1
|
Dao TK, Ferger K, Lambert JD. A chitin-binding domain-containing gene is essential for shell development in the mollusc Tritia. Dev Biol 2025; 520:1-12. [PMID: 39725261 DOI: 10.1016/j.ydbio.2024.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 12/08/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024]
Abstract
Mollusc shells are diverse in shape and size. They are created by a shell epithelium which secretes a chitinous periostracum membrane at the growing edge of the shell, and then coordinates biomineral deposition on the underside of this membrane. Although mollusc shells are important for studying the evolution of morphology, the molecular basis of the shell development is poorly understood. In this paper, we investigate genes involved in the shell development of the gastropod mollusc Tritia (previously known as Ilyanassa). We characterize the contributions of the 2d micromere to the shell and other non-shell structures. We identify eight shell-specific genes and five non-shell specific genes by comparing the transcriptomes of wild-type and 2d ablated embryos. Morpholino knockdown of one of the shell-specific genes, ToChitin-binding domain-containing (ToChitin BD), results in shell defects. The chitinous periostracal membranes in ToChitin BD morpholino knockdown embryos lose their well-defined edge and peroxidase gradient.
Collapse
Affiliation(s)
- T Kim Dao
- University of Rochester, Hutchison Hall, River Campus, Rochester, NY, 14627, USA
| | - Kailey Ferger
- University of Rochester, Hutchison Hall, River Campus, Rochester, NY, 14627, USA
| | - J David Lambert
- University of Rochester, Hutchison Hall, River Campus, Rochester, NY, 14627, USA.
| |
Collapse
|
2
|
Liang Y, Carrillo-Baltodano AM, Martín-Durán JM. Emerging trends in the study of spiralian larvae. Evol Dev 2024; 26:e12459. [PMID: 37787615 DOI: 10.1111/ede.12459] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 10/04/2023]
Abstract
Many animals undergo indirect development, where their embryogenesis produces an intermediate life stage, or larva, that is often free-living and later metamorphoses into an adult. As their adult counterparts, larvae can have unique and diverse morphologies and occupy various ecological niches. Given their broad phylogenetic distribution, larvae have been central to hypotheses about animal evolution. However, the evolution of these intermediate forms and the developmental mechanisms diversifying animal life cycles are still debated. This review focuses on Spiralia, a large and diverse clade of bilaterally symmetrical animals with a fascinating array of larval forms, most notably the archetypical trochophore larva. We explore how classic research and modern advances have improved our understanding of spiralian larvae, their development, and evolution. Specifically, we examine three morphological features of spiralian larvae: the anterior neural system, the ciliary bands, and the posterior hyposphere. The combination of molecular and developmental evidence with modern high-throughput techniques, such as comparative genomics, single-cell transcriptomics, and epigenomics, is a promising strategy that will lead to new testable hypotheses about the mechanisms behind the evolution of larvae and life cycles in Spiralia and animals in general. We predict that the increasing number of available genomes for Spiralia and the optimization of genome-wide and single-cell approaches will unlock the study of many emerging spiralian taxa, transforming our views of the evolution of this animal group and their larvae.
Collapse
Affiliation(s)
- Yan Liang
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | | | - José M Martín-Durán
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| |
Collapse
|
3
|
Webster NB, Meyer NP. Capitella teleta gets left out: possible evolutionary shift causes loss of left tissues rather than increased neural tissue from dominant-negative BMPR1. Neural Dev 2024; 19:4. [PMID: 38698415 PMCID: PMC11067212 DOI: 10.1186/s13064-024-00181-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 03/20/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND The evolution of central nervous systems (CNSs) is a fascinating and complex topic; further work is needed to understand the genetic and developmental homology between organisms with a CNS. Research into a limited number of species suggests that CNSs may be homologous across Bilateria. This hypothesis is based in part on similar functions of BMP signaling in establishing fates along the dorsal-ventral (D-V) axis, including limiting neural specification to one ectodermal region. From an evolutionary-developmental perspective, the best way to understand a system is to explore it in a wide range of organisms to create a full picture. METHODS Here, we expand our understanding of BMP signaling in Spiralia, the third major clade of bilaterians, by examining phenotypes after expression of a dominant-negative BMP Receptor 1 and after knock-down of the putative BMP antagonist Chordin-like using CRISPR/Cas9 gene editing in the annelid Capitella teleta (Pleistoannelida). RESULTS Ectopic expression of the dominant-negative Ct-BMPR1 did not increase CNS tissue or alter overall D-V axis formation in the trunk. Instead, we observed a unique asymmetrical phenotype: a distinct loss of left tissues, including the left eye, brain, foregut, and trunk mesoderm. Adding ectopic BMP4 early during cleavage stages reversed the dominant-negative Ct-BMPR1 phenotype, leading to a similar loss or reduction of right tissues instead. Surprisingly, a similar asymmetrical loss of left tissues was evident from CRISPR knock-down of Ct-Chordin-like but concentrated in the trunk rather than the episphere. CONCLUSIONS Our data highlight a novel asymmetrical phenotype, giving us further insight into the complicated story of BMP's developmental role. We further solidify the hypothesis that the function of BMP signaling during the establishment of the D-V axis and CNS is fundamentally different in at least Pleistoannelida, possibly in Spiralia, and is not required for nervous system delimitation in this group.
Collapse
Affiliation(s)
- Nicole B Webster
- Biology Department, Clark University, 950 Main Street, Worcester, MA, 01610, USA
- Biology Department, University of Saskatchewan, 112 Science Place, Saskatoon, SK, S7N 5C8, Canada
| | - Néva P Meyer
- Biology Department, Clark University, 950 Main Street, Worcester, MA, 01610, USA.
| |
Collapse
|
4
|
Wandelt JE, Nakamoto A, Goulding MQ, Nagy LM. Embryonic organizer specification in the mud snail Ilyanassa obsoleta depends on intercellular signaling. Development 2023; 150:dev202027. [PMID: 37902104 PMCID: PMC10730015 DOI: 10.1242/dev.202027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/23/2023] [Indexed: 10/31/2023]
Abstract
In early embryos of the caenogastropod snail Ilyanassa obsoleta, cytoplasmic segregation of a polar lobe is required for establishment of the D quadrant founder cell, empowering its great-granddaughter macromere 3D to act as a single-celled organizer that induces ectodermal pattern along the secondary body axis of the embryo. We present evidence that polar lobe inheritance is not sufficient to specify 3D potential, but rather makes the D macromere lineage responsive to some intercellular signal(s) required for normal expression of 3D-specific phenotypes. Experimental removal of multiple micromeres resulted in loss of organizer-linked MAPK activation, complete and specific defects of organizer-dependent larval organs, and progressive cell cycle retardation, leading to equalization of the normally accelerated division schedule of 3D (relative to the third-order macromeres of the A, B and C quadrants). Ablation of the second-quartet micromere 2d greatly potentiated the effects of first micromere quartet ablation. Our findings link organizer activation in I. obsoleta to the putative ancestral spiralian mechanism in which a signal from micromeres leads to specification of 3D among four initially equivalent macromeres.
Collapse
Affiliation(s)
- Jessica E. Wandelt
- School of Biological Sciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Ayaki Nakamoto
- Faculty of Pharmaceutical Sciences, Aomori University, Koubata 2-3-1, Aomori 030-0943, Japan
| | | | - Lisa M. Nagy
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
5
|
Salamanca-Díaz DA, Schulreich SM, Cole AG, Wanninger A. Single-Cell RNA Sequencing Atlas From a Bivalve Larva Enhances Classical Cell Lineage Studies. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2021.783984] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Ciliated trochophore-type larvae are widespread among protostome animals with spiral cleavage. The respective phyla are often united into the superclade Spiralia or Lophotrochozoa that includes, for example, mollusks, annelids, and platyhelminths. Mollusks (bivalves, gastropods, cephalopods, polyplacophorans, and their kin) in particular are known for their morphological innovations and lineage-specific plasticity of homologous characters (e.g., radula, shell, foot, neuromuscular systems), raising questions concerning the cell types and the molecular toolkit that underlie this variation. Here, we report on the gene expression profile of individual cells of the trochophore larva of the invasive freshwater bivalve Dreissena rostriformis as inferred from single cell RNA sequencing. We generated transcriptomes of 632 individual cells and identified seven transcriptionally distinct cell populations. Developmental trajectory analyses identify cell populations that, for example, share an ectodermal origin such as the nervous system, the shell field, and the prototroch. To annotate these cell populations, we examined ontology terms from the gene sets that characterize each individual cluster. These were compared to gene expression data previously reported from other lophotrochozoans. Genes expected to be specific to certain tissues, such as Hox1 (in the shell field), Caveolin (in prototrochal cells), or FoxJ (in other cillia-bearing cells) provide evidence that the recovered cell populations contribute to various distinct tissues and organs known from morphological studies. This dataset provides the first molecular atlas of gene expression underlying bivalve organogenesis and generates an important framework for future comparative studies into cell and tissue type development in Mollusca and Metazoa as a whole.
Collapse
|
6
|
Wu L, Lambert JD. A serpin is required for ectomesoderm, a hallmark of spiralian development. Dev Biol 2021; 469:172-181. [PMID: 33148394 DOI: 10.1016/j.ydbio.2020.10.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 11/28/2022]
Abstract
Among animals, diploblasts contain two germ layers, endoderm and ectoderm, while triploblasts have a distinct third germ layer called the mesoderm. Spiralians are a group of triploblast animals that have highly conserved development: they share the distinctive spiralian cleavage pattern as well as a unique source of mesoderm, the ectomesoderm. This population of mesoderm is distinct from endomesoderm and is considered a hallmark of spiralian development, but the regulatory network that drives its development is unknown. Here we identified ectomesoderm-specific genes in the mollusc Tritia (aka Ilyanassa) obsoleta through differential gene expression analyses comparing control and ectomesoderm-ablated embryos, followed by in situ hybridization of identified transcripts. We identified a Tritia serpin gene (ToSerpin1) that appears to be specifically expressed in the ectomesoderm of the posterior and head. Ablation of the 3a and 3b cells, which make most of the ectomesoderm, abolishes ToSerpin1 expression, consistent with its expression in these cells. Morpholino knockdown of ToSerpin1 causes ectomesoderm defects, most prominently in the muscle system of the larval head. This is the first gene identified that is specifically implicated in spiralian ectomesoderm development.
Collapse
Affiliation(s)
- Longjun Wu
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA.
| | - J David Lambert
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA.
| |
Collapse
|
7
|
Johnson AB, Lambert JD. The Caudal ParaHox gene is required for hindgut development in the mollusc Tritia (a.k.a. Ilyanassa). Dev Biol 2020; 470:1-9. [PMID: 33191200 DOI: 10.1016/j.ydbio.2020.10.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 11/26/2022]
Abstract
Caudal homeobox genes are found across animals, typically linked to two other homeobox genes in what has been called the ParaHox cluster. These genes have been proposed to pattern the anterior-posterior axis of the endoderm ancestrally, but the expression of Caudal in extant groups is varied and often occurs in other germ layers. Here we examine the role of Caudal in the embryo of the mollusc Tritia (Ilyanassa) obsoleta. ToCaudal expression is initially broad, then becomes progressively restricted and is finally only in the developing hindgut (a.k.a. intestine). Knockdown of ToCaudal using morpholino oligonucleotides specifically blocks hindgut development, indicating that despite its initially broad expression, the functional role of ToCaudal is in hindgut patterning. This is the first functional characterization of Caudal in an animal with spiralian development, which is an ancient mode of embryogenesis that arose early in bilaterian animal evolution. These results are consistent with the hypothesis that the ancestral role of the ParaHox genes was anterior-posterior patterning of the endoderm.
Collapse
Affiliation(s)
- Adam B Johnson
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - J David Lambert
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA.
| |
Collapse
|
8
|
Wada H, Phuangphong S, Hashimoto N, Nagai K. Establishment of the novel bivalve body plan through modification of early developmental events in mollusks. Evol Dev 2020; 22:463-470. [PMID: 32291900 DOI: 10.1111/ede.12334] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mollusks have a wide variety of body plans, which develop through conserved early embryogenesis, namely spiral embryonic development and trochophore larvae. Although the comparative study of mollusks has attracted the interest of evolutionary developmental biology researchers, less attention has been paid to bivalves. In this review, we focused on the evolutionary process from single-shell ancestors to bivalves, which possess bilaterally separated shells. Our study tracing the lineage of shell field cells in bivalves did not support the old hypothesis that shell plate morphology is due to modification of the spiral cleavage pattern. Rather, we suggest that modification of the shell field induction process is the key to understanding the evolution of shell morphology. The novel body plan of bivalves cannot be established solely via separating shell plates, but rather requires the formation of additional organs, such as adductor muscles. The evolutionary biology of bivalves offers a unique view on how multiple organs evolve in a coordinated manner to establish a novel body plan.
Collapse
Affiliation(s)
- Hiroshi Wada
- School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Supanat Phuangphong
- School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Naoki Hashimoto
- Pearl Research Institute, K. Mikimoto & Co., Ltd., Shima, Mie, Japan
| | - Kiyohito Nagai
- Pearl Research Institute, K. Mikimoto & Co., Ltd., Shima, Mie, Japan
| |
Collapse
|
9
|
Regeneration of the germline in the annelid Capitella teleta. Dev Biol 2018; 440:74-87. [DOI: 10.1016/j.ydbio.2018.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 05/01/2018] [Accepted: 05/07/2018] [Indexed: 12/11/2022]
|
10
|
Carrillo-Baltodano AM, Meyer NP. Decoupling brain from nerve cord development in the annelid Capitella teleta: Insights into the evolution of nervous systems. Dev Biol 2017; 431:134-144. [DOI: 10.1016/j.ydbio.2017.09.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/17/2017] [Accepted: 09/17/2017] [Indexed: 10/18/2022]
|
11
|
von Dassow G, Maslakova SA. The trochoblasts in the pilidium larva break an ancient spiralian constraint to enable continuous larval growth and maximally indirect development. EvoDevo 2017; 8:19. [PMID: 29090082 PMCID: PMC5655816 DOI: 10.1186/s13227-017-0079-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/04/2017] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Nemertean embryos undergo equal spiral cleavage, and prior fate-mapping studies showed that some also exhibit key aspects of spiralian lineage-based fate specification, including specification of the primary trochoblasts, which differentiate early as the core of the prototroch of the spiralian trochophore larva. Yet it remains unclear how the nemertean pilidium larva, a long-lived planktotroph that grows substantially as it builds a juvenile body from isolated rudiments, develops within the constraints of spiral cleavage. RESULTS We marked single cells in embryos of the pilidiophoran Maculaura alaskensis to show that primary, secondary, and accessory trochoblasts, cells that would make the prototroch in conventional spiralian trochophores (1q2, 1q12, and some descendants of 2q), fully account for the pilidium's primary ciliary band, but without undergoing early cleavage arrest. Instead, the primary ciliary band consists of many small, albeit terminally differentiated, cells. The trochoblasts also give rise to niches of indefinitely proliferative cells ("axils") that sustain continuous growth of the larval body, including new ciliated band. Several of the imaginal rudiments that form the juvenile body arise from the axils: in particular, we show that cephalic imaginal disks originate from 1a2 and 1b12 and that trunk imaginal disks likely originate from 2d. CONCLUSIONS The pilidium exhibits a familiar relation between identified blastomeres and the primary ciliated band, but the manner in which these cells form this organ differs fundamentally from the way equivalent cells construct the trochophore's prototroch. Also, the establishment, by some progeny of the putative trochoblasts, of indeterminate stem cell populations that give rise to juvenile rudiments, as opposed to an early cleavage arrest, implies a radical alteration in their developmental program. This transition may have been essential to the evolution of a maximally indirect developing larval form-the pilidium-among nemerteans.
Collapse
Affiliation(s)
- George von Dassow
- Oregon Institute of Marine Biology, University of Oregon, P.O. Box 5389, Charleston, OR 97420 USA
| | - Svetlana A. Maslakova
- Oregon Institute of Marine Biology, University of Oregon, P.O. Box 5389, Charleston, OR 97420 USA
| |
Collapse
|
12
|
Kuo DH. The polychaete-to-clitellate transition: An EvoDevo perspective. Dev Biol 2017; 427:230-240. [DOI: 10.1016/j.ydbio.2017.01.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 01/23/2017] [Accepted: 01/24/2017] [Indexed: 01/21/2023]
|
13
|
Vellutini BC, Martín-Durán JM, Hejnol A. Cleavage modification did not alter blastomere fates during bryozoan evolution. BMC Biol 2017; 15:33. [PMID: 28454545 PMCID: PMC5408385 DOI: 10.1186/s12915-017-0371-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/04/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Stereotypic cleavage patterns play a crucial role in cell fate determination by precisely positioning early embryonic blastomeres. Although misplaced cell divisions can alter blastomere fates and cause embryonic defects, cleavage patterns have been modified several times during animal evolution. However, it remains unclear how evolutionary changes in cleavage impact the specification of blastomere fates. Here, we analyze the transition from spiral cleavage - a stereotypic pattern remarkably conserved in many protostomes - to a biradial cleavage pattern, which occurred during the evolution of bryozoans. RESULTS Using 3D-live imaging time-lapse microscopy (4D-microscopy), we characterize the cell lineage, MAPK signaling, and the expression of 16 developmental genes in the bryozoan Membranipora membranacea. We found that the molecular identity and the fates of early bryozoan blastomeres are similar to the putative homologous blastomeres in spiral-cleaving embryos. CONCLUSIONS Our work suggests that bryozoans have retained traits of spiral development, such as the early embryonic fate map, despite the evolution of a novel cleavage geometry. These findings provide additional support that stereotypic cleavage patterns can be modified during evolution without major changes to the molecular identity and fate of embryonic blastomeres.
Collapse
Affiliation(s)
- Bruno C Vellutini
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5006, Bergen, Norway
| | - José M Martín-Durán
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5006, Bergen, Norway
| | - Andreas Hejnol
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5006, Bergen, Norway.
| |
Collapse
|
14
|
Abstract
Comparative data on the developing gastropod foregut suggest that this multicomponent feeding complex consists of two developmental modules. Modularity is revealed by delayed development of the buccal cavity and radular sac (“ventral module”) relative to the dorsal food channel (“dorsal module”) in gastropods with feeding larvae compared with those that may have never had a feeding larval stage. If nonfeeding larvae like those of extant patellogastropods and vetigastropods are ancestral for gastropods, then the uncoupling and heterochronic offset of dorsal and ventral foregut modules allowed the post-metamorphic dorsal food channel to be co-opted as a simple but functional esophagus for feeding larvae. Furthermore, by reducing energy cost per ovum, the heterochronic offset may have given mothers the evolutionary option of increasing fecundity or investing in protective egg encapsulation material. A second developmental innovation was spatial separation of the dorsal and ventral foregut modules, as illustrated by distal foregut development in buccinid neogastropods and venom gland development in cone snails. Spatial uncoupling may have enhanced the evolvability of gastropod foreguts by allowing phenotypic variants of ventral module components to be selected within post-metamorphic ecological settings, without needing to be first tested for compatibility with larval feeding. Finally, we describe a case in which foregut modularity has helped facilitate a highly derived life history in which encapsulated embryos ingest nurse eggs.
Collapse
Affiliation(s)
- Louise R. Page
- Department of Biology, University of Victoria, P.O. Box 3020 STN CSC, Victoria, BC V8W 2Y2, Canada
- Department of Biology, University of Victoria, P.O. Box 3020 STN CSC, Victoria, BC V8W 2Y2, Canada
| | - Brenda Hookham
- Department of Biology, University of Victoria, P.O. Box 3020 STN CSC, Victoria, BC V8W 2Y2, Canada
- Department of Biology, University of Victoria, P.O. Box 3020 STN CSC, Victoria, BC V8W 2Y2, Canada
| |
Collapse
|
15
|
Goulding MQ, Lambert JD. Mollusc models I. The snail Ilyanassa. Curr Opin Genet Dev 2016; 39:168-174. [PMID: 27497839 DOI: 10.1016/j.gde.2016.07.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 06/07/2016] [Accepted: 07/07/2016] [Indexed: 11/27/2022]
Abstract
Ilyanassa obsoleta has been a model system for experimental embryology for over a century. Here we highlight new insight into early cell lineage specification in Ilyanassa. As in all molluscs and other spiralians, stereotyped cleavage patterns establish a homunculus of regional founder cells. Ongoing studies are beginning to dissect mechanisms of asymmetric cell division that specify these cells' fates. This is only part of the story: overlaid on intrinsic cell identities is a graded 'organizer' signal, and emerging evidence suggests wider roles for short-range intercellular signaling. Modern methods, combined with the intrinsic experimental advantages of Ilyanassa, offer attractive opportunities for studying basic developmental cell biology as well as its evolution over a wide range of phylogenetic scales.
Collapse
Affiliation(s)
- Morgan Q Goulding
- Division of Natural Science, Bethel University, McKenzie, TN 38201, United States.
| | - J David Lambert
- Department of Biology, University of Rochester, Rochester, NY 14627, United States.
| |
Collapse
|
16
|
Dpp/BMP2-4 Mediates Signaling from the D-Quadrant Organizer in a Spiralian Embryo. Curr Biol 2016; 26:2003-2010. [DOI: 10.1016/j.cub.2016.05.059] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 04/05/2016] [Accepted: 05/24/2016] [Indexed: 11/20/2022]
|
17
|
Kozin VV, Kostyuchenko RP. Evolutionary conservation and variability of the mesoderm development in spiralia: A peculiar pattern of nereid polychaetes. BIOL BULL+ 2016. [DOI: 10.1134/s1062359016030079] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
18
|
Vöcking O, Kourtesis I, Hausen H. Posterior eyespots in larval chitons have a molecular identity similar to anterior cerebral eyes in other bilaterians. EvoDevo 2015; 6:40. [PMID: 26702352 PMCID: PMC4689004 DOI: 10.1186/s13227-015-0036-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 11/19/2015] [Indexed: 11/17/2022] Open
Abstract
Background Development of cerebral eyes is generally based on fine-tuned networks and closely intertwined with the formation of brain and head. Consistently and best studied in insects and vertebrates, many signaling pathways relaying the activity of eye developmental factors to positional information in the head region are characterized. Though known from several organisms, photoreceptors developing outside the head region are much less studied and the course of their development, relation to cerebral eyes and evolutionary origin is in most cases unknown. To explore how position influences development of otherwise similar photoreceptors, we analyzed the molecular characteristics of photoreceptors we discovered at the very anterior, the posttrochal mid-body and posterior body region of larval Leptochiton asellus, a representative of the chiton subgroup of mollusks. Results Irrespective of their position, all found photoreceptors exhibit a molecular signature highly similar to cerebral eye photoreceptors of related animals. All photoreceptors employ the same subtype of visual pigments (r-opsin), and the same key elements for phototransduction such as GNAq, trpC and arrestin and intracellular r-opsin transport such as rip11 and myosinV as described from other protostome cerebral eyes. Several transcription factors commonly involved in cerebral eye and brain development such as six1/2, eya, dachshund, lhx2/9 and prox are also expressed by all found photoreceptor cells, only pax6 being restricted to the anterior most cells. Coexpression of pax6 and MITF in photoreceptor-associated shielding pigment cells present at the mid-body position matches the common situation in cerebral eye retinal pigment epithelium specification and differentiation. Notably, all photoreceptors, even the posterior ones, further express clear anterior markers such as foxq2, irx, otx, and six3/6 (only the latter absent in the most posterior photoreceptors), which play important roles in the early patterning of the anterior neurogenic area throughout the animal kingdom. Conclusions Our data suggest that anterior eyes with brain-associated development can indeed be subject to heterotopic replication to developmentally distinct and even posterior body regions. Retention of the transcriptional activity of a broad set of eye developmental factors and common anterior markers suggests a mode of eye development induction, which is largely independent of body regionalization. Electronic supplementary material The online version of this article (doi:10.1186/s13227-015-0036-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Oliver Vöcking
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5008 Bergen, Norway ; Department of Biology, University of Bergen, Thormøhlensgate 55, 5008 Bergen, Norway
| | - Ioannis Kourtesis
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5008 Bergen, Norway
| | - Harald Hausen
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5008 Bergen, Norway
| |
Collapse
|
19
|
Passamaneck YJ, Hejnol A, Martindale MQ. Mesodermal gene expression during the embryonic and larval development of the articulate brachiopod Terebratalia transversa. EvoDevo 2015; 6:10. [PMID: 25897375 PMCID: PMC4404124 DOI: 10.1186/s13227-015-0004-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 03/19/2015] [Indexed: 12/21/2022] Open
Abstract
Background Brachiopods undergo radial cleavage, which is distinct from the stereotyped development of closely related spiralian taxa. The mesoderm has been inferred to derive from the archenteron walls following gastrulation, and the primary mesoderm derivative in the larva is a complex musculature. To investigate the specification and differentiation of the mesoderm in the articulate brachiopod Terebratalia transversa, we have identified orthologs of genes involved in mesoderm development in other taxa and investigated their spatial and temporal expression during the embryonic and larval development of T. transversa. Results Orthologs of 17 developmental regulatory genes with roles in the development of the mesoderm in other bilaterian animals were found to be expressed in the developing mesoderm of T. transversa. Five genes, Tt.twist, Tt.GATA456, Tt.dachshund, Tt.mPrx, and Tt.NK1, were found to have expression throughout the archenteron wall at the radial gastrula stage, shortly after the initiation of gastrulation. Three additional genes, Tt.Pax1/9, Tt.MyoD, and Tt.Six1/2, showed expression at this stage in only a portion of the archenteron wall. Tt.eya, Tt.FoxC, Tt.FoxF, Tt.Mox, Tt.paraxis, Tt.Limpet, and Tt.Mef2 all showed initial mesodermal expression during later gastrula or early larval stages. At the late larval stage, Tt.dachshund, Tt.Limpet, and Tt.Mef2 showed expression in nearly all mesoderm cells, while all other genes were localized to specific regions of the mesoderm. Tt.FoxD and Tt.noggin both showed expression in the ventral mesoderm at the larval stages, with gastrula expression patterns in the archenteron roof and blastopore lip, respectively. Conclusions Expression analyses support conserved roles for developmental regulators in the specification and differentiation of the mesoderm during the development of T. transversa. Expression of multiple mesodermal factors in the archenteron wall during gastrulation supports previous morphological observations that this region gives rise to larval mesoderm. Localized expression domains during gastrulation and larval development evidence early regionalization of the mesoderm and provide a basis for hypotheses regarding the molecular regulation underlying the complex system of musculature observed in the larva. Electronic supplementary material The online version of this article (doi:10.1186/s13227-015-0004-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yale J Passamaneck
- Kewalo Marine Laboratory, PBRC, University of Hawaii, 41 Ahui Street, Honolulu, HI 96813 USA ; The Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL 32080 USA
| | - Andreas Hejnol
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate, 55, 5008 Bergen, Norway
| | - Mark Q Martindale
- The Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL 32080 USA
| |
Collapse
|
20
|
Kumano G. Evolution of germline segregation processes in animal development. Dev Growth Differ 2015; 57:324-32. [DOI: 10.1111/dgd.12211] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 03/05/2015] [Accepted: 03/05/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Gaku Kumano
- Asamushi Research Center for Marine Biology; Graduate School of Life Science; Tohoku University; 9 Sakamoto Asamushi Aomori 039-3501 Japan
| |
Collapse
|
21
|
Chan XY, Lambert JD. Development of blastomere clones in the Ilyanassa embryo: transformation of the spiralian blastula into the larval body plan. Dev Genes Evol 2014; 224:159-74. [PMID: 24906576 DOI: 10.1007/s00427-014-0474-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 05/30/2014] [Indexed: 11/27/2022]
Abstract
Spiralian embryogenesis is deeply conserved and seems to have been in place in the last common ancestor of the large assemblage of protostome phyla known as the Lophotrochozoa. While the blastula fate maps of several spiralian embryos have been determined, little is known about the events that link the early embryo and the larva. For all cells in the Ilyanassa blastula, we determined the clonal morphology at four time points between the blastula and veliger stages. We found that ectomesoderm comes mostly from 3a and 3b, but also from 2c and 2b. We also observed the ingression and early proliferation of 3a- and 3b-derived ectomesoderm. We found cells in the 2b clone that marked the anterior edge of the blastopore and later the mouth and cells in the 3c/3d clones that marked the posterior edges of these structures. This demonstrates directly that the mouth forms in the same location as the blastopore. In the development of the shell field, we observed dramatic cell migration events that invert the positions of the 2b and 2d clones that contribute to the shell. Using time-lapse imaging, we followed and described the cleavage pattern of the conserved endomesodermal blast cell, 4d, up to 4d + 45 h, when there were 52 cells in the clone. Our results show the growth and movement of clones derived from cells of the spiralian blastula as they transform into the trochophore-like and veliger stages. They have implications for the evolution of the shell in gastropods, the origins of mesoderm in spiralians, and the evolution of mouth formation in metazoans.
Collapse
Affiliation(s)
- Xin Yi Chan
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | | |
Collapse
|
22
|
Amiel AR, Henry JQ, Seaver EC. An organizing activity is required for head patterning and cell fate specification in the polychaete annelid Capitella teleta: New insights into cell–cell signaling in Lophotrochozoa. Dev Biol 2013; 379:107-22. [DOI: 10.1016/j.ydbio.2013.04.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 04/02/2013] [Accepted: 04/04/2013] [Indexed: 11/16/2022]
|
23
|
Gharbiah M, Nakamoto A, Nagy LM. Analysis of ciliary band formation in the mollusc Ilyanassa obsoleta. Dev Genes Evol 2013; 223:225-35. [PMID: 23592252 DOI: 10.1007/s00427-013-0440-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 03/05/2013] [Indexed: 11/29/2022]
Abstract
Two primary ciliary bands, the prototroch and metatroch, are required for locomotion and in the feeding larvae of many spiralians. The metatroch has been reported to have different cellular origins in the molluscs Crepidula fornicata and Ilyanassa obsoleta, as well as in the annelid Polygordius lacteus, consistent with multiple independent origins of the spiralian metatroch. Here, we describe in further detail the cell lineage of the ciliary bands in the gastropod mollusc I. obsoleta using intracellular lineage tracing and the expression of an acetylated tubulin antigen that serves as a marker for ciliated cells. We find that the I. obsoleta metatroch is formed primarily by third quartet derivatives as well as a small number of second quartet derivatives. These results differ from the described metatrochal lineage in the mollusc C. fornicata that derives solely from the second quartet or the metatrochal lineage in the annelid P. lacteus that derives solely from the third quartet. The present study adds to a growing body of literature concerning the evolution of the metatroch and the plasticity of cell fates in homologous micromeres in spiralian embryos.
Collapse
Affiliation(s)
- Maey Gharbiah
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
| | | | | |
Collapse
|
24
|
Fischer AH, Arendt D. Mesoteloblast-Like Mesodermal Stem Cells in the Polychaete AnnelidPlatynereis dumerilii(Nereididae). JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2013; 320:94-104. [DOI: 10.1002/jez.b.22486] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 10/12/2012] [Accepted: 12/17/2012] [Indexed: 01/22/2023]
Affiliation(s)
- Antje H.L. Fischer
- Developmental Biology Unit; European Molecular Biology Laboratory; Heidelberg; Germany
| | - Detlev Arendt
- Developmental Biology Unit; European Molecular Biology Laboratory; Heidelberg; Germany
| |
Collapse
|
25
|
Kozin VV, Babakhanova RA, Kostyuchenko RP. Functional role for MAP kinase signaling in cell lineage and dorsoventral axis specification in the basal gastropod Testudinalia testudinalis (Patellogastropoda, Mollusca). Russ J Dev Biol 2013. [DOI: 10.1134/s1062360413010025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
26
|
Lyons DC, Perry KJ, Lesoway MP, Henry JQ. Cleavage pattern and fate map of the mesentoblast, 4d, in the gastropod Crepidula: a hallmark of spiralian development. EvoDevo 2012; 3:21. [PMID: 22992254 PMCID: PMC3724503 DOI: 10.1186/2041-9139-3-21] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 07/24/2012] [Indexed: 11/10/2022] Open
Abstract
Background Animals with a spiral cleavage program, such as mollusks and annelids, make up the majority of the superphylum Lophotrochozoa. The great diversity of larval and adult body plans in this group emerges from this highly conserved developmental program. The 4d micromere is one of the most conserved aspects of spiralian development. Unlike the preceding pattern of spiral divisions, cleavages within the 4d teloblastic sublineages are bilateral, representing a critical transition towards constructing the bilaterian body plan. These cells give rise to the visceral mesoderm in virtually all spiralians examined and in many species they also contribute to the endodermal intestine. Hence, the 4d lineage is an ideal one for studying the evolution and diversification of the bipotential endomesodermal germ layer in protostomes at the level of individual cells. Little is known of how division patterns are controlled or how mesodermal and endodermal sublineages diverge in spiralians. Detailed modern fate maps for 4d exist in only a few species of clitellate annelids, specifically in glossiphoniid leeches and the sludge worm Tubifex. We investigated the 4d lineage in the gastropod Crepidula fornicata, an established model system for spiralian biology, and in a closely related direct-developing species, C. convexa. Results High-resolution cell lineage tracing techniques were used to study the 4d lineage of C. fornicata and C. convexa. We present a new nomenclature to name the progeny of 4d, and report the fate map for the sublineages up through the birth of the first five pairs of teloblast daughter cells (when 28 cells are present in the 4d sublineage), and describe each clone’s behavior during gastrulation and later stages as these undergo differentiation. We identify the precise origin of the intestine, two cells of the larval kidney complex, the larval retractor muscles and the presumptive germ cells, among others. Other tissues that arise later in the 4d lineage include the adult heart, internal foot tissues, and additional muscle and mesenchymal cells derived from later-born progeny of the left and right teloblasts. To test whether other cells can compensate for the loss of these tissues (that is, undergo regulation), specific cells were ablated in C. fornicata. Conclusions Our results present the first fate map of the 4d micromere sublineages in a mollusk. The fate map reveals that endodermal and mesodermal fates segregate much later than previously thought. We observed little evidence of regulation between sublineages, consistent with a lineage-driven cell specification process. Our results provide a framework for comparisons with other spiralians and lay the groundwork for investigation of the molecular mechanisms of endomesoderm formation, germ line segregation and bilateral differentiation in Crepidula.
Collapse
Affiliation(s)
- Deirdre C Lyons
- Department of Cell and Developmental Biology, University of Illinois, 601 South Goodwin Avenue, Urbana, IL 61801, USA.
| | | | | | | |
Collapse
|
27
|
Abstract
The origin and radiation of the major metazoan groups can be elucidated by phylogenomic studies, but morphological evolution must be inferred from embryology and morphology of living organisms. According to the trochaea theory, protostomes are derived from a holoplanktonic gastraea with a circumblastoporal ring of downstream-collecting compound cilia (archaeotroch) and a nervous system comprising an apical ganglion and a circumblastoporal nerve ring. The pelago-benthic life cycle evolved through the addition of a benthic adult stage, with lateral blastopore closure creating a tube-shaped gut. The archaeotroch became differentiated as prototroch, metatroch and telotroch in the (trochophora) larva, but was lost in the adult. The apical ganglion was lost in the adult, as in all neuralians. Paired cerebral ganglia developed from the first micromere quartet. The circumblastoporal nerve became differentiated into a pair of ventral nerve cords with loops around mouth (the anterior part of the blastopore) and anus. Almost all new information about morphology and embryology fits the trochaea theory. The predicted presence of a perioral loop of the blastoporal nerve ring has now been demonstrated in two annelids. Alternative ‘intercalation theories’ propose that planktotrophic larvae evolved many times from direct-developing ancestors, but this finds no support from considerations of adaptation.
Collapse
|
28
|
Gline SE, Nakamoto A, Cho SJ, Chi C, Weisblat DA. Lineage analysis of micromere 4d, a super-phylotypic cell for Lophotrochozoa, in the leech Helobdella and the sludgeworm Tubifex. Dev Biol 2011; 353:120-33. [PMID: 21295566 DOI: 10.1016/j.ydbio.2011.01.031] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 01/24/2011] [Accepted: 01/25/2011] [Indexed: 01/14/2023]
Abstract
The super-phylum Lophotrochozoa contains the plurality of extant animal phyla and exhibits a corresponding diversity of adult body plans. Moreover, in contrast to Ecdysozoa and Deuterostomia, most lophotrochozoans exhibit a conserved pattern of stereotyped early divisions called spiral cleavage. In particular, bilateral mesoderm in most lophotrochozoan species arises from the progeny of micromere 4d, which is assumed to be homologous with a similar cell in the embryo of the ancestral lophotrochozoan, more than 650 million years ago. Thus, distinguishing the conserved and diversified features of cell fates in the 4d lineage among modern spiralians is required to understand how lophotrochozoan diversity has evolved by changes in developmental processes. Here we analyze cell fates for the early progeny of the bilateral daughters (M teloblasts) of micromere 4d in the leech Helobdella sp. Austin, a clitellate annelid. We show that the first six progeny of the M teloblasts (em1-em6) contribute five different sets of progeny to non-segmental mesoderm, mainly in the head and in the lining of the digestive tract. The latter feature, associated with cells em1 and em2 in Helobdella, is seen with the M teloblast lineage in a second clitellate species, the sludgeworm Tubifex tubifex and, on the basis of previously published work, in the initial progeny of the M teloblast homologs in molluscan species, suggesting that it may be an ancestral feature of lophotrochozoan development.
Collapse
Affiliation(s)
- Stephanie E Gline
- Dept. of Molecular and Cell Biology, 385 LSA, University of California, Berkeley, CA 94720-3200, USA
| | | | | | | | | |
Collapse
|
29
|
Chan XY, Lambert JD. Patterning a spiralian embryo: A segregated RNA for a Tis11 ortholog is required in the 3a and 3b cells of the Ilyanassa embryo. Dev Biol 2011; 349:102-12. [DOI: 10.1016/j.ydbio.2010.10.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 09/29/2010] [Accepted: 10/01/2010] [Indexed: 01/10/2023]
|
30
|
Rabinowitz JS, Lambert JD. Spiralian quartet developmental potential is regulated by specific localization elements that mediate asymmetric RNA segregation. Development 2010; 137:4039-49. [PMID: 21041364 DOI: 10.1242/dev.055269] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Spiralian embryos are found in a large group of invertebrate phyla but are largely uncharacterized at a molecular level. These embryos are thought to be particularly reliant on autonomous cues for patterning, and thus represent potentially useful models for understanding asymmetric cell division. The series of asymmetric divisions that produce the micromere quartets are particularly important for patterning because they subdivide the animal-vegetal axis into tiers of cells with different developmental potentials. In the embryo of the snail Ilyanassa, the IoLR5 RNA is specifically segregated to the first quartet cells during the third cleavage. Here, we show that this RNA, and later the protein, are maintained in the 1q(121) cells and their descendents throughout development. Some IoLR5-expressing cells become internalized and join the developing cerebral ganglia. Knockdown of IoLR5 protein results in loss of the larval eyes, which normally develop in association with these ganglia. Segregation of this RNA to the first quartet cells does not occur if centrosomal localization is bypassed. We show that the specific inheritance of the RNA by the first quartet cells is driven by a discrete RNA sequence in the 3' UTR that is necessary and sufficient for localization and segregation, and that localization of another RNA to the first quartet is mediated by a similar element. These results demonstrate that micromere quartet identity, a hallmark of the ancient spiralian developmental program, is controlled in part by specific RNA localization motifs.
Collapse
|
31
|
Meyer NP, Boyle MJ, Martindale MQ, Seaver EC. A comprehensive fate map by intracellular injection of identified blastomeres in the marine polychaete Capitella teleta. EvoDevo 2010; 1:8. [PMID: 20849573 PMCID: PMC2949861 DOI: 10.1186/2041-9139-1-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Accepted: 09/15/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The polychaete annelid Capitella teleta (formerly Capitella sp. I) develops by spiral cleavage and has been the focus of several recent developmental studies aided by a fully sequenced genome. Fate mapping in polychaetes has lagged behind other spiralian taxa, because of technical limitations. RESULTS To generate a modern fate map for C. teleta, we injected 1,1'-dioctadecyl-3,3,3'3'-tetramethylindocarbocyanine perchlorate (DiI) into individual identified blastomeres through fourth-quartet micromere formation. Confocal laser scanning microscopy at single-cell resolution was used to characterize blastomere fates during larval stages. Our results corroborate previous observations from classic studies, and show a number of similarities with other spiralian fate maps, including unique and stereotypic fates for individual blastomeres, presence of four discrete body domains arising from the A, B, C and D cell quadrants, generation of anterior ectoderm from first quartet micromeres, and contributions to trunk ectoderm and ventral nerve cord by the 2d somatoblast. Of particular interest are several instances in which the C. teleta fate map deviates from other spiralian fate maps. For example, we identified four to seven distinct origins of mesoderm, all ectomesodermal. In addition, the left and right mesodermal bands arise from 3d and 3c, respectively, whereas 4d generates a small number of trunk muscle cells, the primordial germ cells and the anus. We identified a complex set of blastomere contributions to the posterior gut in C. teleta, which establishes the most complete map of posterior gut territories to date. CONCLUSIONS Our detailed cellular descriptions reveal previously underappreciated complexity in the ontogenetic contributions to several spiralian larval tissues, including the mesoderm, nervous system and gut. The formation of the mesodermal bands by 3c and 3d is in stark contrast to other spiralians, in which 4d generates the mesodermal bands. The results of this study provide a framework for future phylogenetic comparisons and functional analyses of cell-fate specification.
Collapse
Affiliation(s)
- Néva P Meyer
- Kewalo Marine Laboratory, Pacific Biosciences Research Center, University of Hawaii, 41 Ahui Street, Honolulu, Hawaii 96813, USA.
| | | | | | | |
Collapse
|
32
|
WONG EUNICE, DAVIS ANDREWR, BYRNE MARIA. Reproduction and early development inHaliotis coccoradiata(Vetigastropoda: Haliotidae). INVERTEBR REPROD DEV 2010. [DOI: 10.1080/07924259.2010.9652319] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
33
|
Kranz AM, Tollenaere A, Norris BJ, Degnan BM, Degnan SM. Identifying the germline in an equally cleaving mollusc: Vasa and Nanos expression during embryonic and larval development of the vetigastropod Haliotis asinina. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2010; 314:267-79. [PMID: 20095031 DOI: 10.1002/jez.b.21336] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Members of the Vasa and Nanos gene families are important for the specification and development of the germline in diverse animals. Here, we determine spatial and temporal expression of Vasa and Nanos to investigate germline development in the vetigastropod Haliotis asinina. This is the first time these genes have been examined in an equally cleaving lophotrochozoan species. We find that HasVasa and HasNanos have largely overlapping, but not identical, expression patterns during embryonic and larval development, with both being maternally expressed and localized to the micromere cell lineages during cleavage. As embryonic development continues, HasVasa and HasNanos become progressively more enriched in the dorsal quadrant of the embryo. By the trochophore stage, both HasVasa and HasNanos are expressed in the putative mesodermal bands of the larva. This differs from the unequally cleaving gastropod Illyanasa obsoleta, in which IoVasa and IoNanos expression is detectable only in the early embryo and not during gastrulation and larval development. Our results suggest that the H. asinina germline arises from the 4d cell lineage and that primordial germ cells (PGCs) are not specified exclusively by maternally inherited determinants (preformation). As such, we infer that inductive signals (epigenesis) play an important role in specifying PGCs in H. asinina. We hypothesize that HasVasa is expressed in a population of undifferentiated multipotent cells, from which the PGCs are segregated later during development.
Collapse
Affiliation(s)
- Alexandrea M Kranz
- The University of Queensland, School of Biological Sciences, Brisbane, Queensland, Australia
| | | | | | | | | |
Collapse
|
34
|
Henry JJ, Perry KJ, Fukui L, Alvi N. Differential localization of mRNAs during early development in the mollusc, Crepidula fornicata. Integr Comp Biol 2010; 50:720-33. [PMID: 21558235 DOI: 10.1093/icb/icq088] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Certain mRNAs have been shown to be segregated in different cells in various metazoan embryos. These events represent aspects of autonomous mechanisms that establish particular embryonic cell fates and axial properties associated with asymmetric cell divisions. The spiralian lophotrochozoans (which include molluscs, annelids, nemerteans, gnathostomulids, dicyemid mesozoans, entoprocts, and platyhelminthes) exhibit a highly conserved pattern of early development that involves stereotypical, asymmetric cell divisions (termed "spiral cleavage"). Recently, it was demonstrated that various mRNAs are dynamically localized to the centrosomes in specific cells during early development in the gastropod mollusc, Ilyanassa obsoleta. During subsequent cell divisions, these messages become segregated in particular daughter cells, and it has been proposed that these events distinguish the developmental potential of these cells within the early embryo of I. obsoleta. The molecular mechanisms underlying these events, however, are still unknown. Here we show for the first time in another spiralian lophotrochozoan (the gastropod Crepidula fornicata) that similar patterns of mRNA localization take place during early development. To characterize the transcriptome of early development, and identify candidate genes for the expression analyses, high-throughput sequencing was carried out, via GS FLX Titanium 454 pyrosequencing. The annotated sequences have been made available as a resource for the scientific community (www.life.illinoi.edu/henry/crepidula_databases.html). Presumably, specific proteins associated with centrosomes may be important for these mRNA localization events. In silico sequence comparisons with known centriolar/centrosomal, ciliary/basal body proteomes shows that a large number of those proteins are represented in the collection of expressed sequence tags of C. fornicata annotated in this study. These data should be useful for future studies of the role of specific mRNAs in controlling cell fate and axial specification in the spiralian Lophotrochozoa, and for dissecting the underlying molecular mechanisms that accomplish these events.
Collapse
Affiliation(s)
- Jonathan J Henry
- Department of Cell and Developmental Biology, University of Illinois, 601 S. Goodwin Ave., Urbana IL 61801, USA.
| | | | | | | |
Collapse
|
35
|
Gharbiah M, Cooley J, Leise EM, Nakamoto A, Rabinowitz JS, Lambert JD, Nagy LM. The snail Ilyanassa: a reemerging model for studies in development. Cold Spring Harb Protoc 2010; 2009:pdb.emo120. [PMID: 20147120 DOI: 10.1101/pdb.emo120] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Ilyanassa obsoleta is a marine gastropod that is a long-standing and very useful model for studies of embryonic development. It is especially important as a model for the spiralian development program, a distinctive mode of early development shared by a large group of animal phyla, but poorly understood. Ilyanassa adults are readily obtainable and easy to keep in the laboratory, and they produce large numbers of embryos throughout most of the year. The embryos are amenable to classic embryological manipulation techniques as well as a growing number of molecular approaches. In this article, we present an overview of aspects of its biology and use as a model organism.
Collapse
Affiliation(s)
- Maey Gharbiah
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
At least five animal phyla exhibit spiralian development, which is characterized by striking similarities in the geometry of the early cleavage pattern and the fate map of the blastula, along with similarities in larval morphology. Recent advances in reconstructing the phylogeny of spiralians and their relatives suggest that the common ancestor of a large clade of protostome phyla known as the Lophotrochozoa had spiralian development. In this minireview, I describe characteristics of spiralian development and some recent insights into its mechanisms and evolution.
Collapse
Affiliation(s)
- J David Lambert
- Department of Biology, University of Rochester, Rochester, NY 14607, USA.
| |
Collapse
|
37
|
Gharbiah M, Cooley J, Leise EM, Nakamoto A, Rabinowitz JS, Lambert JD, Nagy LM. Pressure injection of Ilyanassa snail embryos. Cold Spring Harb Protoc 2010; 2009:pdb.prot5185. [PMID: 20147128 DOI: 10.1101/pdb.prot5185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The marine gastropod Ilyanassa obsoleta is a long-standing and very useful model for studies of embryonic development. It is an especially important model for spiralian development, and for studies of asymmetric cell division. The embryos are amenable to classic embryological manipulation techniques, as well as a growing number of molecular approaches. Ilyanassa is also an important model for studies of metamorphosis, the ecology of parasitism, the effects of environmental contaminants on morphology and sexual function, and comparative neurobiology. Intracellular microinjection is an important tool, especially for lineage tracing and perturbations of specific genes by knockdown approaches and synthetic mRNA injections. Two methods for the introduction of lineage tracers into particular cells are routine in Ilyanassa. Iontophoresis of charged molecules, such as fluorophore-dextran conjugates can be accomplished using a simply built current generator. Injection of an oil-based solution containing the fluorescent probe 1,1-dioctadecyl-3,3,3',3'-tetramethyl indocarbocyanine perchlorate (DiI) is also straightforward. However, injection of oil-based solutions and iontophoresis have not been useful for delivering water-soluble reagents to perturb gene function, and pressure injection of aqueous solutions has been more challenging. This protocol describes a recently optimized procedure for the pressure injection of aqueous solutions into Ilyanassa embryos and zygotes with high rates of survival and normal development. The key parameters seem to be the injection needles, injection media, and the stage of injected embryos.
Collapse
Affiliation(s)
- Maey Gharbiah
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Juliano CE, Yajima M, Wessel GM. Nanos functions to maintain the fate of the small micromere lineage in the sea urchin embryo. Dev Biol 2010; 337:220-32. [PMID: 19878662 PMCID: PMC2812692 DOI: 10.1016/j.ydbio.2009.10.030] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 10/09/2009] [Accepted: 10/21/2009] [Indexed: 11/16/2022]
Abstract
The translational regulator nanos is required for the survival and maintenance of primordial germ cells during embryogenesis. Three nanos homologs are present in the genome of the sea urchin Strongylocentrotus purpuratus, all of which are expressed with different timing in the small micromere lineage. This lineage is set-aside during embryogenesis and contributes to constructing the adult rudiment. Small micromeres lacking Sp-nanos1 and Sp-nanos2 undergo an extra division and are not incorporated into the coelomic pouches. Further, these cells do not accumulate Vasa protein even though they retain vasa mRNA. Larvae that develop from Sp-nanos1 and 2 knockdown embryos initially appear normal, but do not develop adult rudiments; although they are capable of eating, over time they fail to grow and eventually die. We conclude that the acquisition and maintenance of multipotency in the small micromere lineage requires nanos, which may function in part by repressing the cell cycle and regulating other multipotency factors such as vasa. This work, in combination with other recent results in Ilyanassa and Platynereis dumerilii, suggests the presence of a conserved molecular program underlying both primordial germ cell and multipotent cell specification and maintenance.
Collapse
Affiliation(s)
- Celina E Juliano
- Department of Molecular and Cell Biology and Biochemistry, Brown University, 185 Meeting St., Providence, RI 02912, USA
| | | | | |
Collapse
|
39
|
Page LR. Molluscan larvae: Pelagic juveniles or slowly metamorphosing larvae? THE BIOLOGICAL BULLETIN 2009; 216:216-225. [PMID: 19556590 DOI: 10.1086/bblv216n3p216] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Asking the right questions about evolution of development, larval morphology, and life history requires knowledge of ancestral state. Two hypotheses dominate current opinion about the ancestral life cycle of bilaterians: the "larva-first" and the "intercalation" hypotheses. Until recently, the larva-first hypothesis was preeminent. This proposes that the original indirect life cycle of bilaterians included a planktotrophic larva followed by a benthic adult. Phylogenetic evidence suggests that a planktotrophic larva is plesiomorphic for echinoderms. A preponderance of developmental studies on echinoderms may have fostered a tendency to extrapolate conclusions about echinoderm development to other clades, particularly the concept that larval and juvenile/adult bodies are mostly separate entities. However, some of the recent reconstructions of bilaterian phylogeny suggest that nonfeeding larvae may have been ancestral for bilaterians, and these may have been intercalated into a life cycle that was originally direct. I review comparative data on molluscan development that suggests the trochophore-like stage is little more than a gastrula with transient structures (prototroch and apical sensory organ) to allow a temporary planktonic phase during development. Most lineage founder cells of molluscan embryos generate progeny that develop through the veliger stage into structures of the juvenile, which becomes benthic when the prototroch and apical sensory organ are lost. In light of this, the model of separate larval and juvenile bodies with the latter developing from nests of multipotent cells within the larva is inappropriate for molluscs. The intercalation hypothesis may be a better model for interpreting development of molluscs and other lophotrochozoans.
Collapse
Affiliation(s)
- Louise R Page
- Department of Biology, University of Victoria, P.O. Box 3020 STN CSC, Victoria, British Columbia V8W 3N5, Canada.
| |
Collapse
|
40
|
Goulding MQ. Cell lineage of the Ilyanassa embryo: evolutionary acceleration of regional differentiation during early development. PLoS One 2009; 4:e5506. [PMID: 19430530 PMCID: PMC2676505 DOI: 10.1371/journal.pone.0005506] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Accepted: 03/06/2009] [Indexed: 11/18/2022] Open
Abstract
Cell lineage studies in mollusk embryos have documented numerous variations on the lophotrochozoan theme of spiral cleavage. In the experimentally tractable embryo of the mud snail Ilyanassa, cell lineage has previously been described only up to the 29-cell stage. Here I provide a chronology of cell divisions in Ilyanassa to the stage of 84 cells (about 16 hours after first cleavage at 23°C), and show spatial arrangements of identified nuclei at stages ranging from 27 to 84 cells. During this period the spiral cleavage pattern gives way to a bilaterally symmetric, dorsoventrally polarized pattern of mitotic timing and geometry. At the same time, the mesentoblast cell 4d rapidly proliferates to form twelve cells lying deep to the dorsal ectoderm. The onset of epiboly coincides with a period of mitotic quiescence throughout the ectoderm. As in other gastropod embryos, cell cycle lengths vary widely and predictably according to cell identity, and many of the longest cell cycles occur in small daughters of highly asymmetric divisions. While Ilyanassa shares many features of embryonic cell lineage with two other caenogastropod genera, Crepidula and Bithynia, it is distinguished by a general tendency toward earlier and more pronounced diversification of cell division pattern along axes of later differential growth.
Collapse
Affiliation(s)
- Morgan Q Goulding
- Section of Integrative Biology, University of Texas, Austin, TX, USA.
| |
Collapse
|
41
|
|
42
|
Lambert JD. Mesoderm in spiralians: the organizer and the 4d cell. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2008; 310:15-23. [PMID: 17577229 DOI: 10.1002/jez.b.21176] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The Spiralia is a clade of protostome invertebrate phyla that share a highly conserved mode of early development. Spiralian development is characterized by regularities in the arrangement of early cleavages, the fates of the cells that are produced by these divisions, and the development of the distinctive trochophore larva. Because of the strong conservation in early development, homologies can be identified between cells in divergent taxa. Some of the most striking examples of conservation in the spiralian embryo are in the cells that generate the mesoderm. The specification of the mesodermal precursors has been well characterized by embryological approaches, and recently the molecular mechanisms of mesoderm specification are starting to be elucidated. This review examines the development of mesoderm in spiralians in a comparative context, with particular focus on the relationship between the mesendodermal cell 4d and the embryonic organizer.
Collapse
Affiliation(s)
- J David Lambert
- Department of Biology, University of Rochester, Rochester, New York 14627, USA.
| |
Collapse
|
43
|
Nanos Is Required in Somatic Blast Cell Lineages in the Posterior of a Mollusk Embryo. Curr Biol 2008; 18:331-6. [DOI: 10.1016/j.cub.2008.01.055] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Revised: 01/17/2008] [Accepted: 01/21/2008] [Indexed: 11/20/2022]
|
44
|
Hejnol A, Martindale MQ, Henry JQ. High-resolution fate map of the snail Crepidula fornicata: the origins of ciliary bands, nervous system, and muscular elements. Dev Biol 2007; 305:63-76. [PMID: 17346693 DOI: 10.1016/j.ydbio.2007.01.044] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Revised: 01/24/2007] [Accepted: 01/31/2007] [Indexed: 11/29/2022]
Abstract
The littorinimorph gastropod Crepidula fornicata shows a spiralian cleavage pattern and has been the subject of studies in experimental embryology, cell lineage, and the organization of the larval nervous system. To investigate the contribution of early blastomeres to the veliger larva, we used intracellular cell lineage tracers in combination with high-resolution confocal imaging. This study corroborates many features derived from other spiralian fate maps (such as the origins of the hindgut and mesoderm from the 4d mesentoblast), but also yields new findings, particularly with respect to the origins of internal structures, such as the nervous system and musculature that have never been described in detail. The ectomesoderm in C. fornicata is mainly formed by micromeres of the 3rd quartet (principally 3a and 3b), which presumably represents a plesiomorphic condition for molluscs. The larval central nervous system is mainly formed by the micromeres of the 1st and 2nd quartet, of which 1a, 1c, and 1d form the anterior apical ganglion and nerve tracks to the foot and velum, and 2b and 2d form the visceral loop and the mantle cell. Our study shows that both first and second velar ciliary bands are generated by the same cells that form the prototroch in other spiralians and apparently bear no homology to the metatroch found in annelids.
Collapse
Affiliation(s)
- Andreas Hejnol
- University of Hawaii, Kewalo Marine Laboratory, 41 Ahui Street, Honolulu, HI 96813, USA
| | | | | |
Collapse
|
45
|
Henry JQ, Perry KJ, Martindale MQ. Cell specification and the role of the polar lobe in the gastropod mollusc Crepidula fornicata. Dev Biol 2006; 297:295-307. [PMID: 16919619 DOI: 10.1016/j.ydbio.2006.04.441] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Revised: 03/27/2006] [Accepted: 04/04/2006] [Indexed: 10/24/2022]
Abstract
A small polar lobe forms at the first and second cleavage divisions in the gastropod mollusc Crepidula fornicata. These lobes normally fuse with the blastomeres that give rise to the D quadrant at the two- and four-cell stages (cells ultimately generating the 4d mesentoblast and D quadrant organizer). Significantly, removal of the small polar lobe had no noticeable effect on subsequent development of the veliger larva. The behavior of the polar lobe and characteristic early cell shape changes involving protrusion of the 3D macromere at the 24-cell suggest that the D quadrant is specified prior to the sixth cleavage division. On the other hand, blastomere deletion experiments indicate that the D quadrant is not determined until the time of formation of the 4d blastomere (mesentoblast). In fact, embryos can undergo regulation to form normal-appearing larvae if the prospective D blastomere or 3D macromere is removed. Removal of the 4d mesentoblast leads to highly disorganized, radial development. Removal of the first quartet micromeres at the 8-cell stage also leads to the development of radialized larvae. These findings indicate that the embryos of C. fornicata follow the mode of development exhibited by equal-cleaving spiralians, which involves conditional specification of the D quadrant organizer via inductive interactions, presumably from the first quartet micromeres.
Collapse
Affiliation(s)
- Jonathan Q Henry
- Department of Cell and Developmental Biology, University of Illinois, Urbana, IL 61801, USA.
| | | | | |
Collapse
|
46
|
CROLL ROGERP, DICKINSON AMANDAJ. Form and function of the larval nervous system in molluscs. INVERTEBR REPROD DEV 2004. [DOI: 10.1080/07924259.2004.9652620] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
47
|
Henry JQ, Okusu A, Martindale MQ. The cell lineage of the polyplacophoran, Chaetopleura apiculata: variation in the spiralian program and implications for molluscan evolution. Dev Biol 2004; 272:145-60. [PMID: 15242797 DOI: 10.1016/j.ydbio.2004.04.027] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2004] [Revised: 04/09/2004] [Accepted: 04/12/2004] [Indexed: 10/26/2022]
Abstract
Polyplacophorans, or chitons, are an important group of molluscs, which are argued to have retained many plesiomorphic features of the molluscan body plan. Polyplacophoran trochophore larvae posses several features that are distinctly different from those of their sister trochozoan taxa, including modifications of the ciliated prototrochal cells, the postrochal position of the larval eyes or ocelli, epidermal calcareous spicules, and a collection of serially reiterated epidermal shell plates. Despite these differences, chitons demonstrate a canonical pattern of equal spiral cleavage shared by other spiralian phyla that permits the identification of homologous cells across this animal clade. Cell lineage analysis using intracellular labeling on one chiton species, Chaetopleura apiculata, shows that the ocelli are generated from different lineal precursors (second-quartet micromeres: 2a, 2c) compared to those in all other spiralians studied to date (first-quartet micromeres: 1a, 1c). This situation implies that significant changes have also occurred in terms of the inductive interactions that control eye development in the spiralians. Although radical departures from the spiralian developmental program are seen in some molluscs (i.e., cephalopods), the findings presented here indicate that important changes can occur even within the highly constrained framework of the spiral cleavage program. Among spiralians, variation has been reported for the origin of the anterior, sensory, apical organ, which arises from the 1c and 1d micromeres in C. apiculata. The prototroch of C. apiculata consists of two to three irregular rows of ciliated cells but arise from 1q and 2q daughters, similar to that of Ischnochiton rissoi, as well as the gastropod, Patella vulgata. Despite certain early claims, there is no supporting evidence that any of the shell plates arise pretrochally in C. apiculata. The first seven of eight definitive shell plates that arise in the larva originate from shell secreting grooves in the postrochal region (derived from 2c, 2d, 3d). Earlier descriptions indicate that the eighth plate arises later at metamorphosis, and as this is formed posteriorly, it too forms in the postrochal region. On the other hand, epidermal spicules originate from both pretrochal and postrochal cells (1a,1d, 2a, 2c, 3c, 3d). The significance of these observations is discussed in light of various hypotheses concerning the origin of the conchiferan shell. This study reveals conservation, as well as evolutionary novelty, in the assignment of specific cell fates in the spiralians.
Collapse
Affiliation(s)
- Jonathan Q Henry
- Department of Cell and Structural Biology, University of Illinois, Urbana 61801, USA.
| | | | | |
Collapse
|
48
|
Maslakova SA, Martindale MQ, Norenburg JL. Fundamental properties of the spiralian developmental program are displayed by the basal nemertean Carinoma tremaphoros (Palaeonemertea, Nemertea). Dev Biol 2004; 267:342-60. [PMID: 15013798 DOI: 10.1016/j.ydbio.2003.10.022] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2002] [Revised: 10/13/2003] [Accepted: 10/15/2003] [Indexed: 11/21/2022]
Abstract
The first description of the cleavage program of the palaeonemertean Carinoma tremaphoros (a member of a basal clade of the Nemertea) is illustrated by confocal microscopy and microinjection and compared to development of more derived nemerteans and other eutrochozoans (Annelida, Mollusca, Sipunculida and Echiurida). Lineage tracers were injected into individual blastomeres of C. tremaphoros at the 2-, 4-, 8- and 16-cell stage. Subsequent development was followed to the formation of simple (so-called planuliform) planktonic larvae to establish the ultimate fates of the blastomeres. Results of labeling experiments demonstrate that the development of C. tremaphoros bears closer similarity to other Eutrochozoa than development of a previously studied hoplonemertean (Nemertopsis bivittata) and a heteronemertean (Cerebratulus lacteus) in that the first cleavage plane bears an invariant relationship to the plane of bilateral symmetry of the larval body. Additionally, our cell-labeling experiments support the earlier suggestion that the transitory pre-oral belt of cells in the larvae of C. tremaphoros corresponds to the prototroch of other Eutrochozoa. A unique feature of development of C. tremaphoros includes the oblique orientation of the trochal lineages with respect to the anterior-posterior axis of the larva. The significance and application of cleavage characters such as presence of molluscan vs. annelid cross for phylogenetic analyses is reviewed. We argue that molluscan or annelid cross, neither of which are present in nemerteans, are merely two out of much greater variety of patterns created by the differences in the relative size and timing of formation of micromere quartets and none can be considered, by itself, as evidence of close phylogenetic relationship between phyla.
Collapse
Affiliation(s)
- Svetlana A Maslakova
- Kewalo Marine Laboratory, Pacific Biomedical Research Center, University of Hawaii, Honolulu, HI 96813, USA.
| | | | | |
Collapse
|
49
|
Nielsen C. Trochophora larvae: cell-lineages, ciliary bands, and body regions. 1. Annelida and Mollusca. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2004; 302:35-68. [PMID: 14760653 DOI: 10.1002/jez.b.20001] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The trochophora concept and the literature on cleavage patterns and differentiation of ectodermal structures in annelids ("polychaetes") and molluscs are reviewed. The early development shows some variation within both phyla, and the cephalopods have a highly modified development. Nevertheless, there are conspicuous similarities between the early development of the two phyla, related to the highly conserved spiral cleavage pattern. Apical and cerebral ganglia have almost identical origin in the two phyla, and the cell-lineage of the prototroch is identical, except for minor variations between species. The cell-lineage of the metatrochs is almost unknown, but the telotroch of annelids and the "telotroch" of the gastropod Patella originate from the 2d-cell, as does the gastrotroch in the few species which have been studied. The segmented annelid body, i.e. the region behind the peristome, develops through addition of new ectoderm from a ring of 2d-cells just in front of the telotroch. This whole region is thus derived from 2d-cells. Conversely, the mollusc body is covered by descendants of cells from both the C and D quadrants and a growth zone is not apparent. This supports the notion that the molluscs are not segmented like the annelids, and that the repeated structures seen in polyplacophorans and monoplacophorans do not represent a segmentation homologous to that of the annelids.
Collapse
Affiliation(s)
- Claus Nielsen
- Zoological Museum (University of Copenhagen), Universitetsparken 15, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
50
|
Dickinson AJG, Croll RP. Development of the larval nervous system of the gastropod Ilyanassa obsoleta. J Comp Neurol 2003; 466:197-218. [PMID: 14528448 DOI: 10.1002/cne.10863] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Gastropods have been well studied in terms of early cell cleavage patterns and the neural basis of adult behaviors; however, much less is known about neural development in this taxon. Here we reveal a relatively sophisticated larval nervous system in a well-studied gastropod, Ilyanassa obsoleta. The present study employed immunocytochemical and histofluorescent techniques combined with confocal microscopy to examine the development of cells containing monoamines (serotonin and catecholamine), neuropeptides (FMRFamide and leu-enkephalin related peptides), and a substance(s) reactive to antibodies raised against dopamine beta-hydroxylase. Neurons were first observed in the apical organ and posterior regions during the embryonic trochophore stage. During later embryonic development neurons appeared in peripheral regions such as the foot, velum, and mantle and in the developing ganglia destined to become the adult central nervous system. In subsequent free-swimming veliger stages the larval nervous system became increasingly elaborate and by late larval stages there existed approximately 26-28 apical cells, 80-100 neurons in the central ganglia, and 200-300 peripherally located neurons. During metamorphosis some populations of neurons in the apical organ and in the periphery disappeared, while others were incorporated into the juvenile nervous system. Comparisons of neural elements in other molluscan larvae reveal several similarities such as comparable arrangements of cells in the apical organ and patterns of peripheral cells. This investigation reveals the most extensive larval nervous system described in any mollusc to date and information from this study will be useful for future experimental studies determining the role of larval neurons and investigations of the cellular and molecular mechanisms governing neural development in this taxon.
Collapse
Affiliation(s)
- Amanda J G Dickinson
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, B3H 4H7 Nova Scotia, Canada.
| | | |
Collapse
|