1
|
Do HT, Ono M, Wang Z, Kitagawa W, Dang AT, Yonezawa T, Kuboki T, Oohashi T, Kubota S. Inverse genetics tracing the differentiation pathway of human chondrocytes. Osteoarthritis Cartilage 2024; 32:1419-1432. [PMID: 38925474 DOI: 10.1016/j.joca.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024]
Abstract
OBJECTIVE Mammalian somatic cells can be reprogrammed into induced pluripotent stem cells (iPSCs) via the forced expression of Yamanaka reprogramming factors. However, only a limited population of the cells that pass through a particular pathway can metamorphose into iPSCs, while the others do not. This study aimed to clarify the pathways that chondrocytes follow during the reprogramming process. DESIGN The fate of human articular chondrocytes under reprogramming was investigated through a time-coursed single-cell transcriptomic analysis, which we termed an inverse genetic approach. The iPS interference technique was also employed to verify that chondrocytes inversely return to pluripotency following the proper differentiation pathway. RESULTS We confirmed that human chondrocytes could be converted into cells with an iPSC phenotype. Moreover, it was clarified that a limited population that underwent the silencing of SOX9, a master gene for chondrogenesis, at a specific point during the proper transcriptome transition pathway, could eventually become iPSCs. Interestingly, the other cells, which failed to be reprogrammed, followed a distinct pathway toward cells with a surface zone chondrocyte phenotype. The critical involvement of cellular communication network factors (CCNs) in this process was indicated. The idea that chondrocytes, when reprogrammed into iPSCs, follow the differentiation pathway backward was supported by the successful iPS interference using SOX9. CONCLUSIONS This inverse genetic strategy may be useful for seeking candidates for the master genes for the differentiation of various somatic cells. The utility of CCNs in articular cartilage regeneration is also supported.
Collapse
Affiliation(s)
- H T Do
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan; Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| | - M Ono
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan; Department of Oral Rehabilitation and Implantology, Okayama University Hospital, Okayama, Japan.
| | - Z Wang
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| | - W Kitagawa
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan; Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| | - A T Dang
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan; Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| | - T Yonezawa
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| | - T Kuboki
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan; Department of Oral Rehabilitation and Implantology, Okayama University Hospital, Okayama, Japan.
| | - T Oohashi
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| | - S Kubota
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| |
Collapse
|
2
|
Lang A, Eastburn EA, Younesi M, Nijsure M, Siciliano C, Haran AP, Panebianco CJ, Seidl E, Tang R, Alsberg E, Willett NJ, Gottardi R, Huh D, Boerckel JD. Cyr61 delivery promotes angiogenesis during bone fracture repair. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.05.588239. [PMID: 38617208 PMCID: PMC11014620 DOI: 10.1101/2024.04.05.588239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Compromised vascular supply and insufficient neovascularization impede bone repair, increasing risk of non-union. Cyr61, Cysteine-rich angiogenic inducer of 61kD (also known as CCN1), is a matricellular growth factor that is regulated by mechanical cues during fracture repair. Here, we map the distribution of endogenous Cyr61 during bone repair and evaluate the effects of recombinant Cyr61 delivery on vascularized bone regeneration. In vitro, Cyr61 treatment did not alter chondrogenesis or osteogenic gene expression, but significantly enhanced angiogenesis. In a mouse femoral fracture model, Cyr61 delivery did not alter cartilage or bone formation, but accelerated neovascularization during fracture repair. Early initiation of ambulatory mechanical loading disrupted Cyr61-induced neovascularization. Together, these data indicate that Cyr61 delivery can enhance angiogenesis during bone repair, particularly for fractures with stable fixation, and may have therapeutic potential for fractures with limited blood vessel supply.
Collapse
Affiliation(s)
- Annemarie Lang
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, United States
| | - Emily A. Eastburn
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Mousa Younesi
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Madhura Nijsure
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Carly Siciliano
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Annapurna Pranatharthi Haran
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | | | - Elizabeth Seidl
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Rui Tang
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, United States
| | - Eben Alsberg
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, United States
| | - Nick J. Willett
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR, United States
- The Veterans Affairs Portland Health Care System, Portland, OR, United States
| | - Riccardo Gottardi
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
- Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Dongeun Huh
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Joel D. Boerckel
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
3
|
Espinoza I, Yang L, Steen TV, Vellon L, Cuyàs E, Verdura S, Lau L, Menendez JA, Lupu R. Binding of the angiogenic/senescence inducer CCN1/CYR61 to integrin α 6β 1 drives endocrine resistance in breast cancer cells. Aging (Albany NY) 2022; 14:1200-1213. [PMID: 35148282 PMCID: PMC8876916 DOI: 10.18632/aging.203882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 01/29/2022] [Indexed: 11/25/2022]
Abstract
CCN1/CYR61 promotes angiogenesis, tumor growth and chemoresistance by binding to its integrin receptor αvβ3 in endothelial and breast cancer (BC) cells. CCN1 controls also tissue regeneration by engaging its integrin receptor α6β1 to induce fibroblast senescence. Here, we explored if the ability of CCN1 to drive an endocrine resistance phenotype in estrogen receptor-positive BC cells relies on interactions with either αvβ3 or α6β1. First, we took advantage of site-specific mutagenesis abolishing the CCN1 receptor-binding sites to αvβ3 and α6β1 to determine the integrin partner responsible for CCN1-driven endocrine resistance. Second, we explored a putative nuclear role of CCN1 in regulating ERα-driven transcriptional responses. Retroviral forced expression of a CCN1 derivative with a single amino acid change (D125A) that abrogates binding to αvβ3 partially phenocopied the endocrine resistance phenotype induced upon overexpression of wild-type (WT) CCN1. Forced expression of the CCN1 mutant TM, which abrogates all the T1, H1, and H2 binding sites to α6β1, failed to bypass the estrogen requirement for anchorage-independent growth or to promote resistance to tamoxifen. Wild-type CCN1 promoted estradiol-independent transcriptional activity of ERα and enhanced ERα agonist response to tamoxifen. The α6β1-binding-defective TM-CCN1 mutant lost the ERα co-activator-like behavior of WT-CCN1. Co-immunoprecipitation assays revealed a direct interaction between endogenous CCN1 and ERα, and in vitro approaches confirmed the ability of recombinant CCN1 to bind ERα. CCN1 signaling via α6β1, but not via αvβ3, drives an endocrine resistance phenotype that involves a direct binding of CCN1 to ERα to regulate its transcriptional activity in ER+ BC cells.
Collapse
Affiliation(s)
- Ingrid Espinoza
- Department of Laboratory Medicine and Pathology, Division of Experimental Pathology, Mayo Clinic, Rochester, 55905 MN, USA.,Current address: Department of Preventive Medicine, John D. Bower School of Population Health, University of Mississippi Medical Center, Jackson, MS 39216, USA.,Current address: Cancer Institute, School of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Lin Yang
- Department of Laboratory Medicine and Pathology, Division of Experimental Pathology, Mayo Clinic, Rochester, 55905 MN, USA
| | - Travis Vander Steen
- Department of Laboratory Medicine and Pathology, Division of Experimental Pathology, Mayo Clinic, Rochester, 55905 MN, USA
| | - Luciano Vellon
- Stem Cells Laboratory, Institute of Biology and Experimental Medicine (IBYME-CONICET), Buenos Aires C1428ADN, Argentina
| | - Elisabet Cuyàs
- Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona 17005, Spain.,Girona Biomedical Research Institute, Salt, Girona 17190, Spain
| | - Sara Verdura
- Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona 17005, Spain.,Girona Biomedical Research Institute, Salt, Girona 17190, Spain
| | - Lester Lau
- Department of Biochemistry and Molecular Genetics, College of Medicine, The University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Javier A Menendez
- Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona 17005, Spain.,Girona Biomedical Research Institute, Salt, Girona 17190, Spain
| | - Ruth Lupu
- Department of Laboratory Medicine and Pathology, Division of Experimental Pathology, Mayo Clinic, Rochester, 55905 MN, USA.,Department of Biochemistry and Molecular Biology Laboratory, Mayo Clinic Minnesota, Rochester, MN 55905, USA.,Mayo Clinic Cancer Center, Rochester, MN 55905, USA
| |
Collapse
|
4
|
Kubota S, Kawaki H, Perbal B, Kawata K, Hattori T, Nishida T. Cellular communication network factor 3 in cartilage development and maintenance. J Cell Commun Signal 2021; 15:533-543. [PMID: 34125392 PMCID: PMC8642582 DOI: 10.1007/s12079-021-00629-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/27/2021] [Indexed: 12/30/2022] Open
Abstract
Cellular communication network factor (CCN) 3 is one of the classical members of the CCN family, which are characterized by common molecular structures and multiple functionalities. Although this protein was discovered as a gene product overexpressed in a truncated form in nephroblastoma, recent studies have revealed its physiological roles in the development and homeostasis of mammalian species, in addition to its pathological association with a number of diseases. Cartilage is a tissue that creates most of the bony parts and cartilaginous tissues that constitute the human skeleton, in which CCN3 is also differentially produced to exert its molecular missions therein. In this review article, after the summary of the molecular structure and function of CCN3, recent findings on the regulation of ccn3 expression and the roles of CCN3 in endochondral ossification, cartilage development, maintenance and disorders are introduced with an emphasis on the metabolic regulation and function of this matricellular multifunctional molecule.
Collapse
Affiliation(s)
- Satoshi Kubota
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan.
| | - Harumi Kawaki
- Department of Oral Biochemistry, Asahi University School of Dentistry, Mizuho, Japan
| | | | - Kazumi Kawata
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Takako Hattori
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Takashi Nishida
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School, Okayama, Japan
| |
Collapse
|
5
|
Guo P, Ma Y, Deng G, Li L, Gong Y, Yang F, You Y. CYR61, regulated by miR-22-3p and MALAT1, promotes autophagy in HK-2 cell inflammatory model. Transl Androl Urol 2021; 10:3486-3500. [PMID: 34532273 PMCID: PMC8421830 DOI: 10.21037/tau-21-623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/13/2021] [Indexed: 12/12/2022] Open
Abstract
Background Renal tubular epithelial cells play an important role in renal function and are a major site of injury from inflammation. Emerging evidence suggests that CYR61 is involved in the regulation of autophagy. However, there are few studies on CYR61 in nephropathy and associated inflammation. This study aimed to clarify how CYR61 regulates autophagy in human renal epithelial cells while in an inflammatory state and regulates the upstream pathway of CYR61 levels. Methods The human renal tubular epithelial cells (HK-2) cell line treated by lipopolysaccharide (LPS) was used as an inflammatory model of human epithelial cells. Short hairpin RNA (shRNA) was used to down-regulate CYR61, and the changes in the transcription and expression levels of related molecules, as well as the morphological changes of HK-2 cells, were detected by quantitative real time-PCR (qRT-PCR), western blot (WB), and transmission electron microscopy. Either CYR61 or MALAT1 were up-regulated by overexpression vectors, or MALAT1 was down-regulated by miR-22-3p mimics. Subsequently, the levels of CYR61, MALAT1, related inflammatory factors, and autophagy factors were measured by qPCR, WB, and enzyme-linked immunosorbent assay (ELISA). Cell apoptosis was detected by flow cytometry and acridine-orange assay. Results We observed that down-regulation of CYR61 could down-regulate 1B-light chain 3 (LC3) level and inhibit autophagy in the LPS-induced inflammation model of HK-2 cells. The expression levels of CYR61, Beclin1, Atg5, LC3, interleukin 6 (IL-6), and tumor necrosis factor-α (TNF-α) were significantly increased by upregulating CYR61 or MALAT1 by overexpression vector, while the expression level of p62 was significantly decreased, intracellular reactive oxygen species (ROS) content was increased, and the proportion of autophagy and apoptosis was increased. The use of miR-22-3p mimics significantly reversed the changes induced by up-regulation of CYR61 or MALAT1 at the molecular and cellular levels. Conclusions Our data indicated that CYR61 positively regulates autophagy of HK-2 cells under an inflammatory state, and was negatively regulated by miR-22-3p, while miR-22-3p and MALAT1 were negatively regulated by each other.
Collapse
Affiliation(s)
- Pengwei Guo
- Department of Nephrology, Jinan University, Guangzhou, China.,Department of Nephrology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Yanfei Ma
- Department of Gland Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Gao Deng
- Department of Nephrology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Lingling Li
- Department of Nephrology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Yunxia Gong
- Department of Nephrology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Fafen Yang
- Department of Nephrology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Yanwu You
- Department of Nephrology, Jinan University, Guangzhou, China.,Department of Nephrology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| |
Collapse
|
6
|
CCN proteins in the musculoskeletal system: current understanding and challenges in physiology and pathology. J Cell Commun Signal 2021; 15:545-566. [PMID: 34228239 PMCID: PMC8642527 DOI: 10.1007/s12079-021-00631-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023] Open
Abstract
The acronym for the CCN family was recently revised to represent “cellular communication network”. These six, small, cysteine-enriched and evolutionarily conserved proteins are secreted matricellular proteins, that convey and modulate intercellular communication by interacting with structural proteins, signalling factors and cell surface receptors. Their role in the development and physiology of musculoskeletal system, constituted by connective tissues where cells are interspersed in the cellular matrix, has been broadly studied. Previous research has highlighted a crucial balance of CCN proteins in mesenchymal stem cell commitment and a pivotal role for CCN1, CCN2 and their alter ego CCN3 in chondrogenesis and osteogenesis; CCN4 plays a minor role and the role of CCN5 and CCN6 is still unclear. CCN proteins also participate in osteoclastogenesis and myogenesis. In adult life, CCN proteins serve as mechanosensory proteins in the musculoskeletal system providing a steady response to environmental stimuli and participating in fracture healing. Substantial evidence also supports the involvement of CCN proteins in inflammatory pathologies, such as osteoarthritis and rheumatoid arthritis, as well as in cancers affecting the musculoskeletal system and bone metastasis. These matricellular proteins indeed show involvement in inflammation and cancer, thus representing intriguing therapeutic targets. This review discusses the current understanding of CCN proteins in the musculoskeletal system as well as the controversies and challenges associated with their multiple and complex roles, and it aims to link the dispersed knowledge in an effort to stimulate and guide readers to an area that the writers consider to have significant impact and relevant potentialities.
Collapse
|
7
|
Sanchez C, Hemmer K, Krömmelbein N, Seilheimer B, Dubuc JE, Antoine C, Henrotin Y. Reduction of Matrix Metallopeptidase 13 and Promotion of Chondrogenesis by Zeel T in Primary Human Osteoarthritic Chondrocytes. Front Pharmacol 2021; 12:635034. [PMID: 34045958 PMCID: PMC8144641 DOI: 10.3389/fphar.2021.635034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 02/26/2021] [Indexed: 12/21/2022] Open
Abstract
Objectives: Zeel T (Ze14) is a multicomponent medicinal product. Initial preclinical data suggested a preventive effect on cartilage degradation. Clinical observational studies demonstrated that Ze14 reduced symptoms of osteoarthritis (OA), including stiffness and pain. This study aimed to explore these effects further to better understand the mode of action of Ze14 on human OA chondrocytes in vitro. Methods: Primary chondrocytes were obtained from the knees of 19 OA patients and cultured either as monolayers or in alginate beads. The cultures were treated with 20% or 10% (v/v) Ze14 or placebo. For RNA-seq, reads were generated with Illumina NextSeq5000 sequencer and aligned to the human reference genome (UCSC hg19). Differential expression analysis between Ze14 and placebo was performed in R using the DESeq2 package. Protein quantification by ELISA was performed on selected genes from the culture medium and/or the cellular fractions of primary human OA chondrocyte cultures. Results: In monolayer cultures, Ze14 20% (v/v) significantly modified the expression of 13 genes in OA chondrocytes by at least 10% with an adjusted p-value < 0.05: EGR1, FOS, NR4A1, DUSP1, ZFP36, ZFP36L1, NFKBIZ, and CCN1 were upregulated and ATF7IP, TXNIP, DEPP1, CLEC3A, and MMP13 were downregulated after 24 h Ze14 treatment. Ze14 significantly increased (mean 2.3-fold after 24 h, p = 0.0444 and 72 h, p = 0.0239) the CCN1 protein production in human OA chondrocytes. After 72 h, Ze14 significantly increased type II collagen pro-peptide production by mean 27% (p = 0.0147). For both time points CCN1 production by OA chondrocytes was correlated with aggrecan (r = 0.66, p = 0.0004) and type II collagen pro-peptide (r = 0.64, p = 0.0008) production. In alginate beads cultures, pro-MMP-13 was decreased by Ze14 from day 7-14 (from -16 to -25%, p < 0.05) and from day 17-21 (-22%, p = 0.0331) in comparison to controls. Conclusion: Ze14 significantly modified the expression of DUSP1, DEPP1, ZFP36/ZFP36L1, and CLEC3A, which may reduce MMP13 expression and activation. Protein analysis confirmed that Ze14 significantly reduced the production of pro-MMP-13. As MMP-13 is involved in type II collagen degradation, Ze14 may limit cartilage degradation. Ze14 also promoted extracellular matrix formation arguably through CCN1 production, a growth factor well correlated with type II collagen and aggrecan production.
Collapse
Affiliation(s)
- Christelle Sanchez
- MusculoSKeletal Innovative Research Lab, University of Liège, Center for Interdisciplinary Research on Medicines, Liège, Belgium
| | | | | | | | - Jean-Emile Dubuc
- MusculoSKeletal Innovative Research Lab, University of Liège, Center for Interdisciplinary Research on Medicines, Liège, Belgium.,Division of Orthopedics and Musculoskeletal Trauma, Cliniques Universitaires de St Luc, Brussels, Belgium
| | | | - Yves Henrotin
- MusculoSKeletal Innovative Research Lab, University of Liège, Center for Interdisciplinary Research on Medicines, Liège, Belgium.,Artialis SA, Liège, Belgium.,Physical Therapy and Rehabilitation Department, Princess Paola Hospital, Vivalia, Marche-en-Famenne, Belgium
| |
Collapse
|
8
|
Gan YR, Wei L, Wang YZ, Kou ZK, Liang TX, Ding GW, Ding YH, Xie DX. Dickkopf‑1/cysteine‑rich angiogenic inducer 61 axis mediates palmitic acid‑induced inflammation and apoptosis of vascular endothelial cells. Mol Med Rep 2020; 23:122. [PMID: 33300071 PMCID: PMC7751473 DOI: 10.3892/mmr.2020.11761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/19/2020] [Indexed: 11/18/2022] Open
Abstract
Cardiovascular diseases (CVDs) are a major cause of mortality around the world, and the presence of atherosclerosis is the most common characteristic in patients with CVDs. Cysteine-rich angiogenic inducer 61 (CCN1) has been reported to serve an important role in the pathogenesis of atherosclerotic lesions. The aim of the present study was to investigate whether CCN1 could regulate the inflammation and apoptosis of endothelial cells induced by palmitic acid (PA). Dickkopf-1 (DKK1) is an important antagonist of the Wnt signaling pathway, which can specifically inhibit the classic Wnt signaling pathway. Firstly, the mRNA and protein expression levels of CCN1 were detected. Additionally, endothelial nitric oxide (NO) synthase (eNOS), DKK1, β-catenin, and inflammation- and apoptosis-associated proteins were measured. Detection of NO was performed using a commercial kit. The expression levels of inflammatory cytokines were assessed to explore the effect of CCN1 on PA-induced inflammation. TUNEL assay was used to detect the apoptosis of endothelial cells. The results revealed that PA upregulated the expression levels of CCN1, inflammatory cytokines and pro-apoptotic proteins in endothelial cells. PA decreased the production of NO, and the levels of phosphorylated-eNOS, whereas knockdown of CCN1 partially abrogated these effects triggered by PA. Furthermore, the Wnt/β-catenin signaling pathway was activated in PA-induced endothelial cells; however, the levels of DKK1 were downregulated. Overexpression of DKK1 could reduce CCN1 expression via inactivation of the Wnt/β-catenin signaling pathway. In conclusion, knockdown of CCN1 attenuated PA-induced inflammation and apoptosis of endothelial cells via inactivating the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Yi-Rong Gan
- Gansu Cardiovascular Institute, The First People's Hospital of Lanzhou City, Lanzhou, Gansu 730050, P.R. China
| | - Ling Wei
- Department of Outpatient, The First People's Hospital of Lanzhou City, Lanzhou, Gansu 730050, P.R. China
| | - Yan-Zhen Wang
- Gansu Cardiovascular Institute, The First People's Hospital of Lanzhou City, Lanzhou, Gansu 730050, P.R. China
| | - Zong-Ke Kou
- Gansu Cardiovascular Institute, The First People's Hospital of Lanzhou City, Lanzhou, Gansu 730050, P.R. China
| | - Tian-Xiang Liang
- Gansu Cardiovascular Institute, The First People's Hospital of Lanzhou City, Lanzhou, Gansu 730050, P.R. China
| | - Guan-Waner Ding
- Department of Clinical Medicine, Shijiazhuang People's Medical College, Shijiazhuang, Hebei 050599, P.R. China
| | - Yan-Hong Ding
- Department of Anesthesiology, The First People's Hospital of Lanzhou City, Lanzhou, Gansu 730050, P.R. China
| | - Ding-Xiong Xie
- Gansu Cardiovascular Institute, The First People's Hospital of Lanzhou City, Lanzhou, Gansu 730050, P.R. China
| |
Collapse
|
9
|
García-Moreno JF, Romão L. Perspective in Alternative Splicing Coupled to Nonsense-Mediated mRNA Decay. Int J Mol Sci 2020; 21:ijms21249424. [PMID: 33321981 PMCID: PMC7764535 DOI: 10.3390/ijms21249424] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 12/19/2022] Open
Abstract
Alternative splicing (AS) of precursor mRNA (pre-mRNA) is a cellular post-transcriptional process that generates protein isoform diversity. Nonsense-mediated RNA decay (NMD) is an mRNA surveillance pathway that recognizes and selectively degrades transcripts containing premature translation-termination codons (PTCs), thereby preventing the production of truncated proteins. Nevertheless, NMD also fine-tunes the gene expression of physiological mRNAs encoding full-length proteins. Interestingly, around one third of all AS events results in PTC-containing transcripts that undergo NMD. Numerous studies have reported a coordinated action between AS and NMD, in order to regulate the expression of several genes, especially those coding for RNA-binding proteins (RBPs). This coupling of AS to NMD (AS-NMD) is considered a gene expression tool that controls the ratio of productive to unproductive mRNA isoforms, ultimately degrading PTC-containing non-functional mRNAs. In this review, we focus on the mechanisms underlying AS-NMD, and how this regulatory process is able to control the homeostatic expression of numerous RBPs, including splicing factors, through auto- and cross-regulatory feedback loops. Furthermore, we discuss the importance of AS-NMD in the regulation of biological processes, such as cell differentiation. Finally, we analyze interesting recent data on the relevance of AS-NMD to human health, covering its potential roles in cancer and other disorders.
Collapse
Affiliation(s)
- Juan F. García-Moreno
- Department of Human Genetics, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016 Lisboa, Portugal;
- Faculty of Science, BioISI—Biosystems and Integrative Sciences Institute, University of Lisboa, 1749-016 Lisboa, Portugal
| | - Luísa Romão
- Department of Human Genetics, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016 Lisboa, Portugal;
- Faculty of Science, BioISI—Biosystems and Integrative Sciences Institute, University of Lisboa, 1749-016 Lisboa, Portugal
- Correspondence: ; Tel.: +351-217-508-155
| |
Collapse
|
10
|
Mona M, Kobeissy F, Park YJ, Miller R, Saleh W, Koh J, Yoo MJ, Chen S, Cha S. Secretome Analysis of Inductive Signals for BM-MSC Transdifferentiation into Salivary Gland Progenitors. Int J Mol Sci 2020; 21:E9055. [PMID: 33260559 PMCID: PMC7730006 DOI: 10.3390/ijms21239055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023] Open
Abstract
Severe dry mouth in patients with Sjögren's Syndrome, or radiation therapy for patients with head and neck cancer, significantly compromises their oral health and quality of life. The current clinical management of xerostomia is limited to palliative care as there are no clinically-proven treatments available. Previously, our studies demonstrated that mouse bone marrow-derived mesenchymal stem cells (mMSCs) can differentiate into salivary progenitors when co-cultured with primary salivary epithelial cells. Transcription factors that were upregulated in co-cultured mMSCs were identified concomitantly with morphological changes and the expression of acinar cell markers, such as α-amylase (AMY1), muscarinic-type-3-receptor(M3R), aquaporin-5(AQP5), and a ductal cell marker known as cytokeratin 19(CK19). In the present study, we further explored inductive molecules in the conditioned media that led to mMSC reprogramming by high-throughput liquid chromatography with tandem mass spectrometry and systems biology. Our approach identified ten differentially expressed proteins based on their putative roles in salivary gland embryogenesis and development. Additionally, systems biology analysis revealed six candidate proteins, namely insulin-like growth factor binding protein-7 (IGFBP7), cysteine-rich, angiogenetic inducer, 61(CYR61), agrin(AGRN), laminin, beta 2 (LAMB2), follistatin-like 1(FSTL1), and fibronectin 1(FN1), for their potential contribution to mMSC transdifferentiation during co-culture. To our knowledge, our study is the first in the field to identify soluble inductive molecules that drive mMSC into salivary progenitors, which crosses lineage boundaries.
Collapse
Affiliation(s)
- Mahmoud Mona
- Oral and Maxillofacial Diagnostic Sciences, University of Florida College of Dentistry, Gainesville, FL 32610, USA; (M.M.); (R.M.)
- Oral Biology, University of Florida College of Dentistry, Gainesville, FL 32610, USA
| | - Firas Kobeissy
- Department of Emergency Medicine, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA;
| | - Yun-Jong Park
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA;
| | - Rehae Miller
- Oral and Maxillofacial Diagnostic Sciences, University of Florida College of Dentistry, Gainesville, FL 32610, USA; (M.M.); (R.M.)
| | - Wafaa Saleh
- Oral Medicine and Periodontology Department, Faculty of Dentistry, Mansoura University, Mansoura 35516, Egypt;
| | - Jin Koh
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32610, USA; (J.K.); (S.C.)
| | - Mi-Jeong Yoo
- Department of Biology, Clarkson University, Potsdam, NY 13699, USA;
| | - Sixue Chen
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32610, USA; (J.K.); (S.C.)
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Seunghee Cha
- Oral and Maxillofacial Diagnostic Sciences, University of Florida College of Dentistry, Gainesville, FL 32610, USA; (M.M.); (R.M.)
- Oral Biology, University of Florida College of Dentistry, Gainesville, FL 32610, USA
- Center for Orphaned Autoimmune Disorders, University of Florida College of Dentistry, Gainesville, FL 32610, USA
| |
Collapse
|
11
|
Vanyai HK, Prin F, Guillermin O, Marzook B, Boeing S, Howson A, Saunders RE, Snoeks T, Howell M, Mohun TJ, Thompson B. Control of skeletal morphogenesis by the Hippo-YAP/TAZ pathway. Development 2020; 147:dev187187. [PMID: 32994166 PMCID: PMC7673359 DOI: 10.1242/dev.187187] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 09/07/2020] [Indexed: 12/12/2022]
Abstract
The Hippo-YAP/TAZ pathway is an important regulator of tissue growth, but can also control cell fate or tissue morphogenesis. Here, we investigate the function of the Hippo pathway during the development of cartilage, which forms the majority of the skeleton. Previously, YAP was proposed to inhibit skeletal size by repressing chondrocyte proliferation and differentiation. We find that, in vitro, Yap/Taz double knockout impairs murine chondrocyte proliferation, whereas constitutively nuclear nls-YAP5SA accelerates proliferation, in line with the canonical role of this pathway in most tissues. However, in vivo, cartilage-specific knockout of Yap/Taz does not prevent chondrocyte proliferation, differentiation or skeletal growth, but rather results in various skeletal deformities including cleft palate. Cartilage-specific expression of nls-YAP5SA or knockout of Lats1/2 do not increase cartilage growth, but instead lead to catastrophic malformations resembling chondrodysplasia or achondrogenesis. Physiological YAP target genes in cartilage include Ctgf, Cyr61 and several matrix remodelling enzymes. Thus, YAP/TAZ activity controls chondrocyte proliferation in vitro, possibly reflecting a regenerative response, but is dispensable for chondrocyte proliferation in vivo, and instead functions to control cartilage morphogenesis via regulation of the extracellular matrix.
Collapse
Affiliation(s)
- Hannah K Vanyai
- The Francis Crick Institute, 1 Midland Rd, St Pancras, NW1 1AT London, UK
| | - Fabrice Prin
- The Francis Crick Institute, 1 Midland Rd, St Pancras, NW1 1AT London, UK
| | - Oriane Guillermin
- The Francis Crick Institute, 1 Midland Rd, St Pancras, NW1 1AT London, UK
| | - Bishara Marzook
- The Francis Crick Institute, 1 Midland Rd, St Pancras, NW1 1AT London, UK
| | - Stefan Boeing
- The Francis Crick Institute, 1 Midland Rd, St Pancras, NW1 1AT London, UK
| | - Alexander Howson
- The Francis Crick Institute, 1 Midland Rd, St Pancras, NW1 1AT London, UK
| | - Rebecca E Saunders
- The Francis Crick Institute, 1 Midland Rd, St Pancras, NW1 1AT London, UK
| | - Thomas Snoeks
- The Francis Crick Institute, 1 Midland Rd, St Pancras, NW1 1AT London, UK
| | - Michael Howell
- The Francis Crick Institute, 1 Midland Rd, St Pancras, NW1 1AT London, UK
| | - Timothy J Mohun
- The Francis Crick Institute, 1 Midland Rd, St Pancras, NW1 1AT London, UK
| | - Barry Thompson
- The Francis Crick Institute, 1 Midland Rd, St Pancras, NW1 1AT London, UK
- EMBL Australia, Department of Cancer Biology & Therapeutics, The John Curtin School of Medical Research, The Australian National University, 131 Garran Rd, Acton, 2601, Canberra, Australia
| |
Collapse
|
12
|
Dennis EP, Edwards SM, Jackson RM, Hartley CL, Tsompani D, Capulli M, Teti A, Boot-Handford RP, Young DA, Piróg KA, Briggs MD. CRELD2 Is a Novel LRP1 Chaperone That Regulates Noncanonical WNT Signaling in Skeletal Development. J Bone Miner Res 2020; 35:1452-1469. [PMID: 32181934 DOI: 10.1002/jbmr.4010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/02/2020] [Accepted: 03/10/2020] [Indexed: 12/12/2022]
Abstract
Cysteine-rich with epidermal growth factor (EGF)-like domains 2 (CRELD2) is an endoplasmic reticulum (ER)-resident chaperone highly activated under ER stress in conditions such as chondrodysplasias; however, its role in healthy skeletal development is unknown. We show for the first time that cartilage-specific deletion of Creld2 results in disrupted endochondral ossification and short limbed dwarfism, whereas deletion of Creld2 in bone results in osteopenia, with a low bone density and altered trabecular architecture. Our study provides the first evidence that CRELD2 promotes the differentiation and maturation of skeletal cells by modulating noncanonical WNT4 signaling regulated by p38 MAPK. Furthermore, we show that CRELD2 is a novel chaperone for the receptor low-density lipoprotein receptor-related protein 1 (LRP1), promoting its transport to the cell surface, and that LRP1 directly regulates WNT4 expression in chondrocytes through TGF-β1 signaling. Therefore, our data provide a novel link between an ER-resident chaperone and the essential WNT signaling pathways active during skeletal differentiation that could be applicable in other WNT-responsive tissues. © 2020 American Society for Bone and Mineral Research. © 2020 The Authors. Journal of Bone and Mineral Research published by American Society for Bone and Mineral Research..
Collapse
Affiliation(s)
- Ella P Dennis
- Biosciences Institute, Newcastle University, International Centre for Life, Newcastle Upon Tyne, UK
| | - Sarah M Edwards
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK
| | - Robert M Jackson
- Biosciences Institute, Newcastle University, International Centre for Life, Newcastle Upon Tyne, UK
| | - Claire L Hartley
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK
| | - Dimitra Tsompani
- Biosciences Institute, Newcastle University, International Centre for Life, Newcastle Upon Tyne, UK
| | - Mattia Capulli
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Anna Teti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | | | - David A Young
- Biosciences Institute, Newcastle University, International Centre for Life, Newcastle Upon Tyne, UK
| | - Katarzyna A Piróg
- Biosciences Institute, Newcastle University, International Centre for Life, Newcastle Upon Tyne, UK
| | - Michael D Briggs
- Biosciences Institute, Newcastle University, International Centre for Life, Newcastle Upon Tyne, UK
| |
Collapse
|
13
|
Bian Q, Cheng YH, Wilson JP, Su EY, Kim DW, Wang H, Yoo S, Blackshaw S, Cahan P. A single cell transcriptional atlas of early synovial joint development. Development 2020; 147:dev.185777. [PMID: 32580935 DOI: 10.1242/dev.185777] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 06/09/2020] [Indexed: 12/14/2022]
Abstract
Synovial joint development begins with the formation of the interzone, a region of condensed mesenchymal cells at the site of the prospective joint. Recently, lineage-tracing strategies have revealed that Gdf5-lineage cells native to and from outside the interzone contribute to most, if not all, of the major joint components. However, there is limited knowledge of the specific transcriptional and signaling programs that regulate interzone formation and fate diversification of synovial joint constituents. To address this, we have performed single cell RNA-Seq analysis of 7329 synovial joint progenitor cells from the developing murine knee joint from E12.5 to E15.5. By using a combination of computational analytics, in situ hybridization and in vitro characterization of prospectively isolated populations, we have identified the transcriptional profiles of the major developmental paths for joint progenitors. Our freely available single cell transcriptional atlas will serve as a resource for the community to uncover transcriptional programs and cell interactions that regulate synovial joint development.
Collapse
Affiliation(s)
- Qin Bian
- Institute for Cell Engineering, Johns Hopkins School of Medicine, Baltimore MD 21205, USA.,Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore MD 21205, USA
| | - Yu-Hao Cheng
- Institute for Cell Engineering, Johns Hopkins School of Medicine, Baltimore MD 21205, USA.,Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine, Baltimore MD 21205, USA
| | - Jordan P Wilson
- Institute for Cell Engineering, Johns Hopkins School of Medicine, Baltimore MD 21205, USA
| | - Emily Y Su
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore MD 21205, USA
| | - Dong Won Kim
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore MD 21205, USA
| | - Hong Wang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore MD 21205, USA
| | - Sooyeon Yoo
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore MD 21205, USA
| | - Seth Blackshaw
- Institute for Cell Engineering, Johns Hopkins School of Medicine, Baltimore MD 21205, USA.,Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore MD 21205, USA
| | - Patrick Cahan
- Institute for Cell Engineering, Johns Hopkins School of Medicine, Baltimore MD 21205, USA .,Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore MD 21205, USA.,Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine, Baltimore MD 21205, USA
| |
Collapse
|
14
|
Fowler DA, Larsson HCE. The tissues and regulatory pattern of limb chondrogenesis. Dev Biol 2020; 463:124-134. [PMID: 32417169 DOI: 10.1016/j.ydbio.2020.04.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 12/24/2022]
Abstract
Initial limb chondrogenesis offers the first differentiated tissues that resemble the mature skeletal anatomy. It is a developmental progression of three tissues. The limb begins with undifferentiated mesenchyme-1, some of which differentiates into condensations-2, and this tissue then transforms into cartilage-3. Each tissue is identified by physical characteristics of cell density, shape, and extracellular matrix composition. Tissue specific regimes of gene regulation underlie the diagnostic physical and chemical properties of these three tissues. These three tissue based regimes co-exist amid a background of other gene regulatory regimes within the same tissues and time-frame of limb development. The bio-molecular indicators of gene regulation reveal six identifiable patterns. Three of these patterns describe the unique bio-molecular indicators of each of the three tissues. A fourth pattern shares bio-molecular indicators between condensation and cartilage. Finally, a fifth pattern is composed of bio-molecular indicators that are found in undifferentiated mesenchyme prior to any condensation differentiation, then these bio-molecular indicators are upregulated in condensations and downregulated in undifferentiated mesenchyme. The undifferentiated mesenchyme that remains in between the condensations and cartilage, the interdigit, contains a unique set of bio-molecular indicators that exhibit dynamic behaviour during chondrogenesis and therefore argue for its own inclusion as a tissue in its own right and for more study into this process of differentiation.
Collapse
Affiliation(s)
- Donald A Fowler
- Redpath Museum, McGill University, 859 Sherbrooke St W, Montréal, QC, H3A 0C4, Canada; Department of Biology, McGill University, Stewart Biology Building, 1205 Docteur Penfield, Montréal, QC, H3A 1B1, Canada.
| | - Hans C E Larsson
- Redpath Museum, McGill University, 859 Sherbrooke St W, Montréal, QC, H3A 0C4, Canada.
| |
Collapse
|
15
|
High-Throughput Identification of MiR-145 Targets in Human Articular Chondrocytes. Life (Basel) 2020; 10:life10050058. [PMID: 32403239 PMCID: PMC7281014 DOI: 10.3390/life10050058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) play key roles in cartilage development and homeostasis and are dysregulated in osteoarthritis. MiR-145 modulation induces profound changes in the human articular chondrocyte (HAC) phenotype, partially through direct repression of SOX9. Since miRNAs can simultaneously silence multiple targets, we aimed to identify the whole targetome of miR-145 in HACs, critical if miR-145 is to be considered a target for cartilage repair. We performed RIP-seq (RNA-immunoprecipitation and high-throughput sequencing) of miRISC (miRNA-induced silencing complex) in HACs overexpressing miR-145 to identify miR-145 direct targets and used cWords to assess enrichment of miR-145 seed matches in the identified targets. Further validations were performed by RT-qPCR, Western immunoblot, and luciferase assays. MiR-145 affects the expression of over 350 genes and directly targets more than 50 mRNAs through the 3′UTR or, more commonly, the coding region. MiR-145 targets DUSP6, involved in cartilage organization and development, at the translational level. DUSP6 depletion leads to MMP13 upregulation, suggesting a contribution towards the effect of miR-145 on MMP13 expression. In conclusion, miR-145 directly targets several genes involved in the expression of the extracellular matrix and inflammation in primary chondrocytes. Thus, we propose miR-145 as an important regulator of chondrocyte function and a new target for cartilage repair.
Collapse
|
16
|
Shea CA, Rolfe RA, McNeill H, Murphy P. Localization of YAP activity in developing skeletal rudiments is responsive to mechanical stimulation. Dev Dyn 2019; 249:523-542. [PMID: 31747096 DOI: 10.1002/dvdy.137] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 11/13/2019] [Accepted: 11/18/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Normal skeletal development, in particular ossification, joint formation and shape features of condyles, depends on appropriate mechanical input from embryonic movement but it is unknown how such physical stimuli are transduced to alter gene regulation. Hippo/Yes-Associated Protein (YAP) signalling has been shown to respond to the physical environment of the cell and here we specifically investigate the YAP effector of the pathway as a potential mechanoresponsive mediator in the developing limb skeleton. RESULTS We show spatial localization of YAP protein and of pathway target gene expression within developing skeletal rudiments where predicted biophysical stimuli patterns and shape are affected in immobilization models, coincident with the period of sensitivity to movement, but not coincident with the expression of the Hippo receptor Fat4. Furthermore, we show that under reduced mechanical stimulation, in immobile, muscle-less mouse embryos, this spatial localization is lost. In culture blocking YAP reduces chondrogenesis but the effect differs depending on the timing and/or level of YAP reduction. CONCLUSIONS These findings implicate YAP signalling, independent of Fat4, in the transduction of mechanical signals during key stages of skeletal patterning in the developing limb, in particular endochondral ossification and shape emergence, as well as patterning of tissues at the developing synovial joint.
Collapse
Affiliation(s)
- Claire A Shea
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Rebecca A Rolfe
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Helen McNeill
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Paula Murphy
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
17
|
Yang B, Ni J, Long H, Huang J, Yang C, Huang X. IL-1β-induced miR-34a up-regulation inhibits Cyr61 to modulate osteoarthritis chondrocyte proliferation through ADAMTS-4. J Cell Biochem 2018; 119:7959-7970. [PMID: 29236314 DOI: 10.1002/jcb.26600] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/04/2017] [Indexed: 01/13/2023]
Abstract
Osteoarthritis (OA) is the most prevalent degenerative joint disease with multifactorial etiology caused by risk factors. The degradation of aggrecan by upregulated ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) is the key event in the development of OA. ADAMTS-4 contributes to aggrecan degradation in human OA. Cysteine-rich angiogenic inducer 61 (Cyr61), which is associated with diseases related to chronic inflammation, is found in articular cartilage from patients with osteoarthritis and appears to suppress ADAMTS-4 activity, possibly leading to chondrocyte cloning. Herein, we first revealed that Cyr61 and ADAMTS-4 protein levels were remarkably increased in OA cartilage tissues and OA chondrocytes, and verified Cyr61 regulation of ADAMTS-4 in normal and OA chondrocyte. Further, we revealed that Cyr61 could promote OA chondrocyte proliferation through inhibiting ADAMTS-4. Overproduction of inflammatory cytokines plays a vital role in the pathological development of OA; herein, we demonstrated that IL-1β inhibited Cyr61, while promoted ADAMTS-4 expression. By using online tools and luciferase assays, we confirmed that miR-34a, a regulatory miRNA of chondrocyte proliferation, could directly bind to the 3'-UTR of Cyr61 to inhibit its expression; further, IL-1β regulated Cyr61 and ADAMTS-4 expression through miR-34a. In OA cartilage tissues, miR-34a, and IL-1β mRNA expression was up-regulated and positively correlated; miR-34a and Cyr61 mRNA was positively correlated, further indicating that suppressing miR-34a expression might rescue IL-1β-induced Cyr61 suppression, and promote OA chondrocyte proliferation. Taken together, we provided novel experimental basis for rescuing OA chondrocyte proliferation through miR-34a/Cyr61 axis.
Collapse
Affiliation(s)
- Bo Yang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Jiangdong Ni
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Hui Long
- Department of Pain, The Second Affiliated Hospital of Nanhua University, Hengyang, Hunan, P.R. China
| | - Jun Huang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Cheng Yang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Xianzhe Huang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| |
Collapse
|
18
|
Tan Z, Niu B, Tsang KY, Melhado IG, Ohba S, He X, Huang Y, Wang C, McMahon AP, Jauch R, Chan D, Zhang MQ, Cheah KSE. Synergistic co-regulation and competition by a SOX9-GLI-FOXA phasic transcriptional network coordinate chondrocyte differentiation transitions. PLoS Genet 2018; 14:e1007346. [PMID: 29659575 PMCID: PMC5919691 DOI: 10.1371/journal.pgen.1007346] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 04/26/2018] [Accepted: 03/29/2018] [Indexed: 11/18/2022] Open
Abstract
The growth plate mediates bone growth where SOX9 and GLI factors control chondrocyte proliferation, differentiation and entry into hypertrophy. FOXA factors regulate hypertrophic chondrocyte maturation. How these factors integrate into a Gene Regulatory Network (GRN) controlling these differentiation transitions is incompletely understood. We adopted a genome-wide whole tissue approach to establish a Growth Plate Differential Gene Expression Library (GP-DGEL) for fractionated proliferating, pre-hypertrophic, early and late hypertrophic chondrocytes, as an overarching resource for discovery of pathways and disease candidates. De novo motif discovery revealed the enrichment of SOX9 and GLI binding sites in the genes preferentially expressed in proliferating and prehypertrophic chondrocytes, suggesting the potential cooperation between SOX9 and GLI proteins. We integrated the analyses of the transcriptome, SOX9, GLI1 and GLI3 ChIP-seq datasets, with functional validation by transactivation assays and mouse mutants. We identified new SOX9 targets and showed SOX9-GLI directly and cooperatively regulate many genes such as Trps1, Sox9, Sox5, Sox6, Col2a1, Ptch1, Gli1 and Gli2. Further, FOXA2 competes with SOX9 for the transactivation of target genes. The data support a model of SOX9-GLI-FOXA phasic GRN in chondrocyte development. Together, SOX9-GLI auto-regulate and cooperate to activate and repress genes in proliferating chondrocytes. Upon hypertrophy, FOXA competes with SOX9, and control toward terminal differentiation passes to FOXA, RUNX, AP1 and MEF2 factors. In the development of the mammalian growth plate, while several transcription factors are individually well known for their key roles in regulating phases of chondrocyte differentiation, there is little information on how they interact and cooperate with each other. We took an unbiased genome wide approach to identify the transcription factors and signaling pathways that play dominant roles in the chondrocyte differentiation cascade. We developed a searchable library of differentially expressed genes, GP-DGEL, which has fine spatial resolution and global transcriptomic coverage for discovery of processes, pathways and disease candidates. Our work identifies a novel regulatory mechanism that integrates the action of three transcription factors, SOX9, GLI and FOXA. SOX9-GLI auto-regulate and cooperate to activate and repress genes in proliferating chondrocytes. Upon entry into prehypertrophy, FOXA competes with SOX9, and control of hypertrophy passes to FOXA, RUNX, AP1 and MEF2 factors.
Collapse
Affiliation(s)
- Zhijia Tan
- School of Biomedical Sciences, LKS Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong
| | - Ben Niu
- School of Biomedical Sciences, LKS Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong
| | - Kwok Yeung Tsang
- School of Biomedical Sciences, LKS Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong
| | - Ian G. Melhado
- School of Biomedical Sciences, LKS Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong
| | - Shinsuke Ohba
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad-CIRM Center for Regenerative Medicine and Stem Cell Research, W.M. Keck School of Medicine of the University of Southern California, Los Angeles, California, United States of America
| | - Xinjun He
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad-CIRM Center for Regenerative Medicine and Stem Cell Research, W.M. Keck School of Medicine of the University of Southern California, Los Angeles, California, United States of America
| | - Yongheng Huang
- Genome Regulation Laboratory, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China
| | - Cheng Wang
- School of Biomedical Sciences, LKS Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong
| | - Andrew P. McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad-CIRM Center for Regenerative Medicine and Stem Cell Research, W.M. Keck School of Medicine of the University of Southern California, Los Angeles, California, United States of America
| | - Ralf Jauch
- Genome Regulation Laboratory, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China
| | - Danny Chan
- School of Biomedical Sciences, LKS Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong
| | - Michael Q. Zhang
- Department of Biological Sciences, Center for Systems Biology, The University of Texas at Dallas, Dallas, Texas, United States of America
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, TNLIST, Tsinghua University, Beijing, China
| | - Kathryn S. E. Cheah
- School of Biomedical Sciences, LKS Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong
- * E-mail:
| |
Collapse
|
19
|
Huang YT, Lan Q, Lorusso G, Duffey N, Rüegg C. The matricellular protein CYR61 promotes breast cancer lung metastasis by facilitating tumor cell extravasation and suppressing anoikis. Oncotarget 2018; 8:9200-9215. [PMID: 27911269 PMCID: PMC5354725 DOI: 10.18632/oncotarget.13677] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 11/19/2016] [Indexed: 12/22/2022] Open
Abstract
Matricellular proteins play multiple roles in primary tumor growth, local invasion and tumor angiogenesis. However, their contribution to metastasis and the putative mechanisms involved are less well characterized. In ER-negative human breast cancer, elevated expression levels of the matricellular protein Cysteine-rich angiogenic inducer 61 (CYR61) are associated with more aggressive progression. Here, we investigated the role of CYR61 in breast cancer lung metastasis using the triple negative human breast cancer cell lines MDA-MB-231 and SUM159. Silencing of CYR61 significantly decreased lung metastasis from tumors orthotopically implanted in pre-irradiated or naive mammary tissue and upon tail vein injection. Constitutive CYR61 silencing impaired cancer cell extravasation to the lung during the first 24 hours after tail vein injection. In contrast, CYR61 inducible silencing starting 24 hours after cancer cell injection had no impact on lung metastasis formation. In vitro experiments revealed that CYR61 silencing decreased cancer cell transendothelial migration and motility, reduced CYR61 levels present at the cell surface and sensitized cancer cells to anoikis. Furthermore, we demonstrate that CYR61-dependent cell survival under non-adhesive conditions relied, at least partially, on β1 integrin ligation and AMPKα signaling while it was independent of AKT, FAK and ERK1/2 activation. Our data provide the first evidence that CYR61 promotes breast cancer lung metastasis by facilitating tumor cell extravasation and protecting from anoikis during initial seeding to the lung. The uncovered CYR61-β1 integrin-AMPKα axis may serve as a potential therapeutic target to prevent breast cancer metastasis to the lung.
Collapse
Affiliation(s)
- Yu-Ting Huang
- Department of Medicine, Faculty of Science, University of Fribourg, Fribourg, Switzerland.,National Center for Competence in Research (NCCR), Molecular Oncology, Swiss Institute for Experimental Cancer Research (ISREC)-Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Qiang Lan
- Department of Medicine, Faculty of Science, University of Fribourg, Fribourg, Switzerland.,National Center for Competence in Research (NCCR), Molecular Oncology, Swiss Institute for Experimental Cancer Research (ISREC)-Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Girieca Lorusso
- Department of Medicine, Faculty of Science, University of Fribourg, Fribourg, Switzerland.,National Center for Competence in Research (NCCR), Molecular Oncology, Swiss Institute for Experimental Cancer Research (ISREC)-Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Nathalie Duffey
- Department of Medicine, Faculty of Science, University of Fribourg, Fribourg, Switzerland
| | - Curzio Rüegg
- Department of Medicine, Faculty of Science, University of Fribourg, Fribourg, Switzerland.,National Center for Competence in Research (NCCR), Molecular Oncology, Swiss Institute for Experimental Cancer Research (ISREC)-Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
20
|
Yang Y, Qi Q, Wang Y, Shi Y, Yang W, Cen Y, Zhu E, Li X, Chen D, Wang B. Cysteine-rich protein 61 regulates adipocyte differentiation from mesenchymal stem cells through mammalian target of rapamycin complex 1 and canonical Wnt signaling. FASEB J 2018; 32:3096-3107. [PMID: 29401606 DOI: 10.1096/fj.201700830rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Emerging evidence suggests that cysteine-rich protein 61 (CYR61) plays a role in the differentiation and development of chondrocytes, osteoblasts, and osteoclasts; however, little is known about its role in adipogenesis. The current study indicates that the expression level of Cyr61 was altered in primary cultured marrow stromal cells and the established mesenchymal cell line, C3H10T1/2, after adipogenic treatment. Overexpressing Cyr61 repressed C3H10T1/2 and primary marrow stromal cells to differentiate into mature adipocytes. Conversely, inhibition of endogenous Cyr61 induced C3H10T1/2 and primary marrow stromal cells to fully differentiate. Mechanism investigations reveal that knockdown of Cyr61 inhibited the nuclear translocation of β-catenin and decreased nuclear protein levels of β-catenin and transcription factor 7-like 2. Moreover, the silencing of Cyr61 increased protein levels of phosphorylated ribosomal protein S6 kinase B1, mammalian target of rapamycin, eukaryotic translation initiation factor 4E-binding protein 1, and ribosomal protein S6-the major components of mammalian target of rapamycin complex 1 (mTORC1) signaling-in C3H10T1/2 cells. Additional investigations demonstrated that treatment with rapamycin significantly attenuated adipocyte formation that was induced by Cyr61 small interfering RNA (siRNA) transfection. Moreover, Cyr61 siRNA also lost its ability to stimulate adipocyte formation under the background of β-catenin overexpression. Taken together, our study provides evidence that CYR61 regulates adipocyte differentiation via multiple signaling pathways that involve at least the inactivation of mTORC1 signaling and the activation of canonical Wnt signaling.-Yang, Y., Qi, Q., Wang, Y., Shi, Y., Yang, W., Cen, Y., Zhu, E., Li, X., Chen, D., Wang, B. Cysteine-rich protein 61 regulates adipocyte differentiation from mesenchymal stem cells through mammalian target of rapamycin complex 1 and canonical Wnt signaling.
Collapse
Affiliation(s)
- Yongxu Yang
- Collaborative Innovation Center of Tianjin Metabolic Diseases Hospital, Key Laboratory of Hormones and Development, Ministry of Health, Metabolic Diseases Hospital and Institute of Endocrinology, Tianjin Medical University, Tianjin, China.,2011 Collaborative Innovation Center for Metabolic Diseases, Metabolic Diseases Hospital, Tianjin Medical University, Tianjin, China
| | - Qi Qi
- Collaborative Innovation Center of Tianjin Metabolic Diseases Hospital, Key Laboratory of Hormones and Development, Ministry of Health, Metabolic Diseases Hospital and Institute of Endocrinology, Tianjin Medical University, Tianjin, China.,2011 Collaborative Innovation Center for Metabolic Diseases, Metabolic Diseases Hospital, Tianjin Medical University, Tianjin, China
| | - Yi Wang
- Collaborative Innovation Center of Tianjin Metabolic Diseases Hospital, Key Laboratory of Hormones and Development, Ministry of Health, Metabolic Diseases Hospital and Institute of Endocrinology, Tianjin Medical University, Tianjin, China.,2011 Collaborative Innovation Center for Metabolic Diseases, Metabolic Diseases Hospital, Tianjin Medical University, Tianjin, China
| | - Yaru Shi
- Collaborative Innovation Center of Tianjin Metabolic Diseases Hospital, Key Laboratory of Hormones and Development, Ministry of Health, Metabolic Diseases Hospital and Institute of Endocrinology, Tianjin Medical University, Tianjin, China.,2011 Collaborative Innovation Center for Metabolic Diseases, Metabolic Diseases Hospital, Tianjin Medical University, Tianjin, China
| | - Weili Yang
- Collaborative Innovation Center of Tianjin Metabolic Diseases Hospital, Key Laboratory of Hormones and Development, Ministry of Health, Metabolic Diseases Hospital and Institute of Endocrinology, Tianjin Medical University, Tianjin, China.,2011 Collaborative Innovation Center for Metabolic Diseases, Metabolic Diseases Hospital, Tianjin Medical University, Tianjin, China
| | - Yunzhu Cen
- Collaborative Innovation Center of Tianjin Metabolic Diseases Hospital, Key Laboratory of Hormones and Development, Ministry of Health, Metabolic Diseases Hospital and Institute of Endocrinology, Tianjin Medical University, Tianjin, China.,2011 Collaborative Innovation Center for Metabolic Diseases, Metabolic Diseases Hospital, Tianjin Medical University, Tianjin, China
| | - Endong Zhu
- Collaborative Innovation Center of Tianjin Metabolic Diseases Hospital, Key Laboratory of Hormones and Development, Ministry of Health, Metabolic Diseases Hospital and Institute of Endocrinology, Tianjin Medical University, Tianjin, China.,2011 Collaborative Innovation Center for Metabolic Diseases, Metabolic Diseases Hospital, Tianjin Medical University, Tianjin, China
| | - Xiaoxia Li
- College of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Di Chen
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois, USA
| | - Baoli Wang
- Collaborative Innovation Center of Tianjin Metabolic Diseases Hospital, Key Laboratory of Hormones and Development, Ministry of Health, Metabolic Diseases Hospital and Institute of Endocrinology, Tianjin Medical University, Tianjin, China.,2011 Collaborative Innovation Center for Metabolic Diseases, Metabolic Diseases Hospital, Tianjin Medical University, Tianjin, China
| |
Collapse
|
21
|
Kan C, Chen L, Hu Y, Lu H, Li Y, Kessler JA, Kan L. Microenvironmental factors that regulate mesenchymal stem cells: lessons learned from the study of heterotopic ossification. Histol Histopathol 2017; 32:977-985. [PMID: 28328009 PMCID: PMC5809774 DOI: 10.14670/hh-11-890] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Bone marrow contains a non-hematopoietic, clonogenic, multipotent population of stromal cells that are later called mesenchymal stem cells (MSC). Similar cells that share many common features with MSC are also found in other organs, which are thought to contribute both to normal tissue regeneration and to pathological processes such as heterotopic ossification (HO), the formation of ectopic bone in soft tissue. Understanding the microenvironmental factors that regulate MSC in vivo is essential both for understanding the biology of the stem cells and for effective translational applications of MSC. Unfortunately, this important aspect has been largely underappreciated. This review tries to raise the attention and highlight this critical issue by updating the relevant literature along with discussions of the key issues in the area.
Collapse
Affiliation(s)
- Chen Kan
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Lijun Chen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yangyang Hu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Haimei Lu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yuyun Li
- Department of Medical Laboratory Science, Bengbu Medical College, Bengbu, China
| | - John A Kessler
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Lixin Kan
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Department of Medical Laboratory Science, Bengbu Medical College, Bengbu, China
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
22
|
Ali S, Singh A, Mahdi AA, Srivastava RN. CYR61-An angiogenic biomarker to early predict the impaired healing in diaphyseal tibial fractures. J Orthop Translat 2017; 10:5-11. [PMID: 29662755 PMCID: PMC5822955 DOI: 10.1016/j.jot.2017.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 01/13/2017] [Accepted: 02/01/2017] [Indexed: 11/30/2022] Open
Abstract
Background Angiogenesis is a prerequisite for fracture repair, whereas insufficient blood supply is likely to result in impaired healing. In the present study, we aimed to determine the correlation of simple tibial fracture healing outcome with serial estimation of CYR61 expressions in the early phase of healing. Methods In total, 107 adult fractured patients and 97 healthy controls were analysed. Peripheral blood samples were taken from controls (at once) and fractured patients at 4th, 7th, 10th, 15th, 20th and 28th days of post-fracture follow-ups to quantify the CYR61 mRNA and protein expression by qRT-PCR and Western blotting assay, respectively. Clinic-radiological follow-up was done at 6th, 10th, 16th, 20th, and 24th weeks of post-fracture follow-ups using RUST scores to analyse the fracture healing progression and their final outcomes. Results By considering controls as Group I (n = 97), as per the clinico-radiological status at 24th week, fracture patients were divided into two groups: Group II (normal healing, n = 91) and Group III (impaired healing, n = 16). Both CYR61 mRNA and protein expressions were lower (baseline) in Group I than in Groups II and III; however, a significant difference was observed only with the Group II. In both groups, expressions of CYR61 mRNA as well as protein gradually upregulated from the baseline to a peak and then declined. Both, the CYR61 mRNA as well as protein expressions were significantly higher at all follow-ups in Group II than in Group III. Mean RUST scores between Group II and Group III showed a significant statistical difference at each follow-up. Significant correlation was found between the CYR61 expressions and the RUST score (fracture healing progression). Conclusion We conclude that CYR61 expression provides an early prediction of the healing outcomes of simple diaphyseal tibial fractures. The translational potential of this article Such an approach would benefit not only the patients' wellbeing but also the entire health care system in terms of the cost implications associated with long lasting treatment interventions and hospitalisation. However, the authors recommend further multicentric study with a large sample size to increase the validity, reliability, and generalisability of our observation and inferences.
Collapse
Affiliation(s)
- Sabir Ali
- Department of Orthopaedic Surgery, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Ajai Singh
- Department of Orthopaedic Surgery, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Abbas Ali Mahdi
- Department of Biochemistry, King George's Medical University, Lucknow, Uttar Pradesh, India
| | | |
Collapse
|
23
|
Dou Q, Hao F, Sun L, Xu X, Cui MZ. CRE and SRE mediate LPA-induced CCN1 transcription in mouse aortic smooth muscle cells. Can J Physiol Pharmacol 2016; 95:275-280. [PMID: 28157379 DOI: 10.1139/cjpp-2016-0559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Lysophosphatidic acid (LPA), one component of oxidized low-density lipoprotein (ox-LDL), is a potent bioactive phospholipid. Our recent data reveal that LPA induces matricellular protein CCN1 (also known as Cyr61) expression in aortic smooth muscle cells (SMCs) and that CCN1 bridges LPA and integrin signaling pathways leading to SMC migration. Whether and how LPA regulates the transcriptional machinery of the CCN1 gene are unknown. In this study, we found that LPA markedly induces CCN1 mRNA expression in SMCs. Using deleting mutation and reporter gene strategies, we demonstrated regions from -2038 to -1787 and from -101 to +63 of the CCN1 promoter contain the essential regulatory elements. The serum response element (SRE) and cyclic AMP-response element (CRE) are located in these regions. LPA induced time-dependent phosphorylation of serum response factor (SRF) and CRE-binding protein (CREB) in mouse SMCs. Luciferase assays of a series of deleted, mutated CCN1 promoter-reporter gene constructs and dominant negative construct revealed the distal SRE and the proximal CRE in the CCN1 promoter are required for LPA-induced CCN1 gene expression. Our results imply that elevated LPA levels may trigger SMC migration and exacerbate restenosis and atherosclerotic lesions through the induced CCN1, which communicates with a set of plasma membrane proteins and intracellular kinases.
Collapse
Affiliation(s)
- Quanlin Dou
- a Department of Biomedical & Diagnostic Sciences, University of Tennessee, Knoxville, Tennessee, USA.,b State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China 810016
| | - Feng Hao
- a Department of Biomedical & Diagnostic Sciences, University of Tennessee, Knoxville, Tennessee, USA
| | - Longsheng Sun
- a Department of Biomedical & Diagnostic Sciences, University of Tennessee, Knoxville, Tennessee, USA.,c College of Animal Science and Technology, Yangzhou University, China 225009
| | - Xuemin Xu
- a Department of Biomedical & Diagnostic Sciences, University of Tennessee, Knoxville, Tennessee, USA
| | - Mei-Zhen Cui
- a Department of Biomedical & Diagnostic Sciences, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
24
|
Wang Z, Tran MC, Bhatia NJ, Hsing AW, Chen C, LaRussa MF, Fattakhov E, Rashidi V, Jang KY, Choo KJ, Nie X, Mathy JA, Longaker MT, Dauskardt RH, Helms JA, Yang GP. Del1 Knockout Mice Developed More Severe Osteoarthritis Associated with Increased Susceptibility of Chondrocytes to Apoptosis. PLoS One 2016; 11:e0160684. [PMID: 27505251 PMCID: PMC4978450 DOI: 10.1371/journal.pone.0160684] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 07/24/2016] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE We identified significant expression of the matricellular protein, DEL1, in hypertrophic and mature cartilage during development. We hypothesized that this tissue-specific expression indicated a biological role for DEL1 in cartilage biology. METHODS Del1 KO and WT mice had cartilage thickness evaluated by histomorphometry. Additional mice underwent medial meniscectomy to induce osteoarthritis, and were assayed at 1 week for apoptosis by TUNEL staining and at 8 weeks for histology and OA scoring. In vitro proliferation and apoptosis assays were performed on primary chondrocytes. RESULTS Deletion of the Del1 gene led to decreased amounts of cartilage in the ears and knee joints in mice with otherwise normal skeletal morphology. Destabilization of the knee led to more severe OA compared to controls. In vitro, DEL1 blocked apoptosis in chondrocytes. CONCLUSION Osteoarthritis is among the most prevalent diseases worldwide and increasing in incidence as our population ages. Initiation begins with an injury resulting in the release of inflammatory mediators. Excessive production of inflammatory mediators results in apoptosis of chondrocytes. Because of the limited ability of chondrocytes to regenerate, articular cartilage deteriorates leading to the clinical symptoms including severe pain and decreased mobility. No treatments effectively block the progression of OA. We propose that direct modulation of chondrocyte apoptosis is a key variable in the etiology of OA, and therapies aimed at preventing this important step represent a new class of regenerative medicine targets.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Misha C. Tran
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Namrata J. Bhatia
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Alexander W. Hsing
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, United States of America
| | - Carol Chen
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Marie F. LaRussa
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Ernst Fattakhov
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Vania Rashidi
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Kyu Yun Jang
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States of America
- Department of Pathology, Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Kevin J. Choo
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Xingju Nie
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Jonathan A. Mathy
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Michael T. Longaker
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Reinhold H. Dauskardt
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, United States of America
| | - Jill A. Helms
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States of America
| | - George P. Yang
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States of America
- Palo Alto VA Health Care System, Palo Alto, CA, United States of America
- * E-mail:
| |
Collapse
|
25
|
Zhang Y, Sheu TJ, Hoak D, Shen J, Hilton MJ, Zuscik MJ, Jonason JH, O’Keefe RJ. CCN1 Regulates Chondrocyte Maturation and Cartilage Development. J Bone Miner Res 2016; 31:549-59. [PMID: 26363286 PMCID: PMC4822413 DOI: 10.1002/jbmr.2712] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 08/27/2015] [Accepted: 09/10/2015] [Indexed: 01/31/2023]
Abstract
WNT/β-CATENIN signaling is involved in multiple aspects of skeletal development, including chondrocyte differentiation and maturation. Although the functions of β-CATENIN in chondrocytes have been extensively investigated through gain-of-function and loss-of-function mouse models, the precise downstream effectors through which β-CATENIN regulates these processes are not well defined. Here, we report that the matricellular protein, CCN1, is induced by WNT/β-CATENIN signaling in chondrocytes. Specifically, we found that β-CATENIN signaling promotes CCN1 expression in isolated primary sternal chondrocytes and both embryonic and postnatal cartilage. Additionally, we show that, in vitro, CCN1 overexpression promotes chondrocyte maturation, whereas inhibition of endogenous CCN1 function inhibits maturation. To explore the role of CCN1 on cartilage development and homeostasis in vivo, we generated a novel transgenic mouse model for conditional Ccn1 overexpression and show that cartilage-specific CCN1 overexpression leads to chondrodysplasia during development and cartilage degeneration in adult mice. Finally, we demonstrate that CCN1 expression increases in mouse knee joint tissues after meniscal/ligamentous injury (MLI) and in human cartilage after meniscal tear. Collectively, our data suggest that CCN1 is an important regulator of chondrocyte maturation during cartilage development and homeostasis.
Collapse
Affiliation(s)
- Yongchun Zhang
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, USA
| | - Tzong-jen Sheu
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - Donna Hoak
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - Jie Shen
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Matthew J Hilton
- Department of Orthopaedic Surgery, Duke University, Durham, NC, USA
| | - Michael J Zuscik
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - Jennifer H Jonason
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - Regis J O’Keefe
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
26
|
Chijiiwa M, Mochizuki S, Kimura T, Abe H, Tanaka Y, Fujii Y, Shimizu H, Enomoto H, Toyama Y, Okada Y. CCN1 (Cyr61) Is Overexpressed in Human Osteoarthritic Cartilage and Inhibits ADAMTS-4 (Aggrecanase 1) Activity. Arthritis Rheumatol 2015; 67:1557-67. [PMID: 25709087 DOI: 10.1002/art.39078] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 02/12/2015] [Indexed: 01/22/2023]
Abstract
OBJECTIVE ADAMTS-4, also called aggrecanase 1, is considered to play a key role in aggrecan degradation in human osteoarthritic (OA) cartilage, but information about regulators of ADAMTS-4 aggrecanase activity remains limited. We undertook this study to search for molecules that modulate ADAMTS-4 activity. METHODS Molecules copurified with ADAMTS-4 from ADAMTS-4-transfected chondrocytic cells were sequenced by nanoscale liquid chromatography tandem mass spectrometry. Binding activity was determined by immunoprecipitation and solid-phase binding assay. Effects on ADAMTS-4 activity were examined by aggrecan digestion assay. Expression of the binding molecule in OA cartilage and chondrocytes was examined by immunohistochemistry and reverse transcription-polymerase chain reaction. RESULTS We identified CCN1 (Cyr61) as an ADAMTS-4-binding protein and showed specific binding to the ADAMTS-4 cysteine-rich domain. Aggrecanase activity of ADAMTS-4 was inhibited by interaction with CCN1. Expression of messenger RNA for CCN1 was significantly higher in human OA cartilage than in normal cartilage. CCN1 was immunolocalized to chondrocytes in OA cartilage, showing direct correlations of immunoreactivity with the Mankin score of cartilage lesions and chondrocyte cloning. CCN1 and ADAMTS-4 were commonly coexpressed in clustered chondrocytes. CCN1 expression in OA chondrocytes was down-regulated by interleukin-1α (IL-1α) and up-regulated by transforming growth factor β (TGFβ). ADAMTS-4 expression was induced by treatment with IL-1α or TGFβ, but aggrecanase activity was detected only under stimulation with IL-1α. TGFβ-treated chondrocytes exhibited aggrecanase activity when CCN1 expression was knocked down. CONCLUSION Our findings provide the first evidence that CCN1 suppresses ADAMTS-4 activity and that CCN1 overexpression is directly correlated with chondrocyte cloning in OA cartilage. Our results suggest that the TGFβ/CCN1 axis plays a role in chondrocyte cluster formation through inhibition of ADAMTS-4.
Collapse
Affiliation(s)
| | | | - Tokuhiro Kimura
- Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Hitoshi Abe
- Keio University School of Medicine, Tokyo, Japan
| | - Yukie Tanaka
- Fukui University School of Medicine, Fukui, Japan
| | - Yutaka Fujii
- Fukui University School of Medicine, Fukui, Japan
| | | | | | | | | |
Collapse
|
27
|
Wells JE, Howlett M, Cheung LC, Kees UR. The role of CCN family genes in haematological malignancies. J Cell Commun Signal 2015; 9:267-78. [PMID: 26026820 DOI: 10.1007/s12079-015-0296-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 05/19/2015] [Indexed: 12/12/2022] Open
Abstract
Haematological malignancies, although a broad range of specific disease types, continue to show considerable overlap in classification, and patients are treated using similar chemotherapy regimes. In this review we look at the role of the CCN family of matricellular proteins and indicate their role in nine haematological malignancies including both myeloid and lymphoid neoplasms. The potential for further haematological neoplasms with CCN family associations is argued by summarising the demonstrated role of CCN family genes in the differentiation of haematopoietic stem cells (HSC) and mesenchymal stem cells. The expanding field of knowledge encompassing CCN family genes and cancers of the HSC-lineage highlights the importance of extracellular matrix-interactions in both normal physiology and tumorigenesis of the blood, bone marrow and lymph nodes.
Collapse
Affiliation(s)
- J E Wells
- Telethon Kids Institute, The University of Western Australia, PO Box 855 West Perth, Perth, Western Australia, 6872, Australia
| | - M Howlett
- Telethon Kids Institute, The University of Western Australia, PO Box 855 West Perth, Perth, Western Australia, 6872, Australia
| | - L C Cheung
- Telethon Kids Institute, The University of Western Australia, PO Box 855 West Perth, Perth, Western Australia, 6872, Australia
| | - Ursula R Kees
- Telethon Kids Institute, The University of Western Australia, PO Box 855 West Perth, Perth, Western Australia, 6872, Australia.
| |
Collapse
|
28
|
Park YS, Hwang S, Jin YM, Yu Y, Jung SA, Jung SC, Ryu KH, Kim HS, Jo I. CCN1 secreted by tonsil-derived mesenchymal stem cells promotes endothelial cell angiogenesis via integrin αv β3 and AMPK. J Cell Physiol 2015; 230:140-9. [PMID: 24909560 DOI: 10.1002/jcp.24690] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 05/21/2014] [Indexed: 11/12/2022]
Abstract
CCN1 is highly expressed in cancer cells and has been identified in the secretome of bone marrow-derived mesenchymal stem cells (BM-MSC). Although secreted CCN1 is known to promote angiogenesis, its underlying mechanism remains unclear. Here, we examined whether our recently-established tonsil-derived MSC (T-MSC) secrete CCN1 and, if any, how CCN1 promotes the angiogenesis of human umbilical vein endothelial cells (HUVEC). Compared with untreated control T-MSC, a higher level of CCN1 was secreted by T-MSC treated with activin A and sonic hedgehog, drugs known to induce endodermal differentiation. Expectedly, conditioned medium collected from differentiated T-MSC (DCM) significantly increased HUVEC migration and tube formation compared with that from control T-MSC (CCM), and these stimulatory effects were reversed by neutralization with anti-CCN1 antibody. Treatment with recombinant human CCN1 (rh-CCN1) alone also mimicked the stimulatory effects of DCM. Furthermore, treatment with either DCM or rh-CCN1 increased the phosphorylation of AMP kinase (AMPK), and ectopic expression of siRNA of the AMPK gene inhibited all observed effects of both DCM and rh-CCN1. However, no alteration of intracellular ATP levels or phosphorylation of LKB1, a well-known upstream factor of AMPK activation, was observed under our conditions. Finally, the neutralization of integrin α(v) β(3) with anti-integrin α(v) β(3) antibody almost completely reversed the effects of CCN1 on AMPK phosphorylation, and EC migration and tube formation. Taken together, we demonstrated that T-MSC increase the secretion of CCN1 in response to endodermal differentiation and that integrin α(v) β(3) and AMPK mediate CCN1-induced EC migration and tube formation independent of intracellular ATP levels alteration.
Collapse
Affiliation(s)
- Yoon Shin Park
- Department of Molecular Medicine, School of Medicine, and Global Top 5 Research Program, Ewha Womans University, Mok-6-dong, Yangcheon-gu, Seoul 158-710, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
MRTF-A and STAT3 synergistically promote breast cancer cell migration. Cell Signal 2014; 26:2370-80. [DOI: 10.1016/j.cellsig.2014.07.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 07/14/2014] [Indexed: 01/06/2023]
|
30
|
Hou CH, Lin FL, Hou SM, Liu JF. Cyr61 promotes epithelial-mesenchymal transition and tumor metastasis of osteosarcoma by Raf-1/MEK/ERK/Elk-1/TWIST-1 signaling pathway. Mol Cancer 2014; 13:236. [PMID: 25326651 PMCID: PMC4210521 DOI: 10.1186/1476-4598-13-236] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 09/09/2014] [Indexed: 12/03/2022] Open
Abstract
Background Osteosarcoma is the most common primary malignant tumor in children and young adults, and its treatment requires effective therapeutic approaches because of a high mortality rate for lung metastasis. Epithelial to mesenchymal transition (EMT) has received considerable attention as a conceptual paradigm for explaining the invasive and metastatic behavior during cancer progression. The cysteine-rich angiogenic inducer 61 (Cyr61) gene, a member of the CCN gene family, is responsible for the secretion of Cyr61, a matrix-associated protein that is involved in several cellular functions. A previous study showed that Cyr61 expression is related to osteosarcoma progression. In addition, Cyr61 could promote cell migration and metastasis in osteosarcoma. However, discussions on the molecular mechanism involved in Cyr61-regulated metastasis in osteosarcoma is poorly discussed. Results We determined that the expression level of Cyr61 induced cell migration ability in osteosarcoma cells. The Cyr61 protein promoted the mesenchymal transition of osteosarcoma cells by upregulating mesenchymal markers (TWIST-1 and N-cadherin) and inhibiting the epithelial marker (E-cadherin). Moreover, the Cyr61-induced cell migration was mediated by EMT. The Cyr61 protein elicited a signaling cascade that included αvβ5 integrin, Raf-1, mitogen-activated protein kinase (MEK), extracellular signal-regulated kinase (ERK), and Elk-1. The reagent or gene knockdown of these signaling proteins could inhibit Cyr61-promoted EMT in osteosarcoma. Finally, the knockdown of Cyr61 expression obviously inhibited cell migration and repressed mesenchymal phenotypes, reducing lung metastasis. Conclusion Our results indicate that Cyr61 promotes the EMT of osteosarcoma cells by regulating EMT markers via a signal transduction pathway that involves αvβ5 integrin, Raf-1, MEK, ERK, and Elk-1. Electronic supplementary material The online version of this article (doi:10.1186/1476-4598-13-236) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | - Sheng-Mon Hou
- Department of Orthopedic Surgery, Shin-Kong Wu Ho-Su Memorial Hospital, NO, 95 Wen Chang Road, Taipei, Taiwan.
| | | |
Collapse
|
31
|
Targeting the extracellular matrix: Matricellular proteins regulate cell–extracellular matrix communication within distinct niches of the intervertebral disc. Matrix Biol 2014; 37:124-30. [DOI: 10.1016/j.matbio.2014.05.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 05/02/2014] [Accepted: 05/03/2014] [Indexed: 01/01/2023]
|
32
|
The CCN family proteins: modulators of bone development and novel targets in bone-associated tumors. BIOMED RESEARCH INTERNATIONAL 2014; 2014:437096. [PMID: 24551846 PMCID: PMC3914550 DOI: 10.1155/2014/437096] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 12/19/2013] [Indexed: 12/18/2022]
Abstract
The CCN family of proteins is composed of six extracellular matrix-associated proteins that play crucial roles in skeletal development, wound healing, fibrosis, and cancer. Members of the CCN family share four conserved cysteine-rich modular domains that trigger signal transduction in cell adhesion, migration, proliferation, differentiation, and survival through direct binding to specific integrin receptors and heparan sulfate proteoglycans. In the present review, we discuss the roles of the CCN family proteins in regulating resident cells of the bone microenvironment. In vertebrate development, the CCN family plays a critical role in osteo/chondrogenesis and vasculo/angiogenesis. These effects are regulated through signaling via integrins, bone morphogenetic protein, vascular endothelial growth factor, Wnt, and Notch via direct binding to CCN family proteins. Due to the important roles of CCN family proteins in skeletal development, abnormal expression of CCN proteins is related to the tumorigenesis of primary bone tumors such as osteosarcoma, Ewing sarcoma, and chondrosarcoma. Additionally, emerging studies have suggested that CCN proteins may affect progression of secondary metastatic bone tumors by moderating the bone microenvironment. CCN proteins could therefore serve as potential therapeutic targets for drug development against primary and metastatic bone tumors.
Collapse
|
33
|
Wu DD, Zhang F, Hao F, Chun J, Xu X, Cui MZ. Matricellular protein Cyr61 bridges lysophosphatidic acid and integrin pathways leading to cell migration. J Biol Chem 2013; 289:5774-83. [PMID: 24371135 DOI: 10.1074/jbc.m113.533042] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Lysophosphatidic acid (LPA), a potent bioactive lipid found in atherosclerotic lesions, markedly induces smooth muscle cell (SMC) migration, which is an important process in atherogenesis. Therefore, understanding the mechanism of LPA-induced SMC migration is important. Several microarray databases suggest that the matricellular protein Cyr61 is highly induced by LPA. We hypothesized that Cyr61 mediates LPA-induced cell migration. Our data show that LPA induced temporal and spatial expression of Cyr61, which promptly accumulated in the cellular Golgi apparatus and then translocated to the extracellular matrix. Cyr61 antibody blockade and siRNA inhibition both diminished LPA-induced SMC migration, indicating a novel regulatory role of Cyr61. SMCs derived from LPA receptor 1 (LPA1) knock-out mice lack the ability of Cyr61 induction and cell migration, supporting the concept that LPA1 is required for Cyr61 expression and migration. By contrast, PPARγ was not found to be involved in LPA-mediated effects. Furthermore, focal adhesion kinase (FAK), a nonreceptor tyrosine kinase important for regulating cell migration, was activated by LPA at a late time frame coinciding with Cyr61 accumulation. Interestingly, knockdown of Cyr61 blocked LPA-induced FAK activation, indicating that an LPA-Cyr61-FAK axis leads to SMC migration. Our results further demonstrate that plasma membrane integrins α6β1 and ανβ3 transduced the LPA-Cyr61 signal toward FAK activation and migration. Taken together, these data reveal that de novo Cyr61 in the extracellular matrix bridges LPA and integrin pathways, which in turn, activate FAK, leading to cell migration. The current study provides new insights into mechanisms underlying cell migration-related disorders, including atherosclerosis, restenosis, and cancers.
Collapse
Affiliation(s)
- Daniel Dongwei Wu
- From the Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee 37996
| | | | | | | | | | | |
Collapse
|
34
|
Sumiyoshi K, Kubota S, Ohgawara T, Kawata K, Abd El Kader T, Nishida T, Ikeda N, Shimo T, Yamashiro T, Takigawa M. Novel role of miR-181a in cartilage metabolism. J Cell Biochem 2013; 114:2094-100. [PMID: 23553719 DOI: 10.1002/jcb.24556] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 03/18/2013] [Indexed: 01/08/2023]
Abstract
Micro RNA (miRNA) is a small non-coding post-transcriptional RNA regulator that is involved in a variety of biological events. In order to specify the role of miRNAs in cartilage metabolism, we comparatively analyzed the expression profile of known miRNAs in chicken sternum chondrocytes representing early and late differentiation stages. Interestingly, none of the miRNAs displaying strong expression levels showed remarkable changes along with differentiation, suggesting their roles in maintaining the homeostasis rather than cytodifferentiation of chondrocytes. Among these miRNAs, miR-181a, which is known to play critical roles in a number of tissues, was selected and was further characterized. Human microarray analysis revealed remarkably stronger expression of miR-181a in human HCS-2/8 cells, which strongly maintained a chondrocytic phenotype, than in HeLa cells, indicating its significant role in chondrocytes. Indeed, subsequent investigation indicated that miR-181a repressed the expression of two genes involved in cartilage development. One was CCN family member 1 (CCN1), which promotes chondrogenesis; and the other, the gene encoding the core protein of aggrecan, a major cartilaginous proteoglycan, aggrecan. Based on these findings, negative feedback system via miR-181a to conserve the integrity of the cartilaginous phenotype may be proposed.
Collapse
Affiliation(s)
- Kumi Sumiyoshi
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Correlations Between CCN1 Immunoexpression and Myocardial Histologic Lesions in Sudden Cardiac Death. Am J Forensic Med Pathol 2013; 34:169-76. [DOI: 10.1097/paf.0b013e31828d69b5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
36
|
Gruber HE, Riley FE, Hoelscher GL, Bayoumi EM, Ingram JA, Ramp WK, Bosse MJ, Kellam JF. Osteogenic and chondrogenic potential of biomembrane cells from the PMMA-segmental defect rat model. J Orthop Res 2012; 30:1198-212. [PMID: 22246998 DOI: 10.1002/jor.22047] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 12/05/2011] [Indexed: 02/04/2023]
Abstract
A layer of cells (the "biomembrane") has been identified in large segmental defects between bone and surgically placed methacrylate spacers or antibiotic-impregnated cement beads. We hypothesize that this contains a pluripotent stem cell population with potential valuable applications in orthopedic tissue engineering. Objectives using biomembranes harvested from rat segmental defects were to: (1) Culture biomembrane cells in specialized media to direct progenitor cells along bone or cartilage cell differentiation lineages; (2) evaluate harvested biomembranes for mesenchymal stem cell markers, and (3) define relevant gene expression patterns in harvested biomembranes using microarray analysis. Culture in osteogenic media produced mineralized nodules; culture in chondrogenic media produced masses containing chondroitin sulfate/sulfated proteoglycans. Molecular analysis of biomembrane cells versus control periosteum showed significant upregulation of key genes functioning in mesenchymal stem cell differentiation, development, maintenance, and proliferation. Results identified significant upregulation of WNT receptor signaling pathway genes and significant upregulation of BMP signaling pathway genes. Findings confirm that the biomembrane has a pluripotent stem cell population. The ability to heal large bone defects is clinically challenging, and novel tissue engineering uses of the biomembrane hold great promise in treating non-unions, open fractures with large bone loss and/or infections, and defects associated with tumor resection.
Collapse
Affiliation(s)
- Helen E Gruber
- Department of Orthopaedic Surgery, Carolinas Medical Center, Charlotte, North Carolina 28232, USA.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Dynamic compression of chondrocyte-agarose constructs reveals new candidate mechanosensitive genes. PLoS One 2012; 7:e36964. [PMID: 22615857 PMCID: PMC3355169 DOI: 10.1371/journal.pone.0036964] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 04/16/2012] [Indexed: 11/19/2022] Open
Abstract
Articular cartilage is physiologically exposed to repeated loads. The mechanical properties of cartilage are due to its extracellular matrix, and homeostasis is maintained by the sole cell type found in cartilage, the chondrocyte. Although mechanical forces clearly control the functions of articular chondrocytes, the biochemical pathways that mediate cellular responses to mechanical stress have not been fully characterised. The aim of our study was to examine early molecular events triggered by dynamic compression in chondrocytes. We used an experimental system consisting of primary mouse chondrocytes embedded within an agarose hydrogel; embedded cells were pre-cultured for one week and subjected to short-term compression experiments. Using Western blots, we demonstrated that chondrocytes maintain a differentiated phenotype in this model system and reproduce typical chondrocyte-cartilage matrix interactions. We investigated the impact of dynamic compression on the phosphorylation state of signalling molecules and genome-wide gene expression. After 15 min of dynamic compression, we observed transient activation of ERK1/2 and p38 (members of the mitogen-activated protein kinase (MAPK) pathways) and Smad2/3 (members of the canonical transforming growth factor (TGF)-β pathways). A microarray analysis performed on chondrocytes compressed for 30 min revealed that only 20 transcripts were modulated more than 2-fold. A less conservative list of 325 modulated genes included genes related to the MAPK and TGF-β pathways and/or known to be mechanosensitive in other biological contexts. Of these candidate mechanosensitive genes, 85% were down-regulated. Down-regulation may therefore represent a general control mechanism for a rapid response to dynamic compression. Furthermore, modulation of transcripts corresponding to different aspects of cellular physiology was observed, such as non-coding RNAs or primary cilium. This study provides new insight into how chondrocytes respond to mechanical forces.
Collapse
|
38
|
CHIANG HONGSEN, HUANG YIYOU, JIANG CHINGCHUAN. REPAIR OF ARTICULAR CARTILAGE INJURY. BIOMEDICAL ENGINEERING-APPLICATIONS BASIS COMMUNICATIONS 2012. [DOI: 10.4015/s1016237205000366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Articular cartilage defects heal poorly and lead to consequences as osteoarthritis. Clinical experience has indicated that no existing medication would substantially promote the healing process, and the cartilage defect requires surgical replacement. Allograft decays quickly for multiple reasons including the preparation process and immune reaction, and the outcome is disappointing. The extreme shortage of sparing in articular cartilage has much discouraged the use of autograft, which requires modification. The concept that constructs a chondral or osteochondral construct for the replacement of injured native tissue introduces that of tissue engineering. Limited number of cells are expanded either in vitro or in vivo, and resided temporally on a scaffold of biomaterial, which also acts as a vehicle to transfer the cells to the recipient site. Three core elements constitute this technique: the cell, a biodegradable scaffold, and an environment suitable for cells to present their proposed activity. Modern researches have kept updating those elements for a better performance of such cultivation of living tissue.
Collapse
Affiliation(s)
- HONGSEN CHIANG
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
- National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - YI-YOU HUANG
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - CHING-CHUAN JIANG
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
- National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
39
|
Kawaki H, Kubota S, Suzuki A, Suzuki M, Kohsaka K, Hoshi K, Fujii T, Lazar N, Ohgawara T, Maeda T, Perbal B, Takano-Yamamoto T, Takigawa M. Differential roles of CCN family proteins during osteoblast differentiation: Involvement of Smad and MAPK signaling pathways. Bone 2011; 49:975-89. [PMID: 21763478 DOI: 10.1016/j.bone.2011.06.033] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 05/20/2011] [Accepted: 06/28/2011] [Indexed: 12/22/2022]
Abstract
CCN family proteins play diverse roles in many aspects of cellular processes such as proliferation, differentiation, adhesion, migration, angiogenesis and survival. In the bone tissue of vertebrate species, the expression of most CCN family members has been observed in osteoblasts. However, their spatial and temporal distributions, as well as their functions, are still only partially understood. In this study, we evaluated the localization of CCN family members in skeletal tissue in vivo and comparatively analyzed the gene expression patterns and functions of the members in murine osteoblasts in primary culture. Immunofluorescent analyses revealed that the CCN family members were differentially produced in osteoblasts and osteocytes. The presence of all Ccn transcripts was confirmed in those osteoblasts. Among the members, CCN1, CCN2, CCN4 and CCN5 were found in osteocytes. CCN4 and CCN5 were distributed in osteocytes located inside of bone matrix as well. Next, we investigated the expression pattern of Ccn family members during osteoblast differentiation. Along with differentiation, most of the members followed proper gene expression patterns; whereas, Ccn4 and Ccn5 showed quite similar patterns. Furthermore, we evaluated the effects of CCN family members on the osteoblastic activities by using recombinant CCN proteins and RNA interference method. Five members of this family displayed positive effects on osteoblast proliferation or differentiation. Of note, CCN3 drastically inhibited the osteoblast activities. Each Ccn specific siRNA could modulate osteoblast activities in a manner expected by the observed effect of respective recombinant CCN protein. In addition, we found that extracellular signal-regulated kinase1/2 and p38 mitogen-activated protein kinase pathways were critically involved in the CCN family member-mediated modification of osteoblast activities. Collectively, all Ccn family members were found to be differentially expressed along with differentiation and therefore could participate in progression of the osteoblast lineage.
Collapse
Affiliation(s)
- Harumi Kawaki
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Defining the earliest transcriptional steps of chondrogenic progenitor specification during the formation of the digits in the embryonic limb. PLoS One 2011; 6:e24546. [PMID: 21931747 PMCID: PMC3172225 DOI: 10.1371/journal.pone.0024546] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 08/12/2011] [Indexed: 12/12/2022] Open
Abstract
The characterization of genes involved in the formation of cartilage is of key importance to improve cell-based cartilage regenerative therapies. Here, we have developed a suitable experimental model to identify precocious chondrogenic events in vivo by inducing an ectopic digit in the developing embryo. In this model, only 12 hr after the implantation of a Tgfβ bead, in the absence of increased cell proliferation, cartilage forms in undifferentiated interdigital mesoderm and in the course of development, becomes a structurally and morphologically normal digit. Systematic quantitative PCR expression analysis, together with other experimental approaches allowed us to establish 3 successive periods preceding the formation of cartilage. The “pre-condensation stage”, occurring within the first 3 hr of treatment, is characterized by the activation of connective tissue identity transcriptional factors (such as Sox9 and Scleraxis) and secreted factors (such as Activin A and the matricellular proteins CCN-1 and CCN-2) and the downregulation of the galectin CG-8. Next, the “condensation stage” is characterized by intense activation of Smad 1/5/8 BMP-signaling and increased expression of extracellular matrix components. During this period, the CCN matricellular proteins promote the expression of extracellular matrix and cell adhesion components. The third period, designated the “pre-cartilage period”, precedes the formation of molecularly identifiable cartilage by 2–3 hr and is characterized by the intensification of Sox 9 gene expression, along with the stimulation of other pro-chondrogenic transcription factors, such as HifIa. In summary, this work establishes a temporal hierarchy in the regulation of pro-chondrogenic genes preceding cartilage differentiation and provides new insights into the relative roles of secreted factors and cytoskeletal regulators that direct the first steps of this process in vivo.
Collapse
|
41
|
Lau LF. CCN1/CYR61: the very model of a modern matricellular protein. Cell Mol Life Sci 2011; 68:3149-63. [PMID: 21805345 DOI: 10.1007/s00018-011-0778-3] [Citation(s) in RCA: 249] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 07/19/2011] [Accepted: 07/19/2011] [Indexed: 02/08/2023]
Abstract
CCN1 (CYR61) is a dynamically expressed, multifunctional matricellular protein that plays essential roles in cardiovascular development during embryogenesis, and regulates inflammation, wound healing and fibrogenesis in the adult. Aberrant CCN1 expression is associated with myriad pathologies, including various cancers and diseases associated with chronic inflammation. CCN1 promotes diverse and sometimes opposing cellular responses, which can be ascribed, as least in part, to disparate activities mediated through its direct binding to distinct integrins in different cell types and contexts. Accordingly, CCN1 promotes cell proliferation, survival and angiogenesis by binding to integrin α(v)β(3), and induces apoptosis and senescence through integrin α(6)β(1) and heparan sulfate proteoglycans. The ability of CCN1 to trigger the accumulation of a robust and sustained level of reactive oxygen species underlies some of its unique activities as a matrix cell-adhesion molecule. Emerging studies suggest that CCN1 might be useful as a biomarker or therapeutic target in certain diseases.
Collapse
Affiliation(s)
- Lester F Lau
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago College of Medicine, 900 S. Ashland Avenue, Chicago, IL 60607, USA.
| |
Collapse
|
42
|
Mukudai Y, Kubota S, Eguchi T, Sumiyoshi K, Janune D, Kondo S, Shintani S, Takigawa M. A coding RNA segment that enhances the ribosomal recruitment of chicken ccn1 mRNA. J Cell Biochem 2011; 111:1607-18. [PMID: 21053272 DOI: 10.1002/jcb.22894] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
CCN1, a member of the CCN family of proteins, plays important physiological or pathological roles in a variety of tissues. In the present study, we initially found a highly guanine-cytosine (GC)-rich region of approximately 200 bp near the 5'-end of the open reading frame, which was always truncated by amplification of the corresponding cDNA region through the conventional polymerase chain reaction. An RNA in vitro folding assay and selective ribonuclease digestion of the corresponding segment of the ccn1 mRNA confirmed the involvement of a stable secondary structure. Subsequent RNA electromobility-shift assays demonstrated the specific binding of some cytoplasmic factor(s) in chicken embryo fibroblasts to the RNA segment. Moreover, the corresponding cDNA fragment strongly enhanced the expression of the reporter gene in cis at the 5'-end, but did not do so at the 3'-end. According to the results of a ribosomal assembly test, the effect of the mRNA segment can predominantly be ascribed to the enhancement of transport and/or entry of the mRNA into the ribosome. Finally, the minimal GC-rich mRNA segment that was predicted and demonstrated to form a secondary structure was confirmed to be a functional regulatory element. Thus, we here uncover a novel dual-functionality of the mRNA segment in the ccn1 open reading frame, which segment acts as a cis-element that mediates posttranscriptional gene regulation, while retaining the information for the amino acid sequence of the resultant protein.
Collapse
Affiliation(s)
- Yoshiki Mukudai
- Biodental Research Center, Okayama University Dental School, Okayama, Japan
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Draaken M, Proske J, Schramm C, Wittler L, Bartels E, Nöthen MM, Reutter H, Ludwig M. Embryonic expression of the cysteine rich protein 61 (CYR61) gene: A candidate for the development of human epispadias. ACTA ACUST UNITED AC 2010; 88:546-50. [PMID: 20641097 DOI: 10.1002/bdra.20668] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Isolated epispadias is the mildest phenotype of the exstrophy-epispadias complex, a urogenital birth defect of variable severity. The androgen receptor antagonist flutamide (FLU) is known to cause malformations in the rat genital and reproductive tract, and single-dose prenatal FLU exposure can induce epispadias in rat offspring. The Cyr61 gene exhibited the highest response to FLU in rat fetal testis, and we suggested it a promising candidate gene for epispadias in humans, because its protein product promotes proliferation, migration, and adhesion of endothelial cells and fibroblasts. METHODS We used whole mount in situ analysis in mice to investigate ventrocaudal expression of the Cyr61 transcript at gestational days 9.5 to 11.5, which is the equivalent of human gestational weeks 4 to 6 (postulated time of epispadias organogenesis in humans). We also performed mutational analysis of the CYR61 gene in 11 patients with isolated epispadias and in additional eight patients with the related classic bladder exstrophy phenotype. RESULTS Expression of Cyr61 was detected in endothelial cells of vessels surrounding the cloaca and the umbilical cord on gestational days 10 and 11.5. The mutation screening, however, revealed no alterations in the coding region of human CYR61. CONCLUSIONS The spatiotemporal expression pattern observed suggests a role for Cyr61 in the development of the external genitalia. Our mutation screening study, however, could not confirm that mutations affecting the CYR61 gene are a frequent cause of epispadias or classic bladder exstrophy, although rare mutations might be detectable in larger patient samples.
Collapse
Affiliation(s)
- Markus Draaken
- Institute of Human Genetics, University of Bonn, Germany
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Neves SC, Moreira Teixeira LS, Moroni L, Reis RL, Van Blitterswijk CA, Alves NM, Karperien M, Mano JF. Chitosan/poly(epsilon-caprolactone) blend scaffolds for cartilage repair. Biomaterials 2010; 32:1068-79. [PMID: 20980050 DOI: 10.1016/j.biomaterials.2010.09.073] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Accepted: 09/19/2010] [Indexed: 11/19/2022]
Abstract
Chitosan (CHT)/poly(ɛ-caprolactone) (PCL) blend 3D fiber-mesh scaffolds were studied as possible support structures for articular cartilage tissue (ACT) repair. Micro-fibers were obtained by wet-spinning of three different polymeric solutions: 100:0 (100CHT), 75:25 (75CHT) and 50:50 (50CHT) wt.% CHT/PCL, using a common solvent solution of 100 vol.% of formic acid. Scanning electron microscopy (SEM) analysis showed a homogeneous surface distribution of PCL. PCL was well dispersed throughout the CHT phase as analyzed by differential scanning calorimetry and Fourier transform infrared spectroscopy. The fibers were folded into cylindrical moulds and underwent a thermal treatment to obtain the scaffolds. μCT analysis revealed an adequate porosity, pore size and interconnectivity for tissue engineering applications. The PCL component led to a higher fiber surface roughness, decreased the scaffolds swelling ratio and increased their compressive mechanical properties. Biological assays were performed after culturing bovine articular chondrocytes up to 21 days. SEM analysis, live-dead and metabolic activity assays showed that cells attached, proliferated, and were metabolically active over all scaffolds formulations. Cartilaginous extracellular matrix (ECM) formation was observed in all formulations. The 75CHT scaffolds supported the most neo-cartilage formation, as demonstrated by an increase in glycosaminoglycan production. In contrast to 100CHT scaffolds, ECM was homogenously deposited on the 75CHT and 50CHT scaffolds. Although mechanical properties of the 50CHT scaffold were better, the 75CHT scaffold facilitated better neo-cartilage formation.
Collapse
Affiliation(s)
- Sara C Neves
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Department of Polymer Engineering, University of Minho, AvePark, Zona Industrial da Gandra, S. Cláudio do Barco 4806-909, Caldas das Taipas, Guimarães, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Su JL, Chiou J, Tang CH, Zhao M, Tsai CH, Chen PS, Chang YW, Chien MH, Peng CY, Hsiao M, Kuo ML, Yen ML. CYR61 regulates BMP-2-dependent osteoblast differentiation through the {alpha}v{beta}3 integrin/integrin-linked kinase/ERK pathway. J Biol Chem 2010; 285:31325-36. [PMID: 20675382 DOI: 10.1074/jbc.m109.087122] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Osteoporosis is one of the most common bone pathologies. A number of novel molecules have been reported to increase bone formation including cysteine-rich protein 61 (CYR61), a ligand of integrin receptor, but mechanisms remain unclear. It is known that bone morphogenetic proteins (BMPs), especially BMP-2, are crucial regulators of osteogenesis. However, the interaction between CYR61 and BMP-2 is unclear. We found that CYR61 significantly increases proliferation and osteoblastic differentiation in MC3T3-E1 osteoblasts and primary cultured osteoblasts. CYR61 enhances mRNA and protein expression of BMP-2 in a time- and dose-dependent manner. Moreover, CYR61-mediated proliferation and osteoblastic differentiation are significantly decreased by knockdown of BMP-2 expression or inhibition of BMP-2 activity. In this study we found integrin α(v)β(3) is critical for CYR61-mediated BMP-2 expression and osteoblastic differentiation. We also found that integrin-linked kinase, which is downstream of the α(v)β(3) receptor, is involved in CYR61-induced BMP-2 expression and subsequent osteoblastic differentiation through an ERK-dependent pathway. Taken together, our results show that CYR61 up-regulates BMP-2 mRNA and protein expression, resulting in enhanced cell proliferation and osteoblastic differentiation through activation of the α(v)β(3) integrin/integrin-linked kinase/ERK signaling pathway.
Collapse
Affiliation(s)
- Jen-Liang Su
- Graduate Institute of Cancer Biology, College of Medicine, and the eGraduate Institute of Basic Medical Science, China Medical University, Taichung 404,Taiwan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Goodwin CR, Lal B, Zhou X, Ho S, Xia S, Taeger A, Murray J, Laterra J. Cyr61 mediates hepatocyte growth factor-dependent tumor cell growth, migration, and Akt activation. Cancer Res 2010; 70:2932-41. [PMID: 20233866 DOI: 10.1158/0008-5472.can-09-3570] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Certain tumor cell responses to the growth factor-inducible early response gene product CCN1/Cyr61 overlap with those induced by the hepatocyte growth factor (HGF)/c-Met signaling pathway. In this study, we investigate if Cyr61 is a downstream effector of HGF/c-Met pathway activation in human glioma cells. A semiquantitative immunohistochemical analysis of 112 human glioma and normal brain specimens showed that levels of tumor-associated Cyr61 protein correlate with tumor grade (P < 0.001) and with c-Met protein expression (r(2) = 0.4791, P < 0.0001). Purified HGF rapidly upregulated Cyr61 mRNA (peak at 30 minutes) and protein expression (peak at 2 hours) in HGF(-)/c-Met(+) human glioma cell lines via a transcription- and translation-dependent mechanism. Conversely, HGF/c-Met pathway inhibitors reduced Cyr61 expression in HGF(+)/c-Met(+) human glioma cell lines in vitro and in HGF(+)/c-Met(+) glioma xenografts. Targeting Cyr61 expression with small interfering RNA (siRNA) inhibited HGF-induced cell migration (P < 0.01) and cell growth (P < 0.001) in vitro. The effect of Cyr61 on HGF-induced Akt pathway activation was also examined. Cyr61 siRNA had no effect on the early phase of HGF-induced Akt phosphorylation (Ser(473)) 30 minutes after stimulation with HGF. Cyr61 siRNA inhibited a second phase of Akt phosphorylation measured 12 hours after cell stimulation with HGF and also inhibited HGF-induced phosphorylation of the Akt target glycogen synthase kinase 3alpha. We treated preestablished subcutaneous glioma xenografts with Cyr61 siRNA or control siRNA by direct intratumoral delivery. Cyr61 siRNA inhibited Cyr61 expression and glioma xenograft growth by up to 40% in a dose-dependent manner (P < 0.05). These results identify a Cyr61-dependent pathway by which c-Met activation mediates cell growth, cell migration, and long-lasting signaling events in glioma cell lines and possibly astroglial malignancies.
Collapse
Affiliation(s)
- C Rory Goodwin
- Kennedy Krieger Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Lienau J, Schmidt-Bleek K, Peters A, Haschke F, Duda GN, Perka C, Bail HJ, Schütze N, Jakob F, Schell H. Differential regulation of blood vessel formation between standard and delayed bone healing. J Orthop Res 2009; 27:1133-40. [PMID: 19274756 DOI: 10.1002/jor.20870] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Blood vessel formation is a prerequisite for bone healing. In this study, we tested the hypothesis that a delay in bone healing is associated with an altered regulation of blood vessel formation. A tibial osteotomy was performed in two groups of sheep and stabilized with either a rigid external fixator leading to standard healing or with a highly rotationally unstable one leading to delayed healing. At days 4, 7, 9, 11, 14, 21, and 42 after surgery, total RNA was extracted from the callus. Gene expressions of vWF, an endothelial cell marker, and of several molecules related to blood vessel formation were studied by qPCR. Furthermore, histology was performed on fracture hematoma and callus sections. Histologically, the first blood vessels were detected at day 7 in both groups. mRNA expression levels of vWF, Ang1, Ang2, VEGF, CYR61, FGF2, MMP2, and TIMP1 were distinctly lower in the delayed compared to the standard healing group at several time points. Based on differential expression patterns, days 7 and 21 postoperatively were revealed to be essential time points for vascularization of the ovine fracture callus. This work demonstrates for the first time a differential regulation of blood vessel formation between standard and mechanically induced delayed healing in a sheep osteotomy model.
Collapse
Affiliation(s)
- Jasmin Lienau
- Julius Wolff Institut, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Chiang H, Jiang CC. Repair of articular cartilage defects: review and perspectives. J Formos Med Assoc 2009; 108:87-101. [PMID: 19251544 DOI: 10.1016/s0929-6646(09)60039-5] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Articular cartilage defects heal poorly and lead to catastrophic degenerative arthritis. Clinical experience has indicated that no existing medication substantially promotes the healing process and the cartilage defect requires surgical replacement, preferably with an autograft. However, there is a shortage of articular cartilage that can be donated for autografting. A review of previous unsuccessful experiences reveals the reason for the current strategy to graft cartilage defects with regenerated cartilage. Autologous cartilage regeneration is a cell-based therapy in which autogenous chondrocytes or other chondrogenic cells are cultured to constitute cartilaginous tissue according to the principles of tissue engineering. Current studies are concentrating on improving such techniques from the three elements of tissue engineering, namely the cells, biomaterial scaffolds, and culture conditions. Some models of articular cartilage regeneration have yielded good repair of cartilage defects, in animal models and clinical settings, but the overall results suggest that there is room for improvement of this technique before its routine clinical application. Autologous cartilage regeneration remains the mainstay for repairing articular cartilage defects but more studies are required to optimize the efficacy of regeneration. A more abundant supply of more stable cells, i.e. capable of maintaining the phenotype of chondrogenesis, has to be identified. Porous scaffolds of biocompatible, biodegradable materials that maintain and support the presentation of the chondrogenic cells need to be fabricated. If the cells are not implanted early to allow their in vivo constitution of cartilage, a suitable in vitro cultivation method has to be devised for a consistent yield of regenerative cartilage.
Collapse
Affiliation(s)
- Hongsen Chiang
- Department of Orthopedic Surgery, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | | |
Collapse
|
49
|
Proteins on the catwalk: modelling the structural domains of the CCN family of proteins. J Cell Commun Signal 2009; 3:25-41. [PMID: 19424823 PMCID: PMC2686754 DOI: 10.1007/s12079-009-0048-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Accepted: 03/24/2009] [Indexed: 12/02/2022] Open
Abstract
The CCN family of proteins (CCN1, CCN2, CCN3, CCN4, CCN5 and CCN6) are multifunctional mosaic proteins that play keys roles in crucial areas of physiology such as angiogenesis, skeletal development tumourigenesis, cell proliferation, adhesion and survival. This expansive repertoire of functions comes through a modular structure of 4 discrete domains that act both independently and in concert. How these interactions with ligands and with neighbouring domains lead to the biological effects is still to be explored but the molecular structure of the domains is likely to play an important role in this. In this review we have highlighted some of the key features of the individual domains of CCN family of proteins based on their biological effects using a homology modelling approach.
Collapse
|
50
|
Andreas K, Häupl T, Lübke C, Ringe J, Morawietz L, Wachtel A, Sittinger M, Kaps C. Antirheumatic drug response signatures in human chondrocytes: potential molecular targets to stimulate cartilage regeneration. Arthritis Res Ther 2009; 11:R15. [PMID: 19192274 PMCID: PMC2688247 DOI: 10.1186/ar2605] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 01/08/2009] [Accepted: 02/03/2009] [Indexed: 01/21/2023] Open
Abstract
INTRODUCTION Rheumatoid arthritis (RA) leads to progressive destruction of articular cartilage. This study aimed to disclose major mechanisms of antirheumatic drug action on human chondrocytes and to reveal marker and pharmacological target genes that are involved in cartilage dysfunction and regeneration. METHODS An interactive in vitro cultivation system composed of human chondrocyte alginate cultures and conditioned supernatant of SV40 T-antigen immortalised human synovial fibroblasts was used. Chondrocyte alginate cultures were stimulated with supernatant of RA synovial fibroblasts, of healthy donor synovial fibroblasts, and of RA synovial fibroblasts that have been antirheumatically treated with disease-modifying antirheumatic drugs (DMARDs) (azathioprine, gold sodium thiomalate, chloroquine phosphate, and methotrexate), nonsteroidal anti-inflammatory drugs (NSAIDs) (piroxicam and diclofenac), or steroidal anti-inflammatory drugs (SAIDs) (methylprednisolone and prednisolone). Chondrocyte gene expression profile was analysed using microarrays. Real-time reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay were performed for validation of microarray data. RESULTS Genome-wide expression analysis revealed 110 RA-related genes in human chondrocytes: expression of catabolic mediators (inflammation, cytokines/chemokines, and matrix degradation) was induced, and expression of anabolic mediators (matrix synthesis and proliferation/differentiation) was repressed. Potential marker genes to define and influence cartilage/chondrocyte integrity and regeneration were determined and include already established genes (COX-2, CXCR-4, IL-1RN, IL-6/8, MMP-10/12, and TLR-2) and novel genes (ADORA2A, BCL2-A1, CTGF, CXCR-7, CYR-61, HSD11B-1, IL-23A, MARCKS, MXRA-5, NDUFA4L2, NR4A3, SMS, STS, TNFAIP-2, and TXNIP). Antirheumatic treatment with SAIDs showed complete and strong reversion of RA-related gene expression in human chondrocytes, whereas treatment with NSAIDs and the DMARD chloroquine phosphate had only moderate to minor effects. Treatment with the DMARDs azathioprine, gold sodium thiomalate, and methotrexate efficiently reverted chondrocyte RA-related gene expression toward the 'healthy' level. Pathways of cytokine-cytokine receptor interaction, transforming growth factor-beta/Toll-like receptor/Jak-STAT (signal transducer and activator of transcription) signalling and extracellular matrix receptor interaction were targeted by antirheumatics. CONCLUSIONS Our findings indicate that RA-relevant stimuli result in the molecular activation of catabolic and inflammatory processes in human chondrocytes that are reverted by antirheumatic treatment. Candidate genes that evolved in this study for new therapeutic approaches include suppression of specific immune responses (COX-2, IL-23A, and IL-6) and activation of cartilage regeneration (CTGF and CYR-61).
Collapse
Affiliation(s)
- Kristin Andreas
- Tissue Engineering Laboratory and Berlin-Brandenburg Center for Regenerative Therapies, Department of Rheumatology, Charité-Universitätsmedizin Berlin, Tucholskystrasse 2, 10117 Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|