1
|
Owings KG, Chow CY. A Drosophila screen identifies a role for histone methylation in ER stress preconditioning. G3 (BETHESDA, MD.) 2024; 14:jkad265. [PMID: 38098286 PMCID: PMC11021027 DOI: 10.1093/g3journal/jkad265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/02/2023] [Indexed: 12/26/2023]
Abstract
Stress preconditioning occurs when transient, sublethal stress events impact an organism's ability to counter future stresses. Although preconditioning effects are often noted in the literature, very little is known about the underlying mechanisms. To model preconditioning, we exposed a panel of genetically diverse Drosophila melanogaster to a sublethal heat shock and measured how well the flies survived subsequent exposure to endoplasmic reticulum (ER) stress. The impact of preconditioning varied with genetic background, ranging from dying half as fast to 4 and a half times faster with preconditioning compared to no preconditioning. Subsequent association and transcriptional analyses revealed that histone methylation, and transcriptional regulation are both candidate preconditioning modifier pathways. Strikingly, almost all subunits (7/8) in the Set1/COMPASS complex were identified as candidate modifiers of preconditioning. Functional analysis of Set1 knockdown flies demonstrated that loss of Set1 led to the transcriptional dysregulation of canonical ER stress genes during preconditioning. Based on these analyses, we propose a preconditioning model in which Set1 helps to establish an interim transcriptional "memory" of previous stress events, resulting in a preconditioned response to subsequent stress.
Collapse
Affiliation(s)
- Katie G Owings
- Department of Human Genetics, University of Utah School of Medicine, EIHG 5200, 15 North 2030 East, Salt Lake City, UT 84112, USA
| | - Clement Y Chow
- Department of Human Genetics, University of Utah School of Medicine, EIHG 5200, 15 North 2030 East, Salt Lake City, UT 84112, USA
| |
Collapse
|
2
|
Akpoghiran O, Afonso DJS, Zhang Y, Koh K. TARANIS Interacts with VRILLE and PDP1 to Modulate the Circadian Transcriptional Feedback Mechanism in Drosophila. J Neurosci 2024; 44:e0922232023. [PMID: 38296648 PMCID: PMC10860567 DOI: 10.1523/jneurosci.0922-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 11/18/2023] [Accepted: 11/22/2023] [Indexed: 02/02/2024] Open
Abstract
The molecular clock that generates daily rhythms of behavior and physiology consists of interlocked transcription-translation feedback loops. In Drosophila, the primary feedback loop involving the CLOCK-CYCLE transcriptional activators and the PERIOD-TIMELESS transcriptional repressors is interlocked with a secondary loop involving VRILLE (VRI) and PAR DOMAIN PROTEIN 1 (PDP1), a repressor and activator of Clock transcription, respectively. Whereas extensive studies have found numerous transcriptional, translational, and posttranslational modulators of the primary loop, relatively little is known about the secondary loop. In this study, using male and female flies as well as cultured cells, we demonstrate that TARANIS (TARA), a Drosophila homolog of the TRIP-Br/SERTAD family of transcriptional coregulators, functions with VRI and PDP1 to modulate the circadian period and rhythm strength. Knocking down tara reduces rhythm amplitude and can shorten the period length, while overexpressing TARA lengthens the circadian period. Additionally, tara mutants exhibit reduced rhythmicity and lower expression of the PDF neuropeptide. We find that TARA can form a physical complex with VRI and PDP1, enhancing their repressor and activator functions, respectively. The conserved SERTA domain of TARA is required to regulate the transcriptional activity of VRI and PDP1, and its deletion leads to reduced locomotor rhythmicity. Consistent with TARA's role in enhancing VRI and PDP1 activity, overexpressing tara has a similar effect on the circadian period and rhythm strength as simultaneously overexpressing vri and Pdp1 Together, our results suggest that TARA modulates circadian behavior by enhancing the transcriptional activity of VRI and PDP1.
Collapse
Affiliation(s)
- Oghenerukevwe Akpoghiran
- Department of Neuroscience, the Farber Institute for Neurosciences, and Synaptic Biology Center, Thomas Jefferson University, Philadelphia 19107, Pennsylvania
| | - Dinis J S Afonso
- Department of Neuroscience, the Farber Institute for Neurosciences, and Synaptic Biology Center, Thomas Jefferson University, Philadelphia 19107, Pennsylvania
| | - Yanan Zhang
- Department of Neuroscience, the Farber Institute for Neurosciences, and Synaptic Biology Center, Thomas Jefferson University, Philadelphia 19107, Pennsylvania
| | - Kyunghee Koh
- Department of Neuroscience, the Farber Institute for Neurosciences, and Synaptic Biology Center, Thomas Jefferson University, Philadelphia 19107, Pennsylvania
| |
Collapse
|
3
|
Akpoghiran O, Afonso DJ, Zhang Y, Koh K. TARANIS interacts with VRILLE and PDP1 to modulate the circadian transcriptional feedback mechanism in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.19.541420. [PMID: 38076905 PMCID: PMC10705542 DOI: 10.1101/2023.05.19.541420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
The molecular clock that generates daily rhythms of behavior and physiology consists of interlocked transcription-translation feedback loops. In Drosophila, the primary feedback loop involving the CLOCK-CYCLE transcriptional activators and the PERIOD-TIMELESS transcriptional repressors is interlocked with a secondary loop involving VRILLE (VRI) and PAR DOMAIN PROTEIN 1 (PDP1), a repressor and activator of Clock transcription, respectively. Whereas extensive studies have found numerous transcriptional, translational, and post-translational modulators of the primary loop, relatively little is known about the secondary loop. In this study, using male and female flies as well as cultured cells, we demonstrate that TARANIS (TARA), a Drosophila homolog of the TRIP-Br/SERTAD family of transcriptional coregulators, functions with VRI and PDP1 to modulate the circadian period and rhythm strength. Knocking down tara reduces rhythm amplitude and can shorten the period length, while overexpressing TARA lengthens the circadian period. Additionally, tara mutants exhibit reduced rhythmicity and lower expression of the PDF neuropeptide. We find that TARA can form a physical complex with VRI and PDP1, enhancing their repressor and activator functions, respectively. The conserved SERTA domain of TARA is required to regulate the transcriptional activity of VRI and PDP1, and its deletion leads to reduced locomotor rhythmicity. Consistent with TARA's role in enhancing VRI and PDP1 activity, overexpressing tara has a similar effect on the circadian period and rhythm strength as simultaneously overexpressing vri and Pdp1. Together, our results suggest that TARA modulates circadian behavior by enhancing the transcriptional activity of VRI and PDP1.
Collapse
Affiliation(s)
- Oghenerukevwe Akpoghiran
- Department of Neuroscience, the Farber Institute for Neurosciences, and Synaptic Biology Center, Thomas Jefferson University, Philadelphia, USA. 19107
| | - Dinis J.S. Afonso
- Department of Neuroscience, the Farber Institute for Neurosciences, and Synaptic Biology Center, Thomas Jefferson University, Philadelphia, USA. 19107
| | - Yanan Zhang
- Department of Neuroscience, the Farber Institute for Neurosciences, and Synaptic Biology Center, Thomas Jefferson University, Philadelphia, USA. 19107
| | - Kyunghee Koh
- Department of Neuroscience, the Farber Institute for Neurosciences, and Synaptic Biology Center, Thomas Jefferson University, Philadelphia, USA. 19107
| |
Collapse
|
4
|
Manoli G, Zandawala M, Yoshii T, Helfrich-Förster C. Characterization of clock-related proteins and neuropeptides in Drosophila littoralis and their putative role in diapause. J Comp Neurol 2023; 531:1525-1549. [PMID: 37493077 DOI: 10.1002/cne.25522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/25/2023] [Accepted: 06/26/2023] [Indexed: 07/27/2023]
Abstract
Insects from high latitudes spend the winter in a state of overwintering diapause, which is characterized by arrested reproduction, reduced food intake and metabolism, and increased life span. The main trigger to enter diapause is the decreasing day length in summer-autumn. It is thus assumed that the circadian clock acts as an internal sensor for measuring photoperiod and orchestrates appropriate seasonal changes in physiology and metabolism through various neurohormones. However, little is known about the neuronal organization of the circadian clock network and the neurosecretory system that controls diapause in high-latitude insects. We addressed this here by mapping the expression of clock proteins and neuropeptides/neurohormones in the high-latitude fly Drosophila littoralis. We found that the principal organization of both systems is similar to that in Drosophila melanogaster, but with some striking differences in neuropeptide expression levels and patterns. The small ventrolateral clock neurons that express pigment-dispersing factor (PDF) and short neuropeptide F (sNPF) and are most important for robust circadian rhythmicity in D. melanogaster virtually lack PDF and sNPF expression in D. littoralis. In contrast, dorsolateral clock neurons that express ion transport peptide in D. melanogaster additionally express allatostatin-C and appear suited to transfer day-length information to the neurosecretory system of D. littoralis. The lateral neurosecretory cells of D. littoralis contain more neuropeptides than D. melanogaster. Among them, the cells that coexpress corazonin, PDF, and diuretic hormone 44 appear most suited to control diapause. Our work sets the stage to investigate the roles of these diverse neuropeptides in regulating insect diapause.
Collapse
Affiliation(s)
- Giulia Manoli
- Neurobiology and Genetics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Meet Zandawala
- Neurobiology and Genetics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Taishi Yoshii
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | | |
Collapse
|
5
|
Owings KG, Chow CY. A Drosophila screen identifies a role for histone methylation in ER stress preconditioning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.10.532109. [PMID: 36945590 PMCID: PMC10028959 DOI: 10.1101/2023.03.10.532109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Stress preconditioning occurs when transient, sublethal stress events impact an organism's ability to counter future stresses. Although preconditioning effects are often noted in the literature, very little is known about the underlying mechanisms. To model preconditioning, we exposed a panel of genetically diverse Drosophila melanogaster to a sublethal heat shock and measured how well the flies survived subsequent exposure to endoplasmic reticulum (ER) stress. The impact of preconditioning varied with genetic background, ranging from dying half as fast to four and a half times faster with preconditioning compared to no preconditioning. Subsequent association and transcriptional analyses revealed that histone methylation, transcriptional regulation, and immune status are all candidate preconditioning modifier pathways. Strikingly, almost all subunits (7/8) in the Set1/COMPASS complex were identified as candidate modifiers of preconditioning. Functional analysis of Set1 knockdown flies demonstrated that loss of Set1 led to the transcriptional dysregulation of canonical ER stress genes during preconditioning. Based on these analyses, we propose a model of preconditioning in which Set1 helps to establish an interim transcriptional 'memory' of previous stress events, resulting in a preconditioned response to subsequent stress.
Collapse
Affiliation(s)
- Katie G. Owings
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, United States of America
| | - Clement Y. Chow
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, United States of America
| |
Collapse
|
6
|
Poovathumkadavil P, Jagla K. Genetic Control of Muscle Diversification and Homeostasis: Insights from Drosophila. Cells 2020; 9:cells9061543. [PMID: 32630420 PMCID: PMC7349286 DOI: 10.3390/cells9061543] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 12/13/2022] Open
Abstract
In the fruit fly, Drosophila melanogaster, the larval somatic muscles or the adult thoracic flight and leg muscles are the major voluntary locomotory organs. They share several developmental and structural similarities with vertebrate skeletal muscles. To ensure appropriate activity levels for their functions such as hatching in the embryo, crawling in the larva, and jumping and flying in adult flies all muscle components need to be maintained in a functionally stable or homeostatic state despite constant strain. This requires that the muscles develop in a coordinated manner with appropriate connections to other cell types they communicate with. Various signaling pathways as well as extrinsic and intrinsic factors are known to play a role during Drosophila muscle development, diversification, and homeostasis. In this review, we discuss genetic control mechanisms of muscle contraction, development, and homeostasis with particular emphasis on the contractile unit of the muscle, the sarcomere.
Collapse
|
7
|
Bertolini E, Schubert FK, Zanini D, Sehadová H, Helfrich-Förster C, Menegazzi P. Life at High Latitudes Does Not Require Circadian Behavioral Rhythmicity under Constant Darkness. Curr Biol 2019; 29:3928-3936.e3. [PMID: 31679928 DOI: 10.1016/j.cub.2019.09.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 08/13/2019] [Accepted: 09/12/2019] [Indexed: 01/08/2023]
Abstract
Nearly all organisms evolved endogenous self-sustained timekeeping mechanisms to track and anticipate cyclic changes in the environment. Circadian clocks, with a periodicity of about 24 h, allow animals to adapt to day-night cycles. Biological clocks are highly adaptive, but strong behavioral rhythms might be a disadvantage for adaptation to weakly rhythmic environments such as polar areas [1, 2]. Several high-latitude species, including Drosophila species, were found to be highly arrhythmic under constant conditions [3-6]. Furthermore, Drosophila species from subarctic regions can extend evening activity until dusk under long days. These traits depend on the clock network neurochemistry, and we previously proposed that high-latitude Drosophila species evolved specific clock adaptations to colonize polar regions [5, 7, 8]. We broadened our analysis to 3 species of the Chymomyza genus, which diverged circa 5 million years before the Drosophila radiation [9] and colonized both low and high latitudes [10, 11]. C. costata, pararufithorax, and procnemis, independently of their latitude of origin, possess the clock neuronal network of low-latitude Drosophila species, and their locomotor activity does not track dusk under long photoperiods. Nevertheless, the high-latitude C. costata becomes arrhythmic under constant darkness (DD), whereas the two low-latitude species remain rhythmic. Different mechanisms are behind the arrhythmicity in DD of C. costata and the high-latitude Drosophila ezoana, suggesting that the ability to maintain behavioral rhythms has been lost more than once during drosophilids' evolution and that it might indeed be an evolutionary adaptation for life at high latitudes.
Collapse
Affiliation(s)
- Enrico Bertolini
- Neurobiology and Genetics, Theodor Boveri Institute, Biocentre, University of Würzburg, 97074 Würzburg, Germany
| | - Frank K Schubert
- Neurobiology and Genetics, Theodor Boveri Institute, Biocentre, University of Würzburg, 97074 Würzburg, Germany
| | - Damiano Zanini
- Neurobiology and Genetics, Theodor Boveri Institute, Biocentre, University of Würzburg, 97074 Würzburg, Germany
| | - Hana Sehadová
- Faculty of Science, Biology Centre of the Czech Academy of Sciences, Institute of Entomology and University of South Bohemia, 37005 Ceske Budejovice, Czech Republic
| | - Charlotte Helfrich-Förster
- Neurobiology and Genetics, Theodor Boveri Institute, Biocentre, University of Würzburg, 97074 Würzburg, Germany
| | - Pamela Menegazzi
- Neurobiology and Genetics, Theodor Boveri Institute, Biocentre, University of Würzburg, 97074 Würzburg, Germany.
| |
Collapse
|
8
|
Bertolini E, Kistenpfennig C, Menegazzi P, Keller A, Koukidou M, Helfrich-Förster C. The characterization of the circadian clock in the olive fly Bactrocera oleae (Diptera: Tephritidae) reveals a Drosophila-like organization. Sci Rep 2018; 8:816. [PMID: 29339768 PMCID: PMC5770390 DOI: 10.1038/s41598-018-19255-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 12/20/2017] [Indexed: 12/20/2022] Open
Abstract
The olive fruit fly, Bactrocera oleae, is the single most important pest for the majority of olive plantations. Oxitec's self-limiting olive fly technology (OX3097D-Bol) offers an alternative management approach to this insect pest. Because of previously reported asynchrony in the mating time of wild and laboratory strains, we have characterized the olive fly circadian clock applying molecular, evolutionary, anatomical and behavioural approaches. Here we demonstrate that the olive fly clock relies on a Drosophila melanogaster-like organization and that OX3097D-Bol carries a functional clock similar to wild-type strains, confirming its suitability for operational use.
Collapse
Affiliation(s)
- Enrico Bertolini
- Neurobiology and Genetics, Theodor Boveri Institute, Biocentre, University of Würzburg, 97074, Würzburg, Germany
| | | | - Pamela Menegazzi
- Neurobiology and Genetics, Theodor Boveri Institute, Biocentre, University of Würzburg, 97074, Würzburg, Germany
| | - Alexander Keller
- Center for Computation and Theoretical Biology and Department of Bioinformatics, Biocentre, University of Würzburg, 97074, Würzburg, Germany
| | | | - Charlotte Helfrich-Förster
- Neurobiology and Genetics, Theodor Boveri Institute, Biocentre, University of Würzburg, 97074, Würzburg, Germany.
| |
Collapse
|
9
|
Christie AE, Yu A, Pascual MG. Circadian signaling in the Northern krill Meganyctiphanes norvegica: In silico prediction of the protein components of a putative clock system using a publicly accessible transcriptome. Mar Genomics 2017; 37:97-113. [PMID: 28964713 DOI: 10.1016/j.margen.2017.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/01/2017] [Accepted: 09/02/2017] [Indexed: 11/25/2022]
Abstract
The Northern krill Meganyctiphanes norvegica is a significant component of the zooplankton community in many regions of the North Atlantic Ocean. In the areas it inhabits, M. norvegica is of great importance ecologically, as it is both a major consumer of phytoplankton/small zooplankton and is a primary food source for higher-level consumers. One behavior of significance for both feeding and predator avoidance in Meganyctiphanes is diel vertical migration (DVM), i.e., a rising from depth at dusk and a return to depth at dawn. In this and other euphausiids, an endogenous circadian pacemaker is thought, at least in part, to control DVM. Currently, there is no information concerning the identity of the genes/proteins that comprise the M. norvegica circadian system. In fact, there is little information concerning the molecular underpinnings of circadian rhythmicity in crustaceans generally. Here, a publicly accessible transcriptome was used to identify the molecular components of a putative Meganyctiphanes circadian system. A complete set of core clock proteins was deduced from the M. norvegica transcriptome (clock, cryptochrome 2, cycle, period and timeless), as was a large suite of proteins that likely function as modulators of the core clock (e.g., doubletime), or serves as inputs to it (cryptochrome 1) or outputs from it (pigment dispersing hormone). This is the first description of a "complete" (core clock through putative output pathway signals) euphausiid clock system, and as such, provides a foundation for initiating molecular investigations of circadian signaling in M. norvegica and other krill species, including how clock systems may regulate DVM and other behaviors.
Collapse
Affiliation(s)
- Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA.
| | - Andy Yu
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA
| | - Micah G Pascual
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA
| |
Collapse
|
10
|
Barberà M, Collantes-Alegre JM, Martínez-Torres D. Characterisation, analysis of expression and localisation of circadian clock genes from the perspective of photoperiodism in the aphid Acyrthosiphon pisum. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 83:54-67. [PMID: 28235563 DOI: 10.1016/j.ibmb.2017.02.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 02/17/2017] [Accepted: 02/20/2017] [Indexed: 06/06/2023]
Abstract
Aphids are typical photoperiodic insects that switch from viviparous parthenogenetic reproduction typical of long day seasons to oviparous sexual reproduction triggered by the shortening of photoperiod in autumn yielding an overwintering egg in which an embryonic diapause takes place. While the involvement of the circadian clock genes in photoperiodism in mammals is well established, there is still some controversy on their participation in insects. The availability of the genome of the pea aphid Acyrthosiphon pisum places this species as an excellent model to investigate the involvement of the circadian system in the aphid seasonal response. In the present report, we have advanced in the characterisation of the circadian clock genes and showed that these genes display extensive alternative splicing. Moreover, the expression of circadian clock genes, analysed at different moments of the day, showed a robust cycling of central clock genes period and timeless. Furthermore, the rhythmic expression of these genes was shown to be rapidly dampened under DD (continuous darkness conditions), thus supporting the model of a seasonal response based on a heavily dampened circadian oscillator. Additionally, increased expression of some of the circadian clock genes under short-day conditions suggest their involvement in the induction of the aphid seasonal response. Finally, in situ localisation of transcripts of genes period and timeless in the aphid brain revealed the site of clock neurons for the first time in aphids. Two groups of clock cells were identified: the Dorsal Neurons (DN) and the Lateral Neurons (LN), both in the protocerebrum.
Collapse
Affiliation(s)
- Miquel Barberà
- Institut de Biologia Integrativa de Sistemes & Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Parc Cientific Universitat de Valencia, C/ Catedrático José Beltrán n° 2, 46980 Paterna, València, Spain
| | - Jorge Mariano Collantes-Alegre
- Institut de Biologia Integrativa de Sistemes & Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Parc Cientific Universitat de Valencia, C/ Catedrático José Beltrán n° 2, 46980 Paterna, València, Spain
| | - David Martínez-Torres
- Institut de Biologia Integrativa de Sistemes & Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Parc Cientific Universitat de Valencia, C/ Catedrático José Beltrán n° 2, 46980 Paterna, València, Spain.
| |
Collapse
|
11
|
Li Z, Jiang J, Chen Y, You L, Huang Y, Tan A, Li Z, Jiang J, Niu B, Meng Z. PDP1 regulates energy metabolism through the IIS-TOR pathway in the red flour beetle, Tribolium castaneum. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2014; 85:127-136. [PMID: 24478036 DOI: 10.1002/arch.21146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The PAR-domain protein 1 (PDP1) is essential for locomotor activity of insects. However, its functions in insect growth and development have not been studied extensively, which prompted our hypothesis that PDP1 acts in energy metabolism. Here we report identification of TcPDP1 in the red flour beetle, Tribolium castaneum, and its functional analysis by RNAi. Treating larvae with dsTcPDP1 induced pupae developmental arrestment, accompanied by accelerated fat body degradation. dsTcPDP1 treatments in adults resulted in reduced female fecundity. Disruption of TcPDP1 expression affected the transcription of genes involved in insulin signaling transduction and mechanistic target of rapamycin (mTOR) pathway. These results support our hypothesis that TcPDP1 acts in energy metabolism in T. castaneum.
Collapse
Affiliation(s)
- Zhiqian Li
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Reduction of Cellular Lipid Content by a Knockdown of Drosophila PDP1 γ and Mammalian Hepatic Leukemia Factor. J Lipids 2013; 2013:297932. [PMID: 24062952 PMCID: PMC3766575 DOI: 10.1155/2013/297932] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 07/19/2013] [Indexed: 02/01/2023] Open
Abstract
In exploring the utility of double-stranded RNA (dsRNA) injections for silencing the PAR-domain protein 1 (Pdp1) gene in adult Drosophila, we noticed a dramatic loss of fat tissue lipids. To verify that our RNAi approach produced the expected Pdp1 knockdown, the abdominal fat tissues sections were stained with PDP1 antibodies. PDP1 protein immunostaining was absent in flies injected with dsRNA targeting a sequence common to all known Pdp1 isoforms. Subsequent experiments revealed that lipid staining is reduced in flies injected with dsRNA against Pdp1 γ (fat body specific) and not against Pdp1 ε (predominantly involved in circadian mechanisms). Drosophila PDP1 γ protein shows a high homology to mammalian thyrotroph embryonic factor (TEF), albumin D site-binding protein (DBP), and hepatic leukemia factor (HLF) transcription factors. In an in vitro model of drug- (olanzapine-) induced adiposity in mouse 3T3-L1 cells, the mRNA content of HLF but not TEF and DBP was increased by the drug treatment. A knockdown of the HLF mRNA by transfecting the cultures with HLF dsRNA significantly reduced their lipid content. Furthermore, the HLF RNAi prevented olanzapine from increasing the cell lipid content. These results suggest that the PDP1/HLF system may play a role in physiological and drug-influenced lipid regulation.
Collapse
|
13
|
Hermann C, Saccon R, Senthilan PR, Domnik L, Dircksen H, Yoshii T, Helfrich-Förster C. The circadian clock network in the brain of different Drosophila species. J Comp Neurol 2013; 521:367-88. [PMID: 22736465 DOI: 10.1002/cne.23178] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 05/22/2012] [Accepted: 06/21/2012] [Indexed: 12/16/2022]
Abstract
Comparative studies on cellular and molecular clock mechanisms have revealed striking similarities in the organization of the clocks among different animal groups. To gain evolutionary insight into the properties of the clock network within the Drosophila genus, we analyzed sequence identities and similarities of clock protein homologues and immunostained brains of 10 different Drosophila species using antibodies against vrille (VRI), PAR-protein domain1 (PDP1), and cryptochrome (CRY). We found that the clock network of both subgenera Sophophora and Drosophila consists of all lateral and dorsal clock neuron clusters that were previously described in Drosophila melanogaster. Immunostaining against CRY and the neuropeptide pigment-dispersing factor (PDF), however, revealed species-specific differences. All species of the Drosophila subgenus and D. pseudoobscura of the Sophophora subgenus completely lacked CRY in the large ventrolateral clock neurons (lLN(v) s) and showed reduced PDF immunostaining in the small ventrolateral clock neurons (sLN(v) s). In contrast, we found the expression of the ion transport peptide (ITP) to be consistent within the fifth sLN(v) and one dorsolateral clock neuron (LN(d) ) in all investigated species, suggesting a conserved putative function of this neuropeptide in the clock. We conclude that the general anatomy of the clock network is highly conserved throughout the Drosophila genus, although there is variation in PDF and CRY expression. Our comparative study is a first step toward understanding the organization of the circadian clock in Drosophila species adapted to different habitats.
Collapse
Affiliation(s)
- Christiane Hermann
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
14
|
Bryantsev AL, Baker PW, Lovato TL, Jaramillo MS, Cripps RM. Differential requirements for Myocyte Enhancer Factor-2 during adult myogenesis in Drosophila. Dev Biol 2011; 361:191-207. [PMID: 22008792 DOI: 10.1016/j.ydbio.2011.09.031] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 08/27/2011] [Accepted: 09/27/2011] [Indexed: 11/27/2022]
Abstract
Identifying the genetic program that leads to formation of functionally and morphologically distinct muscle fibers is one of the major challenges in developmental biology. In Drosophila, the Myocyte Enhancer Factor-2 (MEF2) transcription factor is important for all types of embryonic muscle differentiation. In this study we investigated the role of MEF2 at different stages of adult skeletal muscle formation, where a diverse group of specialized muscles arises. Through stage- and tissue-specific expression of Mef2 RNAi constructs, we demonstrate that MEF2 is critical at the early stages of adult myoblast fusion: mutant myoblasts are attracted normally to their founder cell targets, but are unable to fuse to form myotubes. Interestingly, ablation of Mef2 expression at later stages of development showed MEF2 to be more dispensable for structural gene expression: after myoblast fusion, Mef2 knockdown did not interrupt expression of major structural gene transcripts, and myofibrils were formed. However, the MEF2-depleted fibers showed impaired integrity and a lack of fibrillar organization. When Mef2 RNAi was induced in muscles following eclosion, we found no adverse effects of attenuating Mef2 function. We conclude that in the context of adult myogenesis, MEF2 remains an essential factor, participating in control of myoblast fusion, and myofibrillogenesis in developing myotubes. However, MEF2 does not show a major requirement in the maintenance of muscle structural gene expression. Our findings point to the importance of a diversity of regulatory factors that are required for the formation and function of the distinct muscle fibers found in animals.
Collapse
Affiliation(s)
- Anton L Bryantsev
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | | | | | | | | |
Collapse
|
15
|
Beaver LM, Hooven LA, Butcher SM, Krishnan N, Sherman KA, Chow ESY, Giebultowicz JM. Circadian clock regulates response to pesticides in Drosophila via conserved Pdp1 pathway. Toxicol Sci 2010; 115:513-20. [PMID: 20348229 DOI: 10.1093/toxsci/kfq083] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Daily rhythms generated by the circadian clock regulate many life functions, including responses to xenobiotic compounds. In Drosophila melanogaster, the circadian clock consists of positive elements encoded by cycle (cyc) and Clock (Clk) and negative elements encoded by period (per) and timeless (tim) genes. The epsilon-isoform of the PAR-domain protein 1 (Pdp1epsilon) transcription factor is controlled by positive clock elements and regulates daily locomotor activity rhythms. Pdp1 target genes have not been identified, and its involvement in other clock output pathways is not known. Mammalian orthologs of Pdp1 have been implicated in the regulation of xenobiotic metabolism; therefore, we asked whether Pdp1 has a similar role in the fly. Using pesticides as model toxicants, we determined that disruption of Pdp1epsilon increased pesticide-induced mortality in flies. Flies deficient for cyc also showed increased mortality, while disruption of per and tim had no effect. Day/night and Pdp1-dependent differences in the expression of xenobiotic-metabolizing enzymes Cyp6a2, Cyp6g1, and alpha-Esterase-7 were observed and likely contribute to impaired detoxification. DHR96, a homolog of constitutive androstane receptor and pregnane X receptor, is involved in pesticide response, and DHR96 expression decreased when Pdp1 was suppressed. Taken together, our data uncover a pathway from the positive arm of the circadian clock through Pdp1 to detoxification effector genes, demonstrating a conserved role of the circadian system in modulating xenobiotic toxicity.
Collapse
|
16
|
Cortés T, Ortiz-Rivas B, Martínez-Torres D. Identification and characterization of circadian clock genes in the pea aphid Acyrthosiphon pisum. INSECT MOLECULAR BIOLOGY 2010; 19 Suppl 2:123-39. [PMID: 20482645 DOI: 10.1111/j.1365-2583.2009.00931.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The molecular basis of circadian clocks is highly evolutionarily conserved and has been best characterized in Drosophila and mouse. Analysis of the Acyrthosiphon pisum genome revealed the presence of orthologs of the following genes constituting the core of the circadian clock in Drosophila: period (per), timeless (tim), Clock, cycle, vrille, and Pdp1. However, the presence in A. pisum of orthologs of a mammal-type in addition to a Drosophila-type cryptochrome places the putative aphid clockwork closer to the ancestral insect system than to the Drosophila one. Most notably, five of these putative aphid core clock genes are highly divergent and exhibit accelerated rates of change (especially per and tim orthologs) suggesting that the aphid circadian clock has evolved to adapt to (unknown) aphid-specific needs. Additionally, with the exception of jetlag (absent in the aphid) other genes included in the Drosophila circadian clock repertoire were found to be conserved in A. pisum. Expression analysis revealed circadian rhythmicity for some core genes as well as a significant effect of photoperiod in the amplitude of oscillations.
Collapse
Affiliation(s)
- T Cortés
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Spain
| | | | | |
Collapse
|
17
|
Schnorrer F, Schönbauer C, Langer CCH, Dietzl G, Novatchkova M, Schernhuber K, Fellner M, Azaryan A, Radolf M, Stark A, Keleman K, Dickson BJ. Systematic genetic analysis of muscle morphogenesis and function in Drosophila. Nature 2010; 464:287-91. [DOI: 10.1038/nature08799] [Citation(s) in RCA: 220] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Accepted: 12/30/2009] [Indexed: 11/09/2022]
|
18
|
Abstract
The Drosophila PAR domain protein 1 (Pdp1) gene encodes a transcription factor with multiple functions. One isoform, PDP1epsilon, was proposed to be an essential activator of the core clock gene, Clock (Clk). However, a central clock function for PDP1epsilon was recently disputed, and genetic analysis has been difficult due to developmental lethality of Pdp1-null mutants. Here we report the discovery of a mutation that specifically disrupts the Pdp1epsilon isoform. Homozygous Pdp1epsilon mutants are viable and exhibit arrhythmic circadian behavior in constant darkness and also in the presence of light:dark cycles. Importantly, the mutants show diminished expression of CLK and PERIOD (PER) in the central clock cells. In addition, expression of PDF (pigment-dispersing factor) is reduced in a subset of the central clock cells. Loss of Pdp1epsilon also alters the phosphorylation status of the CLK protein and disrupts cyclic expression of a per-luciferase reporter in peripheral clocks under free-running conditions. Transgenic expression of PDP1epsilon in clock neurons of Pdp1epsilon mutants can restore rhythmic circadian behavior. However, transgenic expression of CLK in these mutants rescues the expression of PER in the central clock, but fails to restore behavioral rhythms, suggesting that PDP1epsilon has effects outside the core molecular clock. Together, these data support a model in which PDP1epsilon functions in the central circadian oscillator as well as in the output pathway.
Collapse
|
19
|
Guruharsha KG, Ruiz-Gomez M, Ranganath HA, Siddharthan R, VijayRaghavan K. The complex spatio-temporal regulation of the Drosophila myoblast attractant gene duf/kirre. PLoS One 2009; 4:e6960. [PMID: 19742310 PMCID: PMC2734059 DOI: 10.1371/journal.pone.0006960] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Accepted: 06/09/2009] [Indexed: 12/18/2022] Open
Abstract
A key early player in the regulation of myoblast fusion is the gene dumbfounded (duf, also known as kirre). Duf must be expressed, and function, in founder cells (FCs). A fixed number of FCs are chosen from a pool of equivalent myoblasts and serve to attract fusion-competent myoblasts (FCMs) to fuse with them to form a multinucleate muscle-fibre. The spatial and temporal regulation of duf expression and function are important and play a deciding role in choice of fibre number, location and perhaps size. We have used a combination of bioinformatics and functional enhancer deletion approaches to understand the regulation of duf. By transgenic enhancer-reporter deletion analysis of the duf regulatory region, we found that several distinct enhancer modules regulate duf expression in specific muscle founders of the embryo and the adult. In addition to existing bioinformatics tools, we used a new program for analysis of regulatory sequence, PhyloGibbs-MP, whose development was largely motivated by the requirements of this work. The results complement our deletion analysis by identifying transcription factors whose predicted binding regions match with our deletion constructs. Experimental evidence for the relevance of some of these TF binding sites comes from available ChIP-on-chip from the literature, and from our analysis of localization of myogenic transcription factors with duf enhancer reporter gene expression. Our results demonstrate the complex regulation in each founder cell of a gene that is expressed in all founder cells. They provide evidence for transcriptional control—both activation and repression—as an important player in the regulation of myoblast fusion. The set of enhancer constructs generated will be valuable in identifying novel trans-acting factor-binding sites and chromatin regulation during myoblast fusion in Drosophila. Our results and the bioinformatics tools developed provide a basis for the study of the transcriptional regulation of other complex genes.
Collapse
Affiliation(s)
- K. G. Guruharsha
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
- Department of Studies in Zoology, University of Mysore, Manasagangothri, Mysore, India
| | - Mar Ruiz-Gomez
- Centro de Biologia Molecular Severo Ochoa, CSIC and UAM, Cantoblanco, Madrid, Spain
| | - H. A. Ranganath
- Department of Studies in Zoology, University of Mysore, Manasagangothri, Mysore, India
| | - Rahul Siddharthan
- Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai, India
| | - K. VijayRaghavan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
- * E-mail:
| |
Collapse
|
20
|
Yavatkar AS, Lin Y, Ross J, Fann Y, Brody T, Odenwald WF. Rapid detection and curation of conserved DNA via enhanced-BLAT and EvoPrinterHD analysis. BMC Genomics 2008; 9:106. [PMID: 18307801 PMCID: PMC2268679 DOI: 10.1186/1471-2164-9-106] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Accepted: 02/28/2008] [Indexed: 12/04/2022] Open
Abstract
Background Multi-genome comparative analysis has yielded important insights into the molecular details of gene regulation. We have developed EvoPrinter, a web-accessed genomics tool that provides a single uninterrupted view of conserved sequences as they appear in a species of interest. An EvoPrint reveals with near base-pair resolution those sequences that are essential for gene function. Results We describe here EvoPrinterHD, a 2nd-generation comparative genomics tool that automatically generates from a single input sequence an enhanced view of sequence conservation between evolutionarily distant species. Currently available for 5 nematode, 3 mosquito, 12 Drosophila, 20 vertebrate, 17 Staphylococcus and 20 enteric bacteria genomes, EvoPrinterHD employs a modified BLAT algorithm [enhanced-BLAT (eBLAT)], which detects up to 75% more conserved bases than identified by the BLAT alignments used in the earlier EvoPrinter program. The new program also identifies conserved sequences within rearranged DNA, highlights repetitive DNA, and detects sequencing gaps. EvoPrinterHD currently holds over 112 billion bp of indexed genomes in memory and has the flexibility of selecting a subset of genomes for analysis. An EvoDifferences profile is also generated to portray conserved sequences that are uniquely lost in any one of the orthologs. Finally, EvoPrinterHD incorporates options that allow for (1) re-initiation of the analysis using a different genome's aligning region as the reference DNA to detect species-specific changes in less-conserved regions, (2) rapid extraction and curation of conserved sequences, and (3) for bacteria, identifies unique or uniquely shared sequences present in subsets of genomes. Conclusion EvoPrinterHD is a fast, high-resolution comparative genomics tool that automatically generates an uninterrupted species-centric view of sequence conservation and enables the discovery of conserved sequences within rearranged DNA. When combined with cis-Decoder, a program that discovers sequence elements shared among tissue specific enhancers, EvoPrinterHD facilitates the analysis of conserved sequences that are essential for coordinate gene regulation.
Collapse
Affiliation(s)
- Amarendra S Yavatkar
- 1Division of Intramural Research, Information Technology Program, NINDS, NIH, Bethesda, Maryland, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Junion G, Bataillé L, Jagla T, Da Ponte JP, Tapin R, Jagla K. Genome-wide view of cell fate specification: ladybird acts at multiple levels during diversification of muscle and heart precursors. Genes Dev 2008; 21:3163-80. [PMID: 18056427 DOI: 10.1101/gad.437307] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Correct diversification of cell types during development ensures the formation of functional organs. The evolutionarily conserved homeobox genes from ladybird/Lbx family were found to act as cell identity genes in a number of embryonic tissues. A prior genetic analysis showed that during Drosophila muscle and heart development ladybird is required for the specification of a subset of muscular and cardiac precursors. To learn how ladybird genes exert their cell identity functions we performed muscle and heart-targeted genome-wide transcriptional profiling and a chromatin immunoprecipitation (ChIP)-on-chip search for direct Ladybird targets. Our data reveal that ladybird not only contributes to the combinatorial code of transcription factors specifying the identity of muscle and cardiac precursors, but also regulates a large number of genes involved in setting cell shape, adhesion, and motility. Among direct ladybird targets, we identified bric-a-brac 2 gene as a new component of identity code and inflated encoding alphaPS2-integrin playing a pivotal role in cell-cell interactions. Unexpectedly, ladybird also contributes to the regulation of terminal differentiation genes encoding structural muscle proteins or contributing to muscle contractility. Thus, the identity gene-governed diversification of cell types is a multistep process involving the transcriptional control of genes determining both morphological and functional properties of cells.
Collapse
Affiliation(s)
- Guillaume Junion
- Institut National de la Santé et de la Recherche Médicale U384, 63000 Clermont-Ferrand, France
| | | | | | | | | | | |
Collapse
|
22
|
Targeted inhibition of Pdp1epsilon abolishes the circadian behavior of Drosophila melanogaster. Biochem Biophys Res Commun 2007; 364:294-300. [PMID: 17950247 DOI: 10.1016/j.bbrc.2007.10.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Accepted: 10/02/2007] [Indexed: 11/24/2022]
Abstract
vrille and Par domain protein 1 (Pdp1) epsilon constitute the second transcriptional feedback loop in Drosophila circadian clock system. Their rhythmic expression is controlled by Drosophila Clock (dClk) gene, and they feed back to negatively and positively, respectively, regulate the oscillating transcription from dClk gene. In this study, we characterized the functional domains of PDP1epsilonin vitro using a panel of deletion mutants and showed that PDP1epsilon basic leucine zipper domain can act as a dominant-negative (DN) mutant of wild-type PDP1epsilon. In transgenic flies, the inhibition of PDP1epsilon activity by PDP1(DN) expression or PDP1 knock-down resulted in arrhythmic circadian behavior with altered dorsal projections from small ventral lateral neurons. We propose that one of PDP1-target genes may be involved in the formation of neural connection between the pacemaker cells and their targets for maintaining the rhythmicity of adult locomotor activity under free-running condition.
Collapse
|
23
|
Brody T, Rasband W, Baler K, Kuzin A, Kundu M, Odenwald WF. cis-Decoder discovers constellations of conserved DNA sequences shared among tissue-specific enhancers. Genome Biol 2007; 8:R75. [PMID: 17490485 PMCID: PMC1929141 DOI: 10.1186/gb-2007-8-5-r75] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Revised: 12/18/2006] [Accepted: 05/09/2007] [Indexed: 12/01/2022] Open
Abstract
: The use of cis-Decoder, a new tool for discovery of conserved sequence elements that are shared between similarly regulating enhancers, suggests that enhancers use overlapping repertoires of highly conserved core elements. A systematic approach is described for analysis of evolutionarily conserved cis-regulatory DNA using cis-Decoder, a tool for discovery of conserved sequence elements that are shared between similarly regulated enhancers. Analysis of 2,086 conserved sequence blocks (CSBs), identified from 135 characterized enhancers, reveals most CSBs consist of shorter overlapping/adjacent elements that are either enhancer type-specific or common to enhancers with divergent regulatory behaviors. Our findings suggest that enhancers employ overlapping repertoires of highly conserved core elements.
Collapse
Affiliation(s)
- Thomas Brody
- Neural Cell-Fate Determinants Section, NINDS, NIH, Bethesda, MD, 20892, USA
| | - Wayne Rasband
- Office of Scientific Director, IRP, NIMH, NIH, Bethesda, MD, 20892, USA
| | - Kevin Baler
- Office of Scientific Director, IRP, NIMH, NIH, Bethesda, MD, 20892, USA
| | - Alexander Kuzin
- Neural Cell-Fate Determinants Section, NINDS, NIH, Bethesda, MD, 20892, USA
| | - Mukta Kundu
- Neural Cell-Fate Determinants Section, NINDS, NIH, Bethesda, MD, 20892, USA
| | - Ward F Odenwald
- Neural Cell-Fate Determinants Section, NINDS, NIH, Bethesda, MD, 20892, USA
| |
Collapse
|
24
|
Benito J, Zheng H, Hardin PE. PDP1epsilon functions downstream of the circadian oscillator to mediate behavioral rhythms. J Neurosci 2007; 27:2539-47. [PMID: 17344391 PMCID: PMC1828026 DOI: 10.1523/jneurosci.4870-06.2007] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The Drosophila circadian oscillator is composed of autoregulatory period/timeless (per/tim) and Clock (Clk) feedback loops that control rhythmic transcription. In the Clk loop, CLOCK-CYCLE heterodimers activate vrille (vri) and PAR domain protein 1epsilon (Pdp1epsilon) transcription, then sequential repression by VRI and activation by PDP1epsilon mediate rhythms in Clk transcription. Because VRI and PDP1epsilon bind the same regulatory element, the VRI/PDP1epsilon ratio is thought to control the level of Clk transcription. Thus, constant high or low PDP1epsilon levels in clock cells should eliminate Clk mRNA cycling and disrupt circadian oscillator function. Here we show that reducing PDP1epsilon levels in clock cells by approximately 70% via RNA interference or increasing PDP1epsilon levels by approximately 10-fold in clock cells does not alter Clk mRNA cycling or circadian oscillator function. However, constant low or high PDP1epsilon levels in clock cells disrupt locomotor activity rhythms despite persistent circadian oscillator function in brain pacemaker neurons that extend morphologically normal projections into the dorsal brain. These results demonstrate that the VRI/PDP1epsilon ratio neither controls Clk mRNA cycling nor circadian oscillator function and argue that PDP1epsilon is not essential for Clk activation. PDP1epsilon is nevertheless required for behavioral rhythmicity, which suggests that it functions to regulate oscillator output.
Collapse
Affiliation(s)
- Juliana Benito
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204, and
| | - Hao Zheng
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204, and
- Center for Research on Biological Clocks, Department of Biology, Texas A&M University, College Station, Texas 77843
| | - Paul E. Hardin
- Center for Research on Biological Clocks, Department of Biology, Texas A&M University, College Station, Texas 77843
| |
Collapse
|
25
|
Benito J, Zheng H, Ng FS, Hardin PE. Transcriptional feedback loop regulation, function, and ontogeny in Drosophila. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2007; 72:437-44. [PMID: 18419302 PMCID: PMC2866010 DOI: 10.1101/sqb.2007.72.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The Drosophila circadian oscillator is composed of interlocked period/timeless (per/tim) and Clock (Clk) transcriptional feedback loops. These feedback loops drive rhythmic transcription having peaks at dawn and dusk during the daily cycle and function in the brain and a variety of peripheral tissues. To understand how the circadian oscillator keeps time and controls metabolic, physiological, and behavioral rhythms, we must determine how these feedback loops regulate rhythmic transcription, determine the relative importance of the per/tim and Clk feedback loops with regard to circadian oscillator function, and determine how these feedback loops come to be expressed in only certain tissues. Substantial insight into each of these issues has been gained from experiments performed in our lab and others and is summarized here.
Collapse
Affiliation(s)
- J Benito
- Department of Biology, Texas A&M University, College Station, Texas 77843-3258, USA
| | | | | | | |
Collapse
|
26
|
Hardin PE. Essential and expendable features of the circadian timekeeping mechanism. Curr Opin Neurobiol 2006; 16:686-92. [PMID: 17011182 DOI: 10.1016/j.conb.2006.09.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Revised: 09/07/2006] [Accepted: 09/15/2006] [Indexed: 11/16/2022]
Abstract
Circadian clocks control behavioral, physiological and metabolic rhythms via one or more transcriptional feedback loops. In animals, two conserved feedback loops are thought to keep circadian time by mediating rhythmic transcription in opposite phases of the circadian cycle. Recent work in cyanobacteria nevertheless demonstrates that rhythmic transcription is dispensable for circadian timekeeping, raising the possibility that some features of the transcriptional feedback loops in animals are also expendable. Indeed, one of the two feedback loops is not necessary for circadian timekeeping in animals, but rhythmic transcription and post-translational modifications are both essential for keeping circadian time. These results not only confirm additional requirements within the animal circadian timekeeping mechanism, but also raise important questions about the function of conserved, yet expendable, features of the circadian timekeeping mechanism in animals.
Collapse
Affiliation(s)
- Paul E Hardin
- Department of Biology, Center for Research on Biological Clocks, Texas A&M University, College Station, TX 77843-3258, USA.
| |
Collapse
|
27
|
Deppmann CD, Alvania RS, Taparowsky EJ. Cross-species annotation of basic leucine zipper factor interactions: Insight into the evolution of closed interaction networks. Mol Biol Evol 2006; 23:1480-92. [PMID: 16731568 DOI: 10.1093/molbev/msl022] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Dimeric basic leucine zipper (bZIP) factors constitute one of the most important classes of enhancer-type transcription factors. In vertebrates, bZIP factors are involved in many cellular processes, including cell survival, learning and memory, cancer progression, lipid metabolism, and a variety of developmental processes. These factors have the ability to homodimerize and heterodimerize in a specific and predictable manner, resulting in hundreds of dimers with unique effects on transcription. In recent years, several studies have described dimerization preferences for bZIP factors from different species, including Homo sapiens, Drosophila melanogaster, Arabidopsis thaliana, and Saccharomyces cerevisiae. Here, these findings are summarized as novel, graphical representations of closed, interacting protein networks. These representations combine phylogenetic information, DNA-binding properties, and dimerization preference. Beyond summarizing bZIP dimerization preferences within selected species, we have included annotation for a solitary bZIP factor found in the primitive eukaryote, Giardia lamblia, a possible evolutionary precursor to the complex networks of bZIP factors encoded by other genomes. Finally, we discuss the fundamental similarities and differences between dimerization networks within the context of bZIP factor evolution.
Collapse
|
28
|
Reddy KL, Rovani MK, Wohlwill A, Katzen A, Storti RV. The Drosophila Par domain protein I gene, Pdp1, is a regulator of larval growth, mitosis and endoreplication. Dev Biol 2006; 289:100-14. [PMID: 16313897 DOI: 10.1016/j.ydbio.2005.10.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2005] [Revised: 09/30/2005] [Accepted: 10/17/2005] [Indexed: 12/17/2022]
Abstract
PDP1 is a basic leucine zipper (bZip) transcription factor that is expressed at high levels in the muscle, epidermis, gut and fat body of the developing Drosophila embryo. We have identified three mutant alleles of Pdp1, each having a similar phenotype. Here, we describe in detail the Pdp1 mutant allele, Pdp1(p205), which is null for both Pdp1 RNA and protein. Interestingly, homozygous Pdp1(p205) embryos develop normally, hatch and become viable larvae. Analyses of Pdp1 null mutant embryos reveal that the overall muscle pattern is normal as is the patterning of the gut and fat body. Pdp1(p205) larvae also appear to have normal muscle and gut function and respond to ecdysone. These larvae, however, are severely growth delayed and arrested. Furthermore, although Pdp1 null larvae live a normal life span, they do not form pupae and thus do not give rise to eclosed flies. The stunted growth of Pdp1(p205) larvae is accompanied by defects in mitosis and endoreplication similar to that associated with nutritional deprivation. The cellular defects resulting from the Pdp1(p205) mutation are not cell autonomous. Moreover, PDP1 expression is sensitive to nutritional conditions, suggesting a link between nutrition, PDP1 isotype expression and growth. These results indicate that Pdp1 has a critical role in coordinating growth and DNA replication.
Collapse
Affiliation(s)
- Karen L Reddy
- Department of Biochemistry and Molecular Genetics M/C 669, University of Illinois College of Medicine, Chicago, 60612, USA
| | | | | | | | | |
Collapse
|
29
|
Marco-Ferreres R, Vivar J, Arredondo JJ, Portillo F, Cervera M. Co-operation between enhancers modulates quantitative expression from the Drosophila Paramyosin/miniparamyosin gene in different muscle types. Mech Dev 2005; 122:681-94. [PMID: 15817225 DOI: 10.1016/j.mod.2004.12.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2004] [Revised: 12/10/2004] [Accepted: 12/10/2004] [Indexed: 11/16/2022]
Abstract
The distinct muscles of an organism accumulate different quantities of structural proteins, but always maintaining their stoichiometry. However, the mechanisms that control the levels of these proteins and that co-ordinate muscle gene expression remain to be defined. The paramyosin/miniparamyosin gene encodes two thick filament proteins transcribed from two different promoters. We have analysed the regulatory regions that control expression of this gene and that are situated in the two promoters, the 5' and the internal promoters, both in vivo and in silico. A distal muscle enhancer containing three conserved MEF2 motifs is essential to drive high levels of paramyosin expression in all the major embryonic, larval and adult muscles. This enhancer shares sequence motifs, as well as its structure and organisation, with at least four co-regulated muscle enhancers that direct similar patterns of expression. However, other elements located downstream of the enhancer are also required for correct gene expression. Other muscle genes with different patterns of expression, such as miniparamyosin, are regulated by other basic mechanisms. The expression of miniparamyosin is controlled by two enhancers, AB and TX, but a BF modulator is required to ensure the correct levels of expression in each particular muscle. We propose a mechanism of transcriptional regulation in which similar enhancers are responsible for the spatio-temporal expression of co-regulated genes. However, it is the interaction between enhancers which ensures that the correct amounts of protein are expressed at any particular time in a cell, adapting these levels to their specific needs. These mechanisms may not be exclusive to neural or muscle tissue and might represent a general mechanism for genes that are spatially and temporally co-regulated.
Collapse
Affiliation(s)
- Raquel Marco-Ferreres
- Departamento de Bioquímica and Instituto Investigaciones Biomédicas, Facultad de Medicina, UAM-CSIC, Arzobispo Morcillo 4, 28029 Madrid, Spain
| | | | | | | | | |
Collapse
|
30
|
Arakane Y, Hogenkamp DG, Zhu YC, Kramer KJ, Specht CA, Beeman RW, Kanost MR, Muthukrishnan S. Characterization of two chitin synthase genes of the red flour beetle, Tribolium castaneum, and alternate exon usage in one of the genes during development. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2004; 34:291-304. [PMID: 14871625 DOI: 10.1016/j.ibmb.2003.11.004] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2003] [Revised: 11/06/2003] [Accepted: 11/06/2003] [Indexed: 05/24/2023]
Abstract
Two chitin synthase (CHS) genes of the red flour beetle, Tribolium castaneum, were sequenced and their transcription patterns during development examined. By screening a BAC library of genomic DNA from T. castaneum (Tc) with a DNA probe encoding the catalytic domain of a putative Tribolium CHS, several clones that contained CHS genes were identified. Two distinct PCR products were amplified from these BAC clones and confirmed to be highly similar to CHS genes from other insects, nematodes and fungi. The DNA sequences of these genes, TcCHS1 and TcCHS2, were determined by amplification of overlapping PCR fragments from two of the BAC DNAs and mapped to different linkage groups. Each ORF was identified and full-length cDNAs were also amplified, cloned and sequenced. TcCHS1 and TcCHS2 encode transmembrane proteins of 1558 and 1464 amino acids, respectively. The TcCHS1 gene was found to use alternate exons, each encoding 59 amino acids, a feature not found in the TcCHS2 gene. During development, Tribolium expressed TcCHS1 predominantly in the embryonic and pupal stages, whereas TcCHS2 was prevalent in the late larval and adult stages. The alternate exon 8a of TcCHS1 was utilized over a much broader range of development than exon 8b. We propose that the two isoforms of the TcCHS1 enzyme are used predominantly for the formation of chitin in embryonic and pupal cuticles, whereas TcCHS2 is utilized primarily for the synthesis of peritrophic membrane-associated chitin in the midgut.
Collapse
Affiliation(s)
- Yasuyuki Arakane
- Grain Marketing and Production Research Center, ARS-USDA, 1515 College Avenue, Manhattan, KS 66502, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Mas JA, García-Zaragoza E, Cervera M. Two functionally identical modular enhancers in Drosophila troponin T gene establish the correct protein levels in different muscle types. Mol Biol Cell 2004; 15:1931-45. [PMID: 14718560 PMCID: PMC379288 DOI: 10.1091/mbc.e03-10-0729] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The control of muscle-specific expression is one of the principal mechanisms by which diversity is generated among muscle types. In an attempt to elucidate the regulatory mechanisms that control fiber diversity in any given muscle, we have focused our attention on the transcriptional regulation of the Drosophila Troponin T gene. Two, nonredundant, functionally identical, enhancer-like elements activate Troponin T transcription independently in all major muscles of the embryo and larvae as well as in adult somatic and visceral muscles. Here, we propose that the differential but concerted interaction of these two elements underlies the mechanism by which a particular muscle-type establish the correct levels of Troponin T expression, adapting these levels to their specific needs. This mechanism is not exclusive to the Troponin T gene, but is also relevant to the muscle-specific Troponin I gene. In conjunction with in vivo transgenic studies, an in silico analysis of the Troponin T enhancer-like sequences revealed that both these elements are organized in a modular manner. Extending this analysis to the Troponin I and Tropomyosin regulatory elements, the two other components of the muscle-regulatory complex, we have discovered a similar modular organization of phylogenetically conserved domains.
Collapse
MESH Headings
- Animals
- Base Sequence
- Blotting, Northern
- Blotting, Western
- Cell Line, Transformed
- Cloning, Molecular
- Drosophila
- Drosophila melanogaster
- Electrophoresis, Polyacrylamide Gel
- Enhancer Elements, Genetic
- Gene Expression Regulation
- Genes, Reporter
- Immunoblotting
- Models, Genetic
- Molecular Sequence Data
- Muscles/metabolism
- Phylogeny
- Plasmids/metabolism
- Protein Structure, Tertiary
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Homology, Nucleic Acid
- Thorax/metabolism
- Time Factors
- Transcription, Genetic
- Transgenes
- Tropomyosin/genetics
- Troponin T/genetics
- beta-Galactosidase/metabolism
Collapse
Affiliation(s)
- José-Antonio Mas
- Departamento de Bioquímica and Instituto de Investigaciones Biomédicas, Facultad de Medicina, Universidad Autonoma de Madrid, UAM-CSIC, 28029 Madrid, Spain
| | | | | |
Collapse
|
32
|
Poels J, Vanden Broeck J. Insect basic leucine zipper proteins and their role in cyclic AMP-dependent regulation of gene expression. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 241:277-309. [PMID: 15548422 DOI: 10.1016/s0074-7696(04)41005-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The cAMP-protein kinase A (PKA) pathway is an important intracellular signal transduction cascade that can be activated by a large variety of stimuli. Activation or inhibition of this pathway will ultimately affect the transcriptional regulation of various genes through distinct responsive sites. In vertebrates, the best- characterized nuclear targets of PKA are the cyclic AMP response element-binding (CREB) proteins. It is now well established that CREB is not only regulated by PKA, but many other kinases can exert an effect as well. Since CREB-like proteins were also discovered in invertebrates, several studies unraveling their physiological functions in this category of metazoans have been performed. This review will mainly focus on the presence and regulation of CREB proteins in insects. Differences in transcriptional responses to the PKA pathway and other CREB-regulating stimuli between cells, tissues, and even organisms can be partially attributed to the presence of different CREB isoforms. In addition, the regulation of CREB appears to show some important differences between insects and vertebrates. Since CREB is a basic leucine zipper (bZip) protein, other insect members of this important family of transcriptional regulators will be briefly discussed as well.
Collapse
Affiliation(s)
- Jeroen Poels
- Laboratory for Developmental Physiology, Genomics and Proteomics, Catholic University Leuven, B-3000 Leuven, Belgium
| | | |
Collapse
|
33
|
Catalano RD, Kyriakou T, Chen J, Easton A, Hillhouse EW. Regulation of corticotropin-releasing hormone type 2 receptors by multiple promoters and alternative splicing: identification of multiple splice variants. Mol Endocrinol 2003; 17:395-410. [PMID: 12554761 DOI: 10.1210/me.2002-0302] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We demonstrate that multiple promoters and alternate splicing regulate expression of the human CRH receptor type 2 (CRHR2) gene. We show that flanking regions to the first exons drive promoter activity in both endogenously and nonendogenously expressing cell lines. Putative promoter elements have been identified that are conserved between species, including the comparison of CRHR2gamma in nonhuman primates that was previously known only in humans, which may be responsible for subtype tissue specific regulation. We have identified novel transcripts produced by alternate splicing of the first exon of CRHR2beta (beta1a) with various combinations of the 5' exons including a novel exon (beta1c) spliced to the common exons. The 5' structure of the gene permits many other combinations of alternate splicing that may arise as part of a regulatory mechanism controlling functional receptor expression. The 5'-untranslated region of the first exons has been extended; and 3' acceptor sites identified within the 5' untranslated region of CRHR2gamma and CRHR2alpha are used during alternate splicing of CRHR2beta upstream exons. This has important implications because various reports on the expression of CRHR2gamma and CRHR2alpha have been unable to discriminate between the functional receptor and CRHR2beta alternate splice variants. Only the described sequences upstream of the 3' splice site are unique to CRHR2gamma and CRHR2alpha.
Collapse
Affiliation(s)
- Rob D Catalano
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| | | | | | | | | |
Collapse
|
34
|
Cyran SA, Buchsbaum AM, Reddy KL, Lin MC, Glossop NRJ, Hardin PE, Young MW, Storti RV, Blau J. vrille, Pdp1, and dClock form a second feedback loop in the Drosophila circadian clock. Cell 2003; 112:329-41. [PMID: 12581523 DOI: 10.1016/s0092-8674(03)00074-6] [Citation(s) in RCA: 398] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Drosophila circadian clock consists of two interlocked transcriptional feedback loops. In one loop, dCLOCK/CYCLE activates period expression, and PERIOD protein then inhibits dCLOCK/CYCLE activity. dClock is also rhythmically transcribed, but its regulators are unknown. vrille (vri) and Par Domain Protein 1 (Pdp1) encode related transcription factors whose expression is directly activated by dCLOCK/CYCLE. We show here that VRI and PDP1 proteins feed back and directly regulate dClock expression. Repression of dClock by VRI is separated from activation by PDP1 since VRI levels peak 3-6 hours before PDP1. Rhythmic vri transcription is required for molecular rhythms, and here we show that the clock stops in a Pdp1 null mutant, identifying Pdp1 as an essential clock gene. Thus, VRI and PDP1, together with dClock itself, comprise a second feedback loop in the Drosophila clock that gives rhythmic expression of dClock, and probably of other genes, to generate accurate circadian rhythms.
Collapse
Affiliation(s)
- Shawn A Cyran
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
E4BP4, a mammalian basic leucine zipper (bZIP) transcription factor, was first identified through its ability to bind and repress viral promoter sequences. Subsequently, E4BP4 and homologues in other species have been implicated in a diverse range of processes including commitment to cell survival versus apoptosis, the anti-inflammatory response and, most recently, in the mammalian circadian oscillatory mechanism. In some of these cases at least, E4BP4 appears to act antagonistically with members of the related PAR family of transcription factors with which it shares DNA-binding specificity. This diversity of function is mirrored by the regulatory pathways impinging on E4BP4, which include regulation by ras via the lymphokine IL-3 in murine B-cells, by thyroid hormone during Xenopus tail resorption, by glucocorticoids in murine fibroblasts and by calcium in rat smooth muscle cells. This article will cover the unfolding role/s of and regulation of E4BP4, E4BP4-like proteins and PAR factors in species as diverse as mouse and C. elegans.
Collapse
Affiliation(s)
- Ian G Cowell
- Department of Gene Expression and Development, The Roslin Institute (Edinburgh), Roslin, Midlothian. Scotland EH25 9PS.
| |
Collapse
|
36
|
Zhang Y, Gorry MC, Hart PS, Pettenati MJ, Wang L, Marks JJ, Lu X, Hart TC. Localization, genomic organization, and alternative transcription of a novel human SAM-dependent methyltransferase gene on chromosome 2p22-->p21. Cytogenet Genome Res 2002; 95:146-52. [PMID: 12063391 DOI: 10.1159/000059337] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
As part of our studies to identify the gene responsible for hereditary gingival fibromatosis, GINGF (OMIM 135300), we have identified and cloned a novel human gene that contains the highly conserved methyltransferase domain characteristic of S-adenosylmethionine-dependent methyltransferases. We localized this gene (C2orf8 encoding 288L6 SAM-methyltransferase) to chromosome 2p22-->p21 by FISH, and sublocalized it to BAC RP11 288L6 flanked by D2S2238 and D2S2331. Computational analysis of aligned ESTs identified ten exons in the hypothetical C2orf8 gene. Results of RACE analyses in placenta identified multiple transcripts of this gene with heterogeneity at the 5'-UTR. Alternative transcription and tissue specific expression of C2orf8 were detected by RT-PCR and Northern blot analyses. C2orf8 is expressed in a variety of tissues including brain, colon, gingiva, heart, kidney, liver, lung, placenta, small intestine, spleen, and thymus. Open reading frame analysis of the alternative transcripts identified a shared coding region spanning exons 6-10. This ORF consists of 732 nucleotides encoding a putative 244 amino acid protein. Bioinformational searches of both C2orf8 and the putative protein product identified three methyltransferase motifs conserved across many prokaryotic and eukaryotic species. Sequence analyses of C2orf8 excluded coding region mutations as causative of GINGF.
Collapse
Affiliation(s)
- Y Zhang
- Center for Craniofacial and Dental Genetics, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Arredondo JJ, Ferreres RM, Maroto M, Cripps RM, Marco R, Bernstein SI, Cervera M. Control of Drosophila paramyosin/miniparamyosin gene expression. Differential regulatory mechanisms for muscle-specific transcription. J Biol Chem 2001; 276:8278-87. [PMID: 11110792 DOI: 10.1074/jbc.m009302200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To define the transcriptional mechanisms contributing to stage- and tissue-specific expression of muscle genes, we performed transgenic analysis of Drosophila paramyosin gene regulation. This gene has two promoters, one for paramyosin and one for miniparamyosin, which are active in partially overlapping domains. Regions between -0.9 and -1.7 kilobases upstream of each initiation site contribute to the temporal and spatial expression patterns. By comparing the Drosophila melanogaster and Drosophila virilis promoters, conserved binding sites were found for known myogenic factors, including one MEF2 site and three E boxes. In contrast with previous data, our experiments with the paramyosin promoter indicate that the MEF2 site is essential but not sufficient for proper paramyosin gene transcription. Mutations in the three E boxes, on the other hand, do not produce any effect in embryonic/larval muscles. Thus MEF2 site- and E box-binding proteins can play different roles in the regulation of different muscle-specific genes. For the miniparamyosin promoters, several conserved sequences were shown to correspond to functionally important regions. Our data further show that the two promoters work independently. Even when both promoters are active in the same muscle fiber, the transcription driven by one of the promoters is not affected by transcription driven by the other.
Collapse
Affiliation(s)
- J J Arredondo
- Departamento de Bioquímica & Instituto Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas, Facultad de Medicina, Universidad Autónoma de Madrid, Arzobispo Morcillo 4, 28029 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|