes in eye-antennal disc development. Development 2001; 128:603-15. [PMID: 11171343 DOI: 10.1242/dev.128.4.603] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have identified mutations in two genes, blind spot and kohtalo, that encode Drosophila homologues of human TRAP240 and TRAP230, components of a large transcriptional coactivation complex homologous to the yeast Mediator complex. Loss of either blind spot or kohtalo has identical effects on the development of the eye-antennal disc. Eye disc cells mutant for either gene can express decapentaplegic and atonal in response to Hedgehog signaling, but they maintain inappropriate expression of these genes and fail to differentiate further. Mutant cells in the antennal disc lose expression of Distal-less and misexpress eyeless, suggesting a partial transformation towards the eye fate. blind spot and kohtalo are not required for cell proliferation or survival, and their absence cannot be rescued by activation of the Hedgehog or Notch signaling pathways. These novel and specific phenotypes suggest that TRAP240 and TRAP230 act in concert to mediate an unknown developmental signal or a combination of signals.
Collapse
Affiliation(s)
- J Treisman
- Skirball Institute for Biomolecular Medicine and Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
49
|
Friedrich M, Benzer S. Divergent decapentaplegic expression patterns in compound eye development and the evolution of insect metamorphosis. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 2000; 288:39-55. [PMID: 10750052 DOI: 10.1002/(sici)1097-010x(20000415)288:1<39::aid-jez5>3.0.co;2-t] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In the fruit fly Drosophila, the patterning genes decapentaplegic and wingless contribute to the spatial control of retina development in an antagonistic manner. We examined the expression patterns of these genes in the developing visual system of the hemimetabolous grasshopper Schistocerca americana and the primitive holometabolous beetle species Tribolium castaneum. The pattern of wingless expression was strongly conserved as a pair of lateral domains at the anterior margins of both the developing retina and the developing optic lobes. The expression of decapentaplegic, on the other hand, is different. Unlike in Drosophila, no decapentaplegic expression was detected before the onset of photoreceptor differentiation in the retinal precursor tissue of either grasshopper or beetle. Moreover, the subsequent expression of decapentaplegic in the latter species was not concentrated in the moving front of retina differentiation, as in Drosophila, but observed in anterior and posterior regions. Our results indicate that Drosophila eye development contains elements of both ancestral and derived regulatory gene functions. The requirement for decapentaplegic as an antagonist of wingless during the early development of the Drosophila retina might have originated during the evolution of insect metamorphosis.
Collapse
Affiliation(s)
- M Friedrich
- Department of Biology, California Institute of Technology, Pasadena, California 91125, USA.
| | | |
Collapse
|
50
|
Curtiss J, Mlodzik M. Morphogenetic furrow initiation and progression during eye development in Drosophila: the roles of decapentaplegic, hedgehog and eyes absent. Development 2000; 127:1325-36. [PMID: 10683184 DOI: 10.1242/dev.127.6.1325] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Drosophila signaling factor decapentaplegic (dpp) mediates the effects of hedgehog (hh) in tissue patterning by regulating the expression of tissue-specific genes. In the eye disc, the transcription factors eyeless (ey), eyes absent (eya), sine oculis (so) and dachshund (dac) participate with these signaling molecules in a complex regulatory network that results in the initiation of eye development. Our analysis of functional relationships in the early eye disc indicates that hh and dpp play no role in regulating ey, but are required for eya, so and dac expression. We show that restoring expression of eya in loss-of-function dpp mutant backgrounds is sufficient to induce so and dac expression and to rescue eye development. Thus, once expressed, eya can carry out its functions in the absence of dpp. These experiments indicate that dpp functions downstream of or in parallel with ey, but upstream of eya, so and dac. Additional control is provided by a feedback loop that maintains expression of eya and so and includes dpp. The fact that exogenous overexpression of ey, eya, so and dac interferes with wild-type eye development demonstrates the importance of such a complicated mechanism for maintaining proper levels of these factors during early eye development. Whereas initiation of eye development fails in either Hh or Dpp signaling mutants, the subsequent progression of the morphogenetic furrow is only slowed down. However, we find that clones that are simultaneously mutant for Hh and Dpp signaling components completely block furrow progression and eye differentiation, suggesting that Hh and Dpp serve partially redundant functions in this process. Interestingly, furrow-associated expression of eya, so and dac is not affected by double mutant tissue, suggesting that some other factor(s) regulates their expression during furrow progression.
Collapse
Affiliation(s)
- J Curtiss
- Developmental Biology Programme, EMBL, Meyerhofstrasse 1, Germany
| | | |
Collapse
|