1
|
Akiyama T, Raftery LA, Wharton KA. Bone morphogenetic protein signaling: the pathway and its regulation. Genetics 2024; 226:iyad200. [PMID: 38124338 PMCID: PMC10847725 DOI: 10.1093/genetics/iyad200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/27/2023] [Indexed: 12/23/2023] Open
Abstract
In the mid-1960s, bone morphogenetic proteins (BMPs) were first identified in the extracts of bone to have the remarkable ability to induce heterotopic bone. When the Drosophila gene decapentaplegic (dpp) was first identified to share sequence similarity with mammalian BMP2/BMP4 in the late-1980s, it became clear that secreted BMP ligands can mediate processes other than bone formation. Following this discovery, collaborative efforts between Drosophila geneticists and mammalian biochemists made use of the strengths of their respective model systems to identify BMP signaling components and delineate the pathway. The ability to conduct genetic modifier screens in Drosophila with relative ease was critical in identifying the intracellular signal transducers for BMP signaling and the related transforming growth factor-beta/activin signaling pathway. Such screens also revealed a host of genes that encode other core signaling components and regulators of the pathway. In this review, we provide a historical account of this exciting time of gene discovery and discuss how the field has advanced over the past 30 years. We have learned that while the core BMP pathway is quite simple, composed of 3 components (ligand, receptor, and signal transducer), behind the versatility of this pathway lies multiple layers of regulation that ensures precise tissue-specific signaling output. We provide a sampling of these discoveries and highlight many questions that remain to be answered to fully understand the complexity of BMP signaling.
Collapse
Affiliation(s)
- Takuya Akiyama
- Department of Biology, Rich and Robin Porter Cancer Research Center, The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN 47809, USA
| | - Laurel A Raftery
- School of Life Sciences, University of Nevada, 4505 S. Maryland Parkway, Las Vegas, NV 89154, USA
| | - Kristi A Wharton
- Department of Molecular Biology, Cell Biology, and Biochemistry, Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA
| |
Collapse
|
2
|
Nakato E, Kamimura K, Knudsen C, Masutani S, Takemura M, Hayashi Y, Akiyama T, Nakato H. Differential heparan sulfate dependency of the Drosophila glypicans. J Biol Chem 2024; 300:105544. [PMID: 38072044 PMCID: PMC10796981 DOI: 10.1016/j.jbc.2023.105544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024] Open
Abstract
Heparan sulfate proteoglycans (HSPGs) are composed of a core protein and glycosaminoglycan (GAG) chains and serve as coreceptors for many growth factors and morphogens. To understand the molecular mechanisms by which HSPGs regulate morphogen gradient formation and signaling, it is important to determine the relative contributions of the carbohydrate and protein moieties to the proteoglycan function. To address this question, we generated ΔGAG alleles for dally and dally-like protein (dlp), two Drosophila HSPGs of the glypican family, in which all GAG-attachment serine residues are substituted to alanine residues using CRISPR/Cas9 mutagenesis. In these alleles, the glypican core proteins are expressed from the endogenous loci with no GAG modification. Analyses of the dallyΔGAG allele defined Dally functions that do not require heparan sulfate (HS) chains and that need both core protein and HS chains. We found a new, dallyΔGAG-specific phenotype, the formation of a posterior ectopic vein, which we have never seen in the null mutants. Unlike dallyΔGAG, dlpΔGAG mutants do not show most of the dlp null mutant phenotypes, suggesting that HS chains are dispensable for these dlp functions. As an exception, HS is essentially required for Dlp's activity at the neuromuscular junction. Thus, Drosophila glypicans show strikingly different levels of HS dependency. The ΔGAG mutant alleles of the glypicans serve as new molecular genetic toolsets highly useful to address important biological questions, such as molecular mechanisms of morphogen gradient formation.
Collapse
Affiliation(s)
- Eriko Nakato
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - Keisuke Kamimura
- Developmental Neuroscience Project, Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Collin Knudsen
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - Suzuka Masutani
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - Masahiko Takemura
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - Yoshiki Hayashi
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
| | - Takuya Akiyama
- Department of Biology, Indiana State University, Terre Haute, Indiana, USA
| | - Hiroshi Nakato
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, USA.
| |
Collapse
|
3
|
Nakato E, Baker S, Kinoshita-Toyoda A, Knudsen C, Lu YS, Takemura M, Toyoda H, Nakato H. In vivo activities of heparan sulfate differentially modified by NDSTs during development. PROTEOGLYCAN RESEARCH 2024; 2:e17. [PMID: 38616954 PMCID: PMC11011245 DOI: 10.1002/pgr2.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/02/2024] [Indexed: 04/16/2024]
Abstract
Heparan sulfate proteoglycans (HSPGs) serve as co-receptors for growth factor signaling during development. It is well known that the level and patterns of sulfate groups of heparan sulfate (HS) chains, or HS fine structures, have a major impact on HSPG function. On the other hand, the physiological significance of other structural features of HS, including NS/NA domain organization, remains to be elucidated. A blueprint of the HS domain structures is mainly controlled by HS N-deacetylase/N-sulfotransferases (NDSTs). To analyze in vivo activities of differentially modified HS, we established two knock-in (KI) Drosophila strains with the insertion of mouse Ndst1 (mNdst1) or Ndst2 (mNdst2) in the locus of sulfateless (sfl), the only Drosophila NDST. In these KI lines, mNDSTs are expressed from the sfl locus, in the level and patterns identical to the endogenous sfl gene. Thus, phenotypes of Ndst1 KI and Ndst2KI animals reflect the ability of HS structures made by these enzymes to rescue sfl mutation. Remarkably, we found that mNdst1 completely rescued the loss of sfl. mNdst2 showed a limited rescue ability, despite a higher level of HS sulfation compared to HS in mNdst1 KI. Our study suggests that independent of sulfation levels, additional HS structural features controlled by NDSTs play key roles during tissue patterning.
Collapse
Affiliation(s)
- Eriko Nakato
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - Sarah Baker
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Collin Knudsen
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - Yi-Si Lu
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Hidenao Toyoda
- Faculty of Pharmaceutical Sciences, Ritsumeikan University, Shiga, Japan
| | - Hiroshi Nakato
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
4
|
Knudsen C, Woo Seuk Koh, Izumikawa T, Nakato E, Akiyama T, Kinoshita-Toyoda A, Haugstad G, Yu G, Toyoda H, Nakato H. Chondroitin sulfate is required for follicle epithelial integrity and organ shape maintenance in Drosophila. Development 2023; 150:dev201717. [PMID: 37694610 PMCID: PMC10508698 DOI: 10.1242/dev.201717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 08/21/2023] [Indexed: 09/12/2023]
Abstract
Heparan sulfate (HS) and chondroitin sulfate (CS) are evolutionarily conserved glycosaminoglycans that are found in most animal species, including the genetically tractable model organism Drosophila. In contrast to extensive in vivo studies elucidating co-receptor functions of Drosophila HS proteoglycans (PGs), only a limited number of studies have been conducted for those of CSPGs. To investigate the global function of CS in development, we generated mutants for Chondroitin sulfate synthase (Chsy), which encodes the Drosophila homolog of mammalian chondroitin synthase 1, a crucial CS biosynthetic enzyme. Our characterizations of the Chsy mutants indicated that a fraction survive to adult stage, which allowed us to analyze the morphology of the adult organs. In the ovary, Chsy mutants exhibited altered stiffness of the basement membrane and muscle dysfunction, leading to a gradual degradation of the gross organ structure as mutant animals aged. Our observations show that normal CS function is required for the maintenance of the structural integrity of the ECM and gross organ architecture.
Collapse
Affiliation(s)
- Collin Knudsen
- Department of Genetics, Cell Biology, and Development, University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA
| | - Woo Seuk Koh
- Department of Genetics, Cell Biology, and Development, University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA
| | - Tomomi Izumikawa
- Faculty of Pharmaceutical Sciences, Ritsumeikan University, Shiga 525-8577, Japan
| | - Eriko Nakato
- Department of Genetics, Cell Biology, and Development, University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA
| | - Takuya Akiyama
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | | - Greg Haugstad
- Characterization Facility, University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA
| | - Guichuan Yu
- Characterization Facility, University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA
| | - Hidenao Toyoda
- Faculty of Pharmaceutical Sciences, Ritsumeikan University, Shiga 525-8577, Japan
| | - Hiroshi Nakato
- Department of Genetics, Cell Biology, and Development, University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA
| |
Collapse
|
5
|
Koh WS, Knudsen C, Izumikawa T, Nakato E, Grandt K, Kinoshita-Toyoda A, Toyoda H, Nakato H. Regulation of morphogen pathways by a Drosophila chondroitin sulfate proteoglycan Windpipe. J Cell Sci 2023; 136:jcs260525. [PMID: 36897575 PMCID: PMC10113886 DOI: 10.1242/jcs.260525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 03/02/2023] [Indexed: 03/11/2023] Open
Abstract
Morphogens provide quantitative and robust signaling systems to achieve stereotypic patterning and morphogenesis. Heparan sulfate (HS) proteoglycans (HSPGs) are key components of such regulatory feedback networks. In Drosophila, HSPGs serve as co-receptors for a number of morphogens, including Hedgehog (Hh), Wingless (Wg), Decapentaplegic (Dpp) and Unpaired (Upd, or Upd1). Recently, Windpipe (Wdp), a chondroitin sulfate (CS) proteoglycan (CSPG), was found to negatively regulate Upd and Hh signaling. However, the roles of Wdp, and CSPGs in general, in morphogen signaling networks are poorly understood. We found that Wdp is a major CSPG with 4-O-sulfated CS in Drosophila. Overexpression of wdp modulates Dpp and Wg signaling, showing that it is a general regulator of HS-dependent pathways. Although wdp mutant phenotypes are mild in the presence of morphogen signaling buffering systems, this mutant in the absence of Sulf1 or Dally, molecular hubs of the feedback networks, produces high levels of synthetic lethality and various severe morphological phenotypes. Our study indicates a close functional relationship between HS and CS, and identifies the CSPG Wdp as a novel component in morphogen feedback pathways.
Collapse
Affiliation(s)
- Woo Seuk Koh
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Collin Knudsen
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Tomomi Izumikawa
- Faculty of Pharmaceutical Sciences, Ritsumeikan University, Shiga 525-8577, Japan
| | - Eriko Nakato
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kristin Grandt
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Hidenao Toyoda
- Faculty of Pharmaceutical Sciences, Ritsumeikan University, Shiga 525-8577, Japan
| | - Hiroshi Nakato
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
6
|
Akiyama T, Seidel CW, Gibson MC. The feedback regulator nord controls Dpp/BMP signaling via extracellular interaction with dally in the Drosophila wing. Dev Biol 2022; 488:91-103. [DOI: 10.1016/j.ydbio.2022.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 11/27/2022]
|
7
|
Waghmare I, Page-McCaw A. Regulation of Wnt distribution and function by Drosophila glypicans. J Cell Sci 2022; 135:274233. [PMID: 35112708 PMCID: PMC8918805 DOI: 10.1242/jcs.259405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The extracellular distribution of secreted Wnt proteins is crucial for their ability to induce a response in target cells at short and long ranges to ensure proper development. Wnt proteins are evolutionarily conserved ligands that are lipid-modified, and their hydrophobic nature interferes with their solubility in the hydrophilic extracellular environment. This raises the question of how Wnt proteins spread extracellularly despite their lipid modifications, which are essential for both their secretion and function. Seminal studies on Drosophila Wingless (Wg), a prototypical Wnt, have discovered multiple mechanisms by which Wnt proteins spread. A central theme emerges from these studies: the Wnt lipid moiety is shielded from the aqueous environment, allowing the ligands to spread and remain viable for signaling. Wnt distribution in vivo is primarily facilitated by glypicans, which are cell-surface heparan sulfate proteoglycans, and recent studies have further provided mechanistic insight into how glypicans facilitate Wnt distribution. In this Review, we discuss the many diverse mechanisms of Wnt distribution, with a particular focus on glypican-mediated mechanisms.
Collapse
|
8
|
Yang S, Zhang Y, Yang C, Wu X, El Oud SM, Chen R, Cai X, Wu XS, Lan G, Zheng X. Competitive coordination of the dual roles of the Hedgehog co-receptor in homophilic adhesion and signal reception. eLife 2021; 10:65770. [PMID: 34003115 PMCID: PMC8131103 DOI: 10.7554/elife.65770] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/30/2021] [Indexed: 12/18/2022] Open
Abstract
Hedgehog (Hh) signaling patterns embryonic tissues and contributes to homeostasis in adults. In Drosophila, Hh transport and signaling are thought to occur along a specialized class of actin-rich filopodia, termed cytonemes. Here, we report that Interference hedgehog (Ihog) not only forms a Hh receptor complex with Patched to mediate intracellular signaling, but Ihog also engages in trans-homophilic binding leading to cytoneme stabilization in a manner independent of its role as the Hh receptor. Both functions of Ihog (trans-homophilic binding for cytoneme stabilization and Hh binding for ligand sensing) involve a heparin-binding site on the first fibronectin repeat of the extracellular domain. Thus, the Ihog-Ihog interaction and the Hh-Ihog interaction cannot occur simultaneously for a single Ihog molecule. By combining experimental data and mathematical modeling, we determined that Hh-Ihog heterophilic interaction dominates and Hh can disrupt and displace Ihog molecules involved in trans-homophilic binding. Consequently, we proposed that the weaker Ihog-Ihog trans interaction promotes and stabilizes direct membrane contacts along cytonemes and that, as the cytoneme encounters secreted Hh ligands, the ligands trigger release of Ihog from trans Ihog-Ihog complex enabling transport or internalization of the Hh ligand-Ihog-Patched -receptor complex. Thus, the seemingly incompatible functions of Ihog in homophilic adhesion and ligand binding cooperate to assist Hh transport and reception along the cytonemes.
Collapse
Affiliation(s)
- Shu Yang
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, United States.,GW Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, United States
| | - Ya Zhang
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, United States.,GW Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, United States
| | - Chuxuan Yang
- Department of Physics, George Washington University, Washington, United States
| | - Xuefeng Wu
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, United States.,GW Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, United States
| | - Sarah Maria El Oud
- Department of Physics, George Washington University, Washington, United States
| | - Rongfang Chen
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, United States.,GW Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, United States
| | - Xudong Cai
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, United States.,GW Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, United States
| | - Xufeng S Wu
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Ganhui Lan
- Department of Physics, George Washington University, Washington, United States
| | - Xiaoyan Zheng
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, United States.,GW Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, United States
| |
Collapse
|
9
|
Stapornwongkul KS, Vincent JP. Generation of extracellular morphogen gradients: the case for diffusion. Nat Rev Genet 2021; 22:393-411. [PMID: 33767424 DOI: 10.1038/s41576-021-00342-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2021] [Indexed: 02/07/2023]
Abstract
Cells within developing tissues rely on morphogens to assess positional information. Passive diffusion is the most parsimonious transport model for long-range morphogen gradient formation but does not, on its own, readily explain scaling, robustness and planar transport. Here, we argue that diffusion is sufficient to ensure robust morphogen gradient formation in a variety of tissues if the interactions between morphogens and their extracellular binders are considered. A current challenge is to assess how the affinity for extracellular binders, as well as other biophysical and cell biological parameters, determines gradient dynamics and shape in a diffusion-based transport system. Technological advances in genome editing, tissue engineering, live imaging and in vivo biophysics are now facilitating measurement of these parameters, paving the way for mathematical modelling and a quantitative understanding of morphogen gradient formation and modulation.
Collapse
|
10
|
Scaling a Dpp Morphogen Gradient through Feedback Control of Receptors and Co-receptors. Dev Cell 2021; 53:724-739.e14. [PMID: 32574592 DOI: 10.1016/j.devcel.2020.05.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 03/23/2020] [Accepted: 05/26/2020] [Indexed: 11/21/2022]
Abstract
Gradients of decapentaplegic (Dpp) pattern Drosophila wing imaginal discs, establishing gene expression boundaries at specific locations. As discs grow, Dpp gradients expand, keeping relative boundary positions approximately stationary. Such scaling fails in mutants for Pentagone (pent), a gene repressed by Dpp that encodes a diffusible protein that expands Dpp gradients. Although these properties fit a recent mathematical model of automatic gradient scaling, that model requires an expander that spreads with minimal loss throughout a morphogen field. Here, we show that Pent's actions are confined to within just a few cell diameters of its site of synthesis and can be phenocopied by manipulating non-diffusible Pent targets strictly within the Pent expression domain. Using genetics and mathematical modeling, we develop an alternative model of scaling driven by feedback downregulation of Dpp receptors and co-receptors. Among the model's predictions is a size beyond which scaling fails-something we observe directly in wing discs.
Collapse
|
11
|
Takemura M, Noborn F, Nilsson J, Bowden N, Nakato E, Baker S, Su TY, Larson G, Nakato H. Chondroitin sulfate proteoglycan Windpipe modulates Hedgehog signaling in Drosophila. Mol Biol Cell 2020; 31:813-824. [PMID: 32049582 PMCID: PMC7185963 DOI: 10.1091/mbc.e19-06-0327] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Proteoglycans, a class of carbohydrate-modified proteins, often modulate growth factor signaling on the cell surface. However, the molecular mechanism by which proteoglycans regulate signal transduction is largely unknown. In this study, using a recently developed glycoproteomic method, we found that Windpipe (Wdp) is a novel chondroitin sulfate proteoglycan (CSPG) in Drosophila. Wdp is a single-pass transmembrane protein with leucin-rich repeat (LRR) motifs and bears three CS sugar chain attachment sites in the extracellular domain. Here we show that Wdp modulates the Hedgehog (Hh) pathway. In the wing disc, overexpression of wdp inhibits Hh signaling, which is dependent on its CS chains and the LRR motifs. The wdp null mutant flies show a specific defect (supernumerary scutellar bristles) known to be caused by Hh overexpression. RNA interference knockdown and mutant clone analyses showed that loss of wdp leads to the up-regulation of Hh signaling. Altogether, our study demonstrates a novel role of CSPGs in regulating Hh signaling.
Collapse
Affiliation(s)
- Masahiko Takemura
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| | - Fredrik Noborn
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg 413 45, Sweden
| | - Jonas Nilsson
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg 413 45, Sweden
| | - Nanako Bowden
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| | - Eriko Nakato
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| | - Sarah Baker
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| | - Tsu-Yi Su
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| | - Göran Larson
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg 413 45, Sweden
| | - Hiroshi Nakato
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
12
|
Levings DC, Nakato H. Loss of heparan sulfate in the niche leads to tumor-like germ cell growth in the Drosophila testis. Glycobiology 2018; 28:32-41. [PMID: 29069438 PMCID: PMC5993100 DOI: 10.1093/glycob/cwx090] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/10/2017] [Accepted: 10/17/2017] [Indexed: 12/15/2022] Open
Abstract
The stem cell niche normally prevents aberrant stem cell behaviors that lead to cancer formation. Recent studies suggest that some cancers are derived from endogenous populations of adult stem cells that have somehow escaped from normal control by the niche. However, the molecular mechanisms by which the niche retains stem cells locally and tightly controls their divisions are poorly understood. Here, we demonstrate that the presence of heparan sulfate (HS), a class glygosaminoglycan chains, in the Drosophila germline stem cell niche prevents tumor formation in the testis. Loss of HS in the niche, called the hub, led to gross changes in the morphology of testes as well as the formation of both somatic and germline tumors. This loss of hub HS resulted in ectopic signaling events in the Jak/Stat pathway outside the niche. This ectopic Jak/Stat signaling disrupted normal somatic cell differentiation, leading to the formation of tumors. Our finding indicates a novel non-autonomous role for niche HS in ensuring the integrity of the niche and preventing tumor formation.
Collapse
Affiliation(s)
- Daniel C Levings
- Department of Genetics, Cell Biology and Development, The University of Minnesota, 6-160 Jackson Hall, 321 Church St SE, Minneapolis, MN 55455, USA
| | - Hiroshi Nakato
- Department of Genetics, Cell Biology and Development, The University of Minnesota, 6-160 Jackson Hall, 321 Church St SE, Minneapolis, MN 55455, USA
| |
Collapse
|
13
|
Drosophila Glypicans Regulate Follicle Stem Cell Maintenance and Niche Competition. Genetics 2018; 209:537-549. [PMID: 29632032 DOI: 10.1534/genetics.118.300839] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 04/04/2018] [Indexed: 01/06/2023] Open
Abstract
Adult stem cells reside in specialized microenvironments called niches, which provide signals for stem cells to maintain their undifferentiated and self-renewing state. To maintain stem cell quality, several types of stem cells are known to be regularly replaced by progenitor cells through niche competition. However, the cellular and molecular bases for stem cell competition for niche occupancy are largely unknown. Here, we show that two Drosophila members of the glypican family of heparan sulfate proteoglycans (HSPGs), Dally and Dally-like (Dlp), differentially regulate follicle stem cell (FSC) maintenance and competitiveness for niche occupancy. Lineage analyses of glypican mutant FSC clones showed that dally is essential for normal FSC maintenance. In contrast, dlp is a hypercompetitive mutation: dlp mutant FSC progenitors often eventually occupy the entire epithelial sheet. RNA interference knockdown experiments showed that Dally and Dlp play both partially redundant and distinct roles in regulating Jak/Stat, Wg, and Hh signaling in FSCs. The Drosophila FSC system offers a powerful genetic model to study the mechanisms by which HSPGs exert specific functions in stem cell replacement and competition.
Collapse
|
14
|
Rohde PD, Gaertner B, Ward K, Sørensen P, Mackay TFC. Genomic Analysis of Genotype-by-Social Environment Interaction for Drosophila melanogaster Aggressive Behavior. Genetics 2017; 206:1969-1984. [PMID: 28550016 PMCID: PMC5560801 DOI: 10.1534/genetics.117.200642] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 05/22/2017] [Indexed: 02/06/2023] Open
Abstract
Human psychiatric disorders such as schizophrenia, bipolar disorder, and attention-deficit/hyperactivity disorder often include adverse behaviors including increased aggressiveness. Individuals with psychiatric disorders often exhibit social withdrawal, which can further increase the probability of conducting a violent act. Here, we used the inbred, sequenced lines of the Drosophila Genetic Reference Panel (DGRP) to investigate the genetic basis of variation in male aggressive behavior for flies reared in a socialized and socially isolated environment. We identified genetic variation for aggressive behavior, as well as significant genotype-by-social environmental interaction (GSEI); i.e., variation among DGRP genotypes in the degree to which social isolation affected aggression. We performed genome-wide association (GWA) analyses to identify genetic variants associated with aggression within each environment. We used genomic prediction to partition genetic variants into gene ontology (GO) terms and constituent genes, and identified GO terms and genes with high prediction accuracies in both social environments and for GSEI. The top predictive GO terms significantly increased the proportion of variance explained, compared to prediction models based on all segregating variants. We performed genomic prediction across environments, and identified genes in common between the social environments that turned out to be enriched for genome-wide associated variants. A large proportion of the associated genes have previously been associated with aggressive behavior in Drosophila and mice. Further, many of these genes have human orthologs that have been associated with neurological disorders, indicating partially shared genetic mechanisms underlying aggression in animal models and human psychiatric disorders.
Collapse
Affiliation(s)
- Palle Duun Rohde
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, 8830 Tjele, Denmark
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, 8000 Aarhus, Denmark
- ISEQ, Center for Integrative Sequencing, Aarhus University, 8000 Aarhus, Denmark
| | - Bryn Gaertner
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695
- Program in Genetics, North Carolina State University, Raleigh, North Carolina 27695
- W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina 27695
| | - Kirsty Ward
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695
- Program in Genetics, North Carolina State University, Raleigh, North Carolina 27695
- W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina 27695
| | - Peter Sørensen
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, 8830 Tjele, Denmark
| | - Trudy F C Mackay
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695
- Program in Genetics, North Carolina State University, Raleigh, North Carolina 27695
- W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina 27695
| |
Collapse
|
15
|
Norman M, Vuilleumier R, Springhorn A, Gawlik J, Pyrowolakis G. Pentagone internalises glypicans to fine-tune multiple signalling pathways. eLife 2016; 5. [PMID: 27269283 PMCID: PMC4924993 DOI: 10.7554/elife.13301] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 06/07/2016] [Indexed: 12/14/2022] Open
Abstract
Tight regulation of signalling activity is crucial for proper tissue patterning and growth. Here we investigate the function of Pentagone (Pent), a secreted protein that acts in a regulatory feedback during establishment and maintenance of BMP/Dpp morphogen signalling during Drosophila wing development. We show that Pent internalises the Dpp co-receptors, the glypicans Dally and Dally-like protein (Dlp), and propose that this internalisation is important in the establishment of a long range Dpp gradient. Pent-induced endocytosis and degradation of glypicans requires dynamin- and Rab5, but not clathrin or active BMP signalling. Thus, Pent modifies the ability of cells to trap and transduce BMP by fine-tuning the levels of the BMP reception system at the plasma membrane. In addition, and in accordance with the role of glypicans in multiple signalling pathways, we establish a requirement of Pent for Wg signalling. Our data propose a novel mechanism by which morphogen signalling is regulated.
Collapse
Affiliation(s)
- Mark Norman
- Centre for Biological Signalling Studies, Albert-Ludwigs-University of Freiburg, Breisgau, Germany
| | - Robin Vuilleumier
- Institute for Biology I, Albert-Ludwigs-University of Freiburg, Breisgau, Germany
| | - Alexander Springhorn
- Institute for Biology I, Albert-Ludwigs-University of Freiburg, Breisgau, Germany.,Spemann Graduate School of Biology and Medicine, Albert-Ludwigs-University of Freiburg, Breisgau, Germany
| | - Jennifer Gawlik
- Centre for Biological Signalling Studies, Albert-Ludwigs-University of Freiburg, Breisgau, Germany.,Spemann Graduate School of Biology and Medicine, Albert-Ludwigs-University of Freiburg, Breisgau, Germany
| | - George Pyrowolakis
- Centre for Biological Signalling Studies, Albert-Ludwigs-University of Freiburg, Breisgau, Germany.,Institute for Biology I, Albert-Ludwigs-University of Freiburg, Breisgau, Germany
| |
Collapse
|
16
|
Levings DC, Arashiro T, Nakato H. Heparan sulfate regulates the number and centrosome positioning of Drosophila male germline stem cells. Mol Biol Cell 2016; 27:888-96. [PMID: 26792837 PMCID: PMC4791133 DOI: 10.1091/mbc.e15-07-0528] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 01/12/2016] [Indexed: 12/16/2022] Open
Abstract
Heparan sulfate (HS) regulates the number and asymmetric division of germline stem cells (GSCs) in Drosophila testes. Hub-specific HS controls both stem cell number and functioning of the centrosome-anchoring machinery. The results suggest that HS-mediated niche signaling acts upstream of GSC division orientation control. Stem cell division is tightly controlled via secreted signaling factors and cell adhesion molecules provided from local niche structures. Molecular mechanisms by which each niche component regulates stem cell behaviors remain to be elucidated. Here we show that heparan sulfate (HS), a class of glycosaminoglycan chains, regulates the number and asymmetric division of germline stem cells (GSCs) in the Drosophila testis. We found that GSC number is sensitive to the levels of 6-O sulfate groups on HS. Loss of 6-O sulfation also disrupted normal positioning of centrosomes, a process required for asymmetric division of GSCs. Blocking HS sulfation specifically in the niche, termed the hub, led to increased GSC numbers and mispositioning of centrosomes. The same treatment also perturbed the enrichment of Apc2, a component of the centrosome-anchoring machinery, at the hub–GSC interface. This perturbation of the centrosome-anchoring process ultimately led to an increase in the rate of spindle misorientation and symmetric GSC division. This study shows that specific HS modifications provide a novel regulatory mechanism for stem cell asymmetric division. The results also suggest that HS-mediated niche signaling acts upstream of GSC division orientation control.
Collapse
Affiliation(s)
- Daniel C Levings
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455
| | - Takeshi Arashiro
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455
| | - Hiroshi Nakato
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
17
|
Dejima K, Takemura M, Nakato E, Peterson J, Hayashi Y, Kinoshita-Toyoda A, Toyoda H, Nakato H. Analysis of Drosophila glucuronyl C5-epimerase: implications for developmental roles of heparan sulfate sulfation compensation and 2-O-sulfated glucuronic acid. J Biol Chem 2013; 288:34384-93. [PMID: 24133213 DOI: 10.1074/jbc.m113.499269] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
During the biosynthesis of heparan sulfate (HS), glucuronyl C5-epimerase (Hsepi) catalyzes C5-epimerization of glucuronic acid (GlcA), converting it to iduronic acid (IdoA). Because HS 2-O-sulfotransferase (Hs2st) shows a strong substrate preference for IdoA over GlcA, C5-epimerization is required for normal HS sulfation. However, the physiological significance of C5-epimerization remains elusive. To understand the role of Hsepi in development, we isolated Drosophila Hsepi mutants. Homozygous mutants are viable and fertile with only minor morphological defects, including the formation of an ectopic crossvein in the wing, but they have a short lifespan. We propose that two mechanisms contribute to the mild phenotypes of Hsepi mutants: HS sulfation compensation and possible developmental roles of 2-O-sulfated GlcA (GlcA2S). HS disaccharide analysis showed that loss of Hsepi resulted in a significant impairment of 2-O-sulfation and induced compensatory increases in N- and 6-O-sulfation. Simultaneous block of Hsepi and HS 6-O-sulfotransferase (Hs6st) activity disrupted tracheoblast formation, a well established FGF-dependent process. This result suggests that the increase in 6-O-sulfation in Hsepi mutants is critical for the rescue of FGF signaling. We also found that the ectopic crossvein phenotype can be induced by expression of a mutant form of Hs2st with a strong substrate preference for GlcA-containing units, suggesting that this phenotype is associated with abnormal GlcA 2-O-sulfation. Finally, we show that Hsepi formed a complex with Hs2st and Hs6st in S2 cells, raising the possibility that this complex formation contributes to the close functional relationships between these enzymes.
Collapse
Affiliation(s)
- Katsufumi Dejima
- From the Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455 and
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Dejima K, Kleinschmit A, Takemura M, Choi PY, Kinoshita-Toyoda A, Toyoda H, Nakato H. The role of Drosophila heparan sulfate 6-O-endosulfatase in sulfation compensation. J Biol Chem 2013; 288:6574-82. [PMID: 23339195 DOI: 10.1074/jbc.m112.404830] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The biosynthesis of heparan sulfate proteoglycans is tightly regulated by multiple feedback mechanisms, which support robust developmental systems. One of the regulatory network systems controlling heparan sulfate (HS) biosynthesis is sulfation compensation. A previous study using Drosophila HS 2-O- and 6-O-sulfotransferase (Hs2st and Hs6st) mutants showed that loss of sulfation at one position is compensated by increased sulfation at other positions, supporting normal FGF signaling. Here, we show that HS sulfation compensation rescues both Decapentaplegic and Wingless signaling, suggesting a universal role of this regulatory system in multiple pathways in Drosophila. Furthermore, we identified Sulf1, extracellular HS 6-O-endosulfatase, as a novel component of HS sulfation compensation. Simultaneous loss of Hs2st and Sulf1 led to 6-O-oversulfation, leading to patterning defects, overgrowth, and lethality. These phenotypes are caused at least partly by abnormal up-regulation of Hedgehog signaling. Thus, sulfation compensation depends on the coordinated activities of Hs2st, Hs6st, and Sulf1.
Collapse
Affiliation(s)
- Katsufumi Dejima
- Department of Genetics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Hayashi Y, Sexton TR, Dejima K, Perry DW, Takemura M, Kobayashi S, Nakato H, Harrison DA. Glypicans regulate JAK/STAT signaling and distribution of the Unpaired morphogen. Development 2013; 139:4162-71. [PMID: 23093424 DOI: 10.1242/dev.078055] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In Drosophila, ligands of the Unpaired (Upd) family activate the Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathway. The JAK/STAT pathway controls many developmental events, including multiple functions in the ovary. These include an early role in the germarium for specification of stalk cells and a later role in the vitellarium to pattern the follicular epithelium surrounding each cyst. In this latter role, graded JAK/STAT activation specifies three distinct anterior follicular cell fates, suggesting that Upd is a morphogen in this system. Consistent with the JAK/STAT activation pattern in the vitellarium, Upd forms a concentration gradient on the apical surface of the follicular epithelium with a peak at its source, the polar cells. Like many morphogens, signaling and distribution of Upd are regulated by the heparan sulfate proteoglycans (HSPGs) Dally and Dally-like. Mutations in these glypican genes and in heparan sulfate biosynthetic genes result in disruption of JAK/STAT signaling, loss or abnormal formation of the stalk and significant reduction in the accumulation of extracellular Upd. Conversely, forced expression of Dally causes ectopic accumulation of Upd in follicular cells. Furthermore, biochemical studies reveal that Upd and Dally bind each other on the surface of the cell membrane. Our findings demonstrate that Drosophila glypicans regulate formation of the follicular gradient of the Upd morphogen, Upd. Furthermore, we establish the follicular epithelium as a new model for morphogen signaling in complex organ development.
Collapse
Affiliation(s)
- Yoshiki Hayashi
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Kleinschmit A, Takemura M, Dejima K, Choi PY, Nakato H. Drosophila heparan sulfate 6-O-endosulfatase Sulf1 facilitates wingless (Wg) protein degradation. J Biol Chem 2013; 288:5081-9. [PMID: 23300081 DOI: 10.1074/jbc.m112.447029] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heparan sulfate proteoglycans regulate various physiological and developmental processes through interactions with a number of protein ligands. Heparan sulfate (HS)-ligand binding depends on the amount and patterns of sulfate groups on HS, which are controlled by various HS sulfotransferases in the Golgi apparatus as well as extracellular 6-O-endosulfatases called "Sulfs." Sulfs are a family of secreted molecules that specifically remove 6-O-sulfate groups within the highly sulfated regions on HS. Vertebrate Sulfs promote Wnt signaling, whereas the only Drosophila homologue of Sulfs, Sulf1, negatively regulates Wingless (Wg) signaling. To understand the molecular mechanism for the negative regulation of Wg signaling by Sulf1, we studied the effects of Sulf1 on HS-Wg interaction and Wg stability. Sulf1 overexpression strongly inhibited the binding of Wg to Dally, a potential target heparan sulfate proteoglycan of Sulf1. This effect of Drosophila Sulf1 on the HS-Wg interaction is similar to that of vertebrate Sulfs. Using in vitro, in vivo, and ex vivo systems, we show that Sulf1 reduces extracellular Wg protein levels, at least partly by facilitating Wg degradation. In addition, expression of human Sulf1 in the Drosophila wing disc lowers the levels of extracellular Wg protein, as observed for Drosophila Sulf1. Our study demonstrates that vertebrate and Drosophila Sulfs have an intrinsically similar activity and that the function of Sulfs in the fate of Wnt/Wg ligands is context-dependent.
Collapse
Affiliation(s)
- Adam Kleinschmit
- Department of Genetics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | |
Collapse
|
21
|
Bilioni A, Sánchez-Hernández D, Callejo A, Gradilla AC, Ibáñez C, Mollica E, Carmen Rodríguez-Navas M, Simon E, Guerrero I. Balancing Hedgehog, a retention and release equilibrium given by Dally, Ihog, Boi and shifted/DmWif. Dev Biol 2012; 376:198-212. [PMID: 23276604 DOI: 10.1016/j.ydbio.2012.12.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 11/12/2012] [Accepted: 12/13/2012] [Indexed: 10/27/2022]
Abstract
Hedgehog can signal both at a short and long-range, and acts as a morphogen during development in various systems. We studied the mechanisms of Hh release and spread using the Drosophila wing imaginal disc as a model system for polarized epithelium. We analyzed the cooperative role of the glypican Dally, the extracellular factor Shifted (Shf, also known as DmWif), and the Immunoglobulin-like (Ig-like) and Fibronectin III (FNNIII) domain-containing transmembrane proteins, Interference hedgehog (Ihog) and its related protein Brother of Ihog (Boi), in the stability, release and spread of Hh. We show that Dally and Boi are required to prevent apical dispersion of Hh; they also aid Hh recycling for its release along the basolateral part of the epithelium to form a long-range gradient. Shf/DmWif on the other hand facilitates Hh movement restrained by Ihog, Boi and Dally, establishing equilibrium between membrane attachment and release of Hh. Furthermore, this protein complex is part of thin filopodia-like structures or cytonemes, suggesting that the interaction between Dally, Ihog, Boi and Shf/DmWif is required for cytoneme-mediated Hh distribution during gradient formation.
Collapse
Affiliation(s)
- Aphrodite Bilioni
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), C/Nicolas Cabrera 1, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Ayers KL, Mteirek R, Cervantes A, Lavenant-Staccini L, Thérond PP, Gallet A. Dally and Notum regulate the switch between low and high level Hedgehog pathway signalling. Development 2012; 139:3168-79. [PMID: 22872085 DOI: 10.1242/dev.078402] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During development, secreted morphogens, such as Hedgehog (Hh), control cell fate and proliferation. Precise sensing of morphogen levels and dynamic cellular responses are required for morphogen-directed morphogenesis, yet the molecular mechanisms responsible are poorly understood. Several recent studies have suggested the involvement of a multi-protein Hh reception complex, and have hinted at an understated complexity in Hh sensing at the cell surface. We show here that the expression of the proteoglycan Dally in Hh-receiving cells in Drosophila is necessary for high but not low level pathway activity, independent of its requirement in Hh-producing cells. We demonstrate that Dally is necessary to sequester Hh at the cell surface and to promote Hh internalisation with its receptor. This internalisation depends on both the activity of the hydrolase Notum and the glycosyl-phosphatidyl-inositol (GPI) moiety of Dally, and indicates a departure from the role of the second glypican Dally-like in Hh signalling. Our data suggest that hydrolysis of the Dally-GPI by Notum provides a switch from low to high level signalling by promoting internalisation of the Hh-Patched ligand-receptor complex.
Collapse
Affiliation(s)
- Katie L Ayers
- Murdoch Childrens Research Institute, Royal Children's Hospital, Flemington Road Parkville Victoria 3052, Australia
| | | | | | | | | | | |
Collapse
|
23
|
Sánchez-Hernández D, Sierra J, Ortigão-Farias JR, Guerrero I. The WIF domain of the human and Drosophila Wif-1 secreted factors confers specificity for Wnt or Hedgehog. Development 2012; 139:3849-58. [PMID: 22951645 DOI: 10.1242/dev.080028] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The Hedgehog (Hh) and Wnt signaling pathways are crucial for development as well as for adult stem cell maintenance in all organisms from Drosophila to humans. Aberrant activation of these pathways has been implicated in many types of human cancer. During evolution, organisms have developed numerous ways to fine-tune Wnt and Hh signaling. One way is through extracellular modulators that directly interact with Wnt or Hh, such as the Wnt inhibitory factor (Wif-1) family of secreted factors. Interestingly, Wif-1 family members have divergent functions in the Wnt and Hh pathways in different organisms. Whereas vertebrate Wif-1 blocks Wnt signaling, Drosophila Wif-1 [Shifted (Shf)] regulates only Hh distribution and spreading through the extracellular matrix. Here, we investigate which parts of the Shf and human Wif-1 (WIF1) proteins are responsible for functional divergence. We analyze the behavior of domain-swap (the Drosophila and human WIF domain and EGF repeats) chimeric constructs during wing development. We demonstrate that the WIF domain confers the specificity for Hh or Wg morphogen. The EGF repeats are important for the interaction of Wif-1 proteins with the extracellular matrix; Drosophila EGF repeats preferentially interact with the glypican Dally-like (Dlp) when the WIF domain belongs to human WIF1 and with Dally when the WIF domain comes from Shf. These results are important both from the evolutionary perspective and for understanding the mechanisms of morphogen distribution in a morphogenetic field.
Collapse
Affiliation(s)
- David Sánchez-Hernández
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain
| | | | | | | |
Collapse
|
24
|
The role of glypicans in Wnt inhibitory factor-1 activity and the structural basis of Wif1's effects on Wnt and Hedgehog signaling. PLoS Genet 2012; 8:e1002503. [PMID: 22383891 PMCID: PMC3285576 DOI: 10.1371/journal.pgen.1002503] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 12/11/2011] [Indexed: 01/03/2023] Open
Abstract
Proper assignment of cellular fates relies on correct interpretation of Wnt and Hedgehog (Hh) signals. Members of the Wnt Inhibitory Factor-1 (WIF1) family are secreted modulators of these extracellular signaling pathways. Vertebrate WIF1 binds Wnts and inhibits their signaling, but its Drosophila melanogaster ortholog Shifted (Shf) binds Hh and extends the range of Hh activity in the developing D. melanogaster wing. Shf activity is thought to depend on reinforcing interactions between Hh and glypican HSPGs. Using zebrafish embryos and the heterologous system provided by D. melanogaster wing, we report on the contribution of glypican HSPGs to the Wnt-inhibiting activity of zebrafish Wif1 and on the protein domains responsible for the differences in Wif1 and Shf specificity. We show that Wif1 strengthens interactions between Wnt and glypicans, modulating the biphasic action of glypicans towards Wnt inhibition; conversely, glypicans and the glypican-binding “EGF-like” domains of Wif1 are required for Wif1's full Wnt-inhibiting activity. Chimeric constructs between Wif1 and Shf were used to investigate their specificities for Wnt and Hh signaling. Full Wnt inhibition required the “WIF” domain of Wif1, and the HSPG-binding EGF-like domains of either Wif1 or Shf. Full promotion of Hh signaling requires both the EGF-like domains of Shf and the WIF domains of either Wif1 or Shf. That the Wif1 WIF domain can increase the Hh promoting activity of Shf's EGF domains suggests it is capable of interacting with Hh. In fact, full-length Wif1 affected distribution and signaling of Hh in D. melanogaster, albeit weakly, suggesting a possible role for Wif1 as a modulator of vertebrate Hh signaling. In developing organisms, cells choose between alternative fates in order to make appropriately patterned tissues, and misregulation of those choices can underlie both developmental defects and cancers. Cells often make these decisions because of signals received from neighboring cells, such as those mediated by the secreted signaling proteins of the Wnt and Hedgehog (Hh) families. While signaling can be regulated by the levels of signaling or receptor proteins expressed by cells, another level of control is exerted by proteins that bind signaling proteins outside of cells and either inhibit or promote the signaling process. In the fruitfly Drosophilamelanogaster, the secreted Shifted protein has been shown to bind Hh and to increase Hh signaling, likely by reinforcing interactions between Hh and cell surface proteins of the glypican family. We provide evidence that the vertebrate homolog of Shifted, Wnt Inhibitory Factor-1 (Wif1), inhibits Wnt activity by a similar mechanism, reinforcing interactions between Wnts and glypicans in a manner that sequesters Wnts from their receptors. We also examine the structural basis for the specificities of Wif1 and Shifted for Wnt and Hh signaling, respectively, and provide evidence that Wif1, although a potent inhibitor of Wnt activity, influences D. melanogaster Hh signaling.
Collapse
|
25
|
You J, Belenkaya T, Lin X. Sulfated is a negative feedback regulator of wingless in Drosophila. Dev Dyn 2011; 240:640-8. [PMID: 21305649 DOI: 10.1002/dvdy.22562] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2010] [Indexed: 01/21/2023] Open
Abstract
Drosophila Wingless (Wg) acts as a morphogen to control pattern formation in a concentration dependent manner. Previous studies demonstrated important roles of heparan sulfate proteoglycans (HSPGs) in controlling Wg signaling and distribution. Here, we examined the role of Sulfated (Sulf1), a Drosophila homolog of vertebrate heparan sulfate 6-O endosulfatase, in Wg signaling and distribution. We show that sulf1 is specifically up-regulated by Wg signaling in the wing disc. We found that expression of Wg target gene senseless (sens) was elevated in the sulf1 mutant wing discs. Sulf1 also negatively regulate extracellular levels of Wg. Genetic interaction experiments indicate that Wg antagonist Notum may work synergistically with Sulf1 to restrict Wg signaling, and Dally, a member of Drosophila HSPGs, is a potential target of Sulf1. Our results demonstrate that sulf1 is a novel Wg target gene and by a feedback mechanism, it negatively regulated Wg signaling and distribution in vivo.
Collapse
|
26
|
Abstract
During development, secreted morphogens such as Wnt, Hedgehog (Hh), and BMP emit from their producing cells in a morphogenetic field, and specify different cell fates in a direct concentration-dependent manner. Understanding how morphogens form their concentration gradients to pattern tissues has been a central issue in developmental biology. Various experimental studies from Drosophila have led to several models to explain the formation of morphogen gradients. Over the past decade, one of the main findings in this field is the characterization of heparan sulfate proteoglycan (HSPG) as an essential regulator for morphogen gradient formation. Genetic and cell biological studies have showed that HSPGs can regulate morphogen activities at various steps including control of morphogen movement, signaling, and intracellular trafficking. Here, we review these data, highlighting recent findings that reveal mechanistic roles of HSPGs in controlling morphogen gradient formation.
Collapse
Affiliation(s)
- Dong Yan
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | | |
Collapse
|
27
|
Shiau CE, Hu N, Bronner-Fraser M. Altering Glypican-1 levels modulates canonical Wnt signaling during trigeminal placode development. Dev Biol 2010; 348:107-18. [PMID: 20883685 DOI: 10.1016/j.ydbio.2010.09.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Revised: 09/15/2010] [Accepted: 09/21/2010] [Indexed: 11/17/2022]
Abstract
Glypicans are conserved cell surface heparan sulfate proteoglycans expressed in a spatiotemporally regulated manner in many developing tissues including the nervous system. Here, we show that Glypican-1 (GPC1) is expressed by trigeminal placode cells as they ingress and contribute to trigeminal sensory neurons in the chick embryo. Either expression of full-length or truncated GPC1 in vivo causes defects in trigeminal gangliogenesis in a manner that requires heparan sulfate side chains. This leads to either abnormal placodal differentiation or organization, respectively, with near complete loss of the ophthalmic (OpV) trigeminal ganglion in the most severe cases after overexpression of full-length GPC1. Interestingly, modulating GPC1 alters levels of endogenous Wnt signaling activity in the forming trigeminal ganglion, as indicated by Wnt reporter expression. Accordingly, GPC1 overexpression phenocopies Wnt inhibition in causing loss of OpV placodal neurons. Furthermore, increased Wnt activity rescues the effects of GPC1 overexpression. Taken together, these results suggest that appropriate levels of GPC1 are essential for proper regulation of canonical Wnt signaling during differentiation and organization of trigeminal placodal cells into ganglia.
Collapse
Affiliation(s)
- Celia E Shiau
- Division of Biology 139-74, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | |
Collapse
|
28
|
Kleinschmit A, Koyama T, Dejima K, Hayashi Y, Kamimura K, Nakato H. Drosophila heparan sulfate 6-O endosulfatase regulates Wingless morphogen gradient formation. Dev Biol 2010; 345:204-14. [PMID: 20637191 DOI: 10.1016/j.ydbio.2010.07.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 07/06/2010] [Accepted: 07/07/2010] [Indexed: 01/01/2023]
Abstract
Heparan sulfate proteoglycans (HSPGs) play critical roles in the distribution and signaling of growth factors, but the molecular mechanisms regulating HSPG function are poorly understood. Here, we characterized Sulf1, which is a Drosophila member of the HS 6-O endosulfatase class of HS modifying enzymes. Our genetic and biochemical analyses show that Sulf1 acts as a novel regulator of the Wg morphogen gradient by modulating the sulfation status of HS on the cell surface in the developing wing. Sulf1 affects gradient formation by influencing the stability and distribution of Wg. We also demonstrate that expression of Sulf1 is induced by Wg signaling itself. Thus, Sulf1 participates in a feedback loop, potentially stabilizing the shape of the Wg gradient. Our study shows that the modification of HS fine structure provides a novel mechanism for the regulation of morphogen gradients.
Collapse
Affiliation(s)
- Adam Kleinschmit
- Department of Genetics, Cell Biology and Development, The University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | |
Collapse
|
29
|
Robustness of positional specification by the Hedgehog morphogen gradient. Dev Biol 2010; 342:180-93. [PMID: 20363217 DOI: 10.1016/j.ydbio.2010.03.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 02/25/2010] [Accepted: 03/26/2010] [Indexed: 11/20/2022]
Abstract
Spatial gradients of Hedgehog signalling play a central role in many patterning events during animal development, regulating cell fate determination and tissue growth in a variety of tissues and developmental stages. Experimental evidence suggests that many of the proteins responsible for regulating Hedgehog signalling and transport are themselves targets of Hedgehog signalling, leading to multiple levels of feedback within the system. We use mathematical modelling to analyse how these overlapping feedbacks combine to regulate patterning and potentially enhance robustness in the Drosophila wing imaginal disc. Our results predict that the regulation of Hedgehog transport and stability by glypicans, as well as multiple overlapping feedbacks in the Hedgehog response network, can combine to enhance the robustness of positional specification against variability in Hedgehog levels. We also discuss potential trade-offs between robustness and additional features of the Hedgehog gradient, such as signalling range and size regulation.
Collapse
|
30
|
Wu Y, Belenkaya TY, Lin X. Dual roles of Drosophila glypican Dally-like in Wingless/Wnt signaling and distribution. Methods Enzymol 2010; 480:33-50. [PMID: 20816203 DOI: 10.1016/s0076-6879(10)80002-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Heparan sulfate proteoglycans (HSPGs) are cell-surface and extracellular matrix (ECM) macromolecules that comprise a core protein to which heparan sulfate (HS) glycosaminoglycan (GAG) chains are attached. Glypican is a major family of HSPGs that is linked to the plasma membrane by a glycosylphosphatidylinositol (GPI) anchor. Over the past decade, fruit fly Drosophila has been used as a powerful model system to examine the functions of HSPGs in cell signaling and development. There are two members of Drosophila glypicans named division abnormally delayed (Dally) and Dally-like (Dlp). To study the functions of these two glypicans in development, we have generated the null mutants of dally and dlp. Here, we describe the methods employed to analyze their functions in development with a focus on Dlp in the context of Wingless signaling. Our data suggest that Dlp shows biphasic activity in Wingless/Wnt signaling and distribution.
Collapse
Affiliation(s)
- Yihui Wu
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | | | | |
Collapse
|
31
|
Umulis D, O'Connor MB, Blair SS. The extracellular regulation of bone morphogenetic protein signaling. Development 2009; 136:3715-28. [PMID: 19855014 DOI: 10.1242/dev.031534] [Citation(s) in RCA: 157] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In many cases, the level, positioning and timing of signaling through the bone morphogenetic protein (BMP) pathway are regulated by molecules that bind BMP ligands in the extracellular space. Whereas many BMP-binding proteins inhibit signaling by sequestering BMPs from their receptors, other BMP-binding proteins cause remarkably context-specific gains or losses in signaling. Here, we review recent findings and hypotheses on the complex mechanisms that lead to these effects, with data from developing systems, biochemical analyses and mathematical modeling.
Collapse
Affiliation(s)
- David Umulis
- Department of Agricultural and Biological Engineering, Purdue University, IN 47907, USA
| | | | | |
Collapse
|
32
|
Yan D, Wu Y, Feng Y, Lin SC, Lin X. The core protein of glypican Dally-like determines its biphasic activity in wingless morphogen signaling. Dev Cell 2009; 17:470-81. [PMID: 19853561 DOI: 10.1016/j.devcel.2009.09.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 07/14/2009] [Accepted: 09/01/2009] [Indexed: 10/20/2022]
Abstract
Dally-like (Dlp) is a glypican-type heparan sulfate proteoglycan (HSPG), containing a protein core and attached glycosaminoglycan (GAG) chains. In Drosophila wing discs, Dlp represses short-range Wingless (Wg) signaling, but activates long-range Wg signaling. Here, we show that Dlp core protein has similar biphasic activity as wild-type Dlp. Dlp core protein can interact with Wg; the GAG chains enhance this interaction. Importantly, we find that Dlp exhibits a biphasic response, regardless of whether its glycosylphosphatidylinositol linkage to the membrane can be cleaved. Rather, the transition from signaling activator to repressor is determined by the relative expression levels of Dlp and the Wg receptor, Frizzled (Fz) 2. Based on these data, we propose that the principal function of Dlp is to retain Wg on the cell surface. As such, it can either compete with the receptor or provide ligands to the receptor, depending on the ratios of Wg, Fz2, and Dlp.
Collapse
Affiliation(s)
- Dong Yan
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | | | | | | | | |
Collapse
|
33
|
Hayashi Y, Kobayashi S, Nakato H. Drosophila glypicans regulate the germline stem cell niche. ACTA ACUST UNITED AC 2009; 187:473-80. [PMID: 19948496 PMCID: PMC2779228 DOI: 10.1083/jcb.200904118] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Heparan sulfate glycoproteins dally and dally-like define the germ cell niche in female and male Drosophila, respectively. Stem cells are maintained in vivo by short-range signaling systems in specialized microenvironments called niches, but the molecular mechanisms controlling the physical space of the stem cell niche are poorly understood. In this study, we report that heparan sulfate (HS) proteoglycans (HSPGs) are essential regulators of the germline stem cell (GSC) niches in the Drosophila melanogaster gonads. GSCs were lost in both male and female gonads of mutants deficient for HS biosynthesis. dally, a Drosophila glypican, is expressed in the female GSC niche cells and is responsible for maintaining the GSC niche. Ectopic expression of dally in the ovary expanded the niche area, showing that dally is required for restriction of the GSC niche space. Interestingly, the other glypican, dally-like, plays a major role in regulating male GSC niche maintenance. We propose that HSPGs define the physical space of the niche by serving as trans coreceptors, mediating short-range signaling by secreted factors.
Collapse
Affiliation(s)
- Yoshiki Hayashi
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
34
|
Crickmore MA, Mann RS. The control of size in animals: insights from selector genes. Bioessays 2008; 30:843-53. [PMID: 18693263 DOI: 10.1002/bies.20806] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
How size is controlled during animal development remains a fascinating problem despite decades of research. Here we review key concepts in size biology and develop our thesis that much can be learned by studying how different organ sizes are differentially scaled by homeotic selector genes. A common theme from initial studies using this approach is that morphogen pathways are modified in numerous ways by selector genes to effect size control. We integrate these results with other pathways known to regulate organ size in developing a comprehensive model for organ size control.
Collapse
Affiliation(s)
- Michael A Crickmore
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY, USA
| | | |
Collapse
|
35
|
Serpe M, Umulis D, Ralston A, Chen J, Olson DJ, Avanesov A, Othmer H, O'Connor MB, Blair SS. The BMP-binding protein Crossveinless 2 is a short-range, concentration-dependent, biphasic modulator of BMP signaling in Drosophila. Dev Cell 2008; 14:940-53. [PMID: 18539121 DOI: 10.1016/j.devcel.2008.03.023] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Revised: 12/04/2007] [Accepted: 03/31/2008] [Indexed: 11/17/2022]
Abstract
In Drosophila, the secreted BMP-binding protein Short gastrulation (Sog) inhibits signaling by sequestering BMPs from receptors, but enhances signaling by transporting BMPs through tissues. We show that Crossveinless 2 (Cv-2) is also a secreted BMP-binding protein that enhances or inhibits BMP signaling. Unlike Sog, however, Cv-2 does not promote signaling by transporting BMPs. Rather, Cv-2 binds cell surfaces and heparan sulfate proteoglygans and acts over a short range. Cv-2 binds the type I BMP receptor Thickveins (Tkv), and we demonstrate how the exchange of BMPs between Cv-2 and receptor can produce the observed biphasic response to Cv-2 concentration, where low levels promote and high levels inhibit signaling. Importantly, we show also how the concentration or type of BMP present can determine whether Cv-2 promotes or inhibits signaling. We also find that Cv-2 expression is controlled by BMP signaling, and these combined properties enable Cv-2 to exquisitely tune BMP signaling.
Collapse
Affiliation(s)
- Mihaela Serpe
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Akiyama T, Kamimura K, Firkus C, Takeo S, Shimmi O, Nakato H. Dally regulates Dpp morphogen gradient formation by stabilizing Dpp on the cell surface. Dev Biol 2008; 313:408-19. [PMID: 18054902 PMCID: PMC2238337 DOI: 10.1016/j.ydbio.2007.10.035] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Revised: 10/25/2007] [Accepted: 10/25/2007] [Indexed: 11/29/2022]
Abstract
Decapentaplegic (Dpp), a Drosophila homologue of bone morphogenetic proteins, acts as a morphogen to regulate patterning along the anterior-posterior axis of the developing wing. Previous studies showed that Dally, a heparan sulfate proteoglycan, regulates both the distribution of Dpp morphogen and cellular responses to Dpp. However, the molecular mechanism by which Dally affects the Dpp morphogen gradient remains to be elucidated. Here, we characterized activity, stability, and gradient formation of a truncated form of Dpp (Dpp(Delta N)), which lacks a short domain at the N-terminus essential for its interaction with Dally. Dpp(Delta N) shows the same signaling activity and protein stability as wild-type Dpp in vitro but has a shorter half-life in vivo, suggesting that Dally stabilizes Dpp in the extracellular matrix. Furthermore, genetic interaction experiments revealed that Dally antagonizes the effect of Thickveins (Tkv; a Dpp type I receptor) on Dpp signaling. Given that Tkv can downregulate Dpp signaling by receptor-mediated endocytosis of Dpp, the ability of dally to antagonize tkv suggests that Dally inhibits this process. Based on these observations, we propose a model in which Dally regulates Dpp distribution and signaling by disrupting receptor-mediated internalization and degradation of the Dpp-receptor complex.
Collapse
Affiliation(s)
- Takuya Akiyama
- Department of Genetics, Cell Biology and Development, The University of Minnesota, Minneapolis, MN 55455, USA
| | - Keisuke Kamimura
- Department of Genetics, Cell Biology and Development, The University of Minnesota, Minneapolis, MN 55455, USA
| | - Cyndy Firkus
- Department of Genetics, Cell Biology and Development, The University of Minnesota, Minneapolis, MN 55455, USA
| | - Satomi Takeo
- Department of Biology, Tokyo Metropolitan University, Hachioji-shi, Tokyo 192-0397, Japan
| | - Osamu Shimmi
- Institute of Biotechnology, Vikki Biocenter, University of Helsinki, Helsinki, Finland
| | - Hiroshi Nakato
- Department of Genetics, Cell Biology and Development, The University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
37
|
Gumienny TL, MacNeil LT, Wang H, de Bono M, Wrana JL, Padgett RW. Glypican LON-2 is a conserved negative regulator of BMP-like signaling in Caenorhabditis elegans. Curr Biol 2007; 17:159-64. [PMID: 17240342 DOI: 10.1016/j.cub.2006.11.065] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Revised: 10/04/2006] [Accepted: 11/13/2006] [Indexed: 11/22/2022]
Abstract
Bone morphogenetic protein (BMP) pathways are required for a wide variety of developmental and homeostatic decisions, and mutations in signaling components are associated with several diseases. An important aspect of BMP control is the extracellular regulation of these pathways. We show that LON-2 negatively regulates a BMP-like signaling pathway that controls body length in C. elegans. lon-2 acts genetically upstream of the BMP-like gene dbl-1, and loss of lon-2 function results in animals that are longer than normal. LON-2 is a conserved member of the glypican family of heparan sulfate proteoglycans, a family with several members known to regulate growth-factor signaling in many organisms. LON-2 is functionally conserved because the Drosophila glypican gene dally rescues the lon-2(lf) body-size defect. We show that the LON-2 protein binds BMP2 in vitro, and a mutant variation of LON-2 found in lon-2(e2140) animals diminishes this interaction. We propose that LON-2 binding to DBL-1 negatively regulates this pathway in C. elegans by attenuating ligand-receptor interactions. This is the first report of a glypican directly interacting with a growth-factor pathway in C. elegans and provides a mechanistic model for glypican regulation of growth-factor pathways.
Collapse
Affiliation(s)
- Tina L Gumienny
- Waksman Institute, Department of Molecular Biology and Biochemistry, Cancer Institute of New Jersey, Rutgers University, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | |
Collapse
|
38
|
Crickmore MA, Mann RS. Hox control of morphogen mobility and organ development through regulation of glypican expression. Development 2006; 134:327-34. [PMID: 17166918 DOI: 10.1242/dev.02737] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Animal bodies are composed of structures that vary in size and shape within and between species. Selector genes generate these differences by altering the expression of effector genes whose identities are largely unknown. Prime candidates for such effector genes are components of morphogen signaling pathways, which control growth and patterning during development. Here we show that in Drosophila the Hox selector gene Ultrabithorax (Ubx) modulates morphogen signaling in the haltere through transcriptional regulation of the glypican dally. Ubx, in combination with the posterior selector gene engrailed (en), represses dally expression in the posterior (P) compartment of the haltere. Compared with the serially homologous wing, where Ubx is not expressed, low levels of posterior dally in the haltere contribute to a reduced P compartment size and an overall smaller appendage size. We also show that one molecular consequence of dally repression in the posterior haltere is to reduce Dpp diffusion into and through the P compartment. Our results suggest that Dpp mobility is biased towards cells with higher levels of Dally and that selector genes modulate organ development by regulating glypican levels.
Collapse
Affiliation(s)
- Michael A Crickmore
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | |
Collapse
|
39
|
de Navas LF, Garaulet DL, Sánchez-Herrero E. The ultrabithorax Hox gene of Drosophila controls haltere size by regulating the Dpp pathway. Development 2006; 133:4495-506. [PMID: 17050628 DOI: 10.1242/dev.02609] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The halteres and wings of Drosophila are homologous thoracic appendages, which share common positional information provided by signaling pathways. The activity in the haltere discs of the Ultrabithorax (Ubx) Hox gene establishes the differences between these structures, their different size being an obvious one. We show here that Ubx regulates the activity of the Decapentaplegic (Dpp) signaling pathway at different levels, and that this regulation is instrumental in establishing the size difference. Ubx downregulates dpp transcription and reduces Dpp diffusion by repressing the expression of master of thick veins and division abnormally delayed and by increasing the levels of thick veins, one of the Dpp receptors. Our results suggest that modulation in Dpp expression and spread accounts, in part, for the different size of halteres and wings.
Collapse
Affiliation(s)
- Luis F de Navas
- Centro de Biología Molecular Severo Ochoa (C.S.I.C.-U.A.M.) Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | | | | |
Collapse
|
40
|
Makhijani K, Kalyani C, Srividya T, Shashidhara LS. Modulation of Decapentaplegic gradient during haltere specification in Drosophila. Dev Biol 2006; 302:243-55. [PMID: 17045257 DOI: 10.1016/j.ydbio.2006.09.029] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Revised: 09/12/2006] [Accepted: 09/14/2006] [Indexed: 02/03/2023]
Abstract
Suppression of wing fate and specification of haltere fate in Drosophila by Ultrabithorax is a classical example of Hox regulation of serial homology. However, the mechanism of Ultrabithorax function in specifying haltere size and shape is not well understood. Here we show that Decapentaplegic signaling, which controls wing growth and shape, is a target of Ultrabithorax function during haltere specification. The Decapentaplegic signaling is down-regulated in haltere discs due to a combination of reduced levels of the Dpp, its trapping at the A/P boundary by increased levels of its receptor Thick-vein and its inability to diffuse in the absence of Dally. Results presented here suggest a complex mechanism adopted by Ultrabithorax to modulate Decapentaplegic signaling. We discuss how this complexity may regulate the final form of the adult haltere in the fly, without compromising features such as cell survival, which is also dependent on Decapentaplegic signaling.
Collapse
Affiliation(s)
- Kalpana Makhijani
- Center for Cellular and Molecular Biology, Uppal Road, Hyderabad, India.
| | | | | | | |
Collapse
|
41
|
Hufnagel L, Kreuger J, Cohen SM, Shraiman BI. On the role of glypicans in the process of morphogen gradient formation. Dev Biol 2006; 300:512-22. [PMID: 17074313 DOI: 10.1016/j.ydbio.2006.08.076] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2005] [Revised: 08/13/2006] [Accepted: 08/30/2006] [Indexed: 11/17/2022]
Abstract
Glypicans are cell surface molecules that influence signaling and gradient formation of secreted morphogens and growth factors. Several distinct functions have been ascribed to glypicans including acting as co-receptors for signaling proteins. Recent data show that glypicans are also necessary for morphogen propagation in the tissue. In the present study, a model describing the interaction of a morphogen with glypicans is formulated, analyzed and compared with measurements of the effect of glypican Dally-like (Dlp) overexpression on Wingless (Wg) morphogen signaling in Drosophila melanogaster wing imaginal discs. The model explains the opposing effect that Dlp overexpression has on Wg signaling in the distal and proximal regions of the disc and makes a number of quantitative predictions for further experiments. In particular, our model suggests that Dlp acts by allowing Wg to diffuse on cell surface while protecting it from loss and degradation, and that Dlp rather than acting as Wg co-receptor competes with receptors for morphogen binding.
Collapse
Affiliation(s)
- Lars Hufnagel
- Kavli Institute for Theoretical Physics, Kohn Hall, University of California, Santa Barbara, CA 93106, USA
| | | | | | | |
Collapse
|
42
|
Kirkpatrick CA, Knox SM, Staatz WD, Fox B, Lercher DM, Selleck SB. The function of a Drosophila glypican does not depend entirely on heparan sulfate modification. Dev Biol 2006; 300:570-82. [PMID: 17055473 DOI: 10.1016/j.ydbio.2006.09.011] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2006] [Revised: 09/06/2006] [Accepted: 09/07/2006] [Indexed: 10/24/2022]
Abstract
Division abnormally delayed (Dally) is one of two glycosylphosphatidylinositol (GPI)-linked heparan sulfate proteoglycans in Drosophila. Numerous studies have shown that it influences Decapentaplegic (Dpp) and Wingless signaling. It has been generally assumed that Dally affects signaling by directly interacting with these growth factors, primarily through its heparan sulfate (HS) chains. To understand the functional contributions of HS chains and protein core we have (1) assessed the growth factor binding properties of purified Dally using surface plasmon resonance, (2) generated a form of Dally that is not HS modified and evaluated its signaling capacity in vivo. Purified Dally binds directly to FGF2, FGF10, and the functional Dpp homolog BMP4. FGF binding is abolished by preincubation with HS, but BMP4 association is partially HS-resistant, suggesting the Dally protein core contributes to binding. Cell binding and co-immunoprecipitation studies suggest that non-HS-modified Dally retains some ability to bind Dpp or BMP4. Expression of HS-deficient Dally in vivo showed it does not promote signaling as well as wild-type Dally, yet it can rescue several dally mutant phenotypes. These data reveal that heparan sulfate modification of Dally is not required for all in vivo activities and that significant functional capacity resides in the protein core.
Collapse
Affiliation(s)
- Catherine A Kirkpatrick
- The Developmental Biology Center, Department of Pediatrics, 6-160 Jackson Hall, 321 Church Street SE, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
Heparan sulfate proteoglycans (HSPGs) are ubiquitous molecules that are critical for signaling mediated by many growth factors, including members of the Wnt, transforming growth factor-beta, Hedgehog, and fibroblast growth factor families, and are essential for cell specification, axon guidance, and the establishment of morphogen gradients. Although the heparan sulfate modifications of HSPGs are critical, there is much to learn about how the protein cores contribute to the specific signaling functions of these cell-surface and matrix molecules. Recent work has demonstrated that glypican-1 and syndecan-1 expressed by tumor cells have specific roles in FGF2 signaling, affecting their responses to this mitogenic stimulus.
Collapse
Affiliation(s)
- Scott B Selleck
- The Developmental Biology Center, and Department of Pediatrics and Genetics, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
44
|
Takeo S, Akiyama T, Firkus C, Aigaki T, Nakato H. Expression of a secreted form of Dally, a Drosophila glypican, induces overgrowth phenotype by affecting action range of Hedgehog. Dev Biol 2005; 284:204-18. [PMID: 15963974 DOI: 10.1016/j.ydbio.2005.05.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2004] [Revised: 05/20/2005] [Accepted: 05/24/2005] [Indexed: 11/22/2022]
Abstract
Glypicans, a family of heparan sulfate proteoglycans attached to the cell surface via a glycosylphosphatidylinositol (GPI)-anchor, play essential roles in morphogen signaling and distributions. A Drosophila glypican, Dally, regulates the gradient formation of Decapentaplegic (Dpp) in the developing wing. To gain insights into the function of glypicans in morphogen signaling, we examined the activities of two mutant forms of Dally: a transmembrane form (TM-Dally) and a secreted form (Sec-Dally). Misexpression of tm-dally in the wing disc had a similar yet weaker effect in enhancing Dpp signaling compared to that of wild-type dally. In contrast, Sec-Dally shows a weak dominant negative activity on Dpp signal transduction. Furthermore, sec-dally expression led to patterning defects as well as a substantial overgrowth of tissues and animals through the expansion of the action range of Hh. These findings support the recently proposed model that secreted glypicans have opposing and/or distinct effects on morphogen signaling from the membrane-tethered forms.
Collapse
Affiliation(s)
- Satomi Takeo
- Department of Biology, Tokyo Metropolitan University, Hachioji-shi, Tokyo 192-0397, Japan
| | | | | | | | | |
Collapse
|
45
|
Abstract
Heparan sulfate proteoglycans (HSPGs) are cell-surface and extracellular matrix macromolecules that are composed of a core protein decorated with covalently linked glycosaminoglycan (GAG) chains. In vitro studies have demonstrated the roles of these molecules in many cellular functions, and recent in vivo studies have begun to clarify their essential functions in development. In particular, HSPGs play crucial roles in regulating key developmental signaling pathways, such as the Wnt, Hedgehog, transforming growth factor-beta, and fibroblast growth factor pathways. This review highlights recent findings regarding the functions of HSPGs in these signaling pathways during development.
Collapse
Affiliation(s)
- Xinhua Lin
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, The University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA.
| |
Collapse
|
46
|
Han C, Yan D, Belenkaya TY, Lin X. Drosophila glypicans Dally and Dally-like shape the extracellular Wingless morphogen gradient in the wing disc. Development 2005; 132:667-79. [PMID: 15647319 DOI: 10.1242/dev.01636] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Drosophila Wingless (Wg) is the founding member of the Wnt family of secreted proteins. During the wing development, Wg acts as a morphogen whose concentration gradient provides positional cues for wing patterning. The molecular mechanism(s) of Wg gradient formation is not fully understood. Here,we systematically analyzed the roles of glypicans Dally and Dally-like protein(Dlp), the Wg receptors Frizzled (Fz) and Fz2, and the Wg co-receptor Arrow(Arr) in Wg gradient formation in the wing disc. We demonstrate that both Dally and Dlp are essential and have different roles in Wg gradient formation. The specificities of Dally and Dlp in Wg gradient formation are at least partially achieved by their distinct expression patterns. To our surprise,although Fz2 was suggested to play an essential role in Wg gradient formation by ectopic expression studies, removal of Fz2 activity does not alter the extracellular Wg gradient. Interestingly, removal of both Fz and Fz2, or Arr causes enhanced extracellular Wg levels, which is mainly resulted from upregulated Dlp levels. We further show that Notum, a negative regulator of Wg signaling, downregulates Wg signaling mainly by modifying Dally. Last, we demonstrate that Wg movement is impeded by cells mutant for both dally and dlp. Together, these new findings suggest that the Wg morphogen gradient in the wing disc is mainly controlled by combined actions of Dally and Dlp. We propose that Wg establishes its concentration gradient by a restricted diffusion mechanism involving Dally and Dlp in the wing disc.
Collapse
Affiliation(s)
- Chun Han
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | | | | | | |
Collapse
|
47
|
Kamimura K, Rhodes JM, Ueda R, McNeely M, Shukla D, Kimata K, Spear PG, Shworak NW, Nakato H. Regulation of Notch signaling by Drosophila heparan sulfate 3-O sulfotransferase. ACTA ACUST UNITED AC 2004; 166:1069-79. [PMID: 15452147 PMCID: PMC2172002 DOI: 10.1083/jcb.200403077] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Heparan sulfate (HS) regulates the activity of various ligands and is involved in molecular recognition events on the cell surface and in the extracellular matrix. Specific binding of HS to different ligand proteins depends on the sulfation pattern of HS. For example, the interaction between antithrombin and a particular 3-O sulfated HS motif is thought to modulate blood coagulation. However, a recent study of mice defective for this modification suggested that 3-O sulfation plays other biological roles. Here, we show that Drosophila melanogaster HS 3-O sulfotransferase-b (Hs3st-B), which catalyzes HS 3-O sulfation, is a novel component of the Notch pathway. Reduction of Hs3st-B function by transgenic RNA interference compromised Notch signaling, producing neurogenic phenotypes. We also show that levels of Notch protein on the cell surface were markedly decreased by loss of Hs3st-B. These findings suggest that Hs3st-B is involved in Notch signaling by affecting stability or intracellular trafficking of Notch protein.
Collapse
Affiliation(s)
- Keisuke Kamimura
- Dept. of Genetics, Cell Biology, and Development, University of Minnesota, 6-160 Jackson Hall, 321 Church Street SE, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Kreuger J, Perez L, Giraldez AJ, Cohen SM. Opposing Activities of Dally-like Glypican at High and Low Levels of Wingless Morphogen Activity. Dev Cell 2004; 7:503-12. [PMID: 15469839 DOI: 10.1016/j.devcel.2004.08.005] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2003] [Revised: 08/03/2004] [Accepted: 08/05/2004] [Indexed: 02/02/2023]
Abstract
The glypican family of heparan sulfate proteoglycans has been implicated in formation of morphogen gradients. Here, we examine the role of the glypican Dally-like protein (Dlp) in shaping the Wingless gradient in the Drosophila wing disc. Surprisingly, we find that Dlp has opposite effects at high and low levels of Wingless. Dlp promotes low-level Wingless activity but reduces high-level Wingless activity. We present evidence that the Wg antagonist Notum acts to induce cleavage of the Dlp glypican at the level of its GPI anchor, which leads to shedding of Dlp. Thus, spatially regulated modification of Dlp by Notum employs the ligand binding activity of Dlp to promote or inhibit signaling in a context-dependent manner. Notum-induced shedding of Dlp could convert Dlp from a membrane-tethered coreceptor to a secreted antagonist.
Collapse
Affiliation(s)
- Johan Kreuger
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | | | | | |
Collapse
|
49
|
Bornemann DJ, Duncan JE, Staatz W, Selleck S, Warrior R. Abrogation of heparan sulfate synthesis in Drosophila disrupts the Wingless, Hedgehog and Decapentaplegic signaling pathways. Development 2004; 131:1927-38. [PMID: 15056609 DOI: 10.1242/dev.01061] [Citation(s) in RCA: 172] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Studies in Drosophila and vertebrate systems have demonstrated that heparan sulfate proteoglycans (HSPGs) play crucial roles in modulating growth factor signaling. We have isolated mutations in sister of tout velu (sotv), a gene that encodes a co-polymerase that synthesizes HSPG glycosaminoglycan (GAG) chains. Our phenotypic and biochemical analyses reveal that HS levels are dramatically reduced in the absence of Sotv or its partner co-polymerase Tout velu (Ttv), suggesting that both copolymerases are essential for GAG synthesis. Furthermore, we find that mutations in sotv and ttv impair Hh, Wg and Decapentaplegic(Dpp) signaling. This contrasts with previous studies that suggested loss of ttv compromises only Hh signaling. Our results may contribute to understanding the biological basis of hereditary multiple exostoses (HME), a disease associated with bone overgrowth that results from mutations in EXT1 and EXT2, the human orthologs of ttv and sotv.
Collapse
Affiliation(s)
- Douglas J Bornemann
- Developmental and Cell Biology, University of California Irvine, Irvine, CA 92697, USA
| | | | | | | | | |
Collapse
|
50
|
Han C, Belenkaya TY, Khodoun M, Tauchi M, Lin X, Lin X. Distinct and collaborative roles ofDrosophilaEXT family proteins in morphogen signalling and gradient formation. Development 2004; 131:1563-75. [PMID: 14998928 DOI: 10.1242/dev.01051] [Citation(s) in RCA: 178] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Heparan sulfate proteoglycans (HSPG) have been implicated in regulating the signalling activities of secreted morphogen molecules including Wingless (Wg),Hedgehog (Hh) and Decapentaplegic (Dpp). HSPG consists of a protein core to which heparan sulfate (HS) glycosaminoglycan (GAG) chains are attached. The formation of HS GAG chains is catalyzed by glycosyltransferases encoded by members of the EXT family of putative tumor suppressors linked to hereditary multiple exostoses. Previous studies in Drosophila demonstrated that tout-velu (ttv), the Drosophila EXT1, is required for Hh movement. However, the functions of other EXT family members are unknown. We have identified and isolated the other two members of the Drosophila EXT family genes, which are named sister of tout-velu (sotv) and brother of tout-velu(botv), and encode Drosophila homologues of vertebrate EXT2 and EXT-like 3 (EXTL3), respectively. We show that both Hh and Dpp signalling activities, as well as their morphogen distributions, are defective in cells mutant for ttv, sotv or botv in the wing disc. Surprisingly, although Wg morphogen distribution is abnormal in ttv, sotv and botv, Wg signalling is only defective in botv mutants or ttv-sotv double mutants, and not in ttv nor sotv alone, suggesting that Ttv and Sotv are redundant in Wg signalling. We demonstrate further that Ttv and Sotv form a complex and are co-localized in vivo. Our results, along with previous studies on Ttv, provide evidence that all three Drosophila EXT proteins are required for the biosynthesis of HSPGs, and for the gradient formation of the Wg, Hh and Dpp morphogens. Our results also suggest that HSPGs have two distinct roles in Wg morphogen distribution and signalling.
Collapse
Affiliation(s)
- Chun Han
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | | | | | | | | | | |
Collapse
|