1
|
Urbisz AZ, Schmelz RM, Małota K, Chajec Ł, Świątek P. Conservative character of the germ-line cyst organization within enchytraeids (Annelida: Clitellata) ovary - New proofs based on two Achaeta species. Micron 2025; 188:103732. [PMID: 39547002 DOI: 10.1016/j.micron.2024.103732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 11/17/2024]
Abstract
Ovaries in a minute and mainly aquatic clitellates, collectively termed microdriles, are usually tiny paired gonads localized, depending on the family/subfamily, in segments VI, XI, XII, or XIII. Sometimes, two pairs of ovaries are present in consecutive segments, or ovaries are unpaired. Usually, accumulating yolk (vitellogenic) oocytes detach from ovaries and float in the coelom cavity. This study presents the microscopical analyses of unpaired ovaries found in two representatives of the genus Achaeta (family Enchytraeidae). The ovary is an inconspicuous organ composed of germ-line cysts uniting early meiotic cells. Cysts comprise 16 synchronously developing cells interconnected via cytoplasmic bridges to the central cytoplasmic mass, termed cytophore. Each interconnected cell has one bridge connecting it to the cytophore. Clustering germ cells are enveloped by elongated somatic cells. The developmental synchrony within cysts is lost when one cell per cyst forms prominent microvilli, gather vast amounts of nutrients (yolk), and becomes an oocyte. The remaining 15 cells do not form microvilli, grow slowly, and are regarded as nurse cells that supply the oocyte with organelles and probably macromolecules. Such cysts detach from the ovary and float freely in the segmental cavity. Nurse cells and vitellogenic oocyte are still connected to the ball-like cytophore. Vitellogenic oocytes gather vast amounts of reserve material, mainly protein spheres. Finally, oocytes lose contact with the cytophore, and nurse cells no longer accompany them. The ovary organization and oogenesis scenario observed in this study are broadly similar to that described for other enchytraeid species, such as Enchytraeus albidus and Grania postclitellochaeta, and have been classified as the "Enchytraeus" type of ovary. The obtained results show that despite the unpaired nature of the Achaeta ovary and some differences in ovary morphology and oogenesis between different enchytraeid taxa, the ovaries of these clitellates are consistently composed of 16-celled germ-line cysts equipped with cytophore. Moreover, the presence of cysts equipped with cytophore in the ovaries of the studied Achaeta specimens provides the subsequent evidence that the formation of such germ-line cysts is a conserved aspect of oogenesis within the Clitellata. This consistency in the ovarian and oogenic patterns underscores the evolutionary conservation of these reproductive traits within the Enchytraeidae and clitellate annelids.
Collapse
Affiliation(s)
- Anna Z Urbisz
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, Katowice 40-007, Poland.
| | | | - Karol Małota
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, Katowice 40-007, Poland
| | - Łukasz Chajec
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, Katowice 40-007, Poland
| | - Piotr Świątek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, Katowice 40-007, Poland
| |
Collapse
|
2
|
Chikami Y, Yahata K. The structural and functional modularity of ovarian follicle epithelium in the pill-millipede Hyleoglomeris japonica Verhoeff, 1936 (Diplopoda: Glomerida: Glomeridae). Tissue Cell 2024; 88:102372. [PMID: 38598872 DOI: 10.1016/j.tice.2024.102372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/12/2024]
Abstract
Ovarian somatic tissues typically surround developing oocytes and play a crucial role in oogenesis across various metazoans, often displaying structural properties specific to their functions. However, there is an absence of evident structural modularity in the follicle epithelium of Myriapoda. We report here two structurally and developmentally distinct domains within the follicle epithelium of the Japanese pill millipede, Hyleoglomeris japonica. The follicle epithelium of H. japonica exhibits a thick cell mass at the apex of the follicle. These cells harbor abundant rough endoplasmic reticulum, mitochondria, Golgi complexes, and numerous microvilli, indicative of synthetic/secretory activities. Moreover, their height increases as oogenesis progresses. In contrast, another region of the epithelium lacks these features. Our findings highlight the presence of structural and functional modularity in the follicle epithelium of H. japonica. We suggest classifying the follicle epithelium of Myriapoda into three types: homogenous epithelia with enhanced synthetic activities, homogenous epithelia with diminished such activities, and heterogeneous epithelia with varying synthetic activities. These findings prompt a reevaluation of the nature of ovarian somatic tissues in Myriapoda as well as in Arthropoda.
Collapse
Affiliation(s)
- Yasuhiko Chikami
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan.
| | - Kensuke Yahata
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan.
| |
Collapse
|
3
|
Barr J, Diegmiller R, Colonnetta MM, Ke W, Imran Alsous J, Stern T, Shvartsman SY, Schedl P. To be or not to be: orb, the fusome and oocyte specification in Drosophila. Genetics 2024; 226:iyae020. [PMID: 38345426 PMCID: PMC10990432 DOI: 10.1093/genetics/iyae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 01/21/2024] [Indexed: 04/05/2024] Open
Abstract
In the fruit fly Drosophila melanogaster, two cells in a cyst of 16 interconnected cells have the potential to become the oocyte, but only one of these will assume an oocyte fate as the cysts transition through regions 2a and 2b of the germarium. The mechanism of specification depends on a polarized microtubule network, a dynein dependent Egl:BicD mRNA cargo complex, a special membranous structure called the fusome and its associated proteins, and the translational regulator orb. In this work, we have investigated the role of orb and the fusome in oocyte specification. We show here that specification is a stepwise process. Initially, orb mRNAs accumulate in the two pro-oocytes in close association with the fusome. This association is accompanied by the activation of the orb autoregulatory loop, generating high levels of Orb. Subsequently, orb mRNAs become enriched in only one of the pro-oocytes, the presumptive oocyte, and this is followed, with a delay, by Orb localization to the oocyte. We find that fusome association of orb mRNAs is essential for oocyte specification in the germarium, is mediated by the orb 3' UTR, and requires Orb protein. We also show that the microtubule minus end binding protein Patronin functions downstream of orb in oocyte specification. Finally, in contrast to a previously proposed model for oocyte selection, we find that the choice of which pro-oocyte becomes the oocyte does not seem to be predetermined by the amount of fusome material in these two cells, but instead depends upon a competition for orb gene products.
Collapse
Affiliation(s)
- Justinn Barr
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Rocky Diegmiller
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Megan M Colonnetta
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Wenfan Ke
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Jasmin Imran Alsous
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Flatiron Institute, Simons Foundation, New York, NY 10010, USA
| | - Tomer Stern
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Stanislav Y Shvartsman
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Flatiron Institute, Simons Foundation, New York, NY 10010, USA
| | - Paul Schedl
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
4
|
Spradling AC. The Ancient Origin and Function of Germline Cysts. Results Probl Cell Differ 2024; 71:3-21. [PMID: 37996670 DOI: 10.1007/978-3-031-37936-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Gamete production in most animal species is initiated within an evolutionarily ancient multicellular germline structure, the germline cyst, whose interconnected premeiotic cells synchronously develop from a single progenitor arising just downstream from a stem cell. Cysts in mice, Drosophila, and many other animals protect developing sperm, while in females, cysts generate nurse cells that guard sister oocytes from transposons (TEs) and help them grow and build a Balbiani body. However, the origin and extreme evolutionary conservation of germline cysts remains a mystery. We suggest that cysts arose in ancestral animals like Hydra and Planaria whose multipotent somatic and germline stem cells (neoblasts) express genes conserved in all animal germ cells and frequently begin differentiation in cysts. A syncytial state is proposed to help multipotent stem cell chromatin transition to an epigenetic state with heterochromatic domains suitable for TE repression and specialized function. Most modern animals now lack neoblasts but have retained stem cells and cysts in their early germlines, which continue to function using this ancient epigenetic strategy.
Collapse
Affiliation(s)
- Allan C Spradling
- Carnegie Institution for Science/Howard Hughes Medical Institute, Baltimore, MD, USA.
| |
Collapse
|
5
|
Diak N, Śliwińska MA, Student S, Świątek P. The three-dimensional conformation and activity of mitochondria in syncytial male germ line-cysts of medicinal leeches. Cell Tissue Res 2023; 394:325-342. [PMID: 37642734 PMCID: PMC10638204 DOI: 10.1007/s00441-023-03825-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 08/15/2023] [Indexed: 08/31/2023]
Abstract
We studied the spatial conformation and activity of mitochondria in the developing syncytial male germline cysts during spermatogenesis of the medicinal leeches using light, fluorescent, transmission electron microscopy, and serial block-face scanning electron microscopy. In cysts with spermatogonia and spermatocytes, mitochondria form networks and are in a dynamic hyperfusion state, while in cysts with spermatids, a single huge mitochondrion is observed. As spermiogenesis progresses, this huge mitochondrion is finally located in the future midpiece. The highest activity, in terms of membrane potential, of the mitochondria in H. medicinalis germline cysts was observed in cysts with spermatocytes; the lowest was in cysts with late elongated spermatids.
Collapse
Affiliation(s)
- Natalia Diak
- University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Bankowa 9, 40-007, Katowice, Poland.
- Department of Medical Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland.
| | - Małgorzata Alicja Śliwińska
- Laboratory of Imaging Tissue Structure and Function, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Ludwika Pasteura 3, 02-093, Warsaw, Poland
| | - Sebastian Student
- Silesian University of Technology, Faculty of Automatic Control, Electronics and Computer Science, Akademicka 16, 44-100, Gliwice, Poland
- Silesian University of Technology, Biotechnology Center, Krzywoustego 8, 44-100, Gliwice, Poland
| | - Piotr Świątek
- University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Bankowa 9, 40-007, Katowice, Poland
| |
Collapse
|
6
|
Pang LY, DeLuca S, Zhu H, Urban JM, Spradling AC. Chromatin and gene expression changes during female Drosophila germline stem cell development illuminate the biology of highly potent stem cells. eLife 2023; 12:RP90509. [PMID: 37831064 PMCID: PMC10575629 DOI: 10.7554/elife.90509] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023] Open
Abstract
Highly potent animal stem cells either self renew or launch complex differentiation programs, using mechanisms that are only partly understood. Drosophila female germline stem cells (GSCs) perpetuate without change over evolutionary time and generate cystoblast daughters that develop into nurse cells and oocytes. Cystoblasts initiate differentiation by generating a transient syncytial state, the germline cyst, and by increasing pericentromeric H3K9me3 modification, actions likely to suppress transposable element activity. Relatively open GSC chromatin is further restricted by Polycomb repression of testis or somatic cell-expressed genes briefly active in early female germ cells. Subsequently, Neijre/CBP and Myc help upregulate growth and reprogram GSC metabolism by altering mitochondrial transmembrane transport, gluconeogenesis, and other processes. In all these respects GSC differentiation resembles development of the totipotent zygote. We propose that the totipotent stem cell state was shaped by the need to resist transposon activity over evolutionary timescales.
Collapse
Affiliation(s)
- Liang-Yu Pang
- Howard Hughes Medical Institute, Carnegie Institution for ScienceBaltimoreUnited States
| | - Steven DeLuca
- Howard Hughes Medical Institute, Carnegie Institution for ScienceBaltimoreUnited States
| | - Haolong Zhu
- Howard Hughes Medical Institute, Carnegie Institution for ScienceBaltimoreUnited States
| | - John M Urban
- Howard Hughes Medical Institute, Carnegie Institution for ScienceBaltimoreUnited States
| | - Allan C Spradling
- Howard Hughes Medical Institute, Carnegie Institution for ScienceBaltimoreUnited States
| |
Collapse
|
7
|
Świątek P, Thounaojam RS, Singh TB, James S, Gajda Ł, Małota K, Raś D, Urbisz AZ. Ovary organization and ultrastructure in six species of Amynthas and Metaphire earthworms (Annelida, Crassiclitellata, Megascolecidae). ZOOLOGY 2023; 160:126109. [PMID: 37586295 DOI: 10.1016/j.zool.2023.126109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 08/02/2023] [Accepted: 08/08/2023] [Indexed: 08/18/2023]
Abstract
Ovaries in earthworms belonging to the family Megascolecidae are paired structures attached to the septum in the anterior part of the XIII segment. They are fan to rosette shaped with numerous rows of growing oocytes, known as egg strings, radiating from the ovary center towards the segmental cavity. The histological and ultrastructural ovary organization in megascolecids and the course of oogenesis remain unknown. The paper presents the results of light and electron microscopy analyses of ovaries in six megascolecid species, three from the genus Amynthas and three from Metaphire. Both parthenogenetic and sexually reproducing species were included in the study. The organization and ultrastructure of ovaries in all studied species are broadly similar. Considering the histological organization of ovaries, they could be divided into two zones. Zone I (proximal, close to the connection with the septum) is tightly packed with germline and somatic cells. Germ cells are interconnected via intercellular bridges and thin strands of the central cytoplasm (known as cytophore) and form syncytial cysts. Cysts unite oogonia, early meiotic cells (till diplotene), and clustering cells develop synchronously. During diplotene, interconnected cells lose developmental synchrony; most probably, one cell per cyst grows faster than others, detaches from the cysts, and becomes an oocyte. The remaining cells grow slightly and are still interconnected via the thin and reticular cytophore; these cells are considered nurse cells. Zone II has a form of egg strings where growing oocytes are isolated one from another by thin somatic cells and form short cords. We present the ultrastructural details of germline and somatic cells. We propose the term "Amynthas" type of ovaries for this ovary organization. We suppose that such ovaries are characteristic of other megascolecids and related families.
Collapse
Affiliation(s)
- Piotr Świątek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland.
| | - Rojen Singh Thounaojam
- Department of Life Sciences (Zoology), Manipur University, Canchipur 795003, Manipur, India
| | - Th Binoy Singh
- Department of Life Sciences (Zoology), Manipur University, Canchipur 795003, Manipur, India
| | - Samuel James
- Regenerative Organic Agriculture Department, Maharishi International University, Fairfield, IA 52557, USA
| | - Łukasz Gajda
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland
| | - Karol Małota
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland
| | - Dominika Raś
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland
| | - Anna Z Urbisz
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland
| |
Collapse
|
8
|
Piazza YG, Czuchlej SC, Gómez ML, Meijide FJ. Gonadal morphogenesis in the South American toad Rhinella Arenarum (Anura, Bufonidae) unveils an extremely delayed rate of sex differentiation. J Morphol 2023; 284:e21611. [PMID: 37458081 DOI: 10.1002/jmor.21611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 05/26/2023] [Accepted: 06/06/2023] [Indexed: 07/18/2023]
Abstract
Among anurans, Bufonids are recognized for their retarded sex differentiation. However, few studies have addressed gonadal morphogenesis in this family. Here, we analyzed the early gonadogenesis in laboratory-reared Rhinella arenarum. Few germ cells were identified in the genital ridge at Gosner stage 26. At metamorphosis, somatic cells and germ cells were observed in the outer region of the undifferentiated gonad, whereas the central region was occupied by stromal tissue. A cortico-medullary organization was first recognized on Day 7 postmetamorphosis. The cortex was composed of germ cells and encompassing epithelial cells, whereas the medulla contained cells presumptively derived from the coelomic epithelium. Medullary somatic cells formed metameric knots along the length of the undifferentiated gonad. Consequently, a series of 12-14 gonomeres became recognizable externally. The first sign of ovarian differentiation was observed on Day 15 postmetamorphosis, when a cavity was formed within each gonomere. In contrast, testes were recognized by a uniform distribution of germ cells and intermingled somatic cells, as the division into cortex and medulla was lost. By Day 50 postmetamorphosis, the gonadal metameric organization was still apparent both in the ovaries and testes. Follicles containing diplotene oocytes were observed within the ovary. In the testis, an incipient lobular architecture was recognized without initiation of meiosis within the seminiferous cords. These observations reveal an extremely delayed gonadal development in R. arenarum, not reported previously for other anuran species. In addition, the late differentiation of the gonads contrasted with the early appearance of follicles in the Bidder's organ. Lastly, we observed that delayed metamorphs exhibited an undifferentiated gonad, demonstrating that gonadogenesis in this species is more dependent on somatic development than on age.
Collapse
Affiliation(s)
- Yanina G Piazza
- Laboratorio de Ecotoxicología Acuática, DBBE and IBBEA-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, Argentina
| | - Silvia C Czuchlej
- Laboratorio de Ecotoxicología Acuática, DBBE and IBBEA-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, Argentina
| | - María L Gómez
- Instituto de Bio y Geociencias del NOA, CONICET, Centro Científico Tecnológico-Salta, Salta, Argentina
| | - Fernando J Meijide
- Laboratorio de Ecotoxicología Acuática, DBBE and IBBEA-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
9
|
Wen Y, Zhan J, Li C, Li P, Wang C, Wu J, Xu Y, Zhang Y, Zhou Y, Li E, Nie H, Wu X. G-protein couple receptor (GPER1) plays an important role during ovarian folliculogenesis and early development of the Chinese Alligator. Anim Reprod Sci 2023; 255:107295. [PMID: 37422950 DOI: 10.1016/j.anireprosci.2023.107295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/30/2023] [Accepted: 07/02/2023] [Indexed: 07/11/2023]
Abstract
The critical role of the G protein-coupled receptor 1 (GPER1), a member of the seven-transmembrane G protein-coupled receptor family, in the functional regulation of oocytes accumulated abundant theories in the early research on model animals. However, the full-length cDNA encoding GPER1 and its role in the folliculogenesis has not been illustrated in crocodilians. 0.5, 3, and 12 months old Alligator sinensis cDNA samples were used to clone the full-length cDNA encoding GPER1. Immunolocalization and quantitative analysis were performed using Immunofluorescence technique, RT-PCR and Western blot. Simultaneously, studies on GPER1's promoter deletion and cis-acting transcriptional regulation mechanism were conducted. Immunolocalization staining for the germline marker DDX4 and GPER1 demonstrated that DDX4-positive oocytes were clustered tightly together within the nests, whereas scarcely any detectable GPER1 was present in the oocytes nest in Stage I. After that, occasionally GPER1-positive immunosignal was observed in oocytes and somatic cells additional with the primordial follicles, and it was mainly located at the granulosa cells or thecal cells within the early PFs in the Stage III. The single mutation of the putative SP1 motif, double mutating of Ets/SP1 and SP1/CRE binding sites all depressed promoter activities. This result will help to investigate the role of GPER1 in the early folliculogenesis of A. sinensis.
Collapse
Affiliation(s)
- Yue Wen
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui Province, 241000, People's Republic of China; Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, People's Republic of China
| | - Jixiang Zhan
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui Province, 241000, People's Republic of China; Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, People's Republic of China
| | - Changcheng Li
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui Province, 241000, People's Republic of China; Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, People's Republic of China
| | - Pengfei Li
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui Province, 241000, People's Republic of China; Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, People's Republic of China
| | - Chong Wang
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui Province, 241000, People's Republic of China; Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, People's Republic of China
| | - Jie Wu
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui Province, 241000, People's Republic of China; Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, People's Republic of China
| | - Yunlu Xu
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui Province, 241000, People's Republic of China; Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, People's Republic of China
| | - Yuqian Zhang
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui Province, 241000, People's Republic of China; Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, People's Republic of China
| | - Yongkang Zhou
- Alligator Research Center of Anhui Province, Xuanzhou 242000, People's Republic of China
| | - En Li
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui Province, 241000, People's Republic of China; Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, People's Republic of China
| | - Haitao Nie
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui Province, 241000, People's Republic of China; Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, People's Republic of China.
| | - Xiaobing Wu
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui Province, 241000, People's Republic of China; Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, People's Republic of China.
| |
Collapse
|
10
|
Sahin GN, Yildirim RM, Seli E. Embryonic arrest: causes and implications. Curr Opin Obstet Gynecol 2023; 35:184-192. [PMID: 37039141 DOI: 10.1097/gco.0000000000000871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
PURPOSE OF REVIEW Embryonic arrest is a key determinant of the number of euploid blastocysts obtained after IVF. Here, we review factors that are implicated in the developmental arrest of preimplantation embryos and their relevance for assisted reproduction outcomes. RECENT FINDINGS Among the treatment options available to infertile women, IVF is the one associated with most favorable outcomes. The cumulative pregnancy rates in women undergoing IVF are determined by aneuploidy rate (age), ovarian response to stimulation (ovarian reserve), and the rate of embryo developmental arrest. Mutations in maternal effect genes, especially those encoding for subcortical maternal complex, have been implicated in human embryo developmental arrest. In addition, perturbation of biological processes, such as mitochondrial unfolded protein response and long noncoding RNA regulatory pathways, may play a role. However, how each of these factors contributes to embryos' arrest in different cohorts and age groups has not been determined. SUMMARY Arrest of human embryos during preimplantation development is a common occurrence and is partly responsible for the limited number of euploid blastocysts obtained in assisted reproduction cycles. Although genetic and metabolic causes have been implicated, the mechanisms responsible for human embryo developmental arrest remain poorly characterized.
Collapse
Affiliation(s)
- Gizem N Sahin
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Raziye M Yildirim
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Emre Seli
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
- IVIRMA New Jersey, Basking Ridge, New Jersey, USA
| |
Collapse
|
11
|
Cabrita B, Martinho RG. Genetic and Epigenetic Regulation of Drosophila Oocyte Determination. J Dev Biol 2023; 11:21. [PMID: 37367475 DOI: 10.3390/jdb11020021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/18/2023] [Accepted: 05/20/2023] [Indexed: 06/28/2023] Open
Abstract
Primary oocyte determination occurs in many organisms within a germ line cyst, a multicellular structure composed of interconnected germ cells. However, the structure of the cyst is itself highly diverse, which raises intriguing questions about the benefits of this stereotypical multicellular environment for female gametogenesis. Drosophila melanogaster is a well-studied model for female gametogenesis, and numerous genes and pathways critical for the determination and differentiation of a viable female gamete have been identified. This review provides an up-to-date overview of Drosophila oocyte determination, with a particular emphasis on the mechanisms that regulate germ line gene expression.
Collapse
Affiliation(s)
- Brigite Cabrita
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Agra do Crasto, Edifício 30, 3810-193 Aveiro, Portugal
| | - Rui Gonçalo Martinho
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Agra do Crasto, Edifício 30, 3810-193 Aveiro, Portugal
| |
Collapse
|
12
|
Beachum AN, Hinnant TD, Williams AE, Powell AM, Ables ET. β-importin Tnpo-SR promotes germline stem cell maintenance and oocyte differentiation in female Drosophila. Dev Biol 2023; 494:1-12. [PMID: 36450333 PMCID: PMC9870978 DOI: 10.1016/j.ydbio.2022.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/09/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022]
Abstract
Germ cell development requires interplay between factors that balance cell fate and division. Early in their development, germ cells in many organisms divide mitotically with incomplete cytokinesis. Key regulatory events then lead to the specification of mature gametes, marked by the switch to a meiotic cell cycle program. Though the regulation of germ cell proliferation and meiosis are well understood, how these events are coordinated during development remains incompletely described. Originally characterized in their role as nucleo-cytoplasmic shuttling proteins, β-importins exhibit diverse functions during male and female gametogenesis. Here, we describe novel, distinct roles for the β-importin, Transportin-Serine/Arginine rich (Tnpo-SR), as a regulator of the mitosis to meiosis transition in the Drosophila ovary. We find that Tnpo-SR is necessary for germline stem cell (GSC) establishment and self-renewal, likely by controlling the response of GSCs to bone morphogenetic proteins. Depletion of Tnpo-SR results in germ cell counting defects and loss of oocyte identity. We show that in the absence of Tnpo-SR, proteins typically suppressed in germ cells when they exit mitosis fail to be down-regulated, and oocyte-specific factors fail to accumulate. Together, these findings provide new insight into the balance between germ cell division and differentiation and identify novel roles for β-importins in germ cell development.
Collapse
Affiliation(s)
- Allison N Beachum
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA
| | - Taylor D Hinnant
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA
| | - Anna E Williams
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA
| | - Amanda M Powell
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA
| | - Elizabeth T Ables
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA.
| |
Collapse
|
13
|
Zhang H, Goh FG, Ng LC, Chen CH, Cai Y. Aedes aegypti exhibits a distinctive mode of late ovarian development. BMC Biol 2023; 21:11. [PMID: 36690984 PMCID: PMC9872435 DOI: 10.1186/s12915-023-01511-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 01/05/2023] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Insects live in almost every habitat on earth. To adapt to their diverse environments, insects have developed a myriad of different strategies for reproduction reflected in diverse anatomical and behavioral features that the reproductive systems of females exhibit. Yet, ovarian development remains largely uncharacterized in most species except Drosophila melanogaster (D. melanogaster), a high Diptera model. In this study, we investigated the detailed developmental process of the ovary in Aedes aegypti (Ae. aegypti), a major vector of various disease-causing pathogens that inhabits tropical and subtropical regions. RESULTS Compared with Drosophila melanogaster, a model of higher Diptera, the processes of pole cell formation and gonad establishment during embryonic stage are highly conserved in Ae. aegypti. However, Ae. aegypti utilizes a distinct strategy to form functional ovaries during larval/pupal development. First, during larval stage, Ae. aegypti primordial germ cells (PGCs) undergo a cyst-like proliferation with synchronized divisions and incomplete cytokinesis, leading to the formation of one tightly packed "PGC mass" containing several interconnected cysts, different from D. melanogaster PGCs that divide individually. This cyst-like proliferation is regulated by the target of rapamycin (TOR) pathway upon nutritional status. Second, ecdysone-triggered ovariole formation during metamorphosis exhibits distinct events, including "PGC mass" breakdown, terminal filament cell degeneration, and pre-ovariole migration. These unique developmental features might explain the structural and behavioral differences between Aedes and Drosophila ovaries. Importantly, both cyst-like proliferation and distinct ovariole formation are also observed in Culex quinquefasciatus and Anopheles sinensis, suggesting a conserved mode of ovarian development among mosquito species. In comparison with Drosophila, the ovarian development in Aedes and other mosquitoes might represent a primitive mode in the lower Diptera. CONCLUSIONS Our study reveals a new mode of ovarian development in mosquitoes, providing insights into a better understanding of the reproductive system and evolutionary relationship among insects.
Collapse
Affiliation(s)
- Heng Zhang
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, 117604, Singapore
| | - Feng Guang Goh
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, 117604, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Lee Ching Ng
- Environmental Health Institute, National Environment Agency, 11 Biopolis Way, #06-05/08, Helios Block, Singapore, 138667, Singapore
| | - Chun Hong Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli, 350401, Taiwan
| | - Yu Cai
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, 117604, Singapore.
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore.
| |
Collapse
|
14
|
Williams AE, Ables ET. Visualizing Fusome Morphology via Tubulin Immunofluorescence in Drosophila Ovarian Germ Cells. Methods Mol Biol 2023; 2626:135-150. [PMID: 36715903 PMCID: PMC10088872 DOI: 10.1007/978-1-0716-2970-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In many species, oocytes are initially formed by the mitotic divisions of germline stem cells and their differentiating daughters. These progenitor cells are frequently interconnected in structures called cysts, which may function to safeguard oocyte quality. In Drosophila, an essential germline-specific organelle called the fusome helps maintain and coordinate the mitotic divisions of both germline stem cells and cyst cells. The fusome also serves as a useful experimental marker to identify germ cells during their mitotic divisions. Fusomes are cytoplasmic organelles composed of microtubules, endoplasmic reticulum-derived vesicles, and a meshwork of membrane skeleton proteins. The fusome branches as mitotic divisions progress, traversing the intercellular bridges of germline stem cell/cystoblast pairs and cysts. Here, we provide a protocol to visualize fusome morphology in fixed tissue by stabilizing microtubules and immunostaining for α-Tubulin and other protein constituents of the fusome. We identify a variety of fluorophore-tagged proteins that are useful for visualizing the fusome and describe how these might be combined experimentally. Taken together, these tools provide a valuable resource to interrogate the genetic control of germline stem cell function, oocyte selection, and asymmetric division.
Collapse
Affiliation(s)
- Anna E Williams
- Department of Biology, East Carolina University, Greenville, NC, USA
- Biochemistry, Cell & Developmental Biology Graduate Program, Emory University, Atlanta, GA, USA
| | - Elizabeth T Ables
- Department of Biology, East Carolina University, Greenville, NC, USA.
| |
Collapse
|
15
|
Spradling AC, Niu W, Yin Q, Pathak M, Maurya B. Conservation of oocyte development in germline cysts from Drosophila to mouse. eLife 2022; 11:83230. [PMID: 36445738 PMCID: PMC9708067 DOI: 10.7554/elife.83230] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/17/2022] [Indexed: 11/30/2022] Open
Abstract
Recent studies show that pre-follicular mouse oogenesis takes place in germline cysts, highly conserved groups of oogonial cells connected by intercellular bridges that develop as nurse cells as well as an oocyte. Long studied in Drosophila and insect gametogenesis, female germline cysts acquire cytoskeletal polarity and traffic centrosomes and organelles between nurse cells and the oocyte to form the Balbiani body, a conserved marker of polarity. Mouse oocyte development and nurse cell dumping are supported by dynamic, cell-specific programs of germline gene expression. High levels of perinatal germ cell death in this species primarily result from programmed nurse cell turnover after transfer rather than defective oocyte production. The striking evolutionary conservation of early oogenesis mechanisms between distant animal groups strongly suggests that gametogenesis and early embryonic development in vertebrates and invertebrates share even more in common than currently believed.
Collapse
Affiliation(s)
- Allan C Spradling
- Carnegie Institution for Science/Howard Hughes Medical Institute, Baltimore, United States
| | - Wanbao Niu
- Carnegie Institution for Science/Howard Hughes Medical Institute, Baltimore, United States
| | - Qi Yin
- Carnegie Institution for Science/Howard Hughes Medical Institute, Baltimore, United States
| | - Madhulika Pathak
- Carnegie Institution for Science/Howard Hughes Medical Institute, Baltimore, United States
| | - Bhawana Maurya
- Carnegie Institution for Science/Howard Hughes Medical Institute, Baltimore, United States
| |
Collapse
|
16
|
Diegmiller R, Nunley H, Shvartsman SY, Imran Alsous J. Quantitative models for building and growing fated small cell networks. Interface Focus 2022; 12:20210082. [PMID: 35865502 PMCID: PMC9184967 DOI: 10.1098/rsfs.2021.0082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/31/2022] [Indexed: 02/07/2023] Open
Abstract
Small cell clusters exhibit numerous phenomena typically associated with complex systems, such as division of labour and programmed cell death. A conserved class of such clusters occurs during oogenesis in the form of germline cysts that give rise to oocytes. Germline cysts form through cell divisions with incomplete cytokinesis, leaving cells intimately connected through intercellular bridges that facilitate cyst generation, cell fate determination and collective growth dynamics. Using the well-characterized Drosophila melanogaster female germline cyst as a foundation, we present mathematical models rooted in the dynamics of cell cycle proteins and their interactions to explain the generation of germline cell lineage trees (CLTs) and highlight the diversity of observed CLT sizes and topologies across species. We analyse competing models of symmetry breaking in CLTs to rationalize the observed dynamics and robustness of oocyte fate specification, and highlight remaining gaps in knowledge. We also explore how CLT topology affects cell cycle dynamics and synchronization and highlight mechanisms of intercellular coupling that underlie the observed collective growth patterns during oogenesis. Throughout, we point to similarities across organisms that warrant further investigation and comment on the extent to which experimental and theoretical findings made in model systems extend to other species.
Collapse
Affiliation(s)
- Rocky Diegmiller
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA,Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Hayden Nunley
- Flatiron Institute, Simons Foundation, New York, NY, USA
| | - Stanislav Y. Shvartsman
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA,Department of Molecular Biology, Princeton University, Princeton, NJ, USA,Flatiron Institute, Simons Foundation, New York, NY, USA
| | | |
Collapse
|
17
|
TCFL5 deficiency impairs the pachytene to diplotene transition during spermatogenesis in the mouse. Sci Rep 2022; 12:10956. [PMID: 35768632 PMCID: PMC9242989 DOI: 10.1038/s41598-022-15167-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 06/20/2022] [Indexed: 11/27/2022] Open
Abstract
Spermatogenesis is a complex, multistep process during which spermatogonia give rise to spermatozoa. Transcription Factor Like 5 (TCFL5) is a transcription factor that has been described expressed during spermatogenesis. In order to decipher the role of TCFL5 during in vivo spermatogenesis, we generated two mouse models. Ubiquitous removal of TCFL5 generated by breeding TCFL5fl/fl with SOX2-Cre mice resulted in sterile males being unable to produce spermatozoa due to a dramatic alteration of the testis architecture presenting meiosis arrest and lack of spermatids. SYCP3, SYCP1 and H1T expression analysis showed that TCFL5 deficiency causes alterations during pachytene/diplotene transition resulting in a meiotic arrest in a diplotene-like stage. Even more, TCFL5 deficient pachytene showed alterations in the number of MLH1 foci and the condensation of the sexual body. In addition, tamoxifen-inducible TCFL5 knockout mice showed, besides meiosis phenotype, alterations in the spermatids elongation process resulting in aberrant spermatids. Furthermore, TCFL5 deficiency increased spermatogonia maintenance genes (Dalz, Sox2, and Dmrt1) but also increased meiosis genes (Syce1, Stag3, and Morc2a) suggesting that the synaptonemal complex forms well, but cannot separate and meiosis does not proceed. TCFL5 is able to bind to the promoter of Syce1, Stag3, Dmrt1, and Syce1 suggesting a direct control of their expression. In conclusion, TCFL5 plays an essential role in spermatogenesis progression being indispensable for meiosis resolution and spermatids maturation.
Collapse
|
18
|
Aprison EZ, Dzitoyeva S, Angeles-Albores D, Ruvinsky I. A male pheromone that improves the quality of the oogenic germline. Proc Natl Acad Sci U S A 2022; 119:e2015576119. [PMID: 35576466 PMCID: PMC9173808 DOI: 10.1073/pnas.2015576119] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 03/24/2022] [Indexed: 11/18/2022] Open
Abstract
Pheromones exchanged by conspecifics are a major class of chemical signals that can alter behavior, physiology, and development. In particular, males and females communicate with potential mating partners via sex pheromones to promote reproductive success. Physiological and developmental mechanisms by which pheromones facilitate progeny production remain largely enigmatic. Here, we describe how a Caenorhabditis elegans male pheromone, ascr#10, improves the oogenic germline. Before most signs of aging become evident, C. elegans hermaphrodites start producing lower-quality gametes characterized by abnormal morphology, increased rates of chromosomal nondisjunction, and higher penetrance of deleterious alleles. We show that exposure to the male pheromone substantially ameliorates these defects and reduces embryonic lethality. ascr#10 stimulates proliferation of germline precursor cells in adult hermaphrodites. Coupled to the greater precursor supply is increased physiological germline cell death, which is required to improve oocyte quality in older mothers. The hermaphrodite germline is sensitive to the pheromone only during a time window, comparable in duration to a larval stage, in early adulthood. During this period, prereproductive adults assess the suitability of the environment for reproduction. Our results identify developmental events that occur in the oogenic germline in response to a male pheromone. They also suggest that the opposite effects of the pheromone on gamete quality and maternal longevity arise from competition over resource allocation between soma and the germline.
Collapse
Affiliation(s)
- Erin Z. Aprison
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| | - Svetlana Dzitoyeva
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| | | | - Ilya Ruvinsky
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| |
Collapse
|
19
|
Niu W, Spradling AC. Mouse oocytes develop in cysts with the help of nurse cells. Cell 2022; 185:2576-2590.e12. [PMID: 35623357 DOI: 10.1016/j.cell.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/07/2022] [Accepted: 05/02/2022] [Indexed: 10/18/2022]
Abstract
Mouse germline cysts, on average, develop into six oocytes supported by 24 nurse cells that transfer cytoplasm and organelles to generate a Balbiani body. We showed that between E14.5 and P5, cysts periodically activate some nurse cells to begin cytoplasmic transfer, which causes them to shrink and turnover within 2 days. Nurse cells die by a programmed cell death (PCD) pathway involving acidification, similar to Drosophila nurse cells, and only infrequently by apoptosis. Prior to initiating transfer, nurse cells co-cluster by scRNA-seq with their pro-oocyte sisters, but during their final 2 days, they cluster separately. The genes promoting oocyte development and nurse cell PCD are upregulated, whereas the genes that repress transfer, such as Tex14, and oocyte factors, such as Nobox and Lhx8, are under-expressed. The transferred nurse cell centrosomes build a cytocentrum that establishes a large microtubule aster in the primordial oocyte that organizes the Balbiani body, defining the earliest oocyte polarity.
Collapse
Affiliation(s)
- Wanbao Niu
- Howard Hughes Medical Institute Research Laboratories, Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218, USA
| | - Allan C Spradling
- Howard Hughes Medical Institute Research Laboratories, Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218, USA.
| |
Collapse
|
20
|
Poprawa I, Chajec Ł, Chachulska-Żymełka A, Wilczek G, Student S, Leśniewska M, Rost-Roszkowska M. Ovaries and testes of Lithobius forficatus (Myriapoda, Chilopoda) react differently to the presence of cadmium in the environment. Sci Rep 2022; 12:6705. [PMID: 35469038 PMCID: PMC9038927 DOI: 10.1038/s41598-022-10664-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 04/11/2022] [Indexed: 01/18/2023] Open
Abstract
Proper reproduction depends on properly functioning gonads (ovaries and testes). Many xenobiotics, including heavy metals, can cause changes in somatic and germ line cells, thus damaging the reproductive capacity. The aim of this study was to investigate the effect of the heavy metal cadmium on the gonads, including germ line and somatic cells. It is important to determine whether cell death processes are triggered in both types of cells in the gonads, and which gonads are more sensitive to the presence of cadmium in the environment. The research was conducted on the soil-dwelling arthropod Lithobius forficatus (Myriapoda, Chilopoda), which is common for European fauna. Animals were cultured in soil supplemented with Cd for different periods (short- and long-term treatment). Gonads were isolated and prepared for qualitative and quantitative analysis, which enabled us to describe all changes which appeared after both the short- and long-term cadmium treatment. The results of our study showed that cadmium affects the structure and ultrastructure of both gonads in soil-dwelling organisms including the activation of cell death processes. However, the male germ line cells are more sensitive to cadmium than female germ line cells. We also observed that germ line cells are protected by the somatic cells of both gonads.
Collapse
Affiliation(s)
- Izabela Poprawa
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland.
| | - Łukasz Chajec
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Alina Chachulska-Żymełka
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Grażyna Wilczek
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Sebastian Student
- Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, Akademicka 16, 44-100, Gliwice, Poland
| | - Małgorzata Leśniewska
- Department of General Zoology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznan, Poland
| | - Magdalena Rost-Roszkowska
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| |
Collapse
|
21
|
Hu Y, Hu X, Li D, Du Z, Shi K, He C, Zhang Y, Zhang D. The APC/C FZY-1/Cdc20 Complex Coordinates With OMA-1 to Regulate the Oocyte-to-Embryo Transition in Caenorhabditis elegans. Front Cell Dev Biol 2021; 9:749654. [PMID: 34722532 PMCID: PMC8554129 DOI: 10.3389/fcell.2021.749654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/27/2021] [Indexed: 11/13/2022] Open
Abstract
During oocyte maturation and the oocyte-to-embryo transition, key developmental regulators such as RNA-binding proteins coordinate translation of particular messenger RNA (mRNAs) and related developmental processes by binding to their cognate maternal mRNAs. In the nematode Caenorhabditis elegans, these processes are regulated by a set of CCCH zinc finger proteins. Oocyte maturation defective-1 (OMA-1) and OMA-2 are two functionally redundant CCCH zinc finger proteins that turnover rapidly during the first embryonic cell division. These turnovers are required for proper transition from oogenesis to embryogenesis. A gain-of-function mutant of OMA-1, oma-1(zu405), stabilizes and delays degradation of OMA-1, resulting in delayed turnover and mis-segregation of other cell fate determinants, which eventually causes embryonic lethality. We performed a large-scale forward genetic screen to identify suppressors of the oma-1(zu405) mutant. We show here that multiple alleles affecting functions of various anaphase promoting complex/cyclosome (APC/C) subunits, including MAT-1, MAT-2, MAT-3, EMB-30, and FZY-1, suppress the gain-of-function mutant of OMA-1. Transcriptome analysis suggested that overall transcription in early embryos occurred after introducing mutations in APC/C genes into the oma-1(zu405) mutant. Mutations in APC/C genes prevent OMA-1 enrichment in P granules and correct delayed degradation of downstream cell fate determinants including pharynx and intestine in excess-1 (PIE-1), posterior segregation-1 (POS-1), muscle excess-3 (MEX-3), and maternal effect germ-cell defective-1 (MEG-1). We demonstrated that only the activator FZY-1, but not FZR-1, is incorporated in the APC/C complex to regulate the oocyte-to-embryo transition. Our findings suggested a genetic relationship linking the APC/C complex and OMA-1, and support a model in which the APC/C complex promotes P granule accumulation and modifies RNA binding of OMA-1 to regulate the oocyte-to-embryo transition process.
Collapse
Affiliation(s)
- Yabing Hu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuewen Hu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dongchen Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenzhen Du
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kun Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenxia He
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Donglei Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
22
|
Wang Y, Feng T, Zhu M, Shi X, Wang Z, Liu S, Zhang X, Zhang J, Zhao S, Zhang J, Ling X, Liu M. PABPN1L assemble into "ring-like" aggregates in the cytoplasm of MII oocytes and is associated with female infertility†. Biol Reprod 2021; 106:83-94. [PMID: 34726234 DOI: 10.1093/biolre/ioab203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/20/2021] [Accepted: 10/27/2021] [Indexed: 11/14/2022] Open
Abstract
Infertility affects 10% - 15% of families worldwide. However, the pathogenesis of female infertility caused by abnormal early embryonic development is not clear. A resent study showed that PABPN1L recruited BTG4 to mRNA 3'-poly(A) tails and was essential for maternal mRNA degradation. Here, we generated an PABPN1L-antibody and found "ring-like" PABPN1L aggregates in the cytoplasm of MII oocytes. PABPN1L-EGFP proteins spontaneously formed"ring-like" aggregates in vitro. This phenomenon is similar with CCR4-NOT catalytic subunit, CNOT7, when it starts deadenylation process in vitro. We constructed two mouse model (Pabpn1l -/- and Pabpn1l tm1a/tm1a) simulating the intron1-exon2 abnormality of human PABPN1L and found that the female was sterile and the male was fertile. Using RNA-Seq, we observed a large-scale up-regulation of RNA in zygotes derived from Pabpn1l-/- MII oocytes. We found that 9222 genes were up-regulated instead of being degraded in the Pabpn1l-♀/+♂zygote. Both the Btg4 and Cnot61 genes are necessary for the deadenylation process and Pabpn1l -/- resembled both the Btg4 and Cnot6l knockouts, where 71.2% genes stabilized in the Btg4-♀/+♂ zygote and 84.2% genes stabilized in the Cnot6l-♀/+♂zygote were also stabilized in Pabpn1l-♀/+♂ zygote. BTG4/CNOT7/CNOT6L was partially co-located with PABPN1L in MII oocytes. The above results suggest that PABPN1L is widely associated with CCR4-NOT-mediated maternal mRNA degradation and PABPN1L variants on intron1-exon2 could be a genetic marker of female infertility. Summary sentence. "Ring-like" PABPN1L aggregates was found in the cytoplasm of MII oocytes and in vitro; intron1-exon2 abnormality of Pabpn1l leads female sterile in mice.
Collapse
Affiliation(s)
- Ying Wang
- State Key Laboratory of Reproductive Medicine, Department of Reproduction, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China
| | - Tianhao Feng
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 211166, China
| | - Mingcong Zhu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 211166, China
| | - Xiaodan Shi
- State Key Laboratory of Reproductive Medicine, Department of Reproduction, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China
| | - Zerui Wang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 211166, China
| | - Siyu Liu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 211166, China
| | - Xin Zhang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 211166, China
| | - Jintao Zhang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 211166, China
| | - Shuqin Zhao
- State Key Laboratory of Reproductive Medicine, Animal Core Facility of Nanjing Medical University, Nanjing 211166, China
| | - Junqiang Zhang
- State Key Laboratory of Reproductive Medicine, Department of Reproduction, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China
| | - Xiufeng Ling
- State Key Laboratory of Reproductive Medicine, Department of Reproduction, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China
| | - Mingxi Liu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 211166, China
| |
Collapse
|
23
|
Diegmiller R, Doherty CA, Stern T, Imran Alsous J, Shvartsman SY. Size scaling in collective cell growth. Development 2021; 148:271938. [PMID: 34463760 DOI: 10.1242/dev.199663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/12/2021] [Indexed: 02/03/2023]
Abstract
Size is a fundamental feature of living entities and is intimately tied to their function. Scaling laws, which can be traced to D'Arcy Thompson and Julian Huxley, have emerged as a powerful tool for studying regulation of the growth dynamics of organisms and their constituent parts. Yet, throughout the 20th century, as scaling laws were established for single cells, quantitative studies of the coordinated growth of multicellular structures have lagged, largely owing to technical challenges associated with imaging and image processing. Here, we present a supervised learning approach for quantifying the growth dynamics of germline cysts during oogenesis. Our analysis uncovers growth patterns induced by the groupwise developmental dynamics among connected cells, and differential growth rates of their organelles. We also identify inter-organelle volumetric scaling laws, finding that nurse cell growth is linear over several orders of magnitude. Our approach leverages the ever-increasing quantity and quality of imaging data, and is readily amenable for studies of collective cell growth in other developmental contexts, including early mammalian embryogenesis and germline development.
Collapse
Affiliation(s)
- Rocky Diegmiller
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA.,Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Caroline A Doherty
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA.,Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Tomer Stern
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA.,Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Jasmin Imran Alsous
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA.,Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA.,Flatiron Institute, Simons Foundation, New York, NY 10010, USA
| | - Stanislav Y Shvartsman
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA.,Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.,Flatiron Institute, Simons Foundation, New York, NY 10010, USA
| |
Collapse
|
24
|
Ben Maamar M, Nilsson EE, Skinner MK. Epigenetic transgenerational inheritance, gametogenesis and germline development†. Biol Reprod 2021; 105:570-592. [PMID: 33929020 PMCID: PMC8444706 DOI: 10.1093/biolre/ioab085] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/12/2021] [Accepted: 04/22/2021] [Indexed: 12/14/2022] Open
Abstract
One of the most important developing cell types in any biological system is the gamete (sperm and egg). The transmission of phenotypes and optimally adapted physiology to subsequent generations is in large part controlled by gametogenesis. In contrast to genetics, the environment actively regulates epigenetics to impact the physiology and phenotype of cellular and biological systems. The integration of epigenetics and genetics is critical for all developmental biology systems at the cellular and organism level. The current review is focused on the role of epigenetics during gametogenesis for both the spermatogenesis system in the male and oogenesis system in the female. The developmental stages from the initial primordial germ cell through gametogenesis to the mature sperm and egg are presented. How environmental factors can influence the epigenetics of gametogenesis to impact the epigenetic transgenerational inheritance of phenotypic and physiological change in subsequent generations is reviewed.
Collapse
Affiliation(s)
- Millissia Ben Maamar
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Eric E Nilsson
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Michael K Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| |
Collapse
|
25
|
Corriero A, Zupa R, Mylonas CC, Passantino L. Atresia of ovarian follicles in fishes, and implications and uses in aquaculture and fisheries. JOURNAL OF FISH DISEASES 2021; 44:1271-1291. [PMID: 34132409 PMCID: PMC8453499 DOI: 10.1111/jfd.13469] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 05/04/2023]
Abstract
Atresia of ovarian follicles, that is the degenerative process of germ cells and their associated somatic cells, is a complex process involving apoptosis, autophagy and heterophagy. Follicular atresia is a normal component of fish oogenesis and it is observed throughout the ovarian cycle, although it is more frequent in regressing ovaries during the postspawning period. An increased occurrence of follicular atresia above physiological rates reduces fish fecundity and even causes reproductive failure in both wild and captive-reared fish stocks, and hence, this phenomenon has a wide range of implications in applied sciences such as fisheries and aquaculture. The present article reviews the available literature on both basic and applied traits of oocyte loss by atresia, including its morpho-physiological aspects and factors that cause a supraphysiological increase of follicular atresia. Finally, the review presents the use of early follicular atresia identification in the selection process of induced spawning in aquaculture and the implications of follicular atresia in fisheries management.
Collapse
Affiliation(s)
- Aldo Corriero
- Department of Emergency and Organ TransplantationSection of Veterinary Clinics and Animal ProductionUniversity of Bari Aldo MoroValenzano (BA)Italy
| | - Rosa Zupa
- Department of Emergency and Organ TransplantationSection of Veterinary Clinics and Animal ProductionUniversity of Bari Aldo MoroValenzano (BA)Italy
| | - Constantinos C. Mylonas
- Institute of Marine Biology, Biotechnology and AquacultureHellenic Center for Marine ResearchCreteGreece
| | - Letizia Passantino
- Department of Emergency and Organ TransplantationSection of Veterinary Clinics and Animal ProductionUniversity of Bari Aldo MoroValenzano (BA)Italy
| |
Collapse
|
26
|
Shao B, Diegmiller R, Shvartsman SY. Collective oscillations of coupled cell cycles. Biophys J 2021; 120:4242-4251. [PMID: 34197797 DOI: 10.1016/j.bpj.2021.06.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/15/2021] [Accepted: 06/22/2021] [Indexed: 11/19/2022] Open
Abstract
Problems with networks of coupled oscillators arise in multiple contexts, commonly leading to the question about the dependence of network dynamics on network structure. Previous work has addressed this question in Drosophila oogenesis, in which stable cytoplasmic bridges connect the future oocyte to the supporting nurse cells that supply the oocyte with molecules and organelles needed for its development. To increase their biosynthetic capacity, nurse cells enter the endoreplication program, a special form of the cell cycle formed by the iterated repetition of growth and synthesis phases without mitosis. Recent studies have revealed that the oocyte orchestrates nurse cell endoreplication cycles, based on retrograde (oocyte to nurse cells) transport of a cell cycle inhibitor produced by the nurse cells and localized to the oocyte. Furthermore, the joint dynamics of endocycles has been proposed to depend on the intercellular connectivity within the oocyte-nurse cell cluster. We use a computational model to argue that this connectivity guides, but does not uniquely determine the collective dynamics and identify several oscillatory regimes, depending on the timescale of intercellular transport. Our results provide insights into collective dynamics of coupled cell cycles and motivate future quantitative studies of intercellular communication in the germline cell clusters.
Collapse
Affiliation(s)
- Binglun Shao
- Department of Chemical and Biological Engineering, Princeton, New Jersey; Lewis-Sigler Institute for Integrative Genomics, Princeton, New Jersey
| | - Rocky Diegmiller
- Department of Chemical and Biological Engineering, Princeton, New Jersey; Lewis-Sigler Institute for Integrative Genomics, Princeton, New Jersey
| | - Stanislav Y Shvartsman
- Lewis-Sigler Institute for Integrative Genomics, Princeton, New Jersey; Department of Molecular Biology, Princeton University, Princeton, New Jersey; Flatiron Institute, Simons Foundation, New York, New York.
| |
Collapse
|
27
|
Ali-Murthy Z, Fetter RD, Wang W, Yang B, Royer LA, Kornberg TB. Elimination of nurse cell nuclei that shuttle into oocytes during oogenesis. J Cell Biol 2021; 220:212051. [PMID: 33950159 PMCID: PMC8105724 DOI: 10.1083/jcb.202012101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/11/2021] [Accepted: 04/13/2021] [Indexed: 01/22/2023] Open
Abstract
Drosophila oocytes develop together with 15 sister germline nurse cells (NCs), which pass products to the oocyte through intercellular bridges. The NCs are completely eliminated during stages 12-14, but we discovered that at stage 10B, two specific NCs fuse with the oocyte and extrude their nuclei through a channel that opens in the anterior face of the oocyte. These nuclei extinguish in the ooplasm, leaving 2 enucleated and 13 nucleated NCs. At stage 11, the cell boundaries of the oocyte are mostly restored. Oocytes in egg chambers that fail to eliminate NC nuclei at stage 10B develop with abnormal morphology. These findings show that stage 10B NCs are distinguished by position and identity, and that NC elimination proceeds in two stages: first at stage 10B and later at stages 12-14.
Collapse
Affiliation(s)
- Zehra Ali-Murthy
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
| | - Richard D Fetter
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA
| | - Wanpeng Wang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
| | - Bin Yang
- Chan Zuckerberg Biohub, San Francisco, CA
| | | | - Thomas B Kornberg
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
28
|
Eckelbarger KJ, Hodgson AN. Invertebrate oogenesis – a review and synthesis: comparative ovarian morphology, accessory cell function and the origins of yolk precursors. INVERTEBR REPROD DEV 2021. [DOI: 10.1080/07924259.2021.1927861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Kevin J. Eckelbarger
- Darling Marine Center, School of Marine Sciences, The University of Maine, Walpole, Maine, U.S.A
| | - Alan N. Hodgson
- Department of Zoology and Entomology, Rhodes University, Grahamstown, South Africa
| |
Collapse
|
29
|
Arias Padilla LF, Castañeda-Cortés DC, Rosa IF, Moreno Acosta OD, Hattori RS, Nóbrega RH, Fernandino JI. Cystic proliferation of germline stem cells is necessary to reproductive success and normal mating behavior in medaka. eLife 2021; 10:62757. [PMID: 33646121 PMCID: PMC7946426 DOI: 10.7554/elife.62757] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/28/2021] [Indexed: 12/11/2022] Open
Abstract
The production of an adequate number of gametes is necessary for normal reproduction, for which the regulation of proliferation from early gonadal development to adulthood is key in both sexes. Cystic proliferation of germline stem cells is an especially important step prior to the beginning of meiosis; however, the molecular regulators of this proliferation remain elusive in vertebrates. Here, we report that ndrg1b is an important regulator of cystic proliferation in medaka. We generated mutants of ndrg1b that led to a disruption of cystic proliferation of germ cells. This loss of cystic proliferation was observed from embryogenic to adult stages, impacting the success of gamete production and reproductive parameters such as spawning and fertilization. Interestingly, the depletion of cystic proliferation also impacted male sexual behavior, with a decrease of mating vigor. These data illustrate why it is also necessary to consider gamete production capacity in order to analyze reproductive behavior.
Collapse
Affiliation(s)
| | - Diana C Castañeda-Cortés
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| | - Ivana F Rosa
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| | - Omar D Moreno Acosta
- Salmonid Experimental Station at Campos do Jordão, UPD-CJ, Sao Paulo Fisheries Institute (APTA/SAA), Campos do Jordao, Brazil
| | - Ricardo S Hattori
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| | - Rafael H Nóbrega
- Instituto Tecnológico de Chascomús, INTECH (CONICET-UNSAM), Chascomús, Argentina
| | - Juan I Fernandino
- Instituto Tecnológico de Chascomús, INTECH (CONICET-UNSAM), Chascomús, Argentina
| |
Collapse
|
30
|
Diegmiller R, Zhang L, Gameiro M, Barr J, Imran Alsous J, Schedl P, Shvartsman SY, Mischaikow K. Mapping parameter spaces of biological switches. PLoS Comput Biol 2021; 17:e1008711. [PMID: 33556054 PMCID: PMC7895388 DOI: 10.1371/journal.pcbi.1008711] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 02/19/2021] [Accepted: 01/15/2021] [Indexed: 01/02/2023] Open
Abstract
Since the seminal 1961 paper of Monod and Jacob, mathematical models of biomolecular circuits have guided our understanding of cell regulation. Model-based exploration of the functional capabilities of any given circuit requires systematic mapping of multidimensional spaces of model parameters. Despite significant advances in computational dynamical systems approaches, this analysis remains a nontrivial task. Here, we use a nonlinear system of ordinary differential equations to model oocyte selection in Drosophila, a robust symmetry-breaking event that relies on autoregulatory localization of oocyte-specification factors. By applying an algorithmic approach that implements symbolic computation and topological methods, we enumerate all phase portraits of stable steady states in the limit when nonlinear regulatory interactions become discrete switches. Leveraging this initial exact partitioning and further using numerical exploration, we locate parameter regions that are dense in purely asymmetric steady states when the nonlinearities are not infinitely sharp, enabling systematic identification of parameter regions that correspond to robust oocyte selection. This framework can be generalized to map the full parameter spaces in a broad class of models involving biological switches. Identification of qualitatively different regimes in models of biomolecular switches is essential for understanding dynamics of complex biological processes, including symmetry breaking in cells and cell networks. We demonstrate how topological methods, symbolic computation, and numerical simulations can be combined for systematic mapping of symmetry-broken states in a mathematical model of oocyte specification in Drosophila, a leading experimental system of animal oogenesis. Our algorithmic framework reveals global connectedness of parameter domains corresponding to robust oocyte specification and enables systematic navigation through multidimensional parameter spaces in a large class of biomolecular switches.
Collapse
Affiliation(s)
- Rocky Diegmiller
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, United States of America
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Lun Zhang
- Department of Mathematics, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Marcio Gameiro
- Department of Mathematics, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
- Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos, São Paulo, Brazil
| | - Justinn Barr
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Jasmin Imran Alsous
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, United States of America
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Paul Schedl
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Stanislav Y. Shvartsman
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, United States of America
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
- Flatiron Institute, Simons Foundation, New York, New York, United States of America
- * E-mail: (SYS); (KM)
| | - Konstantin Mischaikow
- Department of Mathematics, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
- * E-mail: (SYS); (KM)
| |
Collapse
|
31
|
Deshmukh S, Saini S. Phenotypic Heterogeneity in Tumor Progression, and Its Possible Role in the Onset of Cancer. Front Genet 2020; 11:604528. [PMID: 33329751 PMCID: PMC7734151 DOI: 10.3389/fgene.2020.604528] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/10/2020] [Indexed: 12/20/2022] Open
Abstract
Heterogeneity among isogenic cells/individuals has been known for at least 150 years. Even Mendel, working on pea plants, realized that not all tall plants were identical. However, Mendel was more interested in the discontinuous variation between genetically distinct individuals. The concept of environment dictating distinct phenotypes among isogenic individuals has since been shown to impact the evolution of populations in numerous examples at different scales of life. In this review, we discuss how phenotypic heterogeneity and its evolutionary implications exist at all levels of life, from viruses to mammals. In particular, we discuss how a particular disease condition (cancer) is impacted by heterogeneity among isogenic cells, and propose a potential role that phenotypic heterogeneity might play toward the onset of the disease.
Collapse
Affiliation(s)
- Saniya Deshmukh
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Supreet Saini
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
32
|
Koutsouveli V, Cárdenas P, Santodomingo N, Marina A, Morato E, Rapp HT, Riesgo A. The Molecular Machinery of Gametogenesis in Geodia Demosponges (Porifera): Evolutionary Origins of a Conserved Toolkit across Animals. Mol Biol Evol 2020; 37:3485-3506. [PMID: 32929503 PMCID: PMC7743902 DOI: 10.1093/molbev/msaa183] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
All animals are capable of undergoing gametogenesis. The ability of forming haploid cells from diploid cells through meiosis and recombination appeared early in eukaryotes, whereas further gamete differentiation is mostly a metazoan signature. Morphologically, the gametogenic process presents many similarities across animal taxa, but little is known about its conservation at the molecular level. Porifera are the earliest divergent animals and therefore are an ideal phylum to understand evolution of the gametogenic toolkits. Although sponge gametogenesis is well known at the histological level, the molecular toolkits for gamete production are largely unknown. Our goal was to identify the genes and their expression levels which regulate oogenesis and spermatogenesis in five gonochoristic and oviparous species of the genus Geodia, using both RNAseq and proteomic analyses. In the early stages of both female and male gametogenesis, genes involved in germ cell fate and cell-renewal were upregulated. Then, molecular signals involved in retinoic acid pathway could trigger the meiotic processes. During later stages of oogenesis, female sponges expressed genes involved in cell growth, vitellogenesis, and extracellular matrix reassembly, which are conserved elements of oocyte maturation in Metazoa. Likewise, in spermatogenesis, genes regulating the whole meiotic cycle, chromatin compaction, and flagellum axoneme formation, that are common across Metazoa were overexpressed in the sponges. Finally, molecular signals possibly related to sperm capacitation were identified during late stages of spermatogenesis for the first time in Porifera. In conclusion, the activated molecular toolkit during gametogenesis in sponges was remarkably similar to that deployed during gametogenesis in vertebrates.
Collapse
Affiliation(s)
- Vasiliki Koutsouveli
- Department of Life Sciences, The Natural History Museum of London, London, United Kingdom
- Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, BMC, Uppsala, Sweden
| | - Paco Cárdenas
- Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, BMC, Uppsala, Sweden
| | - Nadiezhda Santodomingo
- Department of Life Sciences, The Natural History Museum of London, London, United Kingdom
| | - Anabel Marina
- Servicio de Proteómica, Centro de Biología Molecular Severo Ochoa (CBMSO), Universidad Autónoma de Madrid (UAM) and Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Esperanza Morato
- Servicio de Proteómica, Centro de Biología Molecular Severo Ochoa (CBMSO), Universidad Autónoma de Madrid (UAM) and Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Hans Tore Rapp
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Ana Riesgo
- Department of Life Sciences, The Natural History Museum of London, London, United Kingdom
| |
Collapse
|
33
|
Urbisz AZ, Nakano T, Świątek P. Ovary cord micromorphology in the blood-sucking haemadipsid leech Haemadipsa japonica (Hirudinida: Arhynchobdellida: Hirudiniformes). Micron 2020; 138:102929. [DOI: 10.1016/j.micron.2020.102929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 02/06/2023]
|
34
|
Urbisz AZ, Martin P, Lagnika M, Chajec Ł, Świątek P. Microorganization of ovaries and oogenesis of Haplotaxis sp. (Clitellata: Haplotaxidae). J Morphol 2020; 282:98-114. [PMID: 33074563 DOI: 10.1002/jmor.21285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/16/2020] [Accepted: 10/07/2020] [Indexed: 01/18/2023]
Abstract
Ovaries of Haplotaxis sp. were studied in active and nonactive states, that is, in a sexually mature specimen and in specimens outside of the reproductive period. Two pairs of ovaries were found in segments XI and XII. Especially in the nonactive state, they were in close contact with copulatory glands. Each ovary was composed of germ cells interconnected with syncytial cysts, which were enveloped by a layer of somatic cells. Within cysts each germ cell had one ring canal connecting it to the common anuclear cytoplasmic mass called a cytophore. During oogenesis clustering germ cells differentiated into nurse cells and oocytes; thus, the oogenesis was recognized as meroistic. Vitellogenic oocytes were detached from the ovaries and continued yolk absorption within the body cavity. Because recent studies have shown the variety of ovaries and germ line cyst organization in clitellates and suggest their evolutionary conservatism at the family or subfamily level, the data presented here can be valid in understanding the phylogenetic relationships among Clitellata. In this context, ovaries found in Haplotaxis sp. resembled those of the "Tubifex" type. "Tubifex" ovaries are characteristic for numerous microdrile taxa (tubificines, limnodriloidines, propappids, lumbriculids, and leech-like branchiobdellids) and can be regarded as the primary character for these Clitellata in which germ-line cysts are formed during early oogenesis. As the family Haplotaxidae is currently considered to be paraphyletic and the species studied here belongs to Haplotaxidae sensu stricto, our results support the close relationship of Haplotaxidae sensu stricto to the clade consisting of Lumbriculidae, Branchiobdellida, and Hirudinida, in which lumbriculids are sister to the latter two.
Collapse
Affiliation(s)
- Anna Z Urbisz
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Patrick Martin
- OD Taxonomy and Phylogeny, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| | - Moïssou Lagnika
- Faculté des Sciences et Techniques, Département de Zoologie, Laboratoire de Parasitologie et d'Écologie Parasitaire, Université d'Abomey-Calavi, Cotonou, Benin
| | - Łukasz Chajec
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Piotr Świątek
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
35
|
DeLuca SZ, Ghildiyal M, Pang LY, Spradling AC. Differentiating Drosophila female germ cells initiate Polycomb silencing by regulating PRC2-interacting proteins. eLife 2020; 9:e56922. [PMID: 32773039 PMCID: PMC7438113 DOI: 10.7554/elife.56922] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 08/06/2020] [Indexed: 01/18/2023] Open
Abstract
Polycomb silencing represses gene expression and provides a molecular memory of chromatin state that is essential for animal development. We show that Drosophila female germline stem cells (GSCs) provide a powerful system for studying Polycomb silencing. GSCs have a non-canonical distribution of PRC2 activity and lack silenced chromatin like embryonic progenitors. As GSC daughters differentiate into nurse cells and oocytes, nurse cells, like embryonic somatic cells, silence genes in traditional Polycomb domains and in generally inactive chromatin. Developmentally controlled expression of two Polycomb repressive complex 2 (PRC2)-interacting proteins, Pcl and Scm, initiate silencing during differentiation. In GSCs, abundant Pcl inhibits PRC2-dependent silencing globally, while in nurse cells Pcl declines and newly induced Scm concentrates PRC2 activity on traditional Polycomb domains. Our results suggest that PRC2-dependent silencing is developmentally regulated by accessory proteins that either increase the concentration of PRC2 at target sites or inhibit the rate that PRC2 samples chromatin.
Collapse
Affiliation(s)
- Steven Z DeLuca
- Howard Hughes Medical Institute Research Laboratories Department of Embryology, Carnegie Institution for ScienceBaltimoreUnited States
| | - Megha Ghildiyal
- Howard Hughes Medical Institute Research Laboratories Department of Embryology, Carnegie Institution for ScienceBaltimoreUnited States
| | - Liang-Yu Pang
- Howard Hughes Medical Institute Research Laboratories Department of Embryology, Carnegie Institution for ScienceBaltimoreUnited States
| | - Allan C Spradling
- Howard Hughes Medical Institute Research Laboratories Department of Embryology, Carnegie Institution for ScienceBaltimoreUnited States
| |
Collapse
|
36
|
Morphology of Mitochondria in Syncytial Annelid Female Germ-Line Cyst Visualized by Serial Block-Face SEM. Int J Cell Biol 2020; 2020:7483467. [PMID: 32395131 PMCID: PMC7199535 DOI: 10.1155/2020/7483467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/11/2019] [Accepted: 08/04/2019] [Indexed: 11/23/2022] Open
Abstract
Mitochondria change their morphology and distribution depending on the metabolism and functional state of a cell. Here, we analyzed the mitochondria and selected structures in female germ-line cysts in a representative of clitellate annelids – the white worm Enchytraeus albidus in which each germ cell has one cytoplasmic bridge that connects it to a common cytoplasmic mass. Using serial block-face scanning electron microscopy (SBEM), we prepared three-dimensional ultrastructural reconstructions of the entire selected compartments of a cyst at the advanced stage of oogenesis, i.e. the nurse cell, cytophore, and cytoplasmic bridges of all 16 cells (15 nurse cells and oocyte). We revealed extensive mitochondrial networks in the nurse cells, cytophore and mitochondria that pass through the cytoplasmic bridges, which indicates that a mitochondrial network can extend throughout the entire cyst. The dynamic hyperfusion state was suggested for such mitochondrial aggregations. We measured the mitochondria distribution and revealed their polarized distribution in the nurse cells and more abundant accumulation within the cytophore compared to the nurse cell. A close association of mitochondrial networks with dispersed nuage material, which seems to be the structural equivalent of a Balbiani body, not described in clitellate annelids so far, was also revealed.
Collapse
|
37
|
Li J, Ge W. Zebrafish as a model for studying ovarian development: Recent advances from targeted gene knockout studies. Mol Cell Endocrinol 2020; 507:110778. [PMID: 32142861 DOI: 10.1016/j.mce.2020.110778] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/27/2020] [Accepted: 02/27/2020] [Indexed: 12/11/2022]
Abstract
Ovarian development is a complex process controlled by precise coordination of multiple factors. The targeted gene knockout technique is a powerful tool to study the functions of these factors. The successful application of this technique in mice in the past three decades has significantly enhanced our understanding on the molecular mechanism of ovarian development. Recently, with the advent of genome editing techniques, targeted gene knockout research can be carried out in many species. Zebrafish has emerged as an excellent model system to study the control of ovarian development. Dozens of genes related to ovarian development have been knocked out in zebrafish in recent years. Much new information and perspectives on the molecular mechanism of ovarian development have been obtained from these mutant zebrafish. Some findings have challenged conventional views. Several genes have been identified for the first time in vertebrates to control ovarian development. Focusing on ovarian development, the purpose of this review is to briefly summarize recent findings using these gene knockout zebrafish models, and compare these findings with mammalian models. These established mutants and rapid development of gene knockout techniques have prompted zebrafish as an ideal animal model for studying ovarian development.
Collapse
Affiliation(s)
- Jianzhen Li
- College of Life Sciences, Northwest Normal University, Lanzhou, Gansu, China, 730070.
| | - Wei Ge
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China.
| |
Collapse
|
38
|
Hu S, Yang S, Lu Y, Deng Y, Li L, Zhu J, Zhang Y, Hu B, Hu J, Xia L, He H, Han C, Liu H, Kang B, Li L, Wang J. Dynamics of the Transcriptome and Accessible Chromatin Landscapes During Early Goose Ovarian Development. Front Cell Dev Biol 2020; 8:196. [PMID: 32309280 PMCID: PMC7145905 DOI: 10.3389/fcell.2020.00196] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/09/2020] [Indexed: 12/19/2022] Open
Abstract
In contrast to the situation in mammals, very little is known about the molecular mechanisms regulating early avian ovarian development. This study aimed to investigate the dynamic changes in the histomorphology as well as the genome-wide transcriptome and chromatin accessibility landscapes of the goose ovary during late embryonic and early post-hatching stages. Results from hematoxylin-eosin, periodic acid-Schiff, and anti-CVH immunohistochemical stainings demonstrated that programmed oocyte loss, oocyte nest breakdown and primordial follicle formation, and the primordial-to-secondary follicle transition occur during the periods from embryonic day 15 (E15) to post-hatching day 0 (P0), from P0 to P4, and from P4 to P28, respectively. RNA-seq and ATAC-seq analyses revealed dynamic changes in both the ovarian transcriptome and accessible chromatin landscapes during early ovarian development, exhibiting the most extensive changes during peri-hatching oocyte loss, and moreover, differences were also identified in the genomic distribution of the differential ATAC-seq peaks between different developmental stages, suggesting that chromatin-level regulation of gene expression is facilitated by modulating the accessibility of different functional genomic regions to transcription factors. Motif analysis of developmental stage-selective peak regions identified hundreds of potential cis-regulatory elements that contain binding sites for many transcription factors, including SF1, NR5A2, ESRRβ, NF1, and THRβ, as well as members of the GATA, SMAD, and LHX families, whose expression fluctuated throughout early goose ovarian development. Integrated ATAC-seq and RNA-seq analysis suggested that the number and genomic distribution of the newly appeared and disappeared peaks differed according to developmental stage, and in combination with qRT-PCR validation potentiated the critical actions of the DEGs enriched in cell cycle, MAPK signaling, and FoxO signaling pathways during peri-hatching oocyte loss and those in ligand-receptor interaction, tissue remodeling, lipid metabolism, and Wnt signaling during primordial follicle formation and development. In conclusion, our study provides a framework for understanding the transcriptome and accessible chromatin dynamics during early avian ovarian development and a new avenue to unravel the transcriptional regulatory mechanisms that facilitate the occurrence of relevant molecular events.
Collapse
Affiliation(s)
- Shenqiang Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Shuang Yang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yao Lu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yan Deng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Li Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Jiaran Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yuan Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Bo Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Jiwei Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Lu Xia
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Hua He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Chunchun Han
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Hehe Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Bo Kang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Liang Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Jiwen Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
39
|
Waltero C, Martins R, Calixto C, da Fonseca RN, Abreu LAD, da Silva Vaz I, Logullo C. The hallmarks of GSK-3 in morphogenesis and embryonic development metabolism in arthropods. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 118:103307. [PMID: 31857215 DOI: 10.1016/j.ibmb.2019.103307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 11/26/2019] [Accepted: 12/13/2019] [Indexed: 06/10/2023]
Abstract
Several research groups around the world have studied diverse aspects of energy metabolism in arthropod disease vectors, with the aim of discovering potential control targets. As in all oviparous organisms, arthropod embryonic development is characterized by the mobilization of maternally-derived metabolites for the formation of new tissues and organs. Glycogen synthase kinase-3 (GSK-3) is a serine-threonine kinase described as an important regulator of metabolism and development in a wide range of organisms. GSK-3 was first identified based on its action upon glycogen synthase, a central enzyme in glycogen biosynthesis. Currently, it is recognized as a key component of multiple cellular processes such as glucose metabolism, apoptosis, cell proliferation, transcription, cell migration, and immune response. The present review will describe the current knowledge on GSK-3 activation and its role in morphogenesis and embryonic metabolism in arthropods. Altogether, the information discussed here can spark new approaches and strategies for further studies, enhancing our understanding of these important arthropod vectors and strengthening the resources in the search for novel control methods.
Collapse
Affiliation(s)
- Camila Waltero
- Instituto de Biodiversidade e Sustentabilidade NUPEM, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil
| | - Renato Martins
- Instituto de Biodiversidade e Sustentabilidade NUPEM, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil
| | - Christiano Calixto
- Instituto de Biodiversidade e Sustentabilidade NUPEM, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil
| | - Rodrigo Nunes da Fonseca
- Instituto de Biodiversidade e Sustentabilidade NUPEM, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Brazil
| | - Leonardo Araujo de Abreu
- Instituto de Biodiversidade e Sustentabilidade NUPEM, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Brazil
| | - Itabajara da Silva Vaz
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Brazil; Centro de Biotecnologia and Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Brazil
| | - Carlos Logullo
- Instituto de Biodiversidade e Sustentabilidade NUPEM, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Brazil.
| |
Collapse
|
40
|
Tharp ME, Malki S, Bortvin A. Maximizing the ovarian reserve in mice by evading LINE-1 genotoxicity. Nat Commun 2020; 11:330. [PMID: 31949138 PMCID: PMC6965193 DOI: 10.1038/s41467-019-14055-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/06/2019] [Indexed: 11/21/2022] Open
Abstract
Female reproductive success critically depends on the size and quality of a finite ovarian reserve. Paradoxically, mammals eliminate up to 80% of the initial oocyte pool through the enigmatic process of fetal oocyte attrition (FOA). Here, we interrogate the striking correlation of FOA with retrotransposon LINE-1 (L1) expression in mice to understand how L1 activity influences FOA and its biological relevance. We report that L1 activity triggers FOA through DNA damage-driven apoptosis and the complement system of immunity. We demonstrate this by combined inhibition of L1 reverse transcriptase activity and the Chk2-dependent DNA damage checkpoint to prevent FOA. Remarkably, reverse transcriptase inhibitor AZT-treated Chk2 mutant oocytes that evade FOA initially accumulate, but subsequently resolve, L1-instigated genotoxic threats independent of piRNAs and differentiate, resulting in an increased functional ovarian reserve. We conclude that FOA serves as quality control for oocyte genome integrity, and is not obligatory for oogenesis nor fertility.
Collapse
Affiliation(s)
- Marla E Tharp
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, 21218, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Safia Malki
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, 21218, USA
| | - Alex Bortvin
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, 21218, USA.
| |
Collapse
|
41
|
Hubbard EJA, Schedl T. Biology of the Caenorhabditis elegans Germline Stem Cell System. Genetics 2019; 213:1145-1188. [PMID: 31796552 PMCID: PMC6893382 DOI: 10.1534/genetics.119.300238] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 09/09/2019] [Indexed: 12/14/2022] Open
Abstract
Stem cell systems regulate tissue development and maintenance. The germline stem cell system is essential for animal reproduction, controlling both the timing and number of progeny through its influence on gamete production. In this review, we first draw general comparisons to stem cell systems in other organisms, and then present our current understanding of the germline stem cell system in Caenorhabditis elegans In contrast to stereotypic somatic development and cell number stasis of adult somatic cells in C. elegans, the germline stem cell system has a variable division pattern, and the system differs between larval development, early adult peak reproduction and age-related decline. We discuss the cell and developmental biology of the stem cell system and the Notch regulated genetic network that controls the key decision between the stem cell fate and meiotic development, as it occurs under optimal laboratory conditions in adult and larval stages. We then discuss alterations of the stem cell system in response to environmental perturbations and aging. A recurring distinction is between processes that control stem cell fate and those that control cell cycle regulation. C. elegans is a powerful model for understanding germline stem cells and stem cell biology.
Collapse
Affiliation(s)
- E Jane Albert Hubbard
- Skirball Institute of Biomolecular Medicine, Departments of Cell Biology and Pathology, New York University School of Medicine, New York 10016
| | - Tim Schedl
- and Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
42
|
Świątek P, Pinder A, Gajda Ł. Description of ovary organization and oogenesis in a phreodrilid clitellate. J Morphol 2019; 281:81-94. [DOI: 10.1002/jmor.21081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/22/2019] [Accepted: 10/25/2019] [Indexed: 01/09/2023]
Affiliation(s)
- Piotr Świątek
- Department of Animal Histology and EmbryologyUniversity of Silesia in Katowice Katowice Poland
| | - Adrian Pinder
- Biodiversity and Conservation Science, Department of BiodiversityConservation and Attractions Kensington Western Australia Australia
| | - Łukasz Gajda
- Department of Animal Histology and EmbryologyUniversity of Silesia in Katowice Katowice Poland
| |
Collapse
|
43
|
Germ plasm-related structures in marine medaka gametogenesis; novel sites of Vasa localization and the unique mechanism of germ plasm granule arising. ZYGOTE 2019; 28:9-23. [PMID: 31590697 DOI: 10.1017/s0967199419000546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Germ plasm, a cytoplasmic factor of germline cell differentiation, is suggested to be a perspective tool for in vitro meiotic differentiation. To discriminate between the: (1) germ plasm-related structures (GPRS) involved in meiosis triggering; and (2) GPRS involved in the germ plasm storage phase, we investigated gametogenesis in the marine medaka Oryzias melastigma. The GPRS of the mitosis-to-meiosis period are similar in males and females. In both sexes, five events typically occur: (1) turning of the primary Vasa-positive germ plasm granules into the Vasa-positive intermitochondrial cement (IMC); (2) aggregation of some mitochondria by IMC followed by arising of mitochondrial clusters; (3) intramitochondrial localization of IMC-originated Vasa; followed by (4) mitochondrial cluster degradation; and (5) intranuclear localization of Vasa followed by this protein entering the nuclei (gonial cells) and synaptonemal complexes (zygotene-pachytene meiotic cells). In post-zygotene/pachytene gametogenesis, the GPRS are sex specific; the Vasa-positive chromatoid bodies are found during spermatogenesis, but oogenesis is characterized by secondary arising of Vasa-positive germ plasm granules followed by secondary formation and degradation of mitochondrial clusters. A complex type of germ plasm generation, 'the follicle cell assigned germ plasm formation', was found in late oogenesis. The mechanisms discovered are recommended to be taken into account for possible reconstruction of those under in vitro conditions.
Collapse
|
44
|
Knapp EM, Li W, Sun J. Downregulation of homeodomain protein Cut is essential for Drosophila follicle maturation and ovulation. Development 2019; 146:dev179002. [PMID: 31444217 PMCID: PMC6765176 DOI: 10.1242/dev.179002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 08/19/2019] [Indexed: 01/19/2023]
Abstract
Proper development and maturation of a follicle is essential for successful ovulation and reproduction; however, the molecular mechanisms for follicle maturation, particularly for somatic follicle cell differentiation, are poorly understood. During Drosophila oogenesis, the somatic follicle cells encasing oocytes undergo two distinct well-established transitions: the mitotic to endocycle switch at stage 6/7 and the endocycle to gene amplification switch at stage10A/10B. Here, we identify a novel third follicle cell transition that occurs in the final stages of oogenesis (stage 13/14). This late follicle cell transition is characterized by upregulation of the transcription factor Hindsight (Hnt), and downregulation of the homeodomain transcription factor Cut and the zinc-finger transcription factor Tramtrack-69 (Ttk69). We demonstrate that inducing expression of Cut in stage 14 follicle cells is sufficient to inhibit follicle rupture and ovulation through its negative regulation of Hnt and promotion of Ttk69 expression. Our work illustrates the importance of the stage13/14 transition for follicle maturation and demonstrates the complex regulation required for somatic follicle cells to differentiate into a state primed for follicle rupture and ovulation.
Collapse
Affiliation(s)
- Elizabeth M Knapp
- Department of Physiology & Neurobiology, University of Connecticut, Storrs, CT 06269, USA
| | - Wei Li
- Department of Physiology & Neurobiology, University of Connecticut, Storrs, CT 06269, USA
| | - Jianjun Sun
- Department of Physiology & Neurobiology, University of Connecticut, Storrs, CT 06269, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
45
|
CRISPR Disruption of BmOvo Resulted in the Failure of Emergence and Affected the Wing and Gonad Development in the Silkworm Bombyx mori. INSECTS 2019; 10:insects10080254. [PMID: 31430876 PMCID: PMC6723145 DOI: 10.3390/insects10080254] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 11/17/2022]
Abstract
The domesticated silkworm is an economically important insect that is widely used as a lepidopteran insect model. Although somatic sex determination in the silkworm is well characterized, germline sex determination is not. Here, we used the transgenic-based CRISPR/Cas9 genome editing system to study the function of the Ovo gene in Bombyx mori. BmOvo is the homolog of a factor important in germline sex determination in Drosophila melanogaster. BmOvo mutants had abnormally shaped eggs that were disordered in the ovarioles, and gonad development was abnormal. Interestingly, wing discs and wings did not develop properly, and most of the mutants failed to eclose. Gene expression analyses by qRT-PCR showed that BmOvo gene was highly expressed in the wing disc and epidermis. Genes involved in the WNT signaling pathway and wing development genes BmWCP10 and BmE74 were downregulated in the BmOvo mutants when compared with wild-type animals. These results demonstrate that the BmOvo gene product plays an important role in wing metamorphosis. Thus, this study provides new insights into the multiple functions of BmOvo beyond germline sex determination.
Collapse
|
46
|
Dhiman N, Shweta K, Tendulkar S, Deshpande G, Ratnaparkhi GS, Ratnaparkhi A. Drosophila Mon1 constitutes a novel node in the brain-gonad axis that is essential for female germline maturation. Development 2019; 146:146/13/dev166504. [PMID: 31292144 DOI: 10.1242/dev.166504] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 05/23/2019] [Indexed: 01/16/2023]
Abstract
Monensin-sensitive 1 (Mon1) is an endocytic regulator that participates in the conversion of Rab5-positive early endosomes to Rab7-positive late endosomes. In Drosophila, loss of mon1 leads to sterility as the mon1 mutant females have extremely small ovaries with complete absence of late stage egg chambers - a phenotype reminiscent of mutations in the insulin pathway genes. Here, we show that expression of many Drosophila insulin-like peptides (ILPs) is reduced in mon1 mutants and feeding mon1 adults an insulin-rich diet can rescue the ovarian defects. Surprisingly, however, mon1 functions in the tyramine/octopaminergic neurons (OPNs) and not in the ovaries or the insulin-producing cells (IPCs). Consistently, knockdown of mon1 in only the OPNs is sufficient to mimic the ovarian phenotype, while expression of the gene in the OPNs alone can 'rescue' the mutant defect. Last, we have identified ilp3 and ilp5 as critical targets of mon1. This study thus identifies mon1 as a novel molecular player in the brain-gonad axis and underscores the significance of inter-organ systemic communication during development.
Collapse
Affiliation(s)
- Neena Dhiman
- Agarkar Research Institute (ARI), Pune, India.,Indian Institute of Science Education & Research (IISER), Pune, India
| | | | - Shweta Tendulkar
- Indian Institute of Science Education & Research (IISER), Pune, India
| | - Girish Deshpande
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
| | | | | |
Collapse
|
47
|
Janelt K, Jezierska M, Poprawa I. The female reproductive system and oogenesis in Thulinius ruffoi (Tardigrada, Eutardigrada, Isohypsibiidae). ARTHROPOD STRUCTURE & DEVELOPMENT 2019; 50:53-63. [PMID: 31004762 DOI: 10.1016/j.asd.2019.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 06/09/2023]
Abstract
In this study, we describe the female reproductive system organization and oogenesis in the eutardigrade Thulinius ruffoi. Light, confocal and electron microscopy was used in this study. During oogenesis, three phases can be distinguished: previtellogenesis, vitellogenesis, and choriogenesis. Germ-line cells form cell clusters in which the cells are connected by intercellular (cytoplasmic) bridges. These structures are crucial for delivering the yolk materials, macromolecules, ribosomes, and organelles to the developing oocyte. Vitellogenesis is of a mixed type. Autosynthesis and heterosynthesis of the yolk material occur. Yolk precursors that have been synthesized outside the ovary are delivered to the oocyte via endocytosis. We also present data on cortical granules, and moreover, we describe the cortical reaction in tardigrades, possibly for the first time.
Collapse
Affiliation(s)
- Kamil Janelt
- University of Silesia in Katowice, Department of Animal Histology and Embryology, Bankowa 9, 40-007 Katowice, Poland.
| | - Marta Jezierska
- University of Silesia in Katowice, Department of Animal Histology and Embryology, Bankowa 9, 40-007 Katowice, Poland.
| | - Izabela Poprawa
- University of Silesia in Katowice, Department of Animal Histology and Embryology, Bankowa 9, 40-007 Katowice, Poland.
| |
Collapse
|
48
|
Larose H, Shami AN, Abbott H, Manske G, Lei L, Hammoud SS. Gametogenesis: A journey from inception to conception. Curr Top Dev Biol 2019; 132:257-310. [PMID: 30797511 PMCID: PMC7133493 DOI: 10.1016/bs.ctdb.2018.12.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Gametogenesis, the process of forming mature germ cells, is an integral part of both an individual's and a species' health and well-being. This chapter focuses on critical male and female genetic and epigenetic processes underlying normal gamete formation through their differentiation to fertilization. Finally, we explore how knowledge gained from this field has contributed to progress in areas with great clinical promise, such as in vitro gametogenesis.
Collapse
Affiliation(s)
- Hailey Larose
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, United States
| | | | - Haley Abbott
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Gabriel Manske
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Lei Lei
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States; Department of Biomedical Engineering, University of Michigan Medical School, Ann Arbor, MI, United States.
| | - Saher Sue Hammoud
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, United States; Department of Obstetrics and Gynecology, University of Michigan Medical School, Ann Arbor, MI, United States; Department of Urology, University of Michigan Medical School, Ann Arbor, MI, United States.
| |
Collapse
|
49
|
Kheirabadi M, Nabipour A, Dehghani H, Behnam-Rasuli M. Ultrastructure of ovarian germ cells in the ostrich (Struthio camelus) embryo. BULGARIAN JOURNAL OF VETERINARY MEDICINE 2019. [DOI: 10.15547/bjvm.2086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In this study, the ultrastructural development of germ cells in the ostrich embryo was analysed. The nuclear organisation and morphological characteristics of cytoplasm in the developing germ cells, on embryonic days 20, 26, and 36 and the day of hatching (5 samples from each stage) was analysed using transmission electron microscopy (TEM). Germ cells located in the cortex of left ovaries were identified by their large size and centrally located nucleus, with a conspicuous nucleolus. In these cells, the cytoplasm contained an abundance of mitochondria and free ribosomes. The structure of Balbiani body, a villous-like elevation in wide intercellular space and desmosome junction between two adjacent germ cells was also studied. The germ cells during embryonic development showed structural differences in both the nucleus and cytoplasm.
Collapse
|
50
|
Del Pino EM. Embryogenesis of Marsupial Frogs (Hemiphractidae), and the Changes that Accompany Terrestrial Development in Frogs. Results Probl Cell Differ 2019; 68:379-418. [PMID: 31598865 DOI: 10.1007/978-3-030-23459-1_16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The developmental adaptations of the marsupial frogs Gastrotheca riobambae and Flectonotus pygmaeus (Hemiphractidae) are described and compared with frogs belonging to seven additional families. Incubation of embryos by the mother in marsupial frogs is associated with changes in the anatomy and physiology of the female, modifications of oogenesis, and extraordinary changes in embryonic development. The comparison of early development reveals that gene expression is highly conserved. However, the timing of gene expression varies between frog species. There are two modes of gastrulation according to the onset of convergent extension. In gastrulation mode 1, convergent extension is an intrinsic mechanism of gastrulation. This gastrulation mode occurs in frogs with aquatic reproduction, such as Xenopus laevis. In gastrulation mode 2, convergent extension occurs after the completion of gastrulation movements. Gastrulation mode 2 occurs in frogs with terrestrial reproduction, such as the marsupial frog, G. riobambae. The two modes of frog gastrulation resemble the two transitions toward meroblastic cleavage of ray-finned fishes (Actinopterygii). The comparison indicates that a major event in the evolution of frog terrestrial development is the separation of convergent extension from gastrulation.
Collapse
Affiliation(s)
- Eugenia M Del Pino
- Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Quito, Ecuador.
| |
Collapse
|