1
|
Martí-Clúa J. 5-Bromo-2'-deoxyuridine labeling: historical perspectives, factors influencing the detection, toxicity, and its implications in the neurogenesis. Neural Regen Res 2024; 19:302-308. [PMID: 37488882 PMCID: PMC10503596 DOI: 10.4103/1673-5374.379038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/25/2023] [Accepted: 05/25/2023] [Indexed: 07/26/2023] Open
Abstract
The halopyrimidine 5-bromo-2'-deoxyuridine (BrdU) is an exogenous marker of DNA synthesis. Since the introduction of monoclonal antibodies against BrdU, an increasing number of methodologies have been used for the immunodetection of this synthesized bromine-tagged base analogue into replicating DNA. BrdU labeling is widely used for identifying neuron precursors and following their fate during the embryonic, perinatal, and adult neurogenesis in a variety of vertebrate species including birds, reptiles, and mammals. Due to BrdU toxicity, its incorporation into replicating DNA presents adverse consequences on the generation, survival, and settled patterns of cells. This may lead to false results and misinterpretation in the identification of proliferative neuroblasts. In this review, I will indicate the detrimental effects of this nucleoside during the development of the central nervous system, as well as the reliability of BrdU labeling to detect proliferating neuroblasts. Moreover, it will show factors influencing BrdU immunodetection and the contribution of this nucleoside to the study of prenatal, perinatal, and adult neurogenesis. Human adult neurogenesis will also be discussed. It is my hope that this review serves as a reference for those researchers who focused on detecting cells that are in the synthetic phase of the cell cycle.
Collapse
Affiliation(s)
- Joaquín Martí-Clúa
- Unidad de Citología e Histología. Departament de Biologia Cel·lular, de Fisiologia i d’Immunologia. Facultad de Biociencias. Institut de Neurociències. Universidad Autónoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
2
|
Normal Molecular Specification and Neurodegenerative Disease-Like Death of Spinal Neurons Lacking the SNARE-Associated Synaptic Protein Munc18-1. J Neurosci 2016; 36:561-76. [PMID: 26758845 DOI: 10.1523/jneurosci.1964-15.2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED The role of synaptic activity during early formation of neural circuits is a topic of some debate; genetic ablation of neurotransmitter release by deletion of the Munc18-1 gene provides an excellent model to answer the question of whether such activity is required for early circuit formation. Previous analysis of Munc18-1(-/-) mouse mutants documented their grossly normal nervous system, but its molecular differentiation has not been assessed. Munc18-1 deletion in mice also results in widespread neurodegeneration that remains poorly characterized. In this study, we demonstrate that the early stages of spinal motor circuit formation, including motor neuron specification, axon growth and pathfinding, and mRNA expression, are unaffected in Munc18-1(-/-) mice, demonstrating that synaptic activity is dispensable for early nervous system development. Furthermore, we show that the neurodegeneration caused by Munc18-1 loss is cell autonomous, consistent with apparently normal expression of several neurotrophic factors and normal GDNF signaling. Consistent with cell-autonomous degeneration, we demonstrate defects in the trafficking of the synaptic proteins Syntaxin1a and PSD-95 and the TrkB and DCC receptors in Munc18-1(-/-) neurons; these defects do not appear to cause ER stress, suggesting other mechanisms for degeneration. Finally, we demonstrate pathological similarities to Alzheimer's disease, such as altered Tau phosphorylation, neurofibrillary tangles, and accumulation of insoluble protein plaques. Together, our results shed new light upon the neurodegeneration observed in Munc18-1(-/-) mice and argue that this phenomenon shares parallels with neurodegenerative diseases. SIGNIFICANCE STATEMENT In this work, we demonstrate the absence of a requirement for regulated neurotransmitter release in the assembly of early neuronal circuits by assaying transcriptional identity, axon growth and guidance, and mRNA expression in Munc18-1-null mice. Furthermore, we characterize the neurodegeneration observed in Munc18-1 mutants and demonstrate that this cell-autonomous process does not appear to be a result of defects in growth factor signaling or ER stress caused by protein trafficking defects. However, we find the presence of various pathological hallmarks of Alzheimer's disease that suggest parallels between the degeneration in these mutants and neurodegenerative conditions.
Collapse
|
3
|
Xie YF, Jiang XH, Sessle BJ, Yu XM. Development of regional specificity of spinal and medullary dorsal horn neurons. World J Biol Chem 2016; 7:138-145. [PMID: 26981202 PMCID: PMC4768117 DOI: 10.4331/wjbc.v7.i1.138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 01/07/2016] [Indexed: 02/05/2023] Open
Abstract
Extensive studies have focused on the development and regionalization of neurons in the central nervous system (CNS). Many genes, which play crucial roles in the development of CNS neurons, have been identified. By using the technique “direct reprogramming”, neurons can be produced from multiple cell sources such as fibroblasts. However, understanding the region-specific regulation of neurons in the CNS is still one of the biggest challenges in the research field of neuroscience. Neurons located in the trigeminal subnucleus caudalis (Vc) and in the spinal dorsal horn (SDH) play crucial roles in pain and sensorimotor functions in the orofacial and other somatic body regions, respectively. Anatomically, Vc represents the most caudal component of the trigeminal system, and is contiguous with SDH. This review is focused on recent data dealing with the regional specificity involved in the development of neurons in Vc and SDH.
Collapse
|
4
|
Bloch-Gallego E. Mechanisms controlling neuromuscular junction stability. Cell Mol Life Sci 2015; 72:1029-43. [PMID: 25359233 PMCID: PMC11113273 DOI: 10.1007/s00018-014-1768-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 10/06/2014] [Accepted: 10/17/2014] [Indexed: 01/01/2023]
Abstract
The neuromuscular junction (NMJ) is the synaptic connection between motor neurons and muscle fibers. It is involved in crucial processes such as body movements and breathing. Its proper development requires the guidance of motor axons toward their specific targets, the development of multi-innervated myofibers, and a selective synapse stabilization. It first consists of the removal of excessive motor axons on myofibers, going from multi-innervation to a single innervation of each myofiber. Whereas guidance cues of motor axons toward their specific muscular targets are well characterized, only few molecular and cellular cues have been reported as clues for selecting and stabilizing specific neuromuscular junctions. We will first provide a brief summary on NMJ development. We will then review molecular cues that are involved in NMJ stabilization, in both pre- and post-synaptic compartments, considering motor neurons and Schwann cells on the one hand, and muscle on the other hand. We will provide links with pathologies and highlight advances that can be brought both by basic research on NMJ development and clinical data resulting from the analyses of neurodegeneration of synaptic connections to obtain a better understanding of this process. The goal of this review is to highlight the findings toward understanding the roles of poly- or single-innervations and the underlying mechanisms of NMJ stabilization.
Collapse
Affiliation(s)
- Evelyne Bloch-Gallego
- Institut Cochin, INSERM U. 1016, CNRS UMR 8104, University Paris Descartes 24, rue du Fbg St-Jacques, 75014, Paris, France,
| |
Collapse
|
5
|
Kania A. Spinal motor neuron migration and the significance of topographic organization in the nervous system. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 800:133-48. [PMID: 24243104 DOI: 10.1007/978-94-007-7687-6_8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The nervous system displays a high degree of topographic organisation such that neuronal soma position is closely correlated to axonal trajectory. One example of such order is the myotopic organisation of the motor system where spinal motor neuron position parallels that of target muscles. This chapter will discuss the molecular mechanisms underlying motor neuron soma positioning, which include transcriptional control of Reelin signaling and cadherin expression. As the same transcription factors have been shown to control motor axon innervation of target muscles, a simple mechanism of topographic organisation specification is becoming evident raising the question of how coordinating soma position with axon trajectory might be important for nervous system wiring and its function.
Collapse
Affiliation(s)
- Artur Kania
- Institut de recherches cliniques de Montréal (IRCM), 110, ave. des Pins Ouest, Montréal, QC, H2W 1R7, Canada,
| |
Collapse
|
6
|
Rowell JJ, Ragsdale CW. BrdU birth dating can produce errors in cell fate specification in chick brain development. J Histochem Cytochem 2012; 60:801-10. [PMID: 22859704 DOI: 10.1369/0022155412458588] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Birth dating neurons with bromodeoxyuridine (BrdU) labeling is an established method widely employed by neurobiologists to study cell proliferation in embryonic, postnatal, and adult brain. Birth dating studies in the chick dorsal telencephalon and the mammalian striatum have suggested that these structures develop in a strikingly similar manner, in which neurons with the same birth date aggregate to form "isochronic clusters." Here we show that isochronic cluster formation in the chick dorsal telencephalon is an artifact. In embryos given standardly employed doses of BrdU, we observed isochronic clusters but found that clusters were absent with BrdU doses close to the limits of detection. In addition, in situ hybridization experiments established that neurons in the clusters display errors in cell type specification: BrdU cell clusters in nidopallium adopted a mesopallial neuronal fate, mesopallial clusters were misspecified as nidopallial cells, and in some instances, the BrdU clusters failed to express neuronal differentiation markers characteristic of the dorsal telencephalon. These results demonstrate that the chick dorsal telencephalon does not develop by isochronic cluster formation and highlight the need to test the integrity of BrdU-treated tissue with gene expression markers of regional and cell type identity.
Collapse
Affiliation(s)
- Joanna J Rowell
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA.
| | | |
Collapse
|
7
|
Xie YF, Pflueger M, Feng S, Lin SX, Kwan CL, Galasko G, Sessle BJ, Yu XM. Locally released small (non-protein) ninhydrin-reacting molecules underlie developmental differences of cultured medullary versus spinal dorsal horn neurons. J Neurochem 2012; 122:605-18. [PMID: 22612377 DOI: 10.1111/j.1471-4159.2012.07797.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Neurons located in the trigeminal subnucleus caudalis (Vc) play crucial roles in pain and sensorimotor functions in the orofacial region. Because of many anatomical and functional similarities with the spinal dorsal horn (SDH), Vc has been termed the medullary dorsal horn--analogous to the SDH. Here, we report that when compared with embryonic SDH neurons in culture, neurons isolated from the Vc region showed significantly slower growth, lower glutamate receptor activity, and more cells undergoing cell death. SDH neuron development was inhibited in co-cultures of SDH and Vc tissues while Vc neuron development was promoted by co-culture with SDH tissues. Furthermore, we identified that small (non-protein) ninhydrin-reacting molecules purified from either embryonic or post-natal Vc-conditioned medium inhibited neuronal growth whereas ninhydrin-reacting molecules from SDH-conditioned medium promoted neuronal growth. These findings suggest the involvement of locally released factors in the region-specific regulation of neuronal development in Vc and SDH, central nervous system regions playing critical roles in pain, and point to novel avenues for investigating central nervous system regionalization and for designing therapeutic approaches to manage neurodegenerative diseases and pain.
Collapse
Affiliation(s)
- Yu-Feng Xie
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida 32306, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Hasan KB, Agarwala S, Ragsdale CW. PHOX2A regulation of oculomotor complex nucleogenesis. Development 2010; 137:1205-13. [PMID: 20215354 PMCID: PMC2835333 DOI: 10.1242/dev.041251] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2010] [Indexed: 11/20/2022]
Abstract
Brain nuclei are spatially organized collections of neurons that share functional properties. Despite being central to vertebrate brain circuitry, little is known about how nuclei are generated during development. We have chosen the chick midbrain oculomotor complex (OMC) as a model with which to study the developmental mechanisms of nucleogenesis. The chick OMC comprises two distinct cell groups: a dorsal Edinger-Westphal nucleus of visceral oculomotor neurons and a ventral nucleus of somatic oculomotor neurons. Genetic studies in mice and humans have established that the homeobox transcription factor gene PHOX2A is required for midbrain motoneuron development. We probed, in forced expression experiments, the capacity of PHOX2A to generate a spatially organized midbrain OMC. We found that exogenous Phox2a delivery to embryonic chick midbrain can drive a complete OMC molecular program, including the production of visceral and somatic motoneurons. Phox2a overexpression was also able to generate ectopic motor nerves. The exit points of such auxiliary nerves were invested with ectopic boundary cap cells and, in four examples, the ectopic nerves were seen to innervate extraocular muscle directly. Finally, Phox2a delivery was able to direct ectopic visceral and somatic motoneurons to their correct native spatial positions, with visceral motoneurons settling close to the ventricular surface and somatic motoneurons migrating deeper into the midbrain. These findings establish that in midbrain, a single transcription factor can both specify motoneuron cell fates and orchestrate the construction of a spatially organized motoneuron nuclear complex.
Collapse
Affiliation(s)
- Khaleda B. Hasan
- Department of Neurobiology, The University of Chicago, Chicago, IL 60637, USA
| | - Seema Agarwala
- Section of Neurobiology, University of Texas at Austin, Austin TX 78712, USA
| | - Clifton W. Ragsdale
- Department of Neurobiology, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
9
|
Abstract
Here we describe quantitatively the birth and death of the two separate populations of neurons, ganglion cells and displaced amacrine cells, in the mouse retinal ganglion cell layer (GCL). The two cell types, which are roughly equally numerous, were distinguished pre- and postnatally by labeling the ganglion cells retrogradely with fluorescent dye. Embryos were labeled cumulatively with bromodeoxyuridine (BrdU) delivered by an osmotic minipump implanted in the mother; cell birth dates were established as having occurred before or after pump implantation. Early cohorts (GCL cells born before embryonic day [E] 11.8 and E12.8) were 98+/-1.1% and 99+/-0.2% ganglion cells (mean+/-SEM), respectively, and a late cohort (born after E15.8) was 97+/-1.2% displaced amacrines. Thus birth date was a strong predictor of a GCL cell's ultimate identity. Cell death in each cohort was estimated by counting cells at different time points (soon after the cohort was produced and later) and subtracting the later from the earlier number. This method avoids the problem of simultaneous birth and death that has plagued many of the earlier attempts to assess cell death. Negligible numbers died during the first week after a cell's birthday. The amount of cell death differed in the two cohorts; 48.5+/-15% and 29.0+/-12.4% in early and late, respectively, and most of it was postnatal. These findings disagree sharply with an earlier conclusion that ganglion cells die within 5 days of their birthdays or not at all.
Collapse
Affiliation(s)
- Mohamed H Farah
- Neuroscience Program, University of Michigan, Ann Arbor, Michigan 48109-1048, USA.
| | | |
Collapse
|
10
|
Abstract
Successful embryonic development in plants, as in animals, requires a strict coordination of cell proliferation, cell differentiation, and cell-death programs. The role of cell death is especially critical for the establishment of polarity at early stages of plant embryogenesis, when the differentiation of the temporary structure, the suspensor, is followed by its programmed elimination. Here, we review the emerging knowledge of this and other functions of programmed cell death during plant embryogenesis, as revealed by developmental analyses of Arabidopsis embryo-specific mutants and gymnosperm (spruce and pine) model embryonic systems. Cell biological studies in these model systems have helped to identify and order the cellular processes occurring during self-destruction of the embryonic cells. While metazoan embryos can recruit both apoptotic and autophagic cell deaths, the ultimate choice depending on the developmental task and conditions, plant embryos use autophagic cell disassembly as a single universal cell-death pathway. Dysregulation of this pathway leads to aberrant or arrested embryo development. We address the role of distinct cellular components in the execution of the autophagic cell death, and outline an overall mechanistic view of how cells are eliminated during plant embryonic pattern formation. Finally, we discuss the possible roles of some of the candidate plant cell-death proteins in the regulation of developmental cell death.
Collapse
Affiliation(s)
- Peter V Bozhkov
- Department of Plant Biology and Forest Genetics, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| | | | | |
Collapse
|
11
|
Sedel F, Béchade C, Vyas S, Triller A. Macrophage-derived tumor necrosis factor alpha, an early developmental signal for motoneuron death. J Neurosci 2004; 24:2236-46. [PMID: 14999074 PMCID: PMC6730439 DOI: 10.1523/jneurosci.4464-03.2004] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Mechanisms inducing neuronal death at defined times during embryogenesis remain enigmatic. We show in explants that a developmental switch occurs between embryonic day 12 (E12) and E13 in rats that is 72-48 hr before programmed cell death. Half the motoneurons isolated from peripheral tissues at E12 escape programmed cell death, whereas 90% of motoneurons isolated at E13 enter a death program. The surrounding somite commits E12 motoneurons to death. This effect requires macrophage cells, is mimicked by tumor necrosis factor alpha (TNFalpha), and is inhibited by anti-TNFalpha antibodies. In vivo, TNFalpha is detected within somite macrophages, and TNF receptor 1 (TNFR1) is detected within motoneurons precisely between E12 and E13. Although motoneuron cell death occurs normally in TNFalpha-/- mice, this process is significantly reduced in explants from TNFalpha-/- and TNFR1-/- mice. Thus, embryonic motoneurons acquire the competence to die, before the onset of programmed cell death, from extrinsic signals such as macrophage-derived TNFalpha
Collapse
Affiliation(s)
- Frédéric Sedel
- Laboratoire de Biologie Cellulaire de la Synapse Normale et Pathologique, Institut National de la Santé et de la Recherche Médicale Unité 497, Ecole Normale Supérieure, 75005 Paris, France
| | | | | | | |
Collapse
|
12
|
Banks GB, Choy PT, Lavidis NA, Noakes PG. Neuromuscular synapses mediate motor axon branching and motoneuron survival during the embryonic period of programmed cell death. Dev Biol 2003; 257:71-84. [PMID: 12710958 DOI: 10.1016/s0012-1606(03)00056-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The embryonic period of motoneuron programmed cell death (PCD) is marked by transient motor axon branching, but the role of neuromuscular synapses in regulating motoneuron number and axonal branching is not known. Here, we test whether neuromuscular synapses are required for the quantitative association between reduced skeletal muscle contraction, increased motor neurite branching, and increased motoneuron survival. We achieved this by comparing agrin and rapsyn mutant mice that lack acetylcholine receptor (AChR) clusters. There were significant reductions in nerve-evoked skeletal muscle contraction, increases in intramuscular axonal branching, and increases in spinal motoneuron survival in agrin and rapsyn mutant mice compared with their wild-type littermates at embryonic day 18.5 (E18.5). The maximum nerve-evoked skeletal muscle contraction was reduced a further 17% in agrin mutants than in rapsyn mutants. This correlated to an increase in motor axon branch extension and number that was 38% more in agrin mutants than in rapsyn mutants. This suggests that specializations of the neuromuscular synapse that ensure efficient synaptic transmission and muscle contraction are also vital mediators of motor axon branching. However, these increases in motor axon branching did not correlate with increases in motoneuron survival when comparing agrin and rapsyn mutants. Thus, agrin-induced synaptic specializations are required for skeletal muscle to effectively control motoneuron numbers during embryonic development.
Collapse
Affiliation(s)
- Glen B Banks
- School of Biomedical Sciences, Department of Physiology and Pharmacology and SRC for Bio-informatics and Applied Genomics, University of Queensland, 4072, St. Lucia, Queensland, Australia
| | | | | | | |
Collapse
|
13
|
Homma S, Yaginuma H, Vinsant S, Seino M, Kawata M, Gould T, Shimada T, Kobayashi N, Oppenheim RW. Differential expression of the GDNF family receptors RET and GFRalpha1, 2, and 4 in subsets of motoneurons: a relationship between motoneuron birthdate and receptor expression. J Comp Neurol 2003; 456:245-59. [PMID: 12528189 DOI: 10.1002/cne.10529] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Previous studies have demonstrated the expression of specific members of the glial cell line-derived neurotrophic factor (GDNF) receptor family alpha (GFRalpha) in subsets of motoneurons (MNs) in the developing mouse spinal cord. We examined the expression pattern of GFRalpha and RET in the avian lumbar spinal cord during the period of programmed cell death (PCD) of MNs by using double labeling in situ hybridization and immunohistochemistry. In the lateral motor column (LMC) of the lumbar spinal cord, a laminar organization of GFRalpha expression was observed: GFRalpha1-positive MNs were located in the medial LMC; GFRalpha1-, 2-, and 4-positive MNs were situated in the lateral LMC; and GFRalpha4-positive MNs were located in the intermediate LMC. The species of GFRalpha receptor that was expressed in MNs was found to be related to their birthdates. The expression of subpopulation-specific transcriptional factors was also used to define MNs that express a specific pattern of GFRalpha. This analysis suggests that motor pools as defined by these transcriptional factors have unique expression patterns of GFRalpha receptor. Early limb bud ablation did not affect the expression of GFRalpha in the spinal cord, indicating that regulation of receptor expression is independent of target-derived signals. Finally, GDNF mRNA expression was found in the limb during the PCD period of MNs. In conclusion, these results indicate that time of withdrawal from the mitotic cycle may specify the expression pattern of GFRalpha in subsets of MNs and that GDNF may function as a target-derived neurotrophic factor for specific subpopulations of MNs.
Collapse
Affiliation(s)
- Shunsaku Homma
- Department of Anatomy, School of Medicine, Fukushima Medical University, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Mousavi K, Miranda W, Parry DJ. Neurotrophic factors enhance the survival of muscle fibers in EDL, but not SOL, after neonatal nerve injury. Am J Physiol Cell Physiol 2002; 283:C950-9. [PMID: 12176751 DOI: 10.1152/ajpcell.00081.2002] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Neonatal sciatic nerve crush results in a sustained reduction of the mass of both extensor digitorum longus (EDL) and soleus (SOL) muscles in the rat. Type IIB fibers are selectively lost from EDL. We have investigated the effects of ciliary neurotrophic factor (CNTF) combined with neurotrophin (NT)-3 or NT-4 on muscle mass, as well as the number, cross-sectional area, and distribution of muscle fiber types and the number of motor neurons innervating EDL and SOL 3 mo after transient axotomy 5 days after birth. Both NT treatments prevented the axotomy-induced loss of muscle mass in both EDL and SOL and of total number of muscle fibers in EDL but not in SOL. Although IIB fiber loss was not prevented, both NT treatments resulted in altered fiber type distribution. Both NT combinations also reduced the loss of EDL motor neurons. These data suggest that a differential distribution of NT receptors on either motor neurons or muscle fibers may lead to different levels of susceptibility to neonatal axotomy.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Axotomy
- Cell Survival/drug effects
- Ciliary Neurotrophic Factor/pharmacology
- Disease Models, Animal
- Drug Therapy, Combination
- Immunohistochemistry
- Motor Neurons/drug effects
- Motor Neurons/pathology
- Muscle Contraction/drug effects
- Muscle Contraction/physiology
- Muscle Fibers, Skeletal/classification
- Muscle Fibers, Skeletal/drug effects
- Muscle Fibers, Skeletal/pathology
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/innervation
- Muscle, Skeletal/pathology
- Muscle, Skeletal/physiopathology
- Myosin Heavy Chains/biosynthesis
- Nerve Crush
- Nerve Growth Factors/pharmacology
- Neurotrophin 3/pharmacology
- Rats
- Rats, Sprague-Dawley
- Sciatic Neuropathy/drug therapy
- Sciatic Neuropathy/pathology
- Sciatic Neuropathy/physiopathology
Collapse
Affiliation(s)
- Kambiz Mousavi
- Department of Cellular and Molecular Medicine, University of Ottawa, Ontario K1H-8M5, Canada
| | | | | |
Collapse
|
15
|
Oppenheim RW. Viktor Hamburger (1900-2001). Journey of a neuroembryologist to the end of the millennium and beyond. Neuron 2001; 31:179-90. [PMID: 11502251 DOI: 10.1016/s0896-6273(01)00366-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- R W Oppenheim
- Department of Neurobiology and Anatomy, The Neuroscience Program, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| |
Collapse
|
16
|
Nishimune H, Vasseur S, Wiese S, Birling MC, Holtmann B, Sendtner M, Iovanna JL, Henderson CE. Reg-2 is a motoneuron neurotrophic factor and a signalling intermediate in the CNTF survival pathway. Nat Cell Biol 2000; 2:906-14. [PMID: 11146655 DOI: 10.1038/35046558] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Cytokines that are related to ciliary neurotrophic factor (CNTF) are physiologically important survival factors for motoneurons, but the mechanisms by which they prevent neuronal cell death remain unknown. Reg-2/PAP I (pancreatitis-associated protein I), referred to here as Reg-2, is a secreted protein whose expression in motoneurons during development is dependent on cytokines. Here we show that CNTF-related cytokines induce Reg-2 expression in cultured motoneurons. Purified Reg-2 can itself act as an autocrine/paracrine neurotrophic factor for a subpopulation of motoneurons, by stimulating a survival pathway involving phosphatidylinositol-3-kinase, Akt kinase and NF-kappaB. Blocking Reg-2 expression in motoneurons using Reg-2 antisense adenovirus specifically abrogates the survival effect of CNTF on cultured motoneurons, indicating that Reg-2 expression is a necessary step in the CNTF survival pathway. Reg-2 shows a unique pattern of expression in late embryonic spinal cord: it is progressively upregulated in individual motoneurons on a cell-by-cell basis, indicating that only a fraction of motoneurons in a given motor pool may be exposed to cytokines. Thus, Reg-2 is a neurotrophic factor for motoneurons, and is itself an obligatory intermediate in the survival signalling pathway of CNTF-related cytokines.
Collapse
Affiliation(s)
- H Nishimune
- INSERM U.382, IBDM (CNRS - INSERM - Université de la Méditerranée), Campus de Luminy - Case 907, 13288 Marseille Cedex 9, France
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
The important effect of cell death on projecting neurons during development is well established. However, this mainstream research might have diverted recognition of the cell death that occurs at earlier stages of neural development, affecting proliferating neural precursor cells and young neuroblasts. In this article, we briefly present observations supporting the occurrence of programmed cell death during early neural development in a regulated fashion that to some extent parallels the death of projecting neurons lacking neurotrophic support. These findings raise new questions, in particular the magnitude and the role of this early neural cell death.
Collapse
Affiliation(s)
- E J de la Rosa
- Dept of Cell and Developmental Biology, Centro de Investigaciones Biológicas, CSIC, Velázquez 144, E-28006, Madrid, Spain
| | | |
Collapse
|
18
|
The "waiting period" of sensory and motor axons in early chick hindlimb: its role in axon pathfinding and neuronal maturation. J Neurosci 2000. [PMID: 10884320 DOI: 10.1523/jneurosci.20-14-05358.2000] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
During embryonic development motor axons in the chick hindlimb grow out slightly before sensory axons and wait in the plexus region at the base of the limb for approximately 24 hr before invading the limb itself (Tosney and Landmesser, 1985a). We have investigated the role of this waiting period by asking, Is the arrest of growth cones in the plexus region a general property of both sensory and motor axons? Why do axons wait? Does eliminating the waiting period affect the further development of motor and sensory neurons? Here we show that sensory axons, like motor axons, pause in the plexus region and that neither sensory nor motor axons require cues from the other population to wait in or exit from the plexus region. By transplanting older or younger donor limbs to host embryos, we show that host axons innervate donor limbs on a schedule consistent with the age of the grafted limbs. Thus, axons wait in the plexus region for maturational changes to occur in the limb rather than in the neurons themselves. Both sensory and motor axons innervate their appropriate peripheral targets when the waiting period is eliminated by grafting older donor limbs. Therefore, axons do not require a prolonged period in the plexus region to sort out and project appropriately. Eliminating the waiting period does, however, accelerate the onset of naturally occurring cell death, but it does not enhance the development of central projections or the biochemical maturation of sensory neurons.
Collapse
|
19
|
Yamamoto Y, Henderson CE. Patterns of programmed cell death in populations of developing spinal motoneurons in chicken, mouse, and rat. Dev Biol 1999; 214:60-71. [PMID: 10491257 DOI: 10.1006/dbio.1999.9413] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During embryonic development, approximately one-half of the spinal motoneurons initially generated are lost during a wave of programmed cell death (PCD). Classical studies in this system laid the basis of much work on the role and control of neuronal cell death during development. However, we have little information concerning the timing of cell death in motoneuron pools at different rostrocaudal levels, especially in rodents. We developed a novel protocol for whole-mount TUNEL labeling that allows apoptotic nuclei to be visualized in whole-mount preparations of embryonic spinal cord; double labeling with antibodies to Islet 1/2 showed that nearly all TUNEL-positive cells were motoneurons. In chicken and mouse embryos, the density of TUNEL-positive nuclei was specifically increased following target ablation. The pattern of naturally occurring motoneuron PCD was studied in spinal cords from different species and ages: chick (E4.5-E9.0), mouse (E11.5-E15.5), and rat (E13.5-E16. 5). In all species, motoneuron PCD is first apparent at cervical levels and last at sacral levels. However, motoneuron PCD does not follow a strict rostrocaudal sequence. Following cervical motoneuron PCD, TUNEL profiles are first observed at lumbar levels in chick but at thoracic levels in rat. At a given rostrocaudal level, medial motoneurons tend to die before lateral populations, but here too there are exceptions. Motoneuron cell death is thus regulated in a highly stereotyped manner during development of vertebrate spinal cord. Our technique will provide a basis for the monitoring even localized changes in this pattern.
Collapse
Affiliation(s)
- Y Yamamoto
- INSERM U.382, Developmental Biology Institute of Marseille (IBDM), CNRS, INSERM, Université Méditerranée, AP Marseille, Campus de Luminy, Case 907, Marseille Cedex 09, 13288, France
| | | |
Collapse
|