1
|
Takada S, Bolkan BJ, O’Connor M, Goldberg M, O’Connor MB. Drosophila Trus, the orthologue of mammalian PDCD2L, is required for proper cell proliferation, larval developmental timing, and oogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.24.620039. [PMID: 39484569 PMCID: PMC11527112 DOI: 10.1101/2024.10.24.620039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Toys are us (Trus) is the Drosophila melanogaster ortholog of mammalian Programmed Cell Death 2-Like (PDCD2L), a protein that has been implicated in ribosome biogenesis, cell cycle regulation, and oncogenesis. In this study, we examined the function of Trus during Drosophila development. CRISPR/Cas9 generated null mutations in trus lead to partial embryonic lethality, significant larval developmental delay, and complete pre-pupal lethality. In mutant larvae, we found decreased cell proliferation and growth defects in the brain and imaginal discs. Mapping relevant tissues for Trus function using trus RNAi and trus mutant rescue experiments revealed that imaginal disc defects are primarily responsible for the developmental delay, while the pre-pupal lethality is likely associated with faulty central nervous system (CNS) development. Examination of the molecular mechanism behind the developmental delay phenotype revealed that trus mutations induce the Xrp1-Dilp8 ribosomal stress-response in growth-impaired imaginal discs, and this signaling pathway attenuates production of the hormone ecdysone in the prothoracic gland. Additional Tap-tagging and mass spectrometry of components in Trus complexes isolated from Drosophila Kc cells identified Ribosomal protein subunit 2 (RpS2), which is coded by string of pearls (sop) in Drosophila, and Eukaryotic translation elongation factor 1 alpha 1 (eEF1α1) as interacting factors. We discuss the implication of these findings with respect to the similarity and differences in trus genetic null mutant phenotypes compared to the haplo-insufficiency phenotypes produced by heterozygosity for mutants in Minute genes and other genes involved in ribosome biogenesis.
Collapse
Affiliation(s)
- Saeko Takada
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455
| | - Bonnie J. Bolkan
- Department of Biology, Pacific University Oregon, Forest Grove, OR 97116
| | - MaryJane O’Connor
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455
| | - Michael Goldberg
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - Michael B. O’Connor
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
2
|
Urban EA, Chernoff C, Layng KV, Han J, Anderson C, Konzman D, Johnston RJ. Activating and repressing gene expression between chromosomes during stochastic fate specification. Cell Rep 2023; 42:111910. [PMID: 36640351 PMCID: PMC9976292 DOI: 10.1016/j.celrep.2022.111910] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/28/2022] [Accepted: 12/09/2022] [Indexed: 12/31/2022] Open
Abstract
DNA elements act across long genomic distances to regulate gene expression. During transvection in Drosophila, DNA elements on one allele of a gene act between chromosomes to regulate expression of the other allele. Little is known about the biological roles and developmental regulation of transvection. Here, we study the stochastic expression of spineless (ss) in photoreceptors in the fly eye to understand transvection. We determine a biological role for transvection in regulating expression of naturally occurring ss alleles. We identify DNA elements required for activating and repressing transvection. Different enhancers participate in transvection at different times during development to promote gene expression and specify cell fates. Bringing a silencer element on a heterologous chromosome into proximity with the ss locus "reconstitutes" the gene, leading to repression. Our studies show that transvection regulates gene expression via distinct DNA elements at specific timepoints in development, with implications for genome organization and architecture.
Collapse
Affiliation(s)
- Elizabeth A. Urban
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA,These authors contributed equally
| | - Chaim Chernoff
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA,Present address: Harvard Stem Cell Institute, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA,These authors contributed equally
| | - Kayla Viets Layng
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Jeong Han
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Caitlin Anderson
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Daniel Konzman
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Robert J. Johnston
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA,Lead contact,Correspondence:
| |
Collapse
|
3
|
Fleck K, Raj R, Erceg J. The 3D genome landscape: Diverse chromosomal interactions and their functional implications. Front Cell Dev Biol 2022; 10:968145. [PMID: 36036013 PMCID: PMC9402908 DOI: 10.3389/fcell.2022.968145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Genome organization includes contacts both within a single chromosome and between distinct chromosomes. Thus, regulatory organization in the nucleus may include interplay of these two types of chromosomal interactions with genome activity. Emerging advances in omics and single-cell imaging technologies have allowed new insights into chromosomal contacts, including those of homologs and sister chromatids, and their significance to genome function. In this review, we highlight recent studies in this field and discuss their impact on understanding the principles of chromosome organization and associated functional implications in diverse cellular processes. Specifically, we describe the contributions of intra-chromosomal, inter-homolog, and inter-sister chromatid contacts to genome organization and gene expression.
Collapse
Affiliation(s)
- Katherine Fleck
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| | - Romir Raj
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| | - Jelena Erceg
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, United States
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, United States
| |
Collapse
|
4
|
Postika N, Schedl P, Georgiev P, Kyrchanova O. Redundant enhancers in the iab-5 domain cooperatively activate Abd-B in the A5 and A6 abdominal segments of Drosophila. Development 2021; 148:272019. [PMID: 34473267 DOI: 10.1242/dev.199827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 08/21/2021] [Indexed: 01/10/2023]
Abstract
The Abdominal-B (Abd-B) gene belongs to the bithorax complex and its expression is controlled by four regulatory domains, iab-5, iab-6, iab-7 and iab-8, each of which is thought to be responsible for directing the expression of Abd-B in one of the abdominal segments from A5 to A8. A variety of experiments have supported the idea that BX-C regulatory domains are functionally autonomous and that each domain is both necessary and sufficient to orchestrate the development of the segment they specify. Unexpectedly, we discovered that this model does not always hold. Instead, we find that tissue-specific enhancers located in the iab-5 domain are required for the proper activation of Abd-B not only in A5 but also in A6. Our findings indicate that the functioning of the iab-5 and iab-6 domains in development of the adult cuticle A5 and A6 in males fit better with an additive model, much like that first envisioned by Ed Lewis.
Collapse
Affiliation(s)
- Nikolay Postika
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
| | - Paul Schedl
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia.,Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
| | - Olga Kyrchanova
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia.,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
| |
Collapse
|
5
|
Postika N, Schedl P, Georgiev P, Kyrchanova O. Redundant enhancers in the iab-5 domain cooperatively activate Abd-B in the A5 and A6 abdominal segments of Drosophila.. [DOI: 10.1101/2021.05.22.445252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
AbstractThe homeotic Abdominal-B (Abd-B) gene belongs to Bithorax complex and is regulated by four regulatory domains named iab-5, iab-6, iab-7 and iab-8, each of which is thought to be responsible for directing the expression of Abd-B in one of the abdominal segments from A5 to A8. It is assumed that male specific features of the adult cuticle in A5 is solely dependent on regulatory elements located in iab-5, while the regulatory elements in the iab-6 are both necessary and sufficient for the proper differentiation of the A6 cuticle. Unexpectedly, we found that this long held assumption is not correct. Instead, redundant tissue-specific enhancers located in the iab-5 domain are required for the proper activation of Abd-B not only in A5 but also in A6. Our study of deletions shows that the iab-5 initiator is essential for the functioning of the iab-5 enhancers in A5, as well as for the correct differentiation of A6. This requirement is circumvented by deletions that remove the initiator and most of the iab-5 regulatory domain sequences. While the remaining iab-5 enhancers are inactive in A5, they are activated in A6 and contribute to the differentiation of this segment. In this case, Abd-B stimulation by the iab-5 enhancers in A6 depends on the initiators in the iab-4 and iab-6 domains.Summary StatementIn Drosophila, the segmental-specific expression of the homeotic gene Abdominal-B in the abdominal segments is regulated by autonomous regulatory domains. We demonstrated cooperation between these domains in activation of Abdominal-B.
Collapse
|
6
|
DeLuca SZ, Ghildiyal M, Pang LY, Spradling AC. Differentiating Drosophila female germ cells initiate Polycomb silencing by regulating PRC2-interacting proteins. eLife 2020; 9:e56922. [PMID: 32773039 PMCID: PMC7438113 DOI: 10.7554/elife.56922] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 08/06/2020] [Indexed: 01/18/2023] Open
Abstract
Polycomb silencing represses gene expression and provides a molecular memory of chromatin state that is essential for animal development. We show that Drosophila female germline stem cells (GSCs) provide a powerful system for studying Polycomb silencing. GSCs have a non-canonical distribution of PRC2 activity and lack silenced chromatin like embryonic progenitors. As GSC daughters differentiate into nurse cells and oocytes, nurse cells, like embryonic somatic cells, silence genes in traditional Polycomb domains and in generally inactive chromatin. Developmentally controlled expression of two Polycomb repressive complex 2 (PRC2)-interacting proteins, Pcl and Scm, initiate silencing during differentiation. In GSCs, abundant Pcl inhibits PRC2-dependent silencing globally, while in nurse cells Pcl declines and newly induced Scm concentrates PRC2 activity on traditional Polycomb domains. Our results suggest that PRC2-dependent silencing is developmentally regulated by accessory proteins that either increase the concentration of PRC2 at target sites or inhibit the rate that PRC2 samples chromatin.
Collapse
Affiliation(s)
- Steven Z DeLuca
- Howard Hughes Medical Institute Research Laboratories Department of Embryology, Carnegie Institution for ScienceBaltimoreUnited States
| | - Megha Ghildiyal
- Howard Hughes Medical Institute Research Laboratories Department of Embryology, Carnegie Institution for ScienceBaltimoreUnited States
| | - Liang-Yu Pang
- Howard Hughes Medical Institute Research Laboratories Department of Embryology, Carnegie Institution for ScienceBaltimoreUnited States
| | - Allan C Spradling
- Howard Hughes Medical Institute Research Laboratories Department of Embryology, Carnegie Institution for ScienceBaltimoreUnited States
| |
Collapse
|
7
|
Evolving Role of RING1 and YY1 Binding Protein in the Regulation of Germ-Cell-Specific Transcription. Genes (Basel) 2019; 10:genes10110941. [PMID: 31752312 PMCID: PMC6895862 DOI: 10.3390/genes10110941] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/07/2019] [Accepted: 11/14/2019] [Indexed: 12/11/2022] Open
Abstract
Separation of germline cells from somatic lineages is one of the earliest decisions of embryogenesis. Genes expressed in germline cells include apoptotic and meiotic factors, which are not transcribed in the soma normally, but a number of testis-specific genes are active in numerous cancer types. During germ cell development, germ-cell-specific genes can be regulated by specific transcription factors, retinoic acid signaling and multimeric protein complexes. Non-canonical polycomb repressive complexes, like ncPRC1.6, play a critical role in the regulation of the activity of germ-cell-specific genes. RING1 and YY1 binding protein (RYBP) is one of the core members of the ncPRC1.6. Surprisingly, the role of Rybp in germ cell differentiation has not been defined yet. This review is focusing on the possible role of Rybp in this process. By analyzing whole-genome transcriptome alterations of the Rybp-/- embryonic stem (ES) cells and correlating this data with experimentally identified binding sites of ncPRC1.6 subunits and retinoic acid receptors in ES cells, we propose a model how germ-cell-specific transcription can be governed by an RYBP centered regulatory network, underlining the possible role of RYBP in germ cell differentiation and tumorigenesis.
Collapse
|
8
|
Viets K, Sauria MEG, Chernoff C, Rodriguez Viales R, Echterling M, Anderson C, Tran S, Dove A, Goyal R, Voortman L, Gordus A, Furlong EEM, Taylor J, Johnston RJ. Characterization of Button Loci that Promote Homologous Chromosome Pairing and Cell-Type-Specific Interchromosomal Gene Regulation. Dev Cell 2019; 51:341-356.e7. [PMID: 31607649 DOI: 10.1016/j.devcel.2019.09.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 06/07/2019] [Accepted: 09/09/2019] [Indexed: 01/05/2023]
Abstract
Homologous chromosomes colocalize to regulate gene expression in processes including genomic imprinting, X-inactivation, and transvection. In Drosophila, homologous chromosomes pair throughout development, promoting transvection. The "button" model of pairing proposes that specific regions along chromosomes pair with high affinity. Here, we identify buttons interspersed across the fly genome that pair with their homologous sequences, even when relocated to multiple positions in the genome. A majority of transgenes that span a full topologically associating domain (TAD) function as buttons, but not all buttons contain TADs. Additionally, buttons are enriched for insulator protein clusters. Fragments of buttons do not pair, suggesting that combinations of elements within a button are required for pairing. Pairing is necessary but not sufficient for transvection. Additionally, pairing and transvection are stronger in some cell types than in others, suggesting that pairing strength regulates transvection efficiency between cell types. Thus, buttons pair homologous chromosomes to facilitate cell-type-specific interchromosomal gene regulation.
Collapse
Affiliation(s)
- Kayla Viets
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Michael E G Sauria
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Chaim Chernoff
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | - Max Echterling
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Caitlin Anderson
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sang Tran
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Abigail Dove
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Raghav Goyal
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Lukas Voortman
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Andrew Gordus
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Eileen E M Furlong
- European Molecular Biology Laboratory, Department of Genome Biology, Heidelberg 69117, Germany
| | - James Taylor
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Robert J Johnston
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
9
|
|
10
|
Kassis JA, Kennison JA, Tamkun JW. Polycomb and Trithorax Group Genes in Drosophila. Genetics 2017; 206:1699-1725. [PMID: 28778878 PMCID: PMC5560782 DOI: 10.1534/genetics.115.185116] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 05/15/2017] [Indexed: 01/08/2023] Open
Abstract
Polycomb group (PcG) and Trithorax group (TrxG) genes encode important regulators of development and differentiation in metazoans. These two groups of genes were discovered in Drosophila by their opposing effects on homeotic gene (Hox) expression. PcG genes collectively behave as genetic repressors of Hox genes, while the TrxG genes are necessary for HOX gene expression or function. Biochemical studies showed that many PcG proteins are present in two protein complexes, Polycomb repressive complexes 1 and 2, which repress transcription via chromatin modifications. TrxG proteins activate transcription via a variety of mechanisms. Here we summarize the large body of genetic and biochemical experiments in Drosophila on these two important groups of genes.
Collapse
Affiliation(s)
- Judith A Kassis
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - James A Kennison
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - John W Tamkun
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, California 95064
| |
Collapse
|
11
|
Chetverina DA, Elizar’ev PV, Lomaev DV, Georgiev PG, Erokhin MM. Control of the gene activity by polycomb and trithorax group proteins in Drosophila. RUSS J GENET+ 2017. [DOI: 10.1134/s1022795417020028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Kyrchanova O, Mogila V, Wolle D, Magbanua JP, White R, Georgiev P, Schedl P. The boundary paradox in the Bithorax complex. Mech Dev 2015; 138 Pt 2:122-132. [PMID: 26215349 PMCID: PMC4890074 DOI: 10.1016/j.mod.2015.07.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 07/08/2015] [Accepted: 07/09/2015] [Indexed: 02/08/2023]
Abstract
The parasegment-specific expression of the three Drosophila Bithorax complex homeotic genes is orchestrated by nine functionally autonomous regulatory domains. Functional autonomy depends upon special elements called boundaries or insulators that are located between each domain. The boundaries ensure the independent activity of each domain by blocking adventitious interactions with initiators, enhancers and silencers in the neighboring domains. However, this blocking activity poses a regulatory paradox--the Bithorax boundaries are also able to insulate promoters from regulatory interactions with enhancers and silencers and six of the nine Bithorax regulatory domains are separated from their target genes by at least one boundary element. Here we consider several mechanisms that have been suggested for how the Bithorax regulatory domains are able to bypass intervening boundary elements and direct the appropriate parasegment-specific temporal and spatial expression of their target gene.
Collapse
Affiliation(s)
- Olga Kyrchanova
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Vladic Mogila
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia; Nikolaev V.A. Sukhomlinsky National University, Department of Biology, Ukraine
| | - Daniel Wolle
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Jose Paolo Magbanua
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Robert White
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Paul Schedl
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia; Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
13
|
Maeda RK, Karch F. The open for business model of the bithorax complex in Drosophila. Chromosoma 2015; 124:293-307. [PMID: 26067031 PMCID: PMC4548009 DOI: 10.1007/s00412-015-0522-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 05/19/2015] [Accepted: 05/19/2015] [Indexed: 01/13/2023]
Abstract
After nearly 30 years of effort, Ed Lewis published his 1978 landmark paper in which he described the analysis of a series of mutations that affect the identity of the segments that form along the anterior-posterior (AP) axis of the fly (Lewis 1978). The mutations behaved in a non-canonical fashion in complementation tests, forming what Ed Lewis called a "pseudo-allelic" series. Because of this, he never thought that the mutations represented segment-specific genes. As all of these mutations were grouped to a particular area of the Drosophila third chromosome, the locus became known of as the bithorax complex (BX-C). One of the key findings of Lewis' article was that it revealed for the first time, to a wide scientific audience, that there was a remarkable correlation between the order of the segment-specific mutations along the chromosome and the order of the segments they affected along the AP axis. In Ed Lewis' eyes, the mutants he discovered affected "segment-specific functions" that were sequentially activated along the chromosome as one moves from anterior to posterior along the body axis (the colinearity concept now cited in elementary biology textbooks). The nature of the "segment-specific functions" started to become clear when the BX-C was cloned through the pioneering chromosomal walk initiated in the mid 1980s by the Hogness and Bender laboratories (Bender et al. 1983a; Karch et al. 1985). Through this molecular biology effort, and along with genetic characterizations performed by Gines Morata's group in Madrid (Sanchez-Herrero et al. 1985) and Robert Whittle's in Sussex (Tiong et al. 1985), it soon became clear that the whole BX-C encoded only three protein-coding genes (Ubx, abd-A, and Abd-B). Later, immunostaining against the Ubx protein hinted that the segment-specific functions could, in fact, be cis-regulatory elements regulating the expression of the three protein-coding genes. In 1987, Peifer, Karch, and Bender proposed a comprehensive model of the functioning of the BX-C, in which the "segment-specific functions" appear as segment-specific enhancers regulating, Ubx, abd-A, or Abd-B (Peifer et al. 1987). Key to their model was that the segmental address of these enhancers was not an inherent ability of the enhancers themselves, but was determined by the chromosomal location in which they lay. In their view, the sequential activation of the segment-specific functions resulted from the sequential opening of chromatin domains along the chromosome as one moves from anterior to posterior. This model soon became known of as the open for business model. While the open for business model is quite easy to visualize at a conceptual level, molecular evidence to validate this model has been missing for almost 30 years. The recent publication describing the outstanding, joint effort from the Bender and Kingston laboratories now provides the missing proof to support this model (Bowman et al. 2014). The purpose of this article is to review the open for business model and take the reader through the genetic arguments that led to its elaboration.
Collapse
Affiliation(s)
- Robert K. Maeda
- Department of Genetics and Evolution, University of Geneva, 30 quai E. Ansermet, 1211 Geneva-4, Switzerland
| | - François Karch
- Department of Genetics and Evolution, University of Geneva, 30 quai E. Ansermet, 1211 Geneva-4, Switzerland
| |
Collapse
|
14
|
Steffen PA, Ringrose L. What are memories made of? How Polycomb and Trithorax proteins mediate epigenetic memory. Nat Rev Mol Cell Biol 2014; 15:340-56. [PMID: 24755934 DOI: 10.1038/nrm3789] [Citation(s) in RCA: 221] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In any biological system with memory, the state of the system depends on its history. Epigenetic memory maintains gene expression states through cell generations without a change in DNA sequence and in the absence of initiating signals. It is immensely powerful in biological systems - it adds long-term stability to gene expression states and increases the robustness of gene regulatory networks. The Polycomb group (PcG) and Trithorax group (TrxG) proteins can confer long-term, mitotically heritable memory by sustaining silent and active gene expression states, respectively. Several recent studies have advanced our understanding of the molecular mechanisms of this epigenetic memory during DNA replication and mitosis.
Collapse
Affiliation(s)
- Philipp A Steffen
- Institute of Molecular Biotechnology (IMBA), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Leonie Ringrose
- Institute of Molecular Biotechnology (IMBA), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| |
Collapse
|
15
|
Naturally occurring deletions of hunchback binding sites in the even-skipped stripe 3+7 enhancer. PLoS One 2014; 9:e91924. [PMID: 24786295 PMCID: PMC4006794 DOI: 10.1371/journal.pone.0091924] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 02/18/2014] [Indexed: 11/23/2022] Open
Abstract
Changes in regulatory DNA contribute to phenotypic differences within and between taxa. Comparative studies show that many transcription factor binding sites (TFBS) are conserved between species whereas functional studies reveal that some mutations segregating within species alter TFBS function. Consistently, in this analysis of 13 regulatory elements in Drosophila melanogaster populations, single base and insertion/deletion polymorphism are rare in characterized regulatory elements. Experimentally defined TFBS are nearly devoid of segregating mutations and, as has been shown before, are quite conserved. For instance 8 of 11 Hunchback binding sites in the stripe 3+7 enhancer of even-skipped are conserved between D. melanogaster and Drosophila virilis. Oddly, we found a 72 bp deletion that removes one of these binding sites (Hb8), segregating within D. melanogaster. Furthermore, a 45 bp deletion polymorphism in the spacer between the stripe 3+7 and stripe 2 enhancers, removes another predicted Hunchback site. These two deletions are separated by ∼250 bp, sit on distinct haplotypes, and segregate at appreciable frequency. The Hb8Δ is at 5 to 35% frequency in the new world, but also shows cosmopolitan distribution. There is depletion of sequence variation on the Hb8Δ-carrying haplotype. Quantitative genetic tests indicate that Hb8Δ affects developmental time, but not viability of offspring. The Eve expression pattern differs between inbred lines, but the stripe 3 and 7 boundaries seem unaffected by Hb8Δ. The data reveal segregating variation in regulatory elements, which may reflect evolutionary turnover of characterized TFBS due to drift or co-evolution.
Collapse
|
16
|
Alfieri C, Gambetta MC, Matos R, Glatt S, Sehr P, Fraterman S, Wilm M, Müller J, Müller CW. Structural basis for targeting the chromatin repressor Sfmbt to Polycomb response elements. Genes Dev 2013; 27:2367-79. [PMID: 24186981 PMCID: PMC3828522 DOI: 10.1101/gad.226621.113] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Polycomb group (PcG) complexes repress developmental regulator genes by modifying their chromatin. However, how PcG proteins assemble into complexes and are recruited to their target genes is poorly understood. Here, Alfieri et al. report the crystal structure of the core of the PcG complex PhoRC, which contains the DNA-binding protein Pho and corepressor Sfmbt. The authors show that tethering of Sfmbt by Pho to Polycomb response elements is essential for Polycomb repression of developmental regulator genes in Drosophila. This study thus reveals the molecular basis for PcG protein complex assembly at specific genomic sites. Polycomb group (PcG) protein complexes repress developmental regulator genes by modifying their chromatin. How different PcG proteins assemble into complexes and are recruited to their target genes is poorly understood. Here, we report the crystal structure of the core of the Drosophila PcG protein complex Pleiohomeotic (Pho)-repressive complex (PhoRC), which contains the Polycomb response element (PRE)-binding protein Pho and Sfmbt. The spacer region of Pho, separated from the DNA-binding domain by a long flexible linker, forms a tight complex with the four malignant brain tumor (4MBT) domain of Sfmbt. The highly conserved spacer region of the human Pho ortholog YY1 binds three of the four human 4MBT domain proteins in an analogous manner but with lower affinity. Comparison of the Drosophila Pho:Sfmbt and human YY1:MBTD1 complex structures provides a molecular explanation for the lower affinity of YY1 for human 4MBT domain proteins. Structure-guided mutations that disrupt the interaction between Pho and Sfmbt abolish formation of a ternary Sfmbt:Pho:DNA complex in vitro and repression of developmental regulator genes in Drosophila. PRE tethering of Sfmbt by Pho is therefore essential for Polycomb repression in Drosophila. Our results support a model where DNA tethering of Sfmbt by Pho and multivalent interactions of Sfmbt with histone modifications and other PcG proteins create a hub for PcG protein complex assembly at PREs.
Collapse
Affiliation(s)
- Claudio Alfieri
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Polycomb group response elements (PREs) play an essential role in gene regulation by the Polycomb group (PcG) repressor proteins in Drosophila. PREs are required for the recruitment and maintenance of repression by the PcG proteins. PREs are made up of binding sites for multiple DNA-binding proteins, but it is still unclear what combination(s) of binding sites is required for PRE activity. Here we compare the binding sites and activities of two closely linked yet separable PREs of the Drosophila engrailed (en) gene, PRE1 and PRE2. Both PRE1 and PRE2 contain binding sites for multiple PRE-DNA-binding proteins, but the number, arrangement, and spacing of the sites differs between the two PREs. These differences have functional consequences. Both PRE1 and PRE2 mediate pairing-sensitive silencing of mini-white, a functional assay for PcG repression; however, PRE1 requires two binding sites for Pleiohomeotic (Pho), whereas PRE2 requires only one Pho-binding site for this activity. Furthermore, for full pairing-sensitive silencing activity, PRE1 requires an AT-rich region not found in PRE2. These two PREs behave differently in a PRE embryonic and larval reporter construct inserted at an identical location in the genome. Our data illustrate the diversity of architecture and function of PREs.
Collapse
|
18
|
Kassis JA, Brown JL. Polycomb group response elements in Drosophila and vertebrates. ADVANCES IN GENETICS 2013; 81:83-118. [PMID: 23419717 DOI: 10.1016/b978-0-12-407677-8.00003-8] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Polycomb group genes (PcG) encode a group of about 16 proteins that were first identified in Drosophila as repressors of homeotic genes. PcG proteins are present in all metazoans and are best characterized as transcriptional repressors. In Drosophila, these proteins are known as epigenetic regulators because they remember, but do not establish, the patterned expression state of homeotic genes throughout development. PcG proteins, in general, are not DNA binding proteins, but act in protein complexes to repress transcription at specific target genes. How are PcG proteins recruited to the DNA? In Drosophila, there are specific regulatory DNA elements called Polycomb group response elements (PREs) that bring PcG protein complexes to the DNA. Drosophila PREs are made up of binding sites for a complex array of DNA binding proteins. Functional PRE assays in transgenes have shown that PREs act in the context of other regulatory DNA and PRE activity is highly dependent on genomic context. Drosophila PREs tend to regulate genes with a complex array of regulatory DNA in a cell or tissue-specific fashion and it is the interplay between regulatory DNA that dictates PRE function. In mammals, PcG proteins are more diverse and there are multiple ways to recruit PcG complexes, including RNA-mediated recruitment. In this review, we discuss evidence for PREs in vertebrates and explore similarities and differences between Drosophila and vertebrate PREs.
Collapse
Affiliation(s)
- Judith A Kassis
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA.
| | | |
Collapse
|
19
|
Berger N, Dubreucq B. Evolution goes GAGA: GAGA binding proteins across kingdoms. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:863-8. [PMID: 22425673 DOI: 10.1016/j.bbagrm.2012.02.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 02/17/2012] [Accepted: 02/22/2012] [Indexed: 01/21/2023]
Abstract
Chromatin-associated proteins (CAP) play a crucial role in the regulation of gene expression and development in higher organisms. They are involved in the control of chromatin structure and dynamics. CAP have been extensively studied over the past years and are classified into two major groups: enzymes that modify histone stability and organization by post-translational modification of histone N-Terminal tails; and proteins that use ATP hydrolysis to modify chromatin structure. All of these proteins show a relatively high degree of sequence conservation across the animal and plant kingdoms. The essential Drosophila melanogaster GAGA factor (dGAF) interacts with these two types of CAP to regulate homeobox genes and thus contributes to a wide range of developmental events. Surprisingly, however, it is not conserved in plants. In this review, following an overview of fly GAF functions, we discuss the role of plant BBR/BPC proteins. These appear to functionally converge with dGAF despite a completely divergent amino acid sequence. Some suggestions are given for further investigation into the function of BPC proteins in plants.
Collapse
|
20
|
Starr MO, Ho MCW, Gunther EJM, Tu YK, Shur AS, Goetz SE, Borok MJ, Kang V, Drewell RA. Molecular dissection of cis-regulatory modules at the Drosophila bithorax complex reveals critical transcription factor signature motifs. Dev Biol 2011; 359:290-302. [PMID: 21821017 PMCID: PMC3202680 DOI: 10.1016/j.ydbio.2011.07.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 07/17/2011] [Accepted: 07/19/2011] [Indexed: 11/17/2022]
Abstract
At the Drosophila melanogaster bithorax complex (BX-C) over 330kb of intergenic DNA is responsible for directing the transcription of just three homeotic (Hox) genes during embryonic development. A number of distinct enhancer cis-regulatory modules (CRMs) are responsible for controlling the specific expression patterns of the Hox genes in the BX-C. While it has proven possible to identify orthologs of known BX-C CRMs in different Drosophila species using overall sequence conservation, this approach has not proven sufficiently effective for identifying novel CRMs or defining the key functional sequences within enhancer CRMs. Here we demonstrate that the specific spatial clustering of transcription factor (TF) binding sites is important for BX-C enhancer activity. A bioinformatic search for combinations of putative TF binding sites in the BX-C suggests that simple clustering of binding sites is frequently not indicative of enhancer activity. However, through molecular dissection and evolutionary comparison across the Drosophila genus we discovered that specific TF binding site clustering patterns are an important feature of three known BX-C enhancers. Sub-regions of the defined IAB5 and IAB7b enhancers were both found to contain an evolutionarily conserved signature motif of clustered TF binding sites which is critical for the functional activity of the enhancers. Together, these results indicate that the spatial organization of specific activator and repressor binding sites within BX-C enhancers is of greater importance than overall sequence conservation and is indicative of enhancer functional activity.
Collapse
Affiliation(s)
| | | | | | - Yen-Kuei Tu
- Biology Department, Harvey Mudd College, 301 Platt Boulevard, Claremont, CA 91711, USA
| | - Andrey S. Shur
- Biology Department, Harvey Mudd College, 301 Platt Boulevard, Claremont, CA 91711, USA
| | - Sara E. Goetz
- Biology Department, Harvey Mudd College, 301 Platt Boulevard, Claremont, CA 91711, USA
| | - Matthew J. Borok
- Biology Department, Harvey Mudd College, 301 Platt Boulevard, Claremont, CA 91711, USA
| | - Victoria Kang
- Biology Department, Harvey Mudd College, 301 Platt Boulevard, Claremont, CA 91711, USA
| | - Robert A. Drewell
- Biology Department, Harvey Mudd College, 301 Platt Boulevard, Claremont, CA 91711, USA
| |
Collapse
|
21
|
He BZ, Holloway AK, Maerkl SJ, Kreitman M. Does positive selection drive transcription factor binding site turnover? A test with Drosophila cis-regulatory modules. PLoS Genet 2011; 7:e1002053. [PMID: 21572512 PMCID: PMC3084208 DOI: 10.1371/journal.pgen.1002053] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 03/02/2011] [Indexed: 12/04/2022] Open
Abstract
Transcription factor binding site(s) (TFBS) gain and loss (i.e., turnover) is a well-documented feature of cis-regulatory module (CRM) evolution, yet little attention has been paid to the evolutionary force(s) driving this turnover process. The predominant view, motivated by its widespread occurrence, emphasizes the importance of compensatory mutation and genetic drift. Positive selection, in contrast, although it has been invoked in specific instances of adaptive gene expression evolution, has not been considered as a general alternative to neutral compensatory evolution. In this study we evaluate the two hypotheses by analyzing patterns of single nucleotide polymorphism in the TFBS of well-characterized CRM in two closely related Drosophila species, Drosophila melanogaster and Drosophila simulans. An important feature of the analysis is classification of TFBS mutations according to the direction of their predicted effect on binding affinity, which allows gains and losses to be evaluated independently along the two phylogenetic lineages. The observed patterns of polymorphism and divergence are not compatible with neutral evolution for either class of mutations. Instead, multiple lines of evidence are consistent with contributions of positive selection to TFBS gain and loss as well as purifying selection in its maintenance. In discussion, we propose a model to reconcile the finding of selection driving TFBS turnover with constrained CRM function over long evolutionary time.
Collapse
Affiliation(s)
- Bin Z He
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, USA.
| | | | | | | |
Collapse
|
22
|
Maeda RK, Karch F. Gene expression in time and space: additive vs hierarchical organization of cis-regulatory regions. Curr Opin Genet Dev 2011; 21:187-93. [PMID: 21349696 DOI: 10.1016/j.gde.2011.01.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 01/18/2011] [Indexed: 11/19/2022]
Abstract
In higher eukaryotes, individual genes are often intermingled with other genes and spread out across tens to hundreds of kilobases, even though only small portions of their sequence are devoted to protein coding. Yet, in this seemingly extended and tangled mess, the cell is able to precisely regulate gene expression in both time and space. Over the past few decades, numerous elements, like enhancers, silencers and insulators have been found that shed some light on how the precise control of gene expression is achieved. Through these discoveries, an additive model of gene expression was envisioned, where the addition of the patterning details imparted by regulatory elements would create the final pattern of gene expression. Although many genes can be described using this model, recent work in the Drosophila bithorax complex suggests that this model may be somewhat simplistic and, in fact, regulatory elements sometimes seem to communicate with each other to form a functional hierarchy that is far from additive.
Collapse
Affiliation(s)
- Robert K Maeda
- Department of Zoology and Animal Biology and NCCR Frontiers in Genetics, University of Geneva, 30 quai E. Ansermet, 1211 Geneva-4, Switzerland
| | | |
Collapse
|
23
|
Initiator elements function to determine the activity state of BX-C enhancers. PLoS Genet 2010; 6:e1001260. [PMID: 21203501 PMCID: PMC3009686 DOI: 10.1371/journal.pgen.1001260] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 11/23/2010] [Indexed: 11/19/2022] Open
Abstract
A >300 kb cis-regulatory region is required for the proper expression of the three bithorax complex (BX-C) homeotic genes. Based on genetic and transgenic analysis, a model has been proposed in which the numerous BX-C cis-regulatory elements are spatially restricted through the activation or repression of parasegment-specific chromatin domains. Particular early embryonic enhancers, called initiators, have been proposed to control this complex process. Here, in order to better understand the process of domain activation, we have undertaken a systematic in situ dissection of the iab-6 cis-regulatory domain using a new method, called InSIRT. Using this method, we create and genetically characterize mutations affecting iab-6 function, including mutations specifically modifying the iab-6 initiator. Through our mutagenesis of the iab-6 initiator, we provide strong evidence that initiators function not to directly control homeotic gene expression but rather as domain control centers to determine the activity state of the enhancers and silencers within a cis-regulatory domain. Understanding how genes become activated is one of the primary areas of research in modern biology. In order to decipher the DNA components required for this process, scientists have traditionally turned to transgenic reporter assays, where DNA elements are removed from their native environment and placed next to a simplified reporter gene to monitor transcriptional activation. Although this approach is powerful, it can result in artifacts stemming from the channelization of regulatory element activities into predetermined classes. In this manuscript, we investigate the biological role of elements from the Drosophila bithorax complex, called initiators. In transgenic assays, these elements have been categorized as enhancers. However, genetic analysis suggests that, in situ, these elements perform a far more complex function. Here, using a new method to repeatedly target a genetic locus for mutagenesis, we show that initiators function as control elements that coordinate the activity of nearby enhancers and silencers. Overall, our study highlights how gene expression can be controlled through a hierarchical arrangement of cis-regulatory elements.
Collapse
|
24
|
Wilkinson F, Pratt H, Atchison ML. PcG recruitment by the YY1 REPO domain can be mediated by Yaf2. J Cell Biochem 2010; 109:478-86. [PMID: 19960508 DOI: 10.1002/jcb.22424] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The Polycomb Group (PcG) complex of transcriptional repressors is critical for the maintenance of stage-specific developmental gene expression, stem cell maintenance and for large-scale chromosomal dynamics. Functional deficiency of a single PcG gene can severely compromise PcG function, leading to developmental defects, embryonic lethality, or a number of malignancies. Despite the critical nature of PcG proteins, the mechanisms by which these complexes mediate their effects are relatively uncharacterized. Nearly all vertebrate PcG proteins lack inherent DNA binding capacity, making it unclear how they are targeted to Polycomb response element (PRE) sequences. Transcription factor YY1 is a functional ortholog of a Drosophila PcG protein, Pleiohomeotic (PHO), one of the few PcG proteins with specific DNA binding capability, and YY1 can recruit PcG proteins to specific DNA sequences. A small 25 amino acid YY1 domain (the REPO domain) is necessary and sufficient for recruitment of PcG proteins to DNA and for transcriptional repression. We show here that the YY1 REPO domain interacts with PcG protein Yaf2 and recruits Yaf2 to DNA. Interaction is lost when the YY1 REPO domain is deleted. In addition we show that Yaf2, when linked to a heterologous DNA binding domain, can recruit PcG proteins to DNA leading to transcriptional repression. When the Drosophila homolog of Yaf2 (dRYBP) is mutated, PcG recruitment to DNA is reduced. Taken together, our results suggest that Yaf2 serves as a molecular bridge between YY1 and other PcG complex proteins.
Collapse
Affiliation(s)
- Frank Wilkinson
- School of Science and Health, Philadelphia University, Schoolhouse Lane and Henry Avenue, Philadelphia, Pennsylvania 19144, USA.
| | | | | |
Collapse
|
25
|
Comparative analysis of chromatin binding by Sex Comb on Midleg (SCM) and other polycomb group repressors at a Drosophila Hox gene. Mol Cell Biol 2010; 30:2584-93. [PMID: 20351181 DOI: 10.1128/mcb.01451-09] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Sex Comb on Midleg (SCM) is a transcriptional repressor in the Polycomb group (PcG), but its molecular role in PcG silencing is not known. Although SCM can interact with Polycomb repressive complex 1 (PRC1) in vitro, biochemical studies have indicated that SCM is not a core constituent of PRC1 or PRC2. Nevertheless, SCM is just as critical for Drosophila Hox gene silencing as canonical subunits of these well-characterized PcG complexes. To address functional relationships between SCM and other PcG components, we have performed chromatin immunoprecipitation studies using cultured Drosophila Schneider line 2 (S2) cells and larval imaginal discs. We find that SCM associates with a Polycomb response element (PRE) upstream of the Ubx gene which also binds PRC1, PRC2, and the DNA-binding PcG protein Pleiohomeotic (PHO). However, SCM is retained at this Ubx PRE despite genetic disruption or knockdown of PHO, PRC1, or PRC2, suggesting that SCM chromatin targeting does not require prior association of these other PcG components. Chromatin immunoprecipitations (IPs) to test the consequences of SCM genetic disruption or knockdown revealed that PHO association is unaffected, but reduced levels of PRE-bound PRC2 and PRC1 were observed. We discuss these results in light of current models for recruitment of PcG complexes to chromatin targets.
Collapse
|
26
|
Maeda RK, Karch F. Cis-regulation in the Drosophila Bithorax Complex. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 689:17-40. [PMID: 20795320 DOI: 10.1007/978-1-4419-6673-5_2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The discovery of the first homeotic mutation by Calvin Bridges in 1915 profoundly influenced the way we think about developmental processes. Although many mutations modify or deform morphological structures, homeotic mutations cause a spectacular phenotype in which a morphological structure develops like a copy of a structure that is normally found elsewhere on an organism's body plan. This is best illustrated in Drosophila where homeotic mutations were first discovered. For example, Antennapedia mutants have legs developing on their head instead of antennae. Because a mutation in a single gene creates such complete structures, homeotic genes were proposed to be key "selector genes" regulating the initiation of a developmental program. According to this model, once a specific developmental program is initiated (i.e., antenna or leg), it can be executed by downstream "realizator genes" independent of its location along the body axis. Consistent with this idea, homeotic genes have been shown to encode transcription factor proteins that control the activity of the many downstream targets to "realize" a developmental program. Here, we will review the first and perhaps, best characterized homeotic complex, the Bithorax Complex (BX-C).
Collapse
Affiliation(s)
- Robert K Maeda
- NCCR Frontiers in Genetics, University of Geneva, 30 quai E. Ansermet, 1211 Geneva-4, Switzerland
| | | |
Collapse
|
27
|
Characterization of the polycomb group response elements of the Drosophila melanogaster invected Locus. Mol Cell Biol 2009; 30:820-8. [PMID: 19948883 DOI: 10.1128/mcb.01287-09] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Polycomb group proteins (PcGs) play a vital role throughout development by maintaining precise gene expression patterns. In Drosophila melanogaster, PcG-mediated gene silencing is achieved through DNA elements called Polycomb response elements (PREs); however, the mechanism for establishing silencing and the requirements and composition of a working PRE are not fully understood. We have used the computer program jPREdictor to uncover PREs located within the invected (inv) locus. The functionalities of these predicted PREs were tested in two different assays: one analyzing their abilities to maintain expression of a beta-galactosidase reporter gene and the other evaluating their abilities to establish pairing-sensitive silencing of the mini-white reporter in the vector pCaSpeR. We have identified two previously uncharacterized PREs at the inv gene and demonstrate that they produce similar results in the two assays. Our results indicate that clusters of protein binding sites do not accurately predict PREs and provide new insight into the DNA sequence requirements for the binding of the PcG protein Pho. Finally, our data show that PREs and regulatory DNA from different genes can function together to establish PcG-mediated silencing, highlighting the versatility of PREs despite discrepancies in the number and location of DNA binding sites.
Collapse
|
28
|
Ho MCW, Johnsen H, Goetz SE, Schiller BJ, Bae E, Tran DA, Shur AS, Allen JM, Rau C, Bender W, Fisher WW, Celniker SE, Drewell RA. Functional evolution of cis-regulatory modules at a homeotic gene in Drosophila. PLoS Genet 2009; 5:e1000709. [PMID: 19893611 PMCID: PMC2763271 DOI: 10.1371/journal.pgen.1000709] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Accepted: 10/05/2009] [Indexed: 11/19/2022] Open
Abstract
It is a long-held belief in evolutionary biology that the rate of molecular evolution for a given DNA sequence is inversely related to the level of functional constraint. This belief holds true for the protein-coding homeotic (Hox) genes originally discovered in Drosophila melanogaster. Expression of the Hox genes in Drosophila embryos is essential for body patterning and is controlled by an extensive array of cis-regulatory modules (CRMs). How the regulatory modules functionally evolve in different species is not clear. A comparison of the CRMs for the Abdominal-B gene from different Drosophila species reveals relatively low levels of overall sequence conservation. However, embryonic enhancer CRMs from other Drosophila species direct transgenic reporter gene expression in the same spatial and temporal patterns during development as their D. melanogaster orthologs. Bioinformatic analysis reveals the presence of short conserved sequences within defined CRMs, representing gap and pair-rule transcription factor binding sites. One predicted binding site for the gap transcription factor KRUPPEL in the IAB5 CRM was found to be altered in Superabdominal (Sab) mutations. In Sab mutant flies, the third abdominal segment is transformed into a copy of the fifth abdominal segment. A model for KRUPPEL-mediated repression at this binding site is presented. These findings challenge our current understanding of the relationship between sequence evolution at the molecular level and functional activity of a CRM. While the overall sequence conservation at Drosophila CRMs is not distinctive from neighboring genomic regions, functionally critical transcription factor binding sites within embryonic enhancer CRMs are highly conserved. These results have implications for understanding mechanisms of gene expression during embryonic development, enhancer function, and the molecular evolution of eukaryotic regulatory modules.
Collapse
Affiliation(s)
- Margaret C. W. Ho
- Biology Department, Harvey Mudd College, Claremont, California, United States of America
| | - Holly Johnsen
- Biology Department, Harvey Mudd College, Claremont, California, United States of America
| | - Sara E. Goetz
- Biology Department, Harvey Mudd College, Claremont, California, United States of America
| | - Benjamin J. Schiller
- Biology Department, Harvey Mudd College, Claremont, California, United States of America
| | - Esther Bae
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California, United States of America
| | - Diana A. Tran
- Biology Department, Harvey Mudd College, Claremont, California, United States of America
| | - Andrey S. Shur
- Biology Department, Harvey Mudd College, Claremont, California, United States of America
| | - John M. Allen
- Biology Department, Harvey Mudd College, Claremont, California, United States of America
| | - Christoph Rau
- Biology Department, Harvey Mudd College, Claremont, California, United States of America
| | - Welcome Bender
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - William W. Fisher
- Berkeley Drosophila Genome Project, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Susan E. Celniker
- Berkeley Drosophila Genome Project, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Robert A. Drewell
- Biology Department, Harvey Mudd College, Claremont, California, United States of America
| |
Collapse
|
29
|
Simon JA, Kingston RE. Mechanisms of polycomb gene silencing: knowns and unknowns. Nat Rev Mol Cell Biol 2009; 10:697-708. [PMID: 19738629 DOI: 10.1038/nrm2763] [Citation(s) in RCA: 1004] [Impact Index Per Article: 66.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Polycomb proteins form chromatin-modifying complexes that implement transcriptional silencing in higher eukaryotes. Hundreds of genes are silenced by Polycomb proteins, including dozens of genes that encode crucial developmental regulators in organisms ranging from plants to humans. Two main families of complexes, called Polycomb repressive complex 1 (PRC1) and PRC2, are targeted to repressed regions. Recent studies have advanced our understanding of these complexes, including their potential mechanisms of gene silencing, the roles of chromatin modifications, their means of delivery to target genes and the functional distinctions among variant complexes. Emerging concepts include the existence of a Polycomb barrier to transcription elongation and the involvement of non-coding RNAs in the targeting of Polycomb complexes. These findings have an impact on the epigenetic programming of gene expression in many biological systems.
Collapse
Affiliation(s)
- Jeffrey A Simon
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis 55455, USA.
| | | |
Collapse
|
30
|
Schuettengruber B, Ganapathi M, Leblanc B, Portoso M, Jaschek R, Tolhuis B, van Lohuizen M, Tanay A, Cavalli G. Functional anatomy of polycomb and trithorax chromatin landscapes in Drosophila embryos. PLoS Biol 2009; 7:e13. [PMID: 19143474 PMCID: PMC2621266 DOI: 10.1371/journal.pbio.1000013] [Citation(s) in RCA: 240] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Accepted: 12/03/2008] [Indexed: 12/03/2022] Open
Abstract
Polycomb group (PcG) and trithorax group (trxG) proteins are conserved chromatin factors that regulate key developmental genes throughout development. In Drosophila, PcG and trxG factors bind to regulatory DNA elements called PcG and trxG response elements (PREs and TREs). Several DNA binding proteins have been suggested to recruit PcG proteins to PREs, but the DNA sequences necessary and sufficient to define PREs are largely unknown. Here, we used chromatin immunoprecipitation (ChIP) on chip assays to map the chromosomal distribution of Drosophila PcG proteins, the N- and C-terminal fragments of the Trithorax (TRX) protein and four candidate DNA-binding factors for PcG recruitment. In addition, we mapped histone modifications associated with PcG-dependent silencing and TRX-mediated activation. PcG proteins colocalize in large regions that may be defined as polycomb domains and colocalize with recruiters to form several hundreds of putative PREs. Strikingly, the majority of PcG recruiter binding sites are associated with H3K4me3 and not with PcG binding, suggesting that recruiter proteins have a dual function in activation as well as silencing. One major discriminant between activation and silencing is the strong binding of Pleiohomeotic (PHO) to silenced regions, whereas its homolog Pleiohomeotic-like (PHOL) binds preferentially to active promoters. In addition, the C-terminal fragment of TRX (TRX-C) showed high affinity to PcG binding sites, whereas the N-terminal fragment (TRX-N) bound mainly to active promoter regions trimethylated on H3K4. Our results indicate that DNA binding proteins serve as platforms to assist PcG and trxG binding. Furthermore, several DNA sequence features discriminate between PcG- and TRX-N–bound regions, indicating that underlying DNA sequence contains critical information to drive PREs and TREs towards silencing or activation. Although all cells of a developing organism have the same DNA, they express different genes and transmit these gene expression patterns to daughter cells through multiple rounds of cell division. This cellular memory for gene expression states is maintained by two groups of proteins: Polycomb-group proteins (PcG), which establish and maintain stable gene silencing, and trithorax group proteins (trxG), which counteract silencing and enable gene activation. It is unknown how this balance works and how exactly these proteins are recruited to their target sequences. By mapping the genome-wide distribution of PcG and trxG factors and proteins known to recruit them to chromatin, we found that putative PcG recruiters are not only colocalized at PcG binding sites, but also bind to many other genomic regions that are actually the binding sites of the Trithorax complex. We identified new DNA sequences important for the recruitment of both PcG and trxG proteins and showed that the differential binding of the recruiters PHO and PHOL may discriminate between active and inactive regions. Finally, we found that the two fragments of the Trithorax protein have different chromosomal distributions, suggesting that they may have distinct nuclear functions. Comparison of the genome-wide distribution of PcG, trxG, and sequence-specific DNA binding proteins allowed the identification of key signals leading to Polycomb or Trithorax recruitment.
Collapse
|
31
|
Abstract
In his 1978 seminal paper, Ed Lewis described a series of mutations that affect the segmental identities of the segments forming the posterior two-thirds of the Drosophila body plan. In each class of mutations, particular segments developed like copies of a more-anterior segment. Genetic mapping of the different classes of mutations led to the discovery that their arrangement along the chromosome paralleled the body segments they affect along the anteroposterior axis of the fly. As all these mutations mapped to the same cytological location, he named this chromosomal locus after its founding mutation. Thus the first homeotic gene (Hox) cluster became known as the bithorax complex (BX-C). Even before the sequencing of the BX-C, the fact that these similar mutations grouped together in a cluster, lead Ed Lewis to propose that the homeotic genes arose through a gene duplication mechanism and that these clusters would be conserved through evolution. With the identification of the homeobox in the early 1980s, Lewis' first prediction was confirmed. The two cloned Drosophila homeotic genes, Antennapedia and Ultrabithorax, were indeed related genes. Using the homeobox as an entry point, homologous genes have since been cloned in many other species. Today, Hox clusters have been discovered in almost all metazoan phyla, confirming Lewis' second prediction. Remarkably, these homologous Hox genes are also arranged in clusters with their order within each cluster reflecting the anterior boundary of their domain of expression along the anterior-posterior axis of the animal. This correlation between the genomic organization and the activity along the anteroposterior body axis is known as the principle of "colinearity." The description of the BX-C inspired decades of developmental and evolutionary biology. And although this first Hox cluster led to the identification of many important features common to all Hox gene clusters, it now turns out that the fly Hox clusters are rather exceptional when compared with the Hox clusters of other animals. In this chapter, we will review the history and salient features of bithorax molecular genetics, in part, emphasizing its unique features relative to the other Hox clusters.
Collapse
Affiliation(s)
- Robert K Maeda
- Department of Zoology and Animal Biology, University of Geneva, Geneva, Switzerland
| | | |
Collapse
|
32
|
Oktaba K, Gutiérrez L, Gagneur J, Girardot C, Sengupta AK, Furlong EEM, Müller J. Dynamic regulation by polycomb group protein complexes controls pattern formation and the cell cycle in Drosophila. Dev Cell 2008; 15:877-89. [PMID: 18993116 DOI: 10.1016/j.devcel.2008.10.005] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2008] [Revised: 10/01/2008] [Accepted: 10/03/2008] [Indexed: 10/21/2022]
Abstract
Polycomb group (PcG) proteins form conserved regulatory complexes that modify chromatin to repress transcription. Here, we report genome-wide binding profiles of PhoRC, the Drosophila PcG protein complex containing the DNA-binding factor Pho/dYY1 and dSfmbt. PhoRC constitutively occupies short Polycomb response elements (PREs) of a large set of developmental regulator genes in both embryos and larvae. The majority of these PREs are co-occupied by the PcG complexes PRC1 and PRC2. Analysis of PcG mutants shows that the PcG system represses genes required for anteroposterior, dorsoventral, and proximodistal patterning of imaginal discs and that it also represses cell cycle regulator genes. Many of these genes are regulated in a dynamic manner, and our results suggest that the PcG system restricts signaling-mediated activation of target genes to appropriate cells. Analysis of cell cycle regulators indicates that the PcG system also dynamically modulates the expression levels of certain genes, providing a possible explanation for the tumor phenotype of PcG mutants.
Collapse
|
33
|
Kozma G, Bender W, Sipos L. Replacement of a Drosophila Polycomb response element core, and in situ analysis of its DNA motifs. Mol Genet Genomics 2008; 279:595-603. [PMID: 18350319 DOI: 10.1007/s00438-008-0336-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Accepted: 02/27/2008] [Indexed: 11/25/2022]
Abstract
Long-term repression of homeotic genes in the fruit fly is accomplished by proteins of the Polycomb Group, acting at Polycomb response elements (PREs). Here we use gene conversion to mutate specific DNA motifs within a PRE to test their relevance, and we exchange PREs to test their specificity. Previously we showed that removal of a 185 bp core sequence from the bithoraxoid PRE of the bithorax complex results in posteriorly directed segmental transformations. Mutating multiple binding sites for either the PHO or the GAF proteins separately in the core bithoraxoid PRE resulted in only rare and subtle transformations in adult flies. However, when both sets of sites were mutated, the transformations were similar in strength and penetrance to those caused by the deletion of the 185 bp core region. In contrast, mutating the singly occurring binding site of another DNA-binding protein, DSP1 (reportedly essential for PRE-activity), had no similar effect in combination with mutated PHO or GAF sites. Two minimal PREs from other segment-specific regulatory domains of the bithorax complex could substitute for the bithoraxoid PRE core. Our in situ analysis suggests that core PREs are interchangeable, and the cooperation between PHO and GAF binding sites is indispensable for silencing.
Collapse
Affiliation(s)
- Gabriella Kozma
- Institute of Genetics, Biological Research Center of the Hungarian Academy of Sciences, Szeged 6701, Hungary
| | | | | |
Collapse
|
34
|
Marques-Souza H, Aranda M, Tautz D. Delimiting the conserved features of hunchback function for the trunk organization of insects. Development 2008; 135:881-8. [PMID: 18216167 DOI: 10.1242/dev.018317] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The gap gene hunchback in Drosophila acts during syncytial blastoderm stage via a short-range gradient and concentration-dependent activation or repression of target genes. Orthologues of hunchback can be easily found in other insects, but it has been unclear how well its functions are conserved. The segmentation process in most insect embryos occurs under cellular conditions, which should not allow the formation of diffusion-controlled transcription factor gradients. We have studied here in detail the function of hunchback in the short germ embryo of Tribolium using parental RNAi and interaction with possible target genes. We find that hunchback is a major regulator of the trunk gap genes and Hox genes in Tribolium, but may only indirectly be required to regulate other segmentation genes. The core function of hunchback appears to be the setting of the Ultrabithorax expression border via a repression effect, and the activation of the Krüppel expression domain. These regulatory effects are likely to be direct and are conserved between Drosophila and Tribolium. We find no evidence for a classical gap phenotype in the form of loss of segments in the region of expression of hunchback. However, the phenotypic effects in Tribolium are highly comparable with those found for other short germ embryos, i.e. the core functions of hunchback in Tribolium appear to be the same in these other insects, although they are evolutionarily more distant to Tribolium, than Tribolium is to Drosophila. These results allow the disentanglement of the conserved role of hunchback in insects from the derived features that have been acquired in the lineage towards Drosophila. Given that the gap phenotype appears to occur only in long germ embryos and that the main role of hunchback appears to be the regionalization of the embryo, it may be appropriate to revive an alternative name for the class of gap genes, namely 'cardinal genes'.
Collapse
|
35
|
Akbari OS, Bae E, Johnsen H, Villaluz A, Wong D, Drewell RA. A novel promoter-tethering element regulates enhancer-driven gene expression at the bithorax complex in the Drosophila embryo. Development 2007; 135:123-31. [PMID: 18045839 DOI: 10.1242/dev.010744] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A key question in our understanding of the cis-regulation of gene expression during embryonic development has been the molecular mechanism that directs enhancers to specific promoters within a gene complex. Promoter competition and insulators are thought to play a role in regulating these interactions. In the bithorax complex of Drosophila, the IAB5 enhancer is located 55 kb 3' of the Abdominal-B (Abd-B) promoter and 48 kb 5' of the abdominal-A (abd-A) promoter. Although roughly equidistant from the two promoters, IAB5 specifically interacts only with the Abdominal-B promoter, even though the enhancer and promoter are separated by at least two insulators. Here we demonstrate that a 255 bp element, located 40 bp 5' of the Abd-B transcriptional start site, has a novel cis-regulatory activity as it is able to tether IAB5 to the Abd-B promoter in transgenic embryos. The tethering element is sufficient to direct IAB5 to an ectopic promoter in competition assays. Deletion of the promoter-tethering element results in the redirection of enhancer-driven gene expression on transgenes. Taken together, these results provide evidence that specific long-range enhancer-promoter interactions in the bithorax complex are regulated by a tethering element 5' of the Abd-B promoter. We discuss a bioinformatic analysis of the tethering element across different Drosophila species and a possible molecular mechanism by which this element functions. We also examine existing evidence that this novel class of cis-regulatory elements might regulate enhancer-promoter specificity at other gene complexes.
Collapse
Affiliation(s)
- Omar S Akbari
- Biology Department M/S 314, University of Nevada, Reno, Reno, NV 89557, USA
| | | | | | | | | | | |
Collapse
|
36
|
Gebelein B, Mann RS. Compartmental modulation of abdominal Hox expression by engrailed and sloppy-paired patterns the fly ectoderm. Dev Biol 2007; 308:593-605. [PMID: 17573068 PMCID: PMC2856935 DOI: 10.1016/j.ydbio.2007.05.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Revised: 04/23/2007] [Accepted: 05/17/2007] [Indexed: 11/19/2022]
Abstract
In Drosophila, segmentation genes partition the early embryo into reiterative segments along the anterior-posterior axis, while Hox genes assign segments their identities. Each segment is also subdivided into distinct anterior (A) and posterior (P) compartments based on the expression of the engrailed (en) segmentation gene. Differences in Hox expression often correlate with compartmental boundaries, but the genetic basis for these differences is not well understood. In this study, we extend previous results to describe a genetic circuit that controls the differential expression of two Hox genes, Ultrabithorax (Ubx) and abdominal-A (abd-A), within the A and P compartments of the abdominal ectoderm. Consistent with earlier findings, we show that en is essential for high Abd-A levels and low Ubx levels in the P compartment, whereas sloppy-paired (slp) is required for high Ubx levels in the A compartment. Overall, these results demonstrate that the compartmental expression of Ubx and abd-A is established through a repressive regulatory network between en, slp, Ubx and abd-A. We also show that abd-A expression in the P compartment is important for the formation of abdominal-specific cell types, suggesting that en and slp modulation of Hox expression within the A and P compartments is essential for embryonic patterning.
Collapse
Affiliation(s)
- Brian Gebelein
- Division of Developmental Biology, Cincinnati Children's Hospital, 3333 Burnet Ave, MLC 7007, Cincinnati, OH 45229, USA.
| | | |
Collapse
|
37
|
Wilkinson FH, Park K, Atchison ML. Polycomb recruitment to DNA in vivo by the YY1 REPO domain. Proc Natl Acad Sci U S A 2006; 103:19296-301. [PMID: 17158804 PMCID: PMC1748220 DOI: 10.1073/pnas.0603564103] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Polycomb group (PcG) proteins are responsible for maintaining transcriptional repression of developmentally important genes. However, the mechanism of PcG recruitment to specific DNA sequences is poorly understood. Transcription factor YY1 is one of the few PcG proteins with sequence-specific DNA binding activity. We previously showed that YY1 can recruit other PcG proteins to DNA, leading to histone posttranslational modifications and stable transcriptional repression. Using Drosophila transgenic approaches, we identified YY1 sequences 201-226 as necessary and sufficient for PcG transcriptional repression in vivo. When fused to a heterologous DNA-binding domain, this short 26-aa motif was sufficient for transcriptional repression, recruitment of PcG proteins to DNA, and methylation of histone H3 lysine 27. Deletion of this short YY1 motif did not affect transient transcriptional repression but ablated PcG repression, PcG protein recruitment to DNA, and methylation of H3 lysine 27. We propose that this motif be named the REPO domain for its function in recruitment of Polycomb. The REPO domain is well conserved in YY1 orthologs and in related proteins.
Collapse
Affiliation(s)
- Frank H. Wilkinson
- *Department of Animal Biology, University of Pennsylvania School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104; and
| | - Kyoungsook Park
- Molecular Therapy Research Center, Sungkyunkwan University, Samsung Medical Center Annex 8F, 50, Ilwon-dong, Kangnam-ku, Seoul 135-710, Korea
| | - Michael L. Atchison
- *Department of Animal Biology, University of Pennsylvania School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
38
|
Müller J, Kassis JA. Polycomb response elements and targeting of Polycomb group proteins in Drosophila. Curr Opin Genet Dev 2006; 16:476-84. [PMID: 16914306 DOI: 10.1016/j.gde.2006.08.005] [Citation(s) in RCA: 217] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Accepted: 08/03/2006] [Indexed: 01/02/2023]
Abstract
Polycomb group (PcG) proteins are conserved regulatory proteins that repress transcription of particular target genes in animals and plants. Studies over the past decade have established that most PcG proteins are not classic DNA binding factors but that they exist in multisubunit protein complexes that bind to and modify chromatin. Nevertheless, PcG repression of target genes in Drosophila requires specific cis-regulatory sequences, called Polycomb response elements (PREs), and chromatin immunoprecipitation studies have shown that, in vivo, most PcG proteins are specifically bound at the PREs of target genes. However, the mechanisms by which these PcG protein complexes are recruited to PREs and how they repress transcription are still poorly understood. Recent studies challenge earlier models that invoke covalent histone modifications and chromatin binding as the key steps in the recruitment of PcG proteins to PREs. The available evidence suggests that PREs are largely devoid of nucleosomes and that PRE DNA serves as an assembly platform for many different PcG protein complexes through DNA-protein and protein-protein interactions. The emerging picture suggests that the binding and modification of chromatin by PcG proteins is needed for interaction of PRE-tethered PcG protein complexes with nucleosomes in the flanking chromatin in order to maintain a Polycomb-repressed chromatin state at promoters and coding regions of target genes.
Collapse
Affiliation(s)
- Jürg Müller
- European Molecular Biology Laboratory, Gene Expression Programme, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| | | |
Collapse
|
39
|
Mihaly J, Barges S, Sipos L, Maeda R, Cléard F, Hogga I, Bender W, Gyurkovics H, Karch F. Dissecting the regulatory landscape of the Abd-B gene of the bithorax complex. Development 2006; 133:2983-93. [PMID: 16818450 DOI: 10.1242/dev.02451] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The three homeotic genes of the bithorax complex (BX-C), Ubx, abd-A and Abd-B control the identity of the posterior thorax and all abdominal segments. Large segment-specific cis-regulatory regions control the expression of Ubx, abd-A or Abd-B in each of the segments. These segment-specific cis-regulatory regions span the whole 300 kb of the BX-C and are arranged on the chromosome in the same order as the segments they specify. Experiments with lacZ reporter constructs revealed the existence of several types of regulatory elements in each of the cis-regulatory regions. These include initiation elements, maintenance elements, cell type- or tissue-specific enhancers, chromatin insulators and the promoter targeting sequence. In this paper, we extend the analysis of regulatory elements within the BX-C by describing a series of internal deficiencies that affect the Abd-B regulatory region. Many of the elements uncovered by these deficiencies are further verified in transgenic reporter assays. Our results highlight four key features of the iab-5, iab-6 and iab-7 cis-regulatory region of Abd-B. First, the whole Abd-B region is modular by nature and can be divided into discrete functional domains. Second, each domain seems to control specifically the level of Abd-B expression in only one parasegment. Third, each domain is itself modular and made up of a similar set of definable regulatory elements. And finally, the activity of each domain is absolutely dependent on the presence of an initiator element.
Collapse
Affiliation(s)
- Jozsef Mihaly
- Institute of Genetics, Biological Research Center, Hungarian Academy of Sciences, 6723 Szeged, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
As one of two Drosophila Hox clusters, the bithorax complex (BX-C) is responsible for determining the posterior thorax and each abdominal segment of the fly. Through the dissection of its large cis-regulatory region, biologists have obtained a wealth of knowledge that has informed our understanding of gene expression, chromatin dynamics and gene evolution. This primer attempts to distill and explain our current knowledge about this classic, complex locus.
Collapse
Affiliation(s)
- Robert K Maeda
- Department of Zoology and Animal Biology and National Research Centre Frontiers in Genetics, University of Geneva, 30 quai E. Ansermet, 1211 Geneva-4, Switzerland
| | | |
Collapse
|
41
|
Schwartz YB, Kahn TG, Nix DA, Li XY, Bourgon R, Biggin M, Pirrotta V. Genome-wide analysis of Polycomb targets in Drosophila melanogaster. Nat Genet 2006; 38:700-5. [PMID: 16732288 DOI: 10.1038/ng1817] [Citation(s) in RCA: 457] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2006] [Accepted: 05/01/2006] [Indexed: 11/09/2022]
Abstract
Polycomb group (PcG) complexes are multiprotein assemblages that bind to chromatin and establish chromatin states leading to epigenetic silencing. PcG proteins regulate homeotic genes in flies and vertebrates, but little is known about other PcG targets and the role of the PcG in development, differentiation and disease. Here, we determined the distribution of the PcG proteins PC, E(Z) and PSC and of trimethylation of histone H3 Lys27 (me3K27) in the D. melanogaster genome. At more than 200 PcG target genes, binding sites for the three PcG proteins colocalize to presumptive Polycomb response elements (PREs). In contrast, H3 me3K27 forms broad domains including the entire transcription unit and regulatory regions. PcG targets are highly enriched in genes encoding transcription factors, but they also include genes coding for receptors, signaling proteins, morphogens and regulators representing all major developmental pathways.
Collapse
Affiliation(s)
- Yuri B Schwartz
- Rutgers University, Department of Molecular Biology and Biochemistry, 604 Allison Road, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Klymenko T, Papp B, Fischle W, Köcher T, Schelder M, Fritsch C, Wild B, Wilm M, Müller J. A Polycomb group protein complex with sequence-specific DNA-binding and selective methyl-lysine-binding activities. Genes Dev 2006; 20:1110-22. [PMID: 16618800 PMCID: PMC1472471 DOI: 10.1101/gad.377406] [Citation(s) in RCA: 293] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Polycomb response elements (PREs) are specific cis-regulatory sequences needed for transcriptional repression of HOX and other target genes by Polycomb group (PcG) proteins. Among the many PcG proteins known in Drosophila, Pho is the only sequence-specific DNA-binding protein. To gain insight into the function of Pho, we purified Pho protein complexes from Drosophila embryos and found that Pho exists in two distinct protein assemblies: a Pho-dINO80 complex containing the Drosophila INO80 nucleosome-remodeling complex, and a Pho-repressive complex (PhoRC) containing the uncharacterized gene product dSfmbt. Analysis of PhoRC reveals that dSfmbt is a novel PcG protein that is essential for HOX gene repression in Drosophila. PhoRC is bound at HOX gene PREs in vivo, and this targeting strictly depends on Pho-binding sites. Characterization of dSfmbt protein shows that its MBT repeats have unique discriminatory binding activity for methylated lysine residues in histones H3 and H4; the MBT repeats bind mono- and di-methylated H3-K9 and H4-K20 but fail to interact with these residues if they are unmodified or tri-methylated. Our results establish PhoRC as a novel Drosophila PcG protein complex that combines DNA-targeting activity (Pho) with a unique modified histone-binding activity (dSfmbt). We propose that PRE-tethered PhoRC selectively interacts with methylated histones in the chromatin flanking PREs to maintain a Polycomb-repressed chromatin state.
Collapse
Affiliation(s)
- Tetyana Klymenko
- Gene Expression Programme, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Pultz MA, Westendorf L, Gale SD, Hawkins K, Lynch J, Pitt JN, Reeves NL, Yao JCY, Small S, Desplan C, Leaf DS. A major role for zygotichunchbackin patterning theNasoniaembryo. Development 2005; 132:3705-15. [PMID: 16077090 DOI: 10.1242/dev.01939] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Developmental genetic analysis has shown that embryos of the parasitoid wasp Nasonia vitripennis depend more on zygotic gene products to direct axial patterning than do Drosophila embryos. In Drosophila, anterior axial patterning is largely established by bicoid, a rapidly evolving maternal-effect gene, working with hunchback, which is expressed both maternally and zygotically. Here,we focus on a comparative analysis of Nasonia hunchback function and expression. We find that a lesion in Nasonia hunchback is responsible for the severe zygotic headless mutant phenotype, in which most head structures and the thorax are deleted, as are the three most posterior abdominal segments. This defines a major role for zygotic Nasonia hunchback in anterior patterning, more extensive than the functions described for hunchback in Drosophila or Tribolium. Despite the major zygotic role of Nasonia hunchback, we find that it is strongly expressed maternally, as well as zygotically. NasoniaHunchback embryonic expression appears to be generally conserved; however, the mRNA expression differs from that of Drosophila hunchback in the early blastoderm. We also find that the maternal hunchback message decays at an earlier developmental stage in Nasonia than in Drosophila, which could reduce the relative influence of maternal products in Nasonia embryos. Finally, we extend the comparisons of Nasonia and Drosophila hunchback mutant phenotypes, and propose that the more severe Nasonia hunchback mutant phenotype may be a consequence of differences in functionally overlapping regulatory circuitry.
Collapse
Affiliation(s)
- Mary Anne Pultz
- Department of Biology, Western Washington University, Bellingham, WA 98225, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Katoh-Fukui Y, Owaki A, Toyama Y, Kusaka M, Shinohara Y, Maekawa M, Toshimori K, Morohashi KI. Mouse Polycomb M33 is required for splenic vascular and adrenal gland formation through regulating Ad4BP/SF1 expression. Blood 2005; 106:1612-20. [PMID: 15899914 DOI: 10.1182/blood-2004-08-3367] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mice with disrupted mammalian PcG (Polycomb group) genes commonly show skeletal transformation of anterior-posterior identities. Disruption of the murine M33 gene, a PcG member, displayed posterior transformation of the vertebral columns and sternal ribs. In addition, failure of T-cell expansion and hypoplasia and sex-reversal of the gonads, have been observed. In the present study, we identified defects in the splenic and adrenal formation of M33-knock-out (KO) mice on a C57BL/6 genetic background. The spleen in these animals was smaller than in the wild-type mice and was spotted red because of nonuniform distribution of blood cells. Histologic examination revealed disorganization of the vascular endothelium and its surrounding structures, and immunohistochemistry demonstrated disturbances in vascular formation and colonization of immature hematopoietic cells. These splenic phenotypes observed in the M33-KO mice were quite similar to those seen in Ad4BP/SF1 (Nr5a1) knock-outs. Moreover, the adrenal glands of M33-KO and Ad4BP/SF1 heterozygous KO mice were smaller than those of the wild-type mice. Western blot, immunohistochemistry, and reverse transcriptase-polymerase chain reaction (RT-PCR) analyses of the M33 knock-outs all indicated significantly low expression of adrenal 4 binding protein/steroidogenic factor-1 (Ad4BP/SF-1), indicating that M33 is an essential upstream regulator of Ad4BP/SF1. In agreement with these observations, chromatin immunoprecipitation assays with adrenocortical Y-1 cells revealed direct binding of the M33-containing PcG to the Ad4BP/SF1 gene locus.
Collapse
Affiliation(s)
- Yuko Katoh-Fukui
- Division for Sex Differentiation, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Mito T, Sarashina I, Zhang H, Iwahashi A, Okamoto H, Miyawaki K, Shinmyo Y, Ohuchi H, Noji S. Non-canonical functions of hunchback in segment patterning of the intermediate germ cricket Gryllus bimaculatus. Development 2005; 132:2069-79. [PMID: 15788457 DOI: 10.1242/dev.01784] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In short and intermediate germ insects, only the anterior segments are specified during the blastoderm stage, leaving the posterior segments to be specified later, during embryogenesis, which differs from the segmentation process in Drosophila, a long germ insect. To elucidate the segmentation mechanisms of short and intermediate germ insects, we have investigated the orthologs of the Drosophila segmentation genes in a phylogenetically basal, intermediate germ insect, Gryllus bimaculatus(Gb). Here, we have focused on its hunchback ortholog(Gb'hb), because Drosophila hb functions as a gap gene during anterior segmentation, referred as a canonical function. Gb'hb is expressed in a gap pattern during the early stages of embryogenesis, and later in the posterior growth zone. By means of embryonic and parental RNA interference for Gb'hb, we found the following: (1) Gb'hb regulates Hox gene expression to specify regional identity in the anterior region, as observed in Drosophila and Oncopeltus; (2) Gb'hb controls germband morphogenesis and segmentation of the anterior region, probably through the pair-rule gene, even-skipped at least; (3) Gb'hb may act as a gap gene in a limited region between the posterior of the prothoracic segment and the anterior of the mesothoracic segment; and (4) Gb'hb is involved in the formation of at least seven abdominal segments, probably through its expression in the posterior growth zone, which is not conserved in Drosophila. These findings suggest that Gb'hb functions in a non-canonical manner in segment patterning. A comparison of our results with the results for other derived species revealed that the canonical hbfunction may have evolved from the non-canonical hb functions during evolution.
Collapse
Affiliation(s)
- Taro Mito
- Department of Biological Science and Technology, Faculty of Engineering, The University of Tokushima, 2-1 Minami-Jyosanjima-cho, Tokushima City 770-8506, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Negre B, Casillas S, Suzanne M, Sánchez-Herrero E, Akam M, Nefedov M, Barbadilla A, de Jong P, Ruiz A. Conservation of regulatory sequences and gene expression patterns in the disintegrating Drosophila Hox gene complex. Genome Res 2005; 15:692-700. [PMID: 15867430 PMCID: PMC1088297 DOI: 10.1101/gr.3468605] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2004] [Accepted: 01/26/2005] [Indexed: 11/25/2022]
Abstract
Homeotic (Hox) genes are usually clustered and arranged in the same order as they are expressed along the anteroposterior body axis of metazoans. The mechanistic explanation for this colinearity has been elusive, and it may well be that a single and universal cause does not exist. The Hox-gene complex (HOM-C) has been rearranged differently in several Drosophila species, producing a striking diversity of Hox gene organizations. We investigated the genomic and functional consequences of the two HOM-C splits present in Drosophila buzzatii. Firstly, we sequenced two regions of the D. buzzatii genome, one containing the genes labial and abdominal A, and another one including proboscipedia, and compared their organization with that of D. melanogaster and D. pseudoobscura in order to map precisely the two splits. Then, a plethora of conserved noncoding sequences, which are putative enhancers, were identified around the three Hox genes closer to the splits. The position and order of these enhancers are conserved, with minor exceptions, between the three Drosophila species. Finally, we analyzed the expression patterns of the same three genes in embryos and imaginal discs of four Drosophila species with different Hox-gene organizations. The results show that their expression patterns are conserved despite the HOM-C splits. We conclude that, in Drosophila, Hox-gene clustering is not an absolute requirement for proper function. Rather, the organization of Hox genes is modular, and their clustering seems the result of phylogenetic inertia more than functional necessity.
Collapse
Affiliation(s)
- Bárbara Negre
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Déjardin J, Rappailles A, Cuvier O, Grimaud C, Decoville M, Locker D, Cavalli G. Recruitment of Drosophila Polycomb group proteins to chromatin by DSP1. Nature 2005; 434:533-8. [PMID: 15791260 DOI: 10.1038/nature03386] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2004] [Accepted: 01/25/2005] [Indexed: 11/09/2022]
Abstract
Polycomb and trithorax group (PcG and trxG) proteins maintain silent and active transcriptional states, respectively, throughout development. In Drosophila, PcG and trxG proteins associate with DNA regions named Polycomb and trithorax response elements (PRE and TRE), but the mechanisms of recruitment are unknown. We previously characterized a minimal element from the regulatory region of the Abdominal-B gene, termed Ab-Fab. Ab-Fab contains a PRE and a TRE and is able to maintain repressed or active chromatin states during development. Here we show that the Dorsal switch protein 1 (DSP1), a Drosophila HMGB2 homologue, binds to a sequence present within Ab-Fab and in other characterized PREs. Addition of this motif to an artificial sequence containing Pleiohomeotic and GAGA factor consensus sites is sufficient for PcG protein recruitment in vivo. Mutations that abolish DSP1 binding to Ab-Fab and to a PRE from the engrailed locus lead to loss of PcG protein binding, loss of silencing, and switching of these PREs into constitutive TREs. The binding of DSP1 to PREs is therefore important for the recruitment of PcG proteins.
Collapse
Affiliation(s)
- Jérôme Déjardin
- Institute of Human Genetics, CNRS, 141 rue de la Cardonille, F-34396 Montpellier Cedex 5, France
| | | | | | | | | | | | | |
Collapse
|
48
|
Déjardin J, Cavalli G. Epigenetic inheritance of chromatin states mediated by Polycomb and trithorax group proteins in Drosophila. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2005; 38:31-63. [PMID: 15881890 DOI: 10.1007/3-540-27310-7_2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Proteins of the Polycomb group (PcG) and of the trithorax group (trxG) are involved in the regulation of key developmental genes, such as homeotic genes. PcG proteins maintain silent states of gene expression, while the trxG of genes counteracts silencing with a chromatin opening function. These factors form multimeric complexes that act on their target chromatin by regulating post-translational modifications of histones as well as ATP-dependent remodelling of nucleosome positions. In Drosophila, PcG and trxG complexes are recruited to specific DNA elements named as PcG and trxG response elements (PREs and TREs, respectively). Once recruited, these complexes seem to be able to establish silent or open chromatin states that can be inherited through multiple cell divisions even after decay of the primary silencing or activating signal. In recent years, many components of both groups of factors have been characterized, and the molecular mechanisms underlying their recruitment as well as their mechanism of action on their target genes have been partly elucidated. This chapter summarizes our current knowledge on these aspects and outlines crucial open questions in the field.
Collapse
Affiliation(s)
- Jérôme Déjardin
- Institute of Human Genetics, CNRS, 34396 Montpellier Cedex 5, France
| | | |
Collapse
|
49
|
Kirmizis A, Farnham PJ. Genomic approaches that aid in the identification of transcription factor target genes. Exp Biol Med (Maywood) 2004; 229:705-21. [PMID: 15337825 DOI: 10.1177/153537020422900803] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
It is well-established that deregulation of the transcriptional activity of many different genes has been causatively linked to human diseases. In cancer, altered patterns of gene expression are often the result of the inappropriate expression of a specific transcriptional activator or repressor. Functional studies of cancer-specific transcription factors have relied upon the study of candidate target genes. More recently, gene expression profiling using DNA microarrays that contain tens of thousands of cDNAs corresponding to human mRNAs has allowed for a large-scale identification of genes that respond to increased or decreased levels of a particular transcription factor. However, such experiments do not distinguish direct versus indirect target genes. Coupling chromatin immunoprecipitation to micro-arrays that contain genomic regions (ChIP-chip) has provided investigators with the ability to identify, in a high-throughput manner, promoters directly bound by specific transcription factors. Clearly, knowledge gained from both types of arrays provides complementary information, allowing greater confidence that a transcription factor regulates a particular gene. In this review, we focus on Polycomb group (PcG) complexes as an example of transcriptional regulators that are implicated in various cellular processes but about which very little is known concerning their target gene specificity. We provide examples of how both expression arrays and ChIP-chip microarray-based assays can be used to identify target genes of a particular PcG complex and suggest improvements in the application of array technology for faster and more comprehensive identification of directly regulated target genes.
Collapse
Affiliation(s)
- Antonis Kirmizis
- McArdle Laboratory for Cancer Research, University of Wisconsin Medical School, Madison 533706, USA
| | | |
Collapse
|
50
|
Schroeder MD, Pearce M, Fak J, Fan H, Unnerstall U, Emberly E, Rajewsky N, Siggia ED, Gaul U. Transcriptional control in the segmentation gene network of Drosophila. PLoS Biol 2004; 2:E271. [PMID: 15340490 PMCID: PMC514885 DOI: 10.1371/journal.pbio.0020271] [Citation(s) in RCA: 201] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2003] [Accepted: 06/17/2004] [Indexed: 12/21/2022] Open
Abstract
The segmentation gene network of Drosophila consists of maternal and zygotic factors that generate, by transcriptional (cross-) regulation, expression patterns of increasing complexity along the anterior-posterior axis of the embryo. Using known binding site information for maternal and zygotic gap transcription factors, the computer algorithm Ahab recovers known segmentation control elements (modules) with excellent success and predicts many novel modules within the network and genome-wide. We show that novel module predictions are highly enriched in the network and typically clustered proximal to the promoter, not only upstream, but also in intronic space and downstream. When placed upstream of a reporter gene, they consistently drive patterned blastoderm expression, in most cases faithfully producing one or more pattern elements of the endogenous gene. Moreover, we demonstrate for the entire set of known and newly validated modules that Ahab's prediction of binding sites correlates well with the expression patterns produced by the modules, revealing basic rules governing their composition. Specifically, we show that maternal factors consistently act as activators and that gap factors act as repressors, except for the bimodal factor Hunchback. Our data suggest a simple context-dependent rule for its switch from repressive to activating function. Overall, the composition of modules appears well fitted to the spatiotemporal distribution of their positive and negative input factors. Finally, by comparing Ahab predictions with different categories of transcription factor input, we confirm the global regulatory structure of the segmentation gene network, but find odd skipped behaving like a primary pair-rule gene. The study expands our knowledge of the segmentation gene network by increasing the number of experimentally tested modules by 50%. For the first time, the entire set of validated modules is analyzed for binding site composition under a uniform set of criteria, permitting the definition of basic composition rules. The study demonstrates that computational methods are a powerful complement to experimental approaches in the analysis of transcription networks.
Collapse
Affiliation(s)
- Mark D Schroeder
- 1Laboratory of Developmental Neurogenetics, Rockefeller UniversityNew York, New York, United States of America
| | - Michael Pearce
- 1Laboratory of Developmental Neurogenetics, Rockefeller UniversityNew York, New York, United States of America
| | - John Fak
- 1Laboratory of Developmental Neurogenetics, Rockefeller UniversityNew York, New York, United States of America
| | - HongQing Fan
- 1Laboratory of Developmental Neurogenetics, Rockefeller UniversityNew York, New York, United States of America
| | - Ulrich Unnerstall
- 1Laboratory of Developmental Neurogenetics, Rockefeller UniversityNew York, New York, United States of America
| | - Eldon Emberly
- 2Center for Studies in Physics and Biology, Rockefeller UniversityNew York, New YorkUnited States of America
| | - Nikolaus Rajewsky
- 2Center for Studies in Physics and Biology, Rockefeller UniversityNew York, New YorkUnited States of America
| | - Eric D Siggia
- 2Center for Studies in Physics and Biology, Rockefeller UniversityNew York, New YorkUnited States of America
| | - Ulrike Gaul
- 1Laboratory of Developmental Neurogenetics, Rockefeller UniversityNew York, New York, United States of America
| |
Collapse
|