1
|
Ca 2+ Signalling and Membrane Dynamics During Cytokinesis in Animal Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 981:389-412. [PMID: 29594869 DOI: 10.1007/978-3-319-55858-5_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Interest in the role of Ca2+ signalling as a possible regulator of the combinatorial processes that result in the separation of the daughter cells during cytokinesis, extend back almost a 100 years. One of the key processes required for the successful completion of cytokinesis in animal cells (especially in the large holoblastically and meroblastically dividing embryonic cells of a number of amphibian and fish species), is the dynamic remodelling of the plasma membrane. Ca2+ signalling was subsequently demonstrated to regulate various different aspects of cytokinesis in animal cells, and so here we focus specifically on the role of Ca2+ signalling in the remodelling of the plasma membrane. We begin by providing a brief history of the animal models used and the research accomplished by the early twentieth century investigators, with regards to this aspect of animal cell cytokinesis. We then review the most recent progress made (i.e., in the last 10 years), which has significantly advanced our current understanding on the role of cytokinetic Ca2+ signalling in membrane remodelling. To this end, we initially summarize what is currently known about the Ca2+ transients generated during animal cell cytokinesis, and then we describe the latest findings regarding the source of Ca2+ generating these transients. Finally, we review the current evidence about the possible targets of the different cytokinetic Ca2+ transients with a particular emphasis on those that either directly or indirectly affect plasma membrane dynamics. With regards to the latter, we discuss the possible role of the early Ca2+ signalling events in the deformation of the plasma membrane at the start of cytokinesis (i.e., during furrow positioning), as well as the role of the subsequent Ca2+ signals in the trafficking and fusion of vesicles, which help to remodel the plasma membrane during the final stages of cell division. As it is becoming clear that each of the cytokinetic Ca2+ transients might have multiple, integrated targets, deciphering the precise role of each transient represents a significant (and ongoing) challenge.
Collapse
|
2
|
Mikoshiba K. Role of IP3 receptor in development. Cell Calcium 2011; 49:331-40. [DOI: 10.1016/j.ceca.2010.12.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 12/21/2010] [Indexed: 12/01/2022]
|
3
|
Atilla-Gokcumen GE, Castoreno AB, Sasse S, Eggert US. Making the cut: the chemical biology of cytokinesis. ACS Chem Biol 2010; 5:79-90. [PMID: 20014865 DOI: 10.1021/cb900256m] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cytokinesis is the last step in the cell cycle, where daughter cells finally separate. It is precisely regulated in both time and space to ensure that each daughter cell receives an equal share of DNA and other cellular materials. Chemical biology approaches have been used very successfully to study the mechanism of cytokinesis. In this review, we discuss the use of small molecule probes to perturb cytokinesis, as well as the role naturally occurring small molecule metabolites such as lipids play during cytokinesis.
Collapse
Affiliation(s)
- G. Ekin Atilla-Gokcumen
- Dana-Farber Cancer Institute and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
| | - Adam B. Castoreno
- Dana-Farber Cancer Institute and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
| | - Sofia Sasse
- Dana-Farber Cancer Institute and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
- Westfälische Wilhelms-Universität Münster, Germany
| | - Ulrike S. Eggert
- Dana-Farber Cancer Institute and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
4
|
Ca2+ signaling during embryonic cytokinesis in animal systems. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/s0167-7306(06)41017-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
5
|
Lee KW, Webb SE, Miller AL. Requirement for a localized, IP3R-generated Ca2+transient during the furrow positioning process in zebrafish zygotes. ZYGOTE 2006; 14:143-55. [PMID: 16719950 DOI: 10.1017/s0967199406003637] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2005] [Accepted: 10/01/2005] [Indexed: 11/05/2022]
Abstract
SummaryWe report that the first localized Ca2+transient visualized in the blastodisc cortex of post-mitotic zebrafish zygotes has unique features. We confirm that this initial ‘furrow positioning’ Ca2+transient precedes the physical appearance of the first cleavage furrow at the blastodisc surface and that it has unique dynamics, which distinguish it from the subsequent furrow propagation transients that develop from it. This initial transient displays a distinct rising phase that peaks prior to the initiation of the two linear, subsurface, self-propagating Ca2+waves that constitute the subsequent furrow propagation transient. Through the carefully timed introduction of the Ca2+buffer, dibromo-BAPTA, we also demonstrate the absolute requirement of this initial rising phase Ca2+transient in positioning the furrow at the blastodisc surface: no rising phase transient, no cleavage furrow. Likewise, the introduction of the inositol 1,4,5-trisphosphate receptor (IP3R) antagonist, 2-aminoethoxydiphenyl borate, eliminates both the rising phase transient and the appearance of the furrow at the cell surface. On the other hand, antagonists of the ryanodine receptor and NAADP-sensitive channels, or simply bathing the zygote in Ca2+-free medium, have no effect on the generation of the rising phase positioning transient or the appearance of the furrow at the surface. This suggests that like the subsequent propagation and deepening/zipping Ca2+transients, the rising phase furrow positioning transient is also generated specifically by Ca2+released via IP3Rs. We propose, however, that despite being generated by a similar Ca2+release mechanism, the unique features of this initial transient suggest that it might be a distinct signal with a specific function associated with positioning the cleavage furrow at the blastodisc surface.
Collapse
Affiliation(s)
- Karen W Lee
- Department of Biology, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, People's Republic of China
| | | | | |
Collapse
|
6
|
Abstract
Fertilization calcium waves are introduced, and the evidence from which we can infer general mechanisms of these waves is presented. The two main classes of hypotheses put forward to explain the generation of the fertilization calcium wave are set out, and it is concluded that initiation of the fertilization calcium wave can be most generally explained in invertebrates by a mechanism in which an activating substance enters the egg from the sperm on sperm-egg fusion, activating the egg by stimulating phospholipase C activation through a src family kinase pathway and in mammals by the diffusion of a sperm-specific phospholipase C from sperm to egg on sperm-egg fusion. The fertilization calcium wave is then set into the context of cell cycle control, and the mechanism of repetitive calcium spiking in mammalian eggs is investigated. Evidence that calcium signals control cell division in early embryos is reviewed, and it is concluded that calcium signals are essential at all three stages of cell division in early embryos. Evidence that phosphoinositide signaling pathways control the resumption of meiosis during oocyte maturation is considered. It is concluded on balance that the evidence points to a need for phosphoinositide/calcium signaling during resumption of meiosis. Changes to the calcium signaling machinery occur during meiosis to enable the production of a calcium wave in the mature oocyte when it is fertilized; evidence that the shape and structure of the endoplasmic reticulum alters dynamically during maturation and after fertilization is reviewed, and the link between ER dynamics and the cytoskeleton is discussed. There is evidence that calcium signaling plays a key part in the development of patterning in early embryos. Morphogenesis in ascidian, frog, and zebrafish embryos is briefly described to provide the developmental context in which calcium signals act. Intracellular calcium waves that may play a role in axis formation in ascidian are discussed. Evidence that the Wingless/calcium signaling pathway is a strong ventralizing signal in Xenopus, mediated by phosphoinositide signaling, is adumbrated. The central role that calcium channels play in morphogenetic movements during gastrulation and in ectodermal and mesodermal gene expression during late gastrulation is demonstrated. Experiments in zebrafish provide a strong indication that calcium signals are essential for pattern formation and organogenesis.
Collapse
Affiliation(s)
- Michael Whitaker
- Institute of Cell & Molecular Biosciences, Faculty of Medical Sciences, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
7
|
Rundle DR, Gorbsky G, Tsiokas L. PKD2 Interacts and Co-localizes with mDia1 to Mitotic Spindles of Dividing Cells. J Biol Chem 2004; 279:29728-39. [PMID: 15123714 DOI: 10.1074/jbc.m400544200] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Mutations in pkd2 result in the type 2 form of autosomal dominant polycystic kidney disease, which accounts for approximately 15% of all cases of the disease. PKD2, the protein product of pkd2, belongs to the transient receptor potential superfamily of cation channels, and it can function as a mechanosensitive channel in the primary cilium of kidney cells, an intracellular Ca(2+) release channel in the endoplasmic reticulum, and/or a nonselective cation channel in the plasma membrane. We have identified mDia1/Drf1 (mammalian Diaphanous or Diaphanous-related formin 1 protein) as a PKD2-interacting protein by yeast two-hybrid screen. mDia1 is a member of the RhoA GTPase-binding formin homology protein family that participates in cytoskeletal organization, cytokinesis, and signal transduction. We show that mDia1 and PKD2 interact in native and in transfected cells, and binding is mediated by the cytoplasmic C terminus of PKD2 binding to the mDia1 N terminus. The interaction is more prevalent in dividing cells in which endogenous PKD2 and mDia1 co-localize to the mitotic spindles. RNA interference experiments reveal that endogenous mDia1 knockdown in HeLa cells results in the loss of PKD2 from mitotic spindles and alters intracellular Ca(2+) release. Our results suggest that mDia1 facilitates the movement of PKD2 to a centralized position during cell division and has a positive effect on intracellular Ca(2+) release during mitosis. This may be important to ensure equal segregation of PKD2 to the daughter cell to maintain a necessary level of channel activity. Alternatively, PKD2 channel activity may be important in the cell division process or in cell fate decisions after division.
Collapse
Affiliation(s)
- Dana R Rundle
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | | | | |
Collapse
|
8
|
Mikoshiba K. Inositol 1,4,5 trisphosphate (IP3) receptor. Nihon Yakurigaku Zasshi 2003; 121:241-53. [PMID: 12777843 DOI: 10.1254/fpj.121.241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
The intensive molecular and biochemical study of IP(3)R has made great progress in elucidating the following unique properties of IP(3)R: 1) IP(3) dependent Ca(2+) release is quantal in nature; 2) IP(3)R allosterically and dynamically changes its form; 3) IP(3)R is functional even though it is fragmented by proteases into several pieces; 4) IP(3)R forms a functional association with a variety of molecules inside the cell, and with the channels on the plasma membrane; 5) the extremely high IP(3) binding affinity (500 approximately 1000 times higher than the original IP(3)R) sequence in the IP(3) binding region is covered with a suppressor sequence at the N-terminal. In parallel with these biochemical studies, studies on the role of IP(3)R during development have greatly advanced. Since IP(3)R was identified as a developmentally regulated phospho-glycoprotein, the Ca(2+) channel P400, it has diverse but essential functions in development and normal cell function.
Collapse
|
9
|
Saneyoshi T, Kume S, Mikoshiba K. Calcium/calmodulin-dependent protein kinase I in Xenopus laevis. Comp Biochem Physiol B Biochem Mol Biol 2003; 134:499-507. [PMID: 12628380 DOI: 10.1016/s1096-4959(02)00292-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Calcium/calmodulin (CaM) dependent protein kinase I (CaM-KI) is a member of a well-defined multi-functional CaM-K family, but its physiological and developmental functions have yet to be determined. Here, we have cloned two cDNAs encoding CaM-KI from a Xenopus laevis (X. laevis) oocyte cDNA library. One is a novel isoform of CaM-KI, named CaM-KI LiKbeta (XCaM-KI LiKbeta). The other is an alpha isoform of CaM-KI (XCaM-KIalpha), which is a highly related to previously cloned mammalian isoform. XCaM-KIalpha was constantly expressed through embryogenesis, whereas XCaM-KI LiKbeta expression dramatically increased in the neurula stage. Both XCaM-KI isoforms exhibited kinase activity in a Ca(2+)/CaM-dependent manner. Overexpression of a constitutively active mutant of CaM-KI isoforms inhibited cell cleavage in X. laevis embryos and caused a marked change of cell morphology in Hela cells. Taken together, these results suggest that CaM-KI plays a role in cell-structure regulation during early embryonic development.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Blotting, Western
- Calcium-Calmodulin-Dependent Protein Kinase Type 1
- Calcium-Calmodulin-Dependent Protein Kinases/genetics
- Calcium-Calmodulin-Dependent Protein Kinases/isolation & purification
- Calcium-Calmodulin-Dependent Protein Kinases/metabolism
- Cloning, Molecular/methods
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Complementary/isolation & purification
- Electrophoresis, Polyacrylamide Gel
- Enzyme Activation
- Female
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Enzymologic
- Gene Library
- HeLa Cells
- Humans
- Male
- Molecular Sequence Data
- Mutation
- Oocytes/cytology
- Oocytes/enzymology
- Plasmids/genetics
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Species Specificity
- Xenopus laevis/embryology
- Xenopus laevis/genetics
Collapse
Affiliation(s)
- Takeo Saneyoshi
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, Saitama, Wako-shi 351-0198, Japan.
| | | | | |
Collapse
|
10
|
Yamamoto K, Nakano M, Hashimoto K, Shimohama S, Kato N. Emergence of a functional coupling between inositol-1,4,5-trisphosphate receptors and calcium channels in developing neocortical neurons. Neuroscience 2002; 109:677-85. [PMID: 11927150 DOI: 10.1016/s0306-4522(01)00449-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cortical pyramidal neurons are considered to be less excitable in the immature cortex than in adults. Our previous report revealed that a negative feedback regulation of membrane excitability is highly correlated with a novel form of calcium release from inositol-1,4,5-trisphosphate (IP(3))-sensitive calcium stores (IP(3)-assisted calcium-induced calcium release) in neocortical pyramidal neurons under muscarinic cholinergic activation. As a step to understand the ground for the low membrane excitability in immature tissue, we examined development of IP(3)-assisted calcium-induced calcium release. In visual cortex neurons from 'juvenile' rats (2-3 weeks of age), an enhancement of spike-frequency adaptation occurred at high spike-frequencies (16-22 Hz), whereas the reduction was observed at low frequencies (6-10 Hz). IP(3)-assisted calcium-induced calcium release occurred at the higher frequencies only. In 'early' postnatal tissue (1 week of age), by contrast, at neither high nor low frequencies did this form of calcium release occur, and muscarinic cholinergic activation always induced a reduction of spike-frequency adaptation at any spike-frequencies. The mechanism for the failure of induction of IP(3)-assisted calcium-induced calcium release in 'early' postnatal tissue was investigated. Both an ample supply of calcium influx, elicited by higher frequency spike trains, and a supplementary injection of IP(3) through whole-cell pipets, combined together or applied alone, failed to enable IP(3)-assisted calcium-induced calcium release in 'early' postnatal tissue. Muscarinic cholinergic activation alone induced a conventional IP(3)-induced calcium release similar to that observed in neurons from 'juvenile' tissue. Together, it is most likely that functional IP(3)Rs and calcium channels are already present and functional, but are not yet adequately assembled to allow IP(3)-assisted calcium-induced calcium release in cortical pyramidal neurons from rats of 1 week old.
Collapse
Affiliation(s)
- K Yamamoto
- Department of Integrative Brain Science, Kyoto University Graduate School of Medicine, Japan
| | | | | | | | | |
Collapse
|
11
|
Morita T, Tanimura A, Nezu A, Tojyo Y. Visualization of inositol 1,4,5-trisphosphate receptor type III with green fluorescent protein in living cells. Cell Calcium 2002; 31:59-64. [PMID: 11969246 DOI: 10.1054/ceca.2001.0262] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Inositol 1,4,5-trisphosphate receptor (IP3R) is an intracellular Ca2+ channel that releases Ca2+ into the cytosol and its subcellular distribution is believed to have significant effects on Ca2+ signalling. We constructed a plasmid vector containing full-length rat type 3 IP3R linked to GFP (GFP-IP3R) for expression in mammalian cells. Western blot analyses revealed that the expressed fusion protein contained both GFP and full-length type 3 IP3R. Fluorescence confocal microscopy showed that the fluorescence of GFP-IP3R3 was distributed to reticular network structures, even after cell permeabilization with saponin. We further visualized intracellular membranes with DiOC6, a vital fluorescent marker for intracellular membranes, and provide evidence that the distribution of GFP-IP3R3 overlaps with the distribution of the endoplasmic reticulum. Our results indicate that GFP-IP3R3 can be used to visualize IP3R in living cells, and pave the way for subsequent mutational and functional studies.
Collapse
Affiliation(s)
- T Morita
- Department of Dental Pharmacology, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | | | | | | |
Collapse
|
12
|
Aihara Y, Inoue T, Tashiro T, Okamoto K, Komiya Y, Mikoshiba K. Movement of endoplasmic reticulum in the living axon is distinct from other membranous vesicles in its rate, form, and sensitivity to microtubule inhibitors. J Neurosci Res 2001; 65:236-46. [PMID: 11494358 DOI: 10.1002/jnr.1147] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The endoplasmic reticulum (ER) is the major membranous component present throughout the axon. Although other membranous structures such as synaptic vesicles are known to move via fast axonal transport, the dynamics of ER in the axon still remains unknown. To study the dynamics of ER in the axon, we have directly visualized the movement of two ER-specific membrane proteins, the sarcoplasmic/endoplasmic reticulum calcium-ATPase and the inositol 1,4,5-trisphosphate receptor, both of which were tagged with green fluorescence protein (GFP) and expressed in cultured chick dorsal root ganglion neurons. In contrast to GFP-tagged synaptophysin that moved as vesicles at 1 microm/sec predominantly in the anterograde direction in the typical style of fast axonal transport, the two ER proteins did not move in a discrete vesicular form. Their movement determined by the fluorescence recovery after photobleaching technique was bi-directional, 10-fold slower (approximately 0.1 microm/sec), and temperature-sensitive. The rate of movement of ER was also sensitive to low doses of vinblastine and nocodazole that did not affect the rate of synaptophysin-GFP, further suggesting that it is also distinct from the well-documented movement of membranous vesicles in its relation with microtubules.
Collapse
MESH Headings
- Animals
- Axonal Transport
- Axons/ultrastructure
- Biolistics
- Biomarkers
- Calcium Channels/analysis
- Calcium Channels/genetics
- Calcium-Transporting ATPases/analysis
- Calcium-Transporting ATPases/genetics
- Cells, Cultured
- Chick Embryo
- Endoplasmic Reticulum/drug effects
- Endoplasmic Reticulum/physiology
- Ganglia, Spinal/cytology
- Green Fluorescent Proteins
- Inositol 1,4,5-Trisphosphate Receptors
- Luminescent Proteins/biosynthesis
- Luminescent Proteins/genetics
- Microscopy, Confocal
- Microscopy, Fluorescence
- Microtubules/drug effects
- Motion
- Nerve Tissue Proteins/analysis
- Nerve Tissue Proteins/genetics
- Neurons, Afferent/drug effects
- Neurons, Afferent/ultrastructure
- Nocodazole/pharmacology
- Protein Transport
- Receptors, Cytoplasmic and Nuclear/analysis
- Receptors, Cytoplasmic and Nuclear/genetics
- Sarcoplasmic Reticulum Calcium-Transporting ATPases
- Synaptophysin/metabolism
- Temperature
- Transfection
- Vinblastine/pharmacology
Collapse
Affiliation(s)
- Y Aihara
- Department of Neurology, Gunma University School of Medicine, 3-39-22 Showa-machi, Maebashi-shi, Gunma-371-8511, Japan.
| | | | | | | | | | | |
Collapse
|
13
|
Abstract
In sea urchin embryos, the first specification of cell fate occurs at the fourth cleavage, when small cells (the micromeres) are formed at the vegetal pole. The fate of other blastomeres is dependent on the receipt of cell signals originating from the micromeres. The micromeres are fated to become skeletogenic cells and show the ability to induce the endoderm (the archenteron) in the neighbouring cells during the 16- to 60-cell stage. Several molecules involved in signaling pathways, i.e. Notch for mesoderm specification, bone morphogenic protein (BMP) for ectoderm specification and beta-catenin for endoderm specification, are spatially and temporally expressed during development. In the micromeres, beta-catenin increases and subsequently localizes to the nuclei under the regulation of TCF, a nuclear binding partner of beta-catenin, until the 60-cell stage. However, the mechanisms activating these signaling substances are still unclear. In this article, I demonstrate some specific properties of the membrane and cytoplasm of micromeres including new findings on intracellular Ca(2+) concentration, and propose a mechanism by which the functional micromeres are autonoumously formed. The possible roles of these in the specification of vegetal cell fate in early development are discussed.
Collapse
Affiliation(s)
- I Yazaki
- Department of Biological Science, Tokyo Metropolitan University, Minamiohsawa1-1, Hachiohji, Tokyo 192-0397, Japan.
| |
Collapse
|