1
|
Di Gregorio A. Searching for marine embryos, finding my path. Genesis 2023; 61:e23576. [PMID: 37994390 PMCID: PMC10773608 DOI: 10.1002/dvg.23576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/03/2023] [Accepted: 11/04/2023] [Indexed: 11/24/2023]
Affiliation(s)
- Anna Di Gregorio
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, New York, USA
| |
Collapse
|
2
|
Shimai K, Veeman M. Quantitative Dissection of the Proximal Ciona brachyury Enhancer. Front Cell Dev Biol 2022; 9:804032. [PMID: 35127721 PMCID: PMC8814421 DOI: 10.3389/fcell.2021.804032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/27/2021] [Indexed: 11/13/2022] Open
Abstract
A major goal in biology is to understand the rules by which cis-regulatory sequences control spatially and temporally precise expression patterns. Here we present a systematic dissection of the proximal enhancer for the notochord-specific transcription factor brachyury in the ascidian chordate Ciona. The study uses a quantitative image-based reporter assay that incorporates a dual-reporter strategy to control for variable electroporation efficiency. We identified and mutated multiple predicted transcription factor binding sites of interest based on statistical matches to the JASPAR binding motif database. Most sites (Zic, Ets, FoxA, RBPJ) were selected based on prior knowledge of cell fate specification in both the primary and secondary notochord. We also mutated predicted Brachyury sites to investigate potential autoregulation as well as Fos/Jun (AP1) sites that had very strong matches to JASPAR. Our goal was to quantitatively define the relative importance of these different sites, to explore the importance of predicted high-affinity versus low-affinity motifs, and to attempt to design mutant enhancers that were specifically expressed in only the primary or secondary notochord lineages. We found that the mutation of all predicted high-affinity sites for Zic, FoxA or Ets led to quantifiably distinct effects. The FoxA construct caused a severe loss of reporter expression whereas the Ets construct had little effect. A strong Ets phenotype was only seen when much lower-scoring binding sites were also mutated. This supports the enhancer suboptimization hypothesis proposed by Farley and Levine but suggests that it may only apply to some but not all transcription factor families. We quantified reporter expression separately in the two notochord lineages with the expectation that Ets mutations and RBPJ mutations would have distinct effects given that primary notochord is induced by Ets-mediated FGF signaling whereas secondary notochord is induced by RBPJ/Su(H)-mediated Notch/Delta signaling. We found, however, that ETS mutations affected primary and secondary notochord expression relatively equally and that RBPJ mutations were only moderately more severe in their effect on secondary versus primary notochord. Our results point to the promise of quantitative reporter assays for understanding cis-regulatory logic but also highlight the challenge of arbitrary statistical thresholds for predicting potentially important sites.
Collapse
|
3
|
Di Gregorio A. The notochord gene regulatory network in chordate evolution: Conservation and divergence from Ciona to vertebrates. Curr Top Dev Biol 2020; 139:325-374. [PMID: 32450965 DOI: 10.1016/bs.ctdb.2020.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The notochord is a structure required for support and patterning of all chordate embryos, from sea squirts to humans. An increasing amount of information on notochord development and on the molecular strategies that ensure its proper morphogenesis has been gleaned through studies in the sea squirt Ciona. This invertebrate chordate offers a fortunate combination of experimental advantages, ranging from translucent, fast-developing embryos to a compact genome and impressive biomolecular resources. These assets have enabled the rapid identification of numerous notochord genes and cis-regulatory regions, and provide a rather unique opportunity to reconstruct the gene regulatory network that controls the formation of this developmental and evolutionary chordate landmark. This chapter summarizes the morphogenetic milestones that punctuate notochord formation in Ciona, their molecular effectors, and the current knowledge of the gene regulatory network that ensures the accurate spatial and temporal orchestration of these processes.
Collapse
Affiliation(s)
- Anna Di Gregorio
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, United States.
| |
Collapse
|
4
|
Satou Y. A gene regulatory network for cell fate specification in Ciona embryos. Curr Top Dev Biol 2020; 139:1-33. [DOI: 10.1016/bs.ctdb.2020.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
5
|
Lu Q, Bhattachan P, Dong B. Ascidian notochord elongation. Dev Biol 2018; 448:147-153. [PMID: 30458170 DOI: 10.1016/j.ydbio.2018.11.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 11/15/2018] [Accepted: 11/15/2018] [Indexed: 11/27/2022]
Abstract
The elongation of embryo and tissue is a key morphogenetic event in embryogenesis and organogenesis. Notochord, a typical chordate organ, undergoes elongation to perform its regulatory roles and to form the structural support in the embryo. Notochord elongation is morphologically similar across all chordates, but ascidian has evolved distinct molecular and cellular processes. Here, we summarize the current understanding of ascidian notochord elongation. We divide the process into three phases and discuss the underlying molecular mechanisms in each phase. In the first phase, the notochord converges and extends through invagination and mediolateral intercalation, and partially elongates to form a single diameter cell column along the anterior-posterior axis. In the second phase, a cytokinesis-like actomyosin ring is constructed at the equator of each cell and drives notochord to elongate approximately two-fold. The molecular composition and architecture of the ascidian notochord contractile ring are similar to that of the cytokinetic ring. However, the notochord contractile ring does not impose cell division but only drives cell elongation followed by disassembly. We discuss the self-organizing property of the circumferential actomyosin ring, and why it disassembles when certain notochord length is achieved. The similar ring structures are also present in the elongation process of other organs in evolutionarily divergent animals such as Drosophila and C. elegans. We hereby propose that actomyosin ring-based circumferential contraction is a common mechanism adopted in diverse systems to drive embryo and tissue elongation. In the third phase, the notochord experiences tubulogenesis and the endothelial-like cells crawl bi-directionally on the notochord sheath to further lengthen the notochord. In this review, we also discuss extracellular matrix proteins, notochord sheath, and surrounding tissues that may contribute to notochord integrity and morphogenesis.
Collapse
Affiliation(s)
- Qiongxuan Lu
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Punit Bhattachan
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Bo Dong
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
6
|
Abstract
Ascidians are tunicates, which constitute the sister group of vertebrates. The ascidian genome contains two Zic genes, called Zic-r.a (also called Macho-1) and Zic-r.b (ZicL). The latter is a multi-copy gene, and the precise copy number has not yet been determined. Zic-r.a is maternally expressed, and soon after fertilization Zic-r.a mRNA is localized in the posterior pole of the zygote. Zic-r.a protein is translated there and is involved in specification of posterior fate; in particular it is important for specification of muscle fate. Zic-r.a is also expressed zygotically in neural cells of the tailbud stage. On the other hand, Zic-r.b is first expressed in marginal cells of the vegetal hemisphere of 32-cell embryos and then in neural cells that contribute to the central nervous system during gastrulation. Zic-r.b is required first for specification of mesodermal tissues and then for specification of the central nervous system. Their upstream and downstream genetic pathways have been studied extensively by functional assays, which include gene knockdown and chromatin immunoprecipitation assays. Thus, ascidian Zic genes play central roles in specification of mesodermal and neural fates.
Collapse
Affiliation(s)
- Yutaka Satou
- Department of Zoology, Graduate School of Science, Kyoto University, Kyoto, Japan.
| | - Kaoru S Imai
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| |
Collapse
|
7
|
Reporter Analyses Reveal Redundant Enhancers that Confer Robustness on Cis-Regulatory Mechanisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018. [PMID: 29542081 DOI: 10.1007/978-981-10-7545-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Reporter analyses of Hox1 and Brachyury (Bra) genes have revealed examples of redundant enhancers that provide regulatory robustness. Retinoic acid (RA) activates through an RA-response element the transcription of Hox1 in the nerve cord of the ascidian Ciona intestinalis. We also found a weak RA-independent neural enhancer within the second intron of Hox1. The Hox1 gene in the larvacean Oikopleura dioica is also expressed in the nerve cord. The O. dioica genome, however, does not contain the RA receptor-encoding gene, and the expression of Hox1 has become independent of RA. We have found that the upstream sequence of the O. dioica Hox1 was able to activate reporter gene expression in the nerve cord of the C. intestinalis embryo, suggesting that an RA-independent regulatory system in the nerve cord might be common in larvaceans and ascidians. This RA-independent redundant regulatory system may have facilitated the Oikopleura ancestor losing RA signaling without an apparent impact on Hox1 expression domains. On the other hand, vertebrate Bra is expressed in the ventral mesoderm and notochord, whereas its ascidian ortholog is exclusively expressed in the notochord. Fibroblast growth factor (FGF) induces Bra in the ventral mesoderm in vertebrates, whereas it induces Bra in the notochord in ascidians. Disruption of the FGF signal does not completely silence Bra expression in ascidians, suggesting that FGF-dependent and independent enhancers might comprise a redundant regulatory system in ascidians. The existence of redundant enhancers, therefore, provides regulatory robustness that may facilitate the acquisition of new expression domains.
Collapse
|
8
|
Maguire JE, Pandey A, Wu Y, Di Gregorio A. Investigating Evolutionarily Conserved Molecular Mechanisms Controlling Gene Expression in the Notochord. TRANSGENIC ASCIDIANS 2018. [DOI: 10.1007/978-981-10-7545-2_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
9
|
Shimai K, Kusakabe TG. The Use of cis-Regulatory DNAs as Molecular Tools. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018. [DOI: 10.1007/978-981-10-7545-2_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Abstract
Ascidians are invertebrate chordates with a biphasic life cycle characterized by a dual body plan that displays simplified versions of chordate structures, such as a premetamorphic 40-cell notochord topped by a dorsal nerve cord and postmetamorphic pharyngeal slits. These relatively simple chordates are characterized by rapid development, compact genomes and ease of transgenesis, and thus provide the opportunity to rapidly characterize the genomic organization, developmental function, and transcriptional regulation of evolutionarily conserved gene families. This review summarizes the current knowledge on members of the T-box family of transcription factors in Ciona and other ascidians. In both chordate and nonchordate animals, these genes control a variety of morphogenetic processes, and their mutations are responsible for malformations and developmental defects in organisms ranging from flies to humans. In ascidians, T-box transcription factors are required for the formation and specialization of essential structures, including notochord, muscle, heart, and differentiated neurons. In recent years, the experimental advantages offered by ascidian embryos have allowed the rapid accumulation of a wealth of information on the molecular mechanisms that regulate the expression of T-box genes. These studies have also elucidated the strategies employed by these transcription factors to orchestrate the appropriate spatial and temporal deployment of the numerous target genes that they control.
Collapse
Affiliation(s)
- A Di Gregorio
- New York University College of Dentistry, New York, NY, United States.
| |
Collapse
|
11
|
Satou Y, Imai KS. Gene regulatory systems that control gene expression in the Ciona embryo. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2015; 91:33-51. [PMID: 25748582 PMCID: PMC4406867 DOI: 10.2183/pjab.91.33] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 11/05/2014] [Indexed: 06/04/2023]
Abstract
Transcriptional control of gene expression is one of the most important regulatory systems in animal development. Specific gene expression is basically determined by combinatorial regulation mediated by multiple sequence-specific transcription factors. The decoding of animal genomes has provided an opportunity for us to systematically examine gene regulatory networks consisting of successive layers of control of gene expression. It remains to be determined to what extent combinatorial regulation encoded in gene regulatory networks can explain spatial and temporal gene-expression patterns. The ascidian Ciona intestinalis is one of the animals in which the gene regulatory network has been most extensively studied. In this species, most specific gene expression patterns in the embryo can be explained by combinations of upstream regulatory genes encoding transcription factors and signaling molecules. Systematic scrutiny of gene expression patterns and regulatory interactions at the cellular resolution have revealed incomplete parts of the network elucidated so far, and have identified novel regulatory genes and novel regulatory mechanisms.
Collapse
Affiliation(s)
- Yutaka Satou
- Department of Zoology, Graduate School of Science, Kyoto University; CREST, JST, Saitama, Japan.
| | | |
Collapse
|
12
|
Miyazaki K, Miyazaki M, Murre C. The establishment of B versus T cell identity. Trends Immunol 2014; 35:205-10. [PMID: 24679436 PMCID: PMC4030559 DOI: 10.1016/j.it.2014.02.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 02/25/2014] [Accepted: 02/26/2014] [Indexed: 01/20/2023]
Abstract
In B cell progenitors, E-proteins E2A and HEB (HeLa E-box binding protein) are crucial for the induction of a B lineage-specific program of gene expression and for orchestrating the assembly of the immunoglobulin loci. In the thymus E2A and HEB act differently, activating the expression of genes closely associated with the establishment of T cell identity and promoting the rearrangement of T cell receptor (TCR) loci. These findings have raised the question as to how E-proteins exert these different activities. We review here the distinct regulatory networks that establish B versus T cell identity, and how genomic architecture and location of genes is modulated in these lineage decisions. We conclude by proposing a model wherein stochasticity in the nuclear location of the early B cell factor 1 (Ebf1) locus in multipotent progenitors determines this lineage choice.
Collapse
Affiliation(s)
- Kazuko Miyazaki
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Masaki Miyazaki
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Cornelis Murre
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
13
|
López Y, Patil A, Nakai K. Identification of novel motif patterns to decipher the promoter architecture of co-expressed genes in Arabidopsis thaliana. BMC SYSTEMS BIOLOGY 2013; 7 Suppl 3:S10. [PMID: 24555803 PMCID: PMC3852273 DOI: 10.1186/1752-0509-7-s3-s10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background The understanding of the mechanisms of transcriptional regulation remains a challenge for molecular biologists in the post-genome era. It is hypothesized that the regulatory regions of genes expressed in the same tissue or cell type share a similar structure. Though several studies have analyzed the promoters of genes expressed in specific metazoan tissues or cells, little research has been done in plants. Hence finding specific patterns of motifs to explain the promoter architecture of co-expressed genes in plants could shed light on their transcription mechanism. Results We identified novel patterns of sets of motifs in promoters of genes co-expressed in four different plant structures (PSs) and in the entire plant in Arabidopsis thaliana. Sets of genes expressed in four PSs (flower, seed, root, shoot) and housekeeping genes expressed in the entire plant were taken from a database of co-expressed genes in A. thaliana. PS-specific motifs were predicted using three motif-discovery algorithms, 8 of which are novel, to the best of our knowledge. A support vector machine was trained using the average upstream distance of the identified motifs from the translation start site on both strands of binding sites. The correctly classified promoters per PS were used to construct specific patterns of sets of motifs to describe the promoter architecture of those co-expressed genes. The discovered PS-specific patterns were tested in the entire A. thaliana genome, correctly identifying 77.8%, 81.2%, 70.8% and 53.7% genes expressed in petal differentiation, synergid cells, root hair and trichome, as well as 88.4% housekeeping genes. Conclusions We present five patterns of sets of motifs which describe the promoter architecture of co-expressed genes in five PSs with the ability to predict them from the entire A. thaliana genome. Based on these findings, we conclude that the positioning and orientation of transcription factor binding sites at specific distances from the translation start site is a reliable measure to differentiate promoters of genes expressed in different A. thaliana structures from background genomic promoters. Our method can be used to predict novel motifs and decipher a similar promoter architecture for genes co-expressed in A. thaliana under different conditions.
Collapse
|
14
|
Ettensohn CA. Encoding anatomy: Developmental gene regulatory networks and morphogenesis. Genesis 2013; 51:383-409. [PMID: 23436627 DOI: 10.1002/dvg.22380] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 02/06/2013] [Accepted: 02/07/2013] [Indexed: 12/19/2022]
Affiliation(s)
- Charles A. Ettensohn
- Department of Biological Sciences; Carnegie Mellon University; Pittsburgh; Pennsylvania
| |
Collapse
|
15
|
The molecular basis of Notch signaling: a brief overview. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 727:1-14. [PMID: 22399335 DOI: 10.1007/978-1-4614-0899-4_1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The Notch signaling pathway is evolutionarily conserved and has been associated with numerous developmental processes, including stem cell maintenance and adult tissue homeostasis. Notably, both abnormal increases and deficiencies of Notch signaling result in human developmental anomalies and cancer development implying that the precise regulation of the intensity and duration of Notch signals is imperative. Numerous studies have demonstrated that the aberrant gain or loss of Notch signaling pathway components is critically linked to multiple human diseases. In this chapter, we will briefly summarize the molecular basis of Notch signaling, focusing on the modulation of Notch signals, and its developmental outcomes including vessel formation and the onset of cancer.
Collapse
|
16
|
Kubo A, Suzuki N, Yuan X, Nakai K, Satoh N, Imai KS, Satou Y. Genomic cis-regulatory networks in the early Ciona intestinalis embryo. Development 2010; 137:1613-23. [PMID: 20392745 DOI: 10.1242/dev.046789] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Precise spatiotemporal gene expression during animal development is achieved through gene regulatory networks, in which sequence-specific transcription factors (TFs) bind to cis-regulatory elements of target genes. Although numerous cis-regulatory elements have been identified in a variety of systems, their global architecture in the gene networks that regulate animal development is not well understood. Here, we determined the structure of the core networks at the cis-regulatory level in early embryos of the chordate Ciona intestinalis by chromatin immunoprecipitation (ChIP) of 11 TFs. The regulatory systems of the 11 TF genes examined were tightly interconnected with one another. By combining analysis of the ChIP data with the results of previous comprehensive analyses of expression profiles and knockdown of regulatory genes, we found that most of the previously determined interactions are direct. We focused on cis-regulatory networks responsible for the Ciona mesodermal tissues by examining how the networks specify these tissues at the level of their cis-regulatory architecture. We also found many interactions that had not been predicted by simple gene knockdown experiments, and we showed that a significant fraction of TF-DNA interactions make major contributions to the regulatory control of target gene expression.
Collapse
Affiliation(s)
- Atsushi Kubo
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, Japan
| | | | | | | | | | | | | |
Collapse
|
17
|
Noda T, Hamada M, Hamaguchi M, Fujie M, Satoh N. Early zygotic expression of transcription factors and signal molecules in fully dissociated embryonic cells of Ciona intestinalis: A microarray analysis. Dev Growth Differ 2009; 51:639-55. [PMID: 19712267 DOI: 10.1111/j.1440-169x.2009.01124.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Specification of early embryonic cells of animals is established by maternally provided factors and interactions of neighboring cells. The present study addressed a question of autonomous versus non-autonomous specification of embryonic cells by using the Ciona intestinalis embryo, in particular the genetic cascade of zygotic expression of transcription factor genes responsible for notochord specification. To examine this issue, we combined the classic experiment of continuous dissociation of embryonic cells with the modern technique of oligonucleotide-based microarrays. We measured early zygotic expression of 389 core transcription factors genes and 118 major signal molecule genes in embryonic cells that were fully dissociated from the first cleavage. Our results indicated that even if cells are free from contact with neighbors, the major transcription factor genes that have primary roles in embryonic cell specification commence their zygotic expression at the same time as in normal embryos. Dissociation of embryonic cells did not affect extracellular signal-regulated kinases (ERK) activity. Although normal embryos treated with U0126 failed to express Bra and Twist-like-1, dissociated embryonic cells treated with U0126 expressed the genes. These results are discussed in relation to the grade of autonomous versus non-autonomous genetic cascades that are responsible for the specification of early Ciona embryonic cells.
Collapse
Affiliation(s)
- Takeshi Noda
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | |
Collapse
|
18
|
The evolutionarily conserved leprecan gene: its regulation by Brachyury and its role in the developing Ciona notochord. Dev Biol 2009; 328:561-74. [PMID: 19217895 DOI: 10.1016/j.ydbio.2009.02.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Revised: 01/21/2009] [Accepted: 02/03/2009] [Indexed: 11/22/2022]
Abstract
In Ciona intestinalis, leprecan was identified as a target of the notochord-specific transcription factor Ciona Brachyury (Ci-Bra) (Takahashi, H., Hotta, K., Erives, A., Di Gregorio, A., Zeller, R.W., Levine, M., Satoh, N., 1999. Brachyury downstream notochord differentiation in the ascidian embryo. Genes Dev. 13, 1519-1523). By screening approximately 14 kb of the Ci-leprecan locus for cis-regulatory activity, we have identified a 581-bp minimal notochord-specific cis-regulatory module (CRM) whose activity depends upon T-box binding sites located at the 3'-end of its sequence. These sites are specifically bound in vitro by a GST-Ci-Bra fusion protein, and mutations that abolish binding in vitro result in loss or decrease of regulatory activity in vivo. Serial deletions of the 581-bp notochord CRM revealed that this sequence is also able to direct expression in muscle cells through the same T-box sites that are utilized by Ci-Bra in the notochord, which are also bound in vitro by the muscle-specific T-box activators Ci-Tbx6b and Ci-Tbx6c. Additionally, we created plasmids aimed to interfere with the function of Ci-leprecan and categorized the resulting phenotypes, which consist of variable dislocations of notochord cells along the anterior-posterior axis. Together, these observations provide mechanistic insights generally applicable to T-box transcription factors and their target sequences, as well as a first set of clues on the function of Leprecan in early chordate development.
Collapse
|
19
|
Abstract
The development of the notochord involves a complex set of cellular behaviors. While these morphogenic behaviors are common to all chordates, the ascidian provides a particularly attractive experimental model because of its relative simplicity. In particular, all notochord morphogenesis in ascidians takes place with only 40 cells, as opposed to the hundreds of cells in vertebrate model systems. Initial steps in ascidian notochord development convert a monolayer of epithelial-like cells in the pregastrula embryo to a cylindrical rod of single-cell diameter. Convergent extension is responsible for the intercalation of notochord cells and some degree of notochord elongation, while a second phase of elongation is observed as the notochord narrows medially and increases in volume. The mechanism by which the volume of the notochord increases differs between ascidian species. Some ascidians produce extracellular pockets that will eventually coalesce to form a lumen running the length of the notochord; whereas others do not. By either mechanism, the resulting notochord serves as a hydrostatic skeleton allowing for the locomotion of the swimming larva. Several basic cell behaviors, such as cell shape changes, cell rearrangement, establishment of cell polarity, and alteration of extracellular environment, are displayed in the process of notochord morphogenesis. Modern analysis of ascidian notochord morphogenesis promises to contribute to our understanding of these fundamental biological processes.
Collapse
Affiliation(s)
- Di Jiang
- Sars International Centre for Marine Molecular Biology, Thormøhlensgt. 55 N-5008 Bergen, Norway
| | - William C. Smith
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California, USA
- author for correspondence:
| |
Collapse
|
20
|
Oda-Ishii I, Di Gregorio A. Lineage-independent mosaic expression and regulation of theCiona multidomgene in the ancestral notochord. Dev Dyn 2007; 236:1806-19. [PMID: 17576134 DOI: 10.1002/dvdy.21213] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The transcription factor Ciona Brachyury (Ci-Bra) plays an essential role in notochord development in the ascidian Ciona intestinalis. We characterized a putative Ci-Bra target gene, which we named Ci-multidom, and analyzed in detail its expression pattern in normal embryos and in embryos where Ci-Bra was misexpressed. Ci-multidom encodes a novel protein, which contains eight CCP domains and a partial VWFA domain. We show that an EGFP-multidom fusion protein localizes preferentially to the endoplasmic reticulum (ER), and is excluded from the nucleus. In situ hybridization experiments demonstrate that Ci-multidom is expressed in the notochord and in the anterior neural boundary (ANB). We found that the expression in the ANB is fully recapitulated by an enhancer element located upstream of Ci-multidom. By means of misexpression experiments, we provide evidence that Ci-Bra controls transcription of Ci-multidom in the notochord; however, while Ci-Bra is homogeneously expressed throughout this structure, Ci-multidom is transcribed at detectable levels only in a random subset of notochord cells. The number of notochord cells expressing Ci-multidom varies among different embryos and is independent of developmental stage, lineage, and position along the anterior-posterior axis. These results suggest that despite its morphological simplicity and invariant cell-lineage, the ancestral notochord is a mosaic of cells in which the gene cascade downstream of Brachyury is differentially modulated.
Collapse
Affiliation(s)
- Izumi Oda-Ishii
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, New York 10021, USA
| | | |
Collapse
|
21
|
Kumano G, Nishida H. Ascidian embryonic development: An emerging model system for the study of cell fate specification in chordates. Dev Dyn 2007; 236:1732-47. [PMID: 17366575 DOI: 10.1002/dvdy.21108] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The ascidian tadpole larva represents the basic body plan of all chordates in a relatively small number of cells and tissue types. Although it had been considered that ascidians develop largely in a determinative way, whereas vertebrates develop in an inductive way, recent studies at the molecular and cellular levels have uncovered several similarities in the way developmental fates are specified. In this review, we describe ascidian embryogenesis and its cell lineages, introduce several characteristics of ascidian embryos, describe recent advances in understanding of the mechanisms of cell fate specification, and discuss them in the context of what is known in vertebrates and other organisms.
Collapse
Affiliation(s)
- Gaku Kumano
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan.
| | | |
Collapse
|
22
|
Hudson C, Yasuo H. A signalling relay involving Nodal and Delta ligands acts during secondary notochord induction in Ciona embryos. Development 2006; 133:2855-64. [PMID: 16835438 DOI: 10.1242/dev.02466] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The notochord is one of the defining features of chordates. The ascidian notochord is a rod like structure consisting of a single row of 40 cells. The anterior 32 ;primary' notochord cells arise from the A-line (anterior vegetal) blastomeres of the eight-cell stage embryo, whereas the posterior 8 ;secondary' notochord cells arise from the B-line (posterior vegetal) blastomeres of the eight-cell stage embryo. Specification of notochord precursors within these two lineages occurs in a spatially and temporally distinct manner. We show that specification of the secondary but not the primary notochord in Ciona intestinalis requires a relay mechanism involving two signalling pathways. First, we show evidence that acquisition of secondary notochord fate is dependent upon lateral Nodal signalling sources, situated in the adjacent b-line animal cells. Expression of the notochord specific gene Ci-Brachyury in the secondary notochord precursor was downregulated following selective inhibition of Nodal signal reception in B-line derivatives and also, strikingly, following selective inhibition of Nodal signal reception in A-line cell derivatives. Within the A-line, Nodal signals are required for localised expression of Delta2, which encodes a divergent form of Delta ligand. Using four distinct reagents to inhibit Delta2/Notch signals, we showed that Delta2 signalling from A-line cells, which activates the Notch/Su(H) pathway in adjacent B-line cells, is required for specification of the secondary notochord precursor. We propose a model whereby laterally produced Nodal acts to specify the secondary notochord precursor both directly in the B-line cells and via Delta2 induction in adjacent A-line cells.
Collapse
Affiliation(s)
- Clare Hudson
- Biologie du Développement, UMR 7009 CNRS/Universite Pierre et Marie Curie (Paris VI Villefranche-sur-Mer, France.
| | | |
Collapse
|
23
|
Davidson B, Shi W, Beh J, Christiaen L, Levine M. FGF signaling delineates the cardiac progenitor field in the simple chordate, Ciona intestinalis. Genes Dev 2006; 20:2728-38. [PMID: 17015434 PMCID: PMC1578698 DOI: 10.1101/gad.1467706] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Accepted: 08/18/2006] [Indexed: 02/02/2023]
Abstract
Comprehensive gene networks in Ciona intestinalis embryos provide a foundation for characterizing complex developmental processes, such as the initial phases of chordate heart development. The basic helix-loop-helix regulatory gene Ci-Mesp is required for activation of cardiac transcription factors. Evidence is presented that Ci-Ets1/2, a transcriptional effector of receptor tyrosine kinase (RTK) signaling, acts downstream from Mesp to establish the heart field. Asymmetric activation of Ets1/2, possibly through localized expression of FGF9, drives heart specification within this field. During gastrulation, Ets1/2 is expressed in a group of four cells descended from two Mesp-expressing founder cells (the B7.5 cells). After gastrulation, these cells divide asymmetrically; the smaller rostral daughters exhibit RTK activation (phosphorylation of ERK) and form the heart lineage while the larger caudal daughters form the anterior tail muscle lineage. Inhibition of RTK signaling prevents heart specification. Targeted inhibition of Ets1/2 activity or FGF receptor function also blocks heart specification. Conversely, application of FGF or targeted expression of constitutively active Ets1/2 (EtsVp16) cause both rostral and caudal B7.5 lineages to form heart cells. This expansion produces an unexpected phenotype: transformation of a single-compartment heart into a functional multicompartment organ. We discuss these results with regard to the development and evolution of the multichambered vertebrate heart.
Collapse
Affiliation(s)
- Brad Davidson
- Department of Molecular and Cellular Biology, Division of Genetics and Development, Center for Integrative Genomics, University of California, Berkeley, California 94720, USA.
| | | | | | | | | |
Collapse
|
24
|
Ikawa T, Kawamoto H, Goldrath AW, Murre C. E proteins and Notch signaling cooperate to promote T cell lineage specification and commitment. J Exp Med 2006; 203:1329-42. [PMID: 16682500 PMCID: PMC2121213 DOI: 10.1084/jem.20060268] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Accepted: 04/06/2006] [Indexed: 01/19/2023] Open
Abstract
The helix-loop-helix protein, E47, is essential for both B- and T-lineage development. Here we demonstrate that in vitro E47 and Notch signaling act in concert to promote T cell development from fetal hematopoietic progenitors and to restrain development into the natural killer and myeloid cell lineages. The expression of an ensemble of genes associated with Notch signaling is activated by E47, and additionally, Notch signaling and E47 act in parallel pathways to induce a T lineage-specific program of gene expression. Enforced expression of the intracellular domain of Notch rescues the developmental arrest at the T cell commitment stage in E2A-deficient fetal thymocytes. Finally, we demonstrate that regulation of Hes1 expression by Notch signaling and E47 is strikingly similar to that observed during Drosophila melanogaster sensory development. Based on these observations, we propose that in developing fetal thymocytes E47 acts to induce the expression of an ensemble of genes involved in Notch signaling, and that subsequently E47 acts in parallel with Notch signaling to promote T-lineage maturation.
Collapse
Affiliation(s)
- Tomokatsu Ikawa
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | |
Collapse
|
25
|
|
26
|
Zeller RW, Virata MJ, Cone AC. Predictable mosaic transgene expression in ascidian embryos produced with a simple electroporation device. Dev Dyn 2006; 235:1921-32. [PMID: 16607640 DOI: 10.1002/dvdy.20815] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Two customized electroporators were specifically designed for creating transgenic ascidian embryos. These electroporators were simple to build, inexpensive, and produced transgenic embryos with efficiencies that equaled or rivaled commercially available machines. A key design feature of these machines resulted in the generation of consistent electroporation pulses providing repeatability between experiments. These devices were used to optimize experimental parameters allowing for the creation of transient transgenic embryos with predictable patterns of mosaic transgene expression. We used these new electroporators to examine the expression of two different fluorescent protein reporter genes with regard to embryonic cell lineage. In general, transgene expression followed the embryonic cell lineage and coelectroporated transgenes were always expressed in the same embryonic cells. Our analysis also indicated that, during development, transgenes could be lost from embryonic cells, suggesting that transgenes may be present in extrachromosomal arrays, as has been observed in other organisms. Our new electroporator designs will allow ascidian researchers to inexpensively produce transgenic ascidians and should prove useful for adapting the electroporation technique to other marine embryo systems.
Collapse
Affiliation(s)
- Robert W Zeller
- Molecular Biology Institute and Coastal and Marine Institute, San Diego State University, San Diego, California 92182-4614, USA.
| | | | | |
Collapse
|
27
|
Satou Y, Satoh N. Cataloging transcription factor and major signaling molecule genes for functional genomic studies in Ciona intestinalis. Dev Genes Evol 2005; 215:580-96. [PMID: 16252120 DOI: 10.1007/s00427-005-0016-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2005] [Accepted: 07/05/2005] [Indexed: 11/29/2022]
Abstract
The ascidian Ciona intestinalis provides an excellent experimental system for functional genomic studies because (1) its genome has been sequenced, (2) the transcription factor genes and genes for major signal transduction molecules have been extensively screened and annotated on a genome-wide scale using the molecular phylogenetical method, and (3) their embryonic expression profiles have been almost completely determined. However, the entire genetic structure, including the 5' and 3' untranslated regions and the protein-coding regions, of most gene models used in these prior studies is not always supported by cDNA evidence, and thus, these gene models are potentially imprecise. To facilitate functional genomic studies based on precise gene structures, our present study determined 406 cDNA sequences for 357 transcription factor genes and 112 cDNA sequences for 107 signal transduction molecule genes, greatly improving the previous gene models and revealing transcript variants for 44 genes. Considering these data alongside those of previously characterized genes deposited in the DNA Data Bank of Japan/European Molecular Biology Laboratory/GENBANK databases, 95.6% of the catalogued transcription factor genes (373/390) and 98.3% of the catalogued signal transduction molecule genes (117/119) have now been verified by cDNA sequences. Thus, the present study greatly improves the resources available for functional genomic studies in C. intestinalis.
Collapse
Affiliation(s)
- Yutaka Satou
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, Japan.
| | | |
Collapse
|
28
|
Abstract
Thanks to their transparent and rapidly developing mosaic embryos, ascidians (or sea squirts) have been a model system for embryological studies for over a century. Recently, ascidians have entered the postgenomic era, with the sequencing of the Ciona intestinalis genome and the accumulation of molecular resources that rival those available for fruit flies and mice. One strength of ascidians as a model system is their close similarity to vertebrates. Literature reporting molecular homologies between vertebrate and ascidian tissues has flourished over the past 15 years, since the first ascidian genes were cloned. However, it should not be forgotten that ascidians diverged from the lineage leading to vertebrates over 500 million years ago. Here, we review the main similarities and differences so far identified, at the molecular level, between ascidian and vertebrate tissues and discuss the evolution of the compact ascidian genome.
Collapse
Affiliation(s)
- Yale J Passamaneck
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021, USA.
| | | |
Collapse
|
29
|
Abstract
Ascidians, or sea squirts, are lower chordates, and share basic gene repertoires and many characteristics, both developmental and physiological, with vertebrates. Therefore, decoding cis-regulatory systems in ascidians will contribute toward elucidating the genetic regulatory systems underlying the developmental and physiological processes of vertebrates. cis-Regulatory DNAs can also be used for tissue-specific genetic manipulation, a powerful tool for studying ascidian development and physiology. Because the ascidian genome is compact compared with vertebrate genomes, both intergenic regions and introns are relatively small in ascidians. Short upstream intergenic regions contain a complete set of cis-regulatory elements for spatially regulated expression of a majority of ascidian genes. These features of the ascidian genome are a great advantage in identifying cis-regulatory sequences and in analyzing their functions. Function of cis-regulatory DNAs has been analyzed for a number of tissue-specific and developmentally regulated genes of ascidians by introducing promoter-reporter fusion constructs into ascidian embryos. The availability of the whole genome sequences of the two Ciona species, Ciona intestinalis and Ciona savignyi, facilitates comparative genomics approaches to identify cis-regulatory DNAs. Recent studies demonstrate that computational methods can help identify cis-regulatory elements in the ascidian genome. This review presents a comprehensive list of ascidian genes whose cis-regulatory regions have been subjected to functional analysis, and highlights the recent advances in bioinformatics and comparative genomics approaches to cis-regulatory systems in ascidians.
Collapse
Affiliation(s)
- Takehiro Kusakabe
- Department of Life Science, Graduate School of Life Science, University of Hyogo, Japan.
| |
Collapse
|
30
|
Affiliation(s)
- Robert W Zeller
- Department of Biology, San Diego State University, San Diego, California 92182, USA
| |
Collapse
|
31
|
Cone AC, Zeller RW. Using ascidian embryos to study the evolution of developmental gene regulatory networks. CAN J ZOOL 2005. [DOI: 10.1139/z04-165] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Ascidians are ideally positioned taxonomically at the base of the chordate tree to provide a point of comparison for developmental regulatory mechanisms that operate among protostomes, non-chordate deuterostomes, invertebrate chordates, and vertebrates. In this review, we propose a model for the gene regulatory network that gives rise to the ascidian notochord. The purpose of this model is not to clarify all of the interactions between molecules of this network, but to provide a working schematic of the regulatory architecture that leads to the specification of endoderm and the patterning of mesoderm in ascidian embryos. We describe a series of approaches, both computational and biological, that are currently being used, or are in development, for the study of ascidian embryo gene regulatory networks. It is our belief that the tools now available to ascidian biologists, in combination with a streamlined mode of development and small genome size, will allow for more rapid dissection of developmental gene regulatory networks than in more complex organisms such as vertebrates. It is our hope that the analysis of gene regulatory networks in ascidians can provide a basic template which will allow developmental biologists to superimpose the modifications and novelties that have arisen during deuterostome evolution.
Collapse
|
32
|
Imai KS, Hino K, Yagi K, Satoh N, Satou Y. Gene expression profiles of transcription factors and signaling molecules in the ascidian embryo: towards a comprehensive understanding of gene networks. Development 2004; 131:4047-58. [PMID: 15269171 DOI: 10.1242/dev.01270] [Citation(s) in RCA: 332] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Achieving a real understanding of animal development obviously requires a comprehensive rather than partial identification of the genes working in each developmental process. Recent decoding of genome sequences will enable us to perform such studies. An ascidian, Ciona intestinalis, one of the animals whose genome has been sequenced, is a chordate sharing a basic body plan with vertebrates, although its genome contains less paralogs than are usually seen in vertebrates. In the present study, we discuss the genomewide approach to networks of developmental genes in Ciona embryos. We focus on transcription factor genes and some major groups of signal transduction genes. These genes are comprehensively listed and examined with regard to their embryonic expression by in situ hybridization (http://ghost.zool.kyoto-u.ac.jp/tfst.html). The results revealed that 74% of the transcription factor genes are expressed maternally and that 56% of the genes are zygotically expressed during embryogenesis. Of these, 34% of the transcription factor genes are expressed both maternally and zygotically. The number of zygotically expressed transcription factor genes increases gradually during embryogenesis. As an example, and taking advantage of this comprehensive description of gene expression profiles, we identified transcription factor genes and signal transduction genes that are expressed at the early gastrula stage and that work downstream of beta-catenin, FoxD and/or Fgf9/16/20. Because these three genes are essential for ascidian endomesoderm specification, transcription factor genes and signal transduction genes involved in each of the downstream processes can be deduced comprehensively using the present approach.
Collapse
Affiliation(s)
- Kaoru S Imai
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | | | | | | | | |
Collapse
|
33
|
Yagi K, Satou Y, Satoh N. A zinc finger transcription factor, ZicL, is a direct activator of Brachyury in the notochord specification of Ciona intestinalis. Development 2004; 131:1279-88. [PMID: 14993185 DOI: 10.1242/dev.01011] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In ascidian embryos, Brachyury is expressed exclusively in blastomeres of the notochord lineage and play an essential role in the notochord cell differentiation. The genetic cascade leading to the transcriptional activation of Brachyury in A-line notochord cells of Ciona embryos begins with maternally provided beta-catenin, which is essential for endodermal cell specification. beta-catenin directly activates zygotic expression of a forkhead transcription factor gene, FoxD, at the 16-cell stage, which in turn somehow activates a zinc finger transcription factor gene, ZicL, at the 32-cell stage, and then Brachyury at the 64-cell stage. One of the key questions to be answered is whether ZicL functions as a direct activator of Brachyury transcription, and this was addressed in the present study. A fusion protein was constructed in which a zinc finger domain of Ciona ZicL was connected to the C-terminus of GST. Extensive series of PCR-assisted binding site selection assays and electrophoretic mobility shift assays demonstrated that the most plausible recognition sequence of Ciona ZicL was CCCGCTGTG. We found the elements CACAGCTGG (complementary sequence: CCAGCTGTG) at -123 and CCAGCTGTG at -168 bp upstream of the putative transcription start site of Ci-Bra in a previously identified basal enhancer of this gene. In vitro binding assays indicated that the ZicL fusion protein binds to these elements efficiently. A fusion gene construct in which lacZ was fused with the upstream sequence of Ci-Bra showed the reporter gene expression exclusively in notochord cells when the construct was introduced into fertilized eggs. In contrast, fusion constructs with mutated ZicL-binding-elements failed to show the reporter expression. In addition, suppression of Ci-ZicL abolished the reporter gene expression, while ectopic and/or overexpression of Ci-ZicL resulted in ectopic reporter expression in non-notochord cells. These results provide evidence that ZicL directly activates Brachyury, leading to specification and subsequent differentiation of notochord cells.
Collapse
Affiliation(s)
- Kasumi Yagi
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| | | | | |
Collapse
|
34
|
Abstract
The T-box gene family, encoding related DNA-binding transcriptional regulators, plays an essential role in controlling many aspects of embryogenesis in a wide variety of organisms. The T-box genes exhibit diverse patterns of spatial and temporal expression in the developing embryo, and both genetic and molecular embryological studies have demonstrated their importance in regulating cell fate decisions that establish the early body plan, and in later processes underlying organogenesis. Despite these studies, little is known of either the regulation of the T-box genes or the identities of their transcriptional targets. The aim of this review is to examine the diverse yet conserved roles of several T-box genes in regulating early patterning in chordates and to discuss possible mechanisms through which this functional diversity might arise. Developmental Dynamics 229:201-218, 2004.
Collapse
Affiliation(s)
- Chris Showell
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | | |
Collapse
|
35
|
Bertrand V, Hudson C, Caillol D, Popovici C, Lemaire P. Neural Tissue in Ascidian Embryos Is Induced by FGF9/16/20, Acting via a Combination of Maternal GATA and Ets Transcription Factors. Cell 2003; 115:615-27. [PMID: 14651852 DOI: 10.1016/s0092-8674(03)00928-0] [Citation(s) in RCA: 242] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In chordates, formation of neural tissue from ectodermal cells requires an induction. The molecular nature of the inducer remains controversial in vertebrates. Here, using the early neural marker Otx as an entry point, we dissected the neural induction pathway in the simple embryos of Ciona intestinalis. We first isolated the regulatory element driving Otx expression in the prospective neural tissue, showed that this element directly responds to FGF signaling and that FGF9/16/20 acts as an endogenous neural inducer. Binding site analysis and gene loss of function established that FGF9/16/20 induces neural tissue in the ectoderm via a synergy between two maternal response factors. Ets1/2 mediates general FGF responsiveness, while the restricted activity of GATAa targets the neural program to the ectoderm. Thus, our study identifies an endogenous FGF neural inducer and its early downstream gene cascade. It also reveals a role for GATA factors in FGF signaling.
Collapse
Affiliation(s)
- Vincent Bertrand
- Laboratoire de Génétique et Physiologie du Développement, IBDM, CNRS/INSERM, Université de la Méditerranée/AP de Marseille, Parc Scientifique de Luminy, Case 907, F-13288, Marseille Cedex 9, France.
| | | | | | | | | |
Collapse
|
36
|
Imai KS, Satoh N, Satou Y. A Twist-like bHLH gene is a downstream factor of an endogenous FGF and determines mesenchymal fate in the ascidian embryos. Development 2003; 130:4461-72. [PMID: 12900461 DOI: 10.1242/dev.00652] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ascidian larvae develop mesenchyme cells in their trunk. A fibroblast growth factor (FGF9/16/20) is essential and sufficient for induction of the mesenchyme in Ciona savignyi. We have identified two basic helix-loop-helix (bHLH) genes named Twist-like1 and Twist-like2 as downstream factors of this FGF. These two genes are phylogenetically closely related to each other, and were expressed specifically in the mesenchymal cells after the 110-cell stage. Gene-knockdown experiments using a specific morpholino oligonucleotide demonstrated that Twist-like1 plays an essential role in determination of the mesenchyme and that Twist-like2 is a downstream factor of Twist-like1. In addition, both overexpression and misexpression of Twist-like1 converts non-mesenchymal cells to mesenchymal cells. We also demonstrate that the upstream regulatory mechanisms of Twist-like1 are different between B-line mesenchymal cells and the A-line mesenchymal cells called 'trunk lateral cells'. FGF9/16/20 is required for the expression of Twist-like1 in B-line mesenchymal precursor cells, whereas FGF, FoxD and another novel bHLH factor called NoTrlc are required for Twist-like1 to be expressed in the A-line mesenchymal precursor cells. Therefore, two different but partially overlapping mechanisms are required for the expression of Twist-like1 in the mesenchymal precursors, which triggers the differentiation of the mesenchyme in Ciona embryos.
Collapse
Affiliation(s)
- Kaoru S Imai
- Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | |
Collapse
|
37
|
Satou Y, Sasakura Y, Yamada L, Imai KS, Satoh N, Degnan B. A genomewide survey of developmentally relevant genes in Ciona intestinalis. V. Genes for receptor tyrosine kinase pathway and Notch signaling pathway. Dev Genes Evol 2003; 213:254-63. [PMID: 12739141 DOI: 10.1007/s00427-003-0317-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2002] [Accepted: 03/11/2003] [Indexed: 10/26/2022]
Abstract
In the present survey, we identified most of the genes involved in the receptor tyrosine kinase (RTK), mitogen activated protein kinase (MAPK) and Notch signaling pathways in the draft genome sequence of Ciona intestinalis, a basal chordate. Compared to vertebrates, most of the genes found in the Ciona genome had fewer paralogues, although several genes including ephrin, Eph and fringe appeared to have multiplied or duplicated independently in the ascidian genome. In contrast, some genes including kit/flt, PDGF and Trk receptor tyrosine kinases were not found in the present survey, suggesting that these genes are innovations in the vertebrate lineage or lost in the ascidian lineage. The gene set identified in the present analysis provides an insight into genes for the RTK, MAPK and Notch signaling pathways in the ancient chordate genome and thereby how chordates evolved these signaling pathway.
Collapse
Affiliation(s)
- Yutaka Satou
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
Evolution is of interest not only to developmental biology but also to genetics and genomics. We are witnessing a new era in which evolution, development, genetics and genomics are merging to form a new discipline, a good example of which is the study of the origin and evolution of the chordates. Recent studies on the formation of the notochord and the dorsal neural tube in the increasingly famous Ciona intestinalis tadpole larva, and the availability of its draft genome, show how the combination of comparative molecular development and evolutionary genomics might help us to better understand our chordate ancestor.
Collapse
Affiliation(s)
- Nori Satoh
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| |
Collapse
|
39
|
Nishida H. Specification of developmental fates in ascidian embryos: molecular approach to maternal determinants and signaling molecules. INTERNATIONAL REVIEW OF CYTOLOGY 2002; 217:227-76. [PMID: 12019564 DOI: 10.1016/s0074-7696(02)17016-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Tadpole larvae of ascidians represent the basic body plan of chordates with a relatively small number and few types of cells. Because of their simplicity, ascidians have been intensively studied. More than a century of research on ascidian embryogenesis has uncovered many cellular and molecular mechanisms responsible for cell fate specification in the early embryo. This review describes recent advances in our understanding of the molecular mechanisms of fate specification mainly uncovered in model ascidian species--Halocynthia roretzi, Ciona intestinalis, and Ciona savignyi. One category of developmentally important molecules represents maternal localized mRNAs that are involved in cell-autonomous processes. In the second category, signaling molecules and downstream transcription factors are involved in inductive cell interactions. Together with genome-wide information, there is a renewed interest in studying ascidian embryos as a fascinating model system for understanding how single-celled eggs develop a highly organized chordate body plan.
Collapse
Affiliation(s)
- Hiroki Nishida
- Department of Biological Sciences, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
40
|
Abstract
An analysis by CsCl density gradient centrifugation has shown that, at a fragment size of about 100 kb, the DNA of a urochordate, Ciona intestinalis, is remarkably homogeneous in base composition. Localization of 16 coding sequences from C. intestinalis, chosen so as to cover the distribution range of all available coding sequences for this organism, showed a nearly symmetrical distribution almost coinciding with the DNA distribution. Both distributions are remarkably different from those found in vertebrates, which are skewed towards high GC levels (to a greater extent in warm-blooded vertebrates). In order to account for this change in genome organization, we propose a working hypothesis that can be tested. Basically, we suggest that the genome duplication that occurred between urochordates and fishes was accompanied by a preferential integration of transposons in one compartment of the genome, which was made gene-poor (by lowering gene density) compared to the rest. Since the gene-poor compartment (the 'empty quarter') is characterized by a lower level of gene expression compared to the gene-rich compartment (the 'genome core') in the vertebrate genome, we further suggest, as a working hypothesis, that a compartmentalization according to gene expression already existed in urochordates.
Collapse
Affiliation(s)
- Giuliana de Luca di Roseto
- Laboratorio di Evoluzione Molecolare, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | | | | |
Collapse
|
41
|
Imai KS, Satoh N, Satou Y. An essential role of aFoxDgene in notochord induction inCionaembryos. Development 2002; 129:3441-53. [PMID: 12091314 DOI: 10.1242/dev.129.14.3441] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A key issue for understanding the early development of the chordate body plan is how the endoderm induces notochord formation. In the ascidian Ciona, nuclear accumulation of β-catenin is the first step in the process of endoderm specification. We show that nuclear accumulation of β-catenin directly activates the gene (Cs-FoxD) for a winged helix/forkhead transcription factor and that this gene is expressed transiently at the 16- and 32-cell stages in endodermal cells. The function of Cs-FoxD, however, is not associated with differentiation of the endoderm itself but is essential for notochord differentiation or induction. In addition, it is likely that the inductive signal that appears to act downstream of Cs-FoxD does not act over a long range. It has been suggested that FGF or Notch signal transduction pathway mediates ascidian notochord induction. Our previous study suggests that Cs-FGF4/6/9 is partially involved in the notochord induction. The present experimental results suggest that the expression and function of Cs-FGF4/6/9 and Cs-FoxD are not interdependent, and that the Notch pathway is involved in B-line notochord induction downstream of Cs-FoxD.
Collapse
Affiliation(s)
- Kaoru S Imai
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| | | | | |
Collapse
|
42
|
Latimer AJ, Dong X, Markov Y, Appel B. Delta-Notch signaling induces hypochord development in zebrafish. Development 2002; 129:2555-63. [PMID: 12015285 DOI: 10.1242/dev.129.11.2555] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Different cell types that occupy the midline of vertebrate embryos originate within the Spemann-Mangold or gastrula organizer. One such cell type is hypochord, which lies ventral to notochord in anamniote embryos. We show that hypochord precursors arise from the lateral edges of the organizer in zebrafish. During gastrulation, hypochord precursors are closely associated with no tail-expressing midline precursors and paraxial mesoderm, which expresses deltaC and deltaD. Loss-of-function experiments revealed that deltaC and deltaD were required for her4 expression in presumptive hypochord precursors and for hypochord development. Conversely, ectopic, unregulated Notch activity blocked no tail expression and promoted her4 expression. We propose that Delta signaling from paraxial mesoderm diversifies midline cell fate by inducing a subset of neighboring midline precursors to develop as hypochord, rather than as notochord.
Collapse
Affiliation(s)
- Andrew J Latimer
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | | | | | | |
Collapse
|
43
|
Abstract
Ascidians are marine protochordates at the evolutionary boundary between invertebrates and vertebrates. Ascidian larvae provide a simple system for unraveling gene regulation networks underlying the formation of the basic chordate body plan. After being used for over a century as a model for embryological studies, ascidians have become, in the past decade, an increasingly popular organism for studying gene regulation. Part of the renewed appeal of this system is the use of electroporation to introduce transgenic DNAs into developing embryos. This method is considerably more efficient than conventional microinjection assays and permits the simultaneous transformation of hundreds of embryos. Electroporation has allowed the identification and characterization of cis-regulatory DNAs that mediate gene expression in a variety of tissues, including the notochord, tail muscles, CNS, and endoderm. Electroporation has also provided a simple method for misexpressing patterning genes and producing dominant mutant phenotypes. Recent studies have used electroporation to create "knock-out" phenotypes by overexpressing dominant negative forms of particular proteins. Here we review the past and present uses of electroporation in ascidian development, and speculate on potential future uses.
Collapse
Affiliation(s)
- Anna Di Gregorio
- Department of Molecular and Cell Biology, Division of Genetics and Development, 401 Barker Hall, University of California at Berkeley, 94720-3204, USA.
| | | |
Collapse
|
44
|
Satou Y, Takatori N, Fujiwara S, Nishikata T, Saiga H, Kusakabe T, Shin-i T, Kohara Y, Satoh N. Ciona intestinalis cDNA projects: expressed sequence tag analyses and gene expression profiles during embryogenesis. Gene 2002; 287:83-96. [PMID: 11992726 DOI: 10.1016/s0378-1119(01)00826-5] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Ascidians are primitive chordates. Their fertilized egg develops quickly into a tadpole-type larva, which consists of a small number but distinct types of cells, including those of epidermis, central nervous system with two sensory organs, endoderm and mesenchyme in the trunk, and notochord and muscle in the tail. This configuration of the ascidian tadpole is thought to represent the most simplified and primitive chordate body plan. In addition, the free-swimming and non-feeding larvae metamorphose into sessile and filter-feeding adults. The genome size of Ciona intestinalis is estimated to be about 160 Mb, and the number of genes approximately 15,500. The present Ciona cDNA projects focused on gene expression profiles of fertilized eggs, 32-110-cell stage embryos, tailbud embryos, larvae, and young adults. Expressed sequence tags (ESTs) of the 5'-most end and 3'-most end of more than 3000 clones were determined at each developmental stage, and the clones were categorized into independent clusters using the 3'-end sequences. Nearly 1000 clusters of them were then analyzed in detail of their sequences against a BLASTX search. This analysis demonstrates that, on average, half of the clusters showed proteins with sequence similarities to known proteins and the other half did not show sequence similarities to known proteins. Genes with sequence similarities were further categorized into three major subclasses, depending on their functions. Furthermore, the expression profiles of all of the clusters were analyzed by whole-mount in situ hybridization. This analysis highlights gene expression patterns characteristic to each developmental stage. As a result, the present study provides many new molecular markers for each of the tissues and/or organs that constitutes the Ciona tailbud embryo. This sequence information will be used for further comparative genome studies to explore molecular mechanisms involved in the formation of one of the most primitive chordate body plans. All of the data fully characterized may be viewed at the web site http://ghost.zool.kyoto-u.ac.jp.
Collapse
Affiliation(s)
- Yutaka Satou
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Imai KS, Satoh N, Satou Y. Early embryonic expression ofFGF4/6/9gene and its role in the induction of mesenchyme and notochord inCiona savignyiembryos. Development 2002; 129:1729-38. [PMID: 11923208 DOI: 10.1242/dev.129.7.1729] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In early Ciona savignyi embryos, nuclear localization of β-catenin is the first step of endodermal cell specification, and triggers the activation of various target genes. A cDNA for Cs-FGF4/6/9, a gene activated downstream of β-catenin signaling, was isolated and shown to encode an FGF protein with features of both FGF4/6 and FGF9/20. The early embryonic expression of Cs-FGF4/6/9 was transient and the transcript was seen in endodermal cells at the 16- and 32-cell stages, in notochord and muscle cells at the 64-cell stage, and in nerve cord and muscle cells at the 110-cell stage; the gene was then expressed again in cells of the nervous system after neurulation. When the gene function was suppressed with a specific antisense morpholino oligo, the differentiation of mesenchyme cells was completely blocked, and the fate of presumptive mesenchyme cells appeared to change into that of muscle cells. The inhibition of mesenchyme differentiation was abrogated by coinjection of the morpholino oligo and synthetic Cs-FGF4/6/9 mRNA. Downregulation of β-catenin nuclear localization resulted in the absence of mesenchyme cell differentiation due to failure of the formation of signal-producing endodermal cells. Injection of synthetic Cs-FGF4/6/9 mRNA in β-catenin-downregulated embryos evoked mesenchyme cell differentiation. These results strongly suggest that Cs-FGF4/6/9 produced by endodermal cells acts an inductive signal for the differentiation of mesenchyme cells. On the other hand, the role of Cs-FGF4/6/9 in the induction of notochord cells is partial; the initial process of the induction was inhibited by Cs-FGF4/6/9 morpholino oligo, but notochord-specific genes were expressed later to form a partial notochord.
Collapse
Affiliation(s)
- Kaoru S Imai
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| | | | | |
Collapse
|
46
|
Fujiwara S, Maeda Y, Shin-I T, Kohara Y, Takatori N, Satou Y, Satoh N. Gene expression profiles in Ciona intestinalis cleavage-stage embryos. Mech Dev 2002; 112:115-27. [PMID: 11850183 DOI: 10.1016/s0925-4773(01)00651-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
A total of 1612 expression sequence tags derived from Ciona intestinalis cleavage-stage embryos were examined to explore detailed gene expression profiles. The 3' sequences indicate that the 1612 clones can be categorized into 1066 independent clusters. DDBJ database search suggested that 496 of them showed significant matches to reported proteins with distinct functions. Among them 69 are associated with cell-cell communications and 41 with transcription factors. In situ hybridization of all 1066 clusters showed that 84 clusters exhibited blastomere-specific pattern of expression, and many of these genes seem to encode for novel proteins. One of the interesting findings is that most of them were expressed in the precursor cells of multiple tissues. Among them 28 genes were expressed in the marginal zone of the 32-cell embryo. The blastomeres in this region are thought to receive an inductive signal from the vegetal blastomeres. Many of the blastomere-specific genes did not show similarity to known proteins. The present analysis therefore provides new information for further analyses on the cell fate specification in the Ciona embryo.
Collapse
Affiliation(s)
- Shigeki Fujiwara
- Department of Biology, Faculty of Science, Kochi University, Kochi 780-8520, Japan.
| | | | | | | | | | | | | |
Collapse
|
47
|
Holland LZ. Heads or tails? Amphioxus and the evolution of anterior-posterior patterning in deuterostomes. Dev Biol 2002; 241:209-28. [PMID: 11784106 DOI: 10.1006/dbio.2001.0503] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In Xenopus, the canonical Wnt-signaling pathway acting through beta-catenin functions both in establishing the dorso-ventral axis and in patterning the anterior-posterior axis. This pathway also acts in patterning the animal-vegetal axis in sea urchins. However, because sea urchin development is typically indirect, and adult sea urchins have pentamerous symmetry and lack a longitudinal nerve cord, it has not been clear how the roles of the canonical Wnt-signaling pathway in axial patterning in sea urchins and vertebrates are evolutionarily related. The developmental expression patterns of Notch, brachyury, caudal, and eight Wnt genes have now been determined for the invertebrate chordate Amphioxus, which, like sea urchins, has an early embryo that gastrulates by invagination, but like vertebrates, has a later embryo with a dorsal hollow nerve cord that elongates posteriorly from a tail bud. Comparisons of Amphioxus with other deuterostomes suggest that patterning of the ancestral deuterostome embryo along its anterior-posterior axis during the late blastula and subsequent stages involved a posterior signaling center including Wnts, Notch, and transcription factors such as brachyury and caudal. In tunicate embryos, in which cell numbers are reduced and cell fates largely determined during cleavage stages, only vestiges of this signaling center are still apparent; these include localization of Wnt-5 mRNA to the posterior cytoplasm shortly after fertilization and localization of beta-catenin to vegetal nuclei during cleavage stages. Neither in tunicates nor in Amphioxus is there any evidence that the canonical Wnt-signaling pathway functions in establishment of the dorso-ventral axis. Thus, roles for Wnt-signaling in dorso-ventral patterning of embryos may be a vertebrate innovation that arose in connection with the evolution of yolky eggs and gastrulation by extensive involution.
Collapse
Affiliation(s)
- Linda Z Holland
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0202, USA.
| |
Collapse
|
48
|
Abstract
Ascidians have served as an appropriate experimental system in developmental biology for more than a century. The fertilized egg develops quickly into a tadpole larva, which consists of a small number of organs including epidermis, central nervous system with two sensory organs, endoderm and mesenchyme in the trunk, and notochord and muscle in the tail. This configuration of the ascidian tadpole is thought to represent the most simplified and primitive chordate body plan. Their embryogenesis is simple, and lineage of embryonic cells is well documented. The ascidian genome contains a basic set of genes with less redundancy compared to the vertebrate genome. Cloning and characterization of developmental genes indicate that each gene is expressed under discrete spatio-temporal pattern within their lineage. In addition, the use of various molecular techniques in the ascidian embryo system highlights its advantages as a future experimental system to explore the molecular mechanisms underlying the expression and function of developmental genes as well as genetic circuitry responsible for the establishment of the basic chordate body plan. This review is aimed to highlight the recent advances in ascidian embryology.
Collapse
Affiliation(s)
- N Satoh
- Department of Zoology, Graduate School of Science, Kyoto University, Japan.
| |
Collapse
|
49
|
Shimauchi Y, Murakami SD, Satoh N. FGF signals are involved in the differentiation of notochord cells and mesenchyme cells of the ascidianHalocynthia roretzi. Development 2001; 128:2711-21. [PMID: 11526077 DOI: 10.1242/dev.128.14.2711] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Differentiation of notochord cells and mesenchyme cells of the ascidian Halocynthia roretzi requires interactions with neighboring endodermal cells and previous experiments suggest that these interactions require fibroblast growth factor (FGF). In the present study, we examined the role of FGF in these interactions by disrupting signaling using the dominant negative form of the FGF receptor. An FGF receptor gene of H. roretzi (HrFGFR) is expressed both maternally and zygotically. The maternally expressed transcript was ubiquitously distributed in fertilized eggs and in early embryos. Zygotic expression became evident by the neurula stage and transcripts were detected in epidermal cells of the posterior half of embryos. Synthetic mRNA for the dominant negative form of FGFR, in which the intracellular tyrosine kinase domain was deleted, was injected into fertilized eggs to interfere with the possible function of HrFGFR. Injected eggs cleaved and gastrulated the same as the control embryos. Analyses of the expression of differentiation markers in the experimental embryos indicated that the differentiation of epidermal cells, muscle cells and endodermal cells was not affected significantly. However, manipulated embryos showed downregulation of notochord-specific Brachyury expression and failure of notochord cell differentiation, resulting in the development of tailbud embryos with shorted tails. The expression of an actin gene that is normally expressed in mesenchyme cells was also suppressed. These results suggest that FGF signals are involved in differentiation of notochord cells and mesenchyme cells in Halocynthia embryos. Furthermore, the patterning of a neuron-specific tubulin gene expression was disturbed, suggesting that the formation of the nervous system was directly affected by disrupting FGF signals or indirectly affected due to the disruption of normal notochord formation.
Collapse
Affiliation(s)
- Y Shimauchi
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | |
Collapse
|
50
|
Minokawa T, Yagi K, Makabe KW, Nishida H. Binary specification of nerve cord and notochord cell fates in ascidian embryos. Development 2001; 128:2007-17. [PMID: 11493523 DOI: 10.1242/dev.128.11.2007] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the ascidian embryo, the nerve cord and notochord of the tail of tadpole larvae originate from the precursor blastomeres for both tissues in the 32-cell-stage embryo. Each fate is separated into two daughter blastomeres at the next cleavage. We have examined mechanisms that are responsible for nerve cord and notochord specification through experiments involving blastomere isolation, cell dissociation, and treatment with basic fibroblast growth factor (bFGF) and inhibitors for the mitogen-activated protein kinase (MAPK) cascade. It has been shown that inductive cell interaction at the 32-cell stage is required for notochord formation. Our results show that the nerve cord fate is determined autonomously without any cell interaction. Presumptive notochord blastomeres also assume a nerve cord fate when they are isolated before induction is completed. By contrast, not only presumptive notochord blastomeres but also presumptive nerve cord blastomeres forsake their default nerve cord fate and choose the notochord fate when they are treated with bFGF. When the FGF-Ras-MAPK signaling cascade is inhibited, both blastomeres choose the default nerve cord pathway, supporting the results of blastomere isolation. Thus, binary choice of alternative fates and asymmetric division are involved in this nerve cord/notochord fate determination system, mediated by FGF signaling.
Collapse
Affiliation(s)
- T Minokawa
- Department of Biological Sciences, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | | | | | | |
Collapse
|