1
|
Toga K, Sakamoto T, Kanda M, Tamura K, Okuhara K, Tabunoki H, Bono H. Long-read genome assembly of the Japanese parasitic wasp Copidosoma floridanum (Hymenoptera: Encyrtidae). G3 (BETHESDA, MD.) 2024; 14:jkae127. [PMID: 38860489 PMCID: PMC11304982 DOI: 10.1093/g3journal/jkae127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/07/2024] [Accepted: 06/03/2024] [Indexed: 06/12/2024]
Abstract
Copidosoma floridanum is a cosmopolitan species and an egg-larval parasitoid of the Plusiine moth. C. floridanum has a unique development mode called polyembryony, in which over two thousand genetically identical embryos are produced from a single egg. Some embryos develop into sterile soldier larvae precociously, and their emergence period and aggressive behavior differ between the US and Japanese C. floridanum strains. Genome sequencing expects to contribute to our understanding of the molecular bases underlying the progression of polyembryony. However, only the genome sequence of the US strain generated by the short-read assembly has been reported. In the present study, we determined the genome sequence of the Japanese strain using Pacific Biosciences high-fidelity reads and generating a highly contiguous assembly (552.7 Mb, N50: 17.9 Mb). Gene prediction and annotation identified 13,886 transcripts derived from 10,786 gene models. We searched the genomic differences between US and Japanese strains. Among gene models predicted in this study, 100 gene loci in the Japanese strain had extremely different gene structures from those in the US strain. This was accomplished through functional annotation (GGSEARCH) and long-read sequencing. Genomic differences between strains were also reflected in amino acid sequences of vasa that play a central role in caste determination in this species. The genome assemblies constructed in this study will facilitate the genomic comparisons between Japanese and US strains, leading to our understanding of detailed genomic regions responsible for the ecological and physiological characteristics of C. floridanum.
Collapse
Affiliation(s)
- Kouhei Toga
- Laboratory of BioDX, PtBio Co-Creation Research Center, Genome Editing Innovation Center, Hiroshima University, 3-10-23 Kagamiyama, Higashi-Hiroshima city, Hiroshima 739-0046, Japan
- Laboratory of Genome Informatics, Graduate School of Integrated Sciences for Life, Hiroshima University, 3-10-23 Kagamiyama, Higashi-Hiroshima city, Hiroshima 739-0046, Japan
| | - Takuma Sakamoto
- Department of Science of Biological Production, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Miyuki Kanda
- Laboratory of BioDX, PtBio Co-Creation Research Center, Genome Editing Innovation Center, Hiroshima University, 3-10-23 Kagamiyama, Higashi-Hiroshima city, Hiroshima 739-0046, Japan
- Research and Development Department, PtBio Inc., 3-10-23 Kagamiyama, Higashi-Hiroshima city, Hiroshima 739-0046, Japan
| | - Keita Tamura
- Laboratory of BioDX, PtBio Co-Creation Research Center, Genome Editing Innovation Center, Hiroshima University, 3-10-23 Kagamiyama, Higashi-Hiroshima city, Hiroshima 739-0046, Japan
| | - Keisuke Okuhara
- Laboratory of Genome Informatics, Graduate School of Integrated Sciences for Life, Hiroshima University, 3-10-23 Kagamiyama, Higashi-Hiroshima city, Hiroshima 739-0046, Japan
- Research and Development Department, PtBio Inc., 3-10-23 Kagamiyama, Higashi-Hiroshima city, Hiroshima 739-0046, Japan
| | - Hiroko Tabunoki
- Department of Science of Biological Production, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
- Cooperative Major in Advanced Health Science, Graduate School of Bio-Applications and System Engineering, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Hidemasa Bono
- Laboratory of BioDX, PtBio Co-Creation Research Center, Genome Editing Innovation Center, Hiroshima University, 3-10-23 Kagamiyama, Higashi-Hiroshima city, Hiroshima 739-0046, Japan
- Laboratory of Genome Informatics, Graduate School of Integrated Sciences for Life, Hiroshima University, 3-10-23 Kagamiyama, Higashi-Hiroshima city, Hiroshima 739-0046, Japan
| |
Collapse
|
2
|
Lepesant JA, Roland-Gosselin F, Guillemet C, Bernard F, Guichet A. The Importance of the Position of the Nucleus in Drosophila Oocyte Development. Cells 2024; 13:201. [PMID: 38275826 PMCID: PMC10814754 DOI: 10.3390/cells13020201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
Oogenesis is a developmental process leading to the formation of an oocyte, a haploid gamete, which upon fertilisation and sperm entry allows the male and the female pronuclei to fuse and give rise to a zygote. In addition to forming a haploid gamete, oogenesis builds up a store of proteins, mRNAs, and organelles in the oocyte needed for the development of the future embryo. In several species, such as Drosophila, the polarity axes determinants of the future embryo must be asymmetrically distributed prior to fertilisation. In the Drosophila oocyte, the correct positioning of the nucleus is essential for establishing the dorsoventral polarity axis of the future embryo and allowing the meiotic spindles to be positioned in close vicinity to the unique sperm entry point into the oocyte.
Collapse
Affiliation(s)
| | | | | | | | - Antoine Guichet
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France; (J.-A.L.); (F.R.-G.); (C.G.); (F.B.)
| |
Collapse
|
3
|
Bilska B, Damulewicz M, Abaquita TAL, Pyza E. Changes in heme oxygenase level during development affect the adult life of Drosophila melanogaster. Front Cell Neurosci 2023; 17:1239101. [PMID: 37876913 PMCID: PMC10591093 DOI: 10.3389/fncel.2023.1239101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/15/2023] [Indexed: 10/26/2023] Open
Abstract
Heme oxygenase (HO) has been shown to control various cellular processes in both mammals and Drosophila melanogaster. Here, we investigated how changes in HO levels in neurons and glial cells during development affect adult flies, by using the TARGET Drosophila system to manipulate the expression of the ho gene. The obtained data showed differences in adult survival, maximum lifespan, climbing, locomotor activity, and sleep, which depended on the level of HO (after ho up-regulation or downregulation), the timing of expression (chronic or at specific developmental stages), cell types (neurons or glia), sex (males or females), and age of flies. In addition to ho, the effects of changing the mRNA level of the Drosophila CNC factor gene (NRF2 homolog in mammals and master regulator of HO), were also examined to compare with those observed after changing ho expression. We showed that HO levels in neurons and glia must be maintained at an appropriate physiological level during development to ensure the well-being of adults. We also found that the downregulation of ho in either neurons or glia in the brain is compensated by ho expressed in the retina.
Collapse
Affiliation(s)
| | | | | | - Elzbieta Pyza
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Cracow, Poland
| |
Collapse
|
4
|
Milas A, Telley IA. Polarity Events in the Drosophila melanogaster Oocyte. Front Cell Dev Biol 2022; 10:895876. [PMID: 35602591 PMCID: PMC9117655 DOI: 10.3389/fcell.2022.895876] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Cell polarity is a pre-requirement for many fundamental processes in animal cells, such as asymmetric cell division, axon specification, morphogenesis and epithelial tissue formation. For all these different processes, polarization is established by the same set of proteins, called partitioning defective (Par) proteins. During development in Drosophila melanogaster, decision making on the cellular and organism level is achieved with temporally controlled cell polarization events. The initial polarization of Par proteins occurs as early as in the germline cyst, when one of the 16 cells becomes the oocyte. Another marked event occurs when the anterior–posterior axis of the future organism is defined by Par redistribution in the oocyte, requiring external signaling from somatic cells. Here, we review the current literature on cell polarity events that constitute the oogenesis from the stem cell to the mature egg.
Collapse
Affiliation(s)
- Ana Milas
- *Correspondence: Ana Milas, ; Ivo A. Telley,
| | | |
Collapse
|
5
|
Ewe CK, Alok G, Rothman JH. Stressful development: integrating endoderm development, stress, and longevity. Dev Biol 2020; 471:34-48. [PMID: 33307045 DOI: 10.1016/j.ydbio.2020.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 10/22/2022]
Abstract
In addition to performing digestion and nutrient absorption, the intestine serves as one of the first barriers to the external environment, crucial for protecting the host from environmental toxins, pathogenic invaders, and other stress inducers. The gene regulatory network (GRN) governing embryonic development of the endoderm and subsequent differentiation and maintenance of the intestine has been well-documented in C. elegans. A key regulatory input that initiates activation of the embryonic GRN for endoderm and mesoderm in this animal is the maternally provided SKN-1 transcription factor, an ortholog of the vertebrate Nrf1 and 2, which, like C. elegans SKN-1, perform conserved regulatory roles in mediating a variety of stress responses across metazoan phylogeny. Other key regulatory factors in early gut development also participate in stress response as well as in innate immunity and aging and longevity. In this review, we discuss the intersection between genetic nodes that mediate endoderm/intestine differentiation and regulation of stress and homeostasis. We also consider how direct signaling from the intestine to the germline, in some cases involving SKN-1, facilitates heritable epigenetic changes, allowing transmission of adaptive stress responses across multiple generations. These connections between regulation of endoderm/intestine development and stress response mechanisms suggest that varying selective pressure exerted on the stress response pathways may influence the architecture of the endoderm GRN, thereby leading to genetic and epigenetic variation in early embryonic GRN regulatory events.
Collapse
Affiliation(s)
- Chee Kiang Ewe
- Department of MCD Biology and Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, USA.
| | - Geneva Alok
- Department of MCD Biology and Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, USA.
| | - Joel H Rothman
- Department of MCD Biology and Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, USA.
| |
Collapse
|
6
|
Lamiré LA, Milani P, Runel G, Kiss A, Arias L, Vergier B, de Bossoreille S, Das P, Cluet D, Boudaoud A, Grammont M. Gradient in cytoplasmic pressure in germline cells controls overlying epithelial cell morphogenesis. PLoS Biol 2020; 18:e3000940. [PMID: 33253165 PMCID: PMC7703951 DOI: 10.1371/journal.pbio.3000940] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 10/13/2020] [Indexed: 12/31/2022] Open
Abstract
It is unknown how growth in one tissue impacts morphogenesis in a neighboring tissue. To address this, we used the Drosophila ovarian follicle, in which a cluster of 15 nurse cells and a posteriorly located oocyte are surrounded by a layer of epithelial cells. It is known that as the nurse cells grow, the overlying epithelial cells flatten in a wave that begins in the anterior. Here, we demonstrate that an anterior to posterior gradient of decreasing cytoplasmic pressure is present across the nurse cells and that this gradient acts through TGFβ to control both the triggering and the progression of the wave of epithelial cell flattening. Our data indicate that intrinsic nurse cell growth is important to control proper nurse cell pressure. Finally, we reveal that nurse cell pressure and subsequent TGFβ activity in the stretched cells combine to increase follicle elongation in the anterior, which is crucial for allowing nurse cell growth and pressure control. More generally, our results reveal that during development, inner cytoplasmic pressure in individual cells has an important role in shaping their neighbors.
Collapse
Affiliation(s)
- Laurie-Anne Lamiré
- Laboratoire de Biologie et de Modélisation de la Cellule, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, Lyon, France
| | - Pascale Milani
- Laboratoire de Biologie et de Modélisation de la Cellule, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, Lyon, France
| | - Gaël Runel
- Laboratoire de Biologie et de Modélisation de la Cellule, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, Lyon, France
| | - Annamaria Kiss
- Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France
| | - Leticia Arias
- Laboratoire de Biologie et de Modélisation de la Cellule, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, Lyon, France
| | - Blandine Vergier
- Laboratoire de Biologie et de Modélisation de la Cellule, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, Lyon, France
| | - Stève de Bossoreille
- Laboratoire de Biologie et de Modélisation de la Cellule, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, Lyon, France
| | - Pradeep Das
- Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France
| | - David Cluet
- Laboratoire de Biologie et de Modélisation de la Cellule, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, Lyon, France
| | - Arezki Boudaoud
- Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France
| | - Muriel Grammont
- Laboratoire de Biologie et de Modélisation de la Cellule, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, Lyon, France
| |
Collapse
|
7
|
Miao G, Godt D, Montell DJ. Integration of Migratory Cells into a New Site In Vivo Requires Channel-Independent Functions of Innexins on Microtubules. Dev Cell 2020; 54:501-515.e9. [PMID: 32668209 DOI: 10.1016/j.devcel.2020.06.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/03/2020] [Accepted: 06/19/2020] [Indexed: 12/31/2022]
Abstract
During embryonic development and cancer metastasis, migratory cells must establish stable connections with new partners at their destinations. Here, we establish the Drosophila border cells as a model for this multistep process. During oogenesis, border cells delaminate from the follicular epithelium and migrate. When they reach their target, the oocyte, they undergo a stereotypical series of steps to adhere to it, then connect with another migrating epithelium. We identify gap-junction-forming innexin proteins as critical. Surprisingly, the channel function is dispensable. Instead, Innexins 2 and 3 function within the border cells, and Innexin 4 functions within the germline, to regulate microtubules. The microtubule-dependent border cell-oocyte interaction is essential to brace the cells against external morphogenetic forces. Thus, we establish an experimental model and use genetic, thermogenetic, and live-imaging approaches to uncover the contributions of Innexins and microtubules to a cell-biological process important in development and cancer.
Collapse
Affiliation(s)
- Guangxia Miao
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Dorothea Godt
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON M5S 3G5, Canada
| | - Denise J Montell
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
| |
Collapse
|
8
|
Schotthöfer SK, Bohrmann J. Bioelectrical and cytoskeletal patterns correlate with altered axial polarity in the follicular epithelium of the Drosophila mutant gurken. BMC DEVELOPMENTAL BIOLOGY 2020; 20:5. [PMID: 32169045 PMCID: PMC7071586 DOI: 10.1186/s12861-020-00210-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/26/2020] [Indexed: 01/08/2023]
Abstract
Background Bioelectrical signals are known to be involved in the generation of cell and tissue polarity as well as in cytoskeletal dynamics. The epithelium of Drosophila ovarian follicles is a suitable model system for studying connections between electrochemical gradients, patterns of cytoskeletal elements and axial polarity. By interactions between soma and germline cells, the transforming growth factor-α homolog Gurken (Grk) establishes both the anteroposterior and the dorsoventral axis during oogenesis. Results In the follicular epithelium of the wild-type (wt) and the polarity mutant grk, we analysed stage-specific gradients of membrane potentials (Vmem) and intracellular pH (pHi) using the potentiometric dye DiBAC4(3) and the fluorescent pH-indicator 5-CFDA,AM, respectively. In addition, we compared the cytoskeletal organisation in the follicular epithelium of wt and grk using fluorescent phalloidin and an antibody against acetylated α-tubulin. Corresponding to impaired polarity in grk, the slope of the anteroposterior Vmem-gradient in stage S9 is significantly reduced compared to wt. Even more striking differences in Vmem- and pHi-patterns become obvious during stage S10B, when the respective dorsoventral gradients are established in wt but not in grk. Concurrent with bioelectrical differences, wt and grk exhibit differences concerning cytoskeletal patterns in the follicular epithelium. During all vitellogenic stages, basal microfilaments in grk are characterised by transversal alignment, while wt-typical condensations in centripetal follicle cells (S9) and in dorsal centripetal follicle cells (S10B) are absent. Moreover, in grk, longitudinal alignment of microtubules occurs throughout vitellogenesis in all follicle cells, whereas in wt, microtubules in mainbody and posterior follicle cells exhibit a more cell-autonomous organisation. Therefore, in contrast to wt, the follicular epithelium in grk is characterised by missing or shallower electrochemical gradients and by more coordinated transcellular cytoskeletal patterns. Conclusions Our results show that bioelectrical polarity and cytoskeletal polarity are closely linked to axial polarity in both wt and grk. When primary polarity signals are altered, both bioelectrical and cytoskeletal patterns in the follicular epithelium change. We propose that not only cell-specific levels of Vmem and pHi, or the polarities of transcellular electrochemical gradients, but also the slopes of these gradients are crucial for cytoskeletal modifications and, thus, for proper development of epithelial polarity.
Collapse
Affiliation(s)
- Susanne Katharina Schotthöfer
- RWTH Aachen University, Institut für Biologie II, Abt. Zoologie und Humanbiologie, Worringerweg 3, 52056, Aachen, Germany
| | - Johannes Bohrmann
- RWTH Aachen University, Institut für Biologie II, Abt. Zoologie und Humanbiologie, Worringerweg 3, 52056, Aachen, Germany.
| |
Collapse
|
9
|
Matsumaru D, Motohashi H. From germ cells to neonates: the beginning of life and the KEAP1-NRF2 system. J Biochem 2020; 167:133-138. [PMID: 31518425 DOI: 10.1093/jb/mvz070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 08/23/2019] [Indexed: 12/30/2022] Open
Abstract
The Kelch-like ECH-associated protein 1(KEAP1)-NF-E2-related factor 2 (NRF2) system is one of the most studied environmental stress response systems. In the presence of oxidative and electrophilic insults, the thiols of cysteine residues in KEAP1 are modified, and subsequently stabilized NRF2 activates its target genes that are involved in detoxification and cytoprotection. A myriad of recent studies has revealed the broad range of contributions of the KEAP1-NRF2 system to physiological and pathological processes. However, its functions during gametic and embryonic development are still open for investigation. Although oxidative stress is harmful for embryos, Nrf2-/- mice do not show any apparent morphological abnormalities during development, probably because of the compensatory antioxidant functions of NF-E2-related factor 1 (NRF1). It can also be considered that the antioxidant system is essential for protecting germ cells during reproduction. The maturation processes of germ cells in both sexes are affected by Nrf2 mutation. Hence, in this review, we focus on the stress response system related to reproduction and embryonic development through the functions of the KEAP1-NRF2 system.
Collapse
Affiliation(s)
- Daisuke Matsumaru
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-cho, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Hozumi Motohashi
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-cho, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| |
Collapse
|
10
|
Merkle JA, Wittes J, Schüpbach T. Signaling between somatic follicle cells and the germline patterns the egg and embryo of Drosophila. Curr Top Dev Biol 2019; 140:55-86. [PMID: 32591083 DOI: 10.1016/bs.ctdb.2019.10.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In Drosophila, specification of the embryonic body axes requires signaling between the germline and the somatic follicle cells. These signaling events are necessary to properly localize embryonic patterning determinants in the egg or eggshell during oogenesis. There are three maternal patterning systems that specify the anterior-posterior axis, and one that establishes the dorsal-ventral axis. We will first review oogenesis, focusing on the establishment of the oocyte and nurse cells and patterning of the follicle cells into different subpopulations. We then describe how two coordinated signaling events between the oocyte and follicle cells establish polarity of the oocyte and localize the anterior determinant bicoid, the posterior determinant oskar, and Gurken/epidermal growth factor (EGF), which breaks symmetry to initiate dorsal-ventral axis establishment. Next, we review how dorsal-ventral asymmetry of the follicle cells is transmitted to the embryo. This process also involves Gurken-EGF receptor (EGFR) signaling between the oocyte and follicle cells, leading to ventrally-restricted expression of the sulfotransferase Pipe. These events promote the ventral processing of Spaetzle, a ligand for Toll, which ultimately sets up the embryonic dorsal-ventral axis. We then describe the activation of the terminal patterning system by specialized polar follicle cells. Finally, we present open questions regarding soma-germline signaling during Drosophila oogenesis required for cell identity and embryonic axis formation.
Collapse
Affiliation(s)
- Julie A Merkle
- Department of Biology, University of Evansville, Evansville, IN, United States
| | - Julia Wittes
- Department of Biological Sciences, Columbia University, New York, NY, United States
| | - Trudi Schüpbach
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States.
| |
Collapse
|
11
|
Tillery MML, Blake-Hedges C, Zheng Y, Buchwalter RA, Megraw TL. Centrosomal and Non-Centrosomal Microtubule-Organizing Centers (MTOCs) in Drosophila melanogaster. Cells 2018; 7:E121. [PMID: 30154378 PMCID: PMC6162459 DOI: 10.3390/cells7090121] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/19/2018] [Accepted: 08/20/2018] [Indexed: 12/14/2022] Open
Abstract
The centrosome is the best-understood microtubule-organizing center (MTOC) and is essential in particular cell types and at specific stages during Drosophila development. The centrosome is not required zygotically for mitosis or to achieve full animal development. Nevertheless, centrosomes are essential maternally during cleavage cycles in the early embryo, for male meiotic divisions, for efficient division of epithelial cells in the imaginal wing disc, and for cilium/flagellum assembly in sensory neurons and spermatozoa. Importantly, asymmetric and polarized division of stem cells is regulated by centrosomes and by the asymmetric regulation of their microtubule (MT) assembly activity. More recently, the components and functions of a variety of non-centrosomal microtubule-organizing centers (ncMTOCs) have begun to be elucidated. Throughout Drosophila development, a wide variety of unique ncMTOCs form in epithelial and non-epithelial cell types at an assortment of subcellular locations. Some of these cell types also utilize the centrosomal MTOC, while others rely exclusively on ncMTOCs. The impressive variety of ncMTOCs being discovered provides novel insight into the diverse functions of MTOCs in cells and tissues. This review highlights our current knowledge of the composition, assembly, and functional roles of centrosomal and non-centrosomal MTOCs in Drosophila.
Collapse
Affiliation(s)
- Marisa M L Tillery
- Department of Biomedical Sciences, Florida State University, 1115 West Call St., Tallahassee, FL 32306, USA.
| | - Caitlyn Blake-Hedges
- Department of Biomedical Sciences, Florida State University, 1115 West Call St., Tallahassee, FL 32306, USA.
| | - Yiming Zheng
- Department of Biomedical Sciences, Florida State University, 1115 West Call St., Tallahassee, FL 32306, USA.
| | - Rebecca A Buchwalter
- Department of Biomedical Sciences, Florida State University, 1115 West Call St., Tallahassee, FL 32306, USA.
| | - Timothy L Megraw
- Department of Biomedical Sciences, Florida State University, 1115 West Call St., Tallahassee, FL 32306, USA.
| |
Collapse
|
12
|
Bernard F, Lepesant JA, Guichet A. Nucleus positioning within Drosophila egg chamber. Semin Cell Dev Biol 2017; 82:25-33. [PMID: 29056490 DOI: 10.1016/j.semcdb.2017.10.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/09/2017] [Accepted: 10/12/2017] [Indexed: 12/12/2022]
Abstract
Both types of Drosophila egg chamber germ cells, i.e. oocyte and nurse cells, have to control their nucleus positions in order to produce a viable gamete. Interestingly, while actin microfilaments are crucial to position the nuclei in nurse cells, these are the microtubules that are important for oocyte nucleus to migrate and adopt the correct position. In this review, we discuss the mechanisms underlying these positioning processes in the two cell types with respect to the organization and dynamics of the actin and microtubule skeleton. In the nurse cells it is essential to keep firmly the nuclei in a central position to prevent them from obstructing the ring canals when the cytoplasmic content of the cells is dumped into the oocyte cells toward the end of oogenesis. This is achieved by the assembly of thick filopodia-like actin cables anchored to the plasma membrane, which grow inwardly and eventually encase tightly the nuclei in a cage-like structure. In the oocyte, the migration at an early stage of oogenesis of the nucleus from a posterior location to an anchorage site at an asymmetric anterior position, is an essential step in the setting up of the dorsoventral polarity axis of the future embryo. This process is controlled by an interplay between MT networks that just start to be untangled. Although both mechanisms have evolved to fulfill cell-type specific cell processes in the context of fly oogenesis, interesting parallels can be drawn with other nuclear positioning mechanisms in the mouse oocyte and the developing muscle respectively.
Collapse
Affiliation(s)
- Fred Bernard
- Institut Jacques Monod, CNRS UMR 7592, Université Paris-Diderot, Sorbonne Paris Cité, 75205, Paris Cedex, France.
| | - Jean-Antoine Lepesant
- Institut Jacques Monod, CNRS UMR 7592, Université Paris-Diderot, Sorbonne Paris Cité, 75205, Paris Cedex, France.
| | - Antoine Guichet
- Institut Jacques Monod, CNRS UMR 7592, Université Paris-Diderot, Sorbonne Paris Cité, 75205, Paris Cedex, France.
| |
Collapse
|
13
|
Distinct molecular cues ensure a robust microtubule-dependent nuclear positioning in the Drosophila oocyte. Nat Commun 2017; 8:15168. [PMID: 28447612 PMCID: PMC5414183 DOI: 10.1038/ncomms15168] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 03/02/2017] [Indexed: 11/08/2022] Open
Abstract
Controlling nucleus localization is crucial for a variety of cellular functions. In the Drosophila oocyte, nuclear asymmetric positioning is essential for the reorganization of the microtubule (MT) network that controls the polarized transport of axis determinants. A combination of quantitative three-dimensional live imaging and laser ablation-mediated force analysis reveal that nuclear positioning is ensured with an unexpected level of robustness. We show that the nucleus is pushed to the oocyte antero-dorsal cortex by MTs and that its migration can proceed through distinct tracks. Centrosome-associated MTs favour one migratory route. In addition, the MT-associated protein Mud/NuMA that is asymmetrically localized in an Asp-dependent manner at the nuclear envelope hemisphere where MT nucleation is higher promotes a separate route. Our results demonstrate that centrosomes do not provide an obligatory driving force for nuclear movement, but together with Mud, contribute to the mechanisms that ensure the robustness of asymmetric nuclear positioning. Asymmetric nuclear positioning in the fruit fly oocyte is essential for the correct localization of axis determinants. Here, the authors show that different microtubule-dependent mechanisms contribute to nuclear transport and ensure the robustness of nuclear positioning.
Collapse
|
14
|
Loboda A, Damulewicz M, Pyza E, Jozkowicz A, Dulak J. Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism. Cell Mol Life Sci 2016; 73:3221-47. [PMID: 27100828 PMCID: PMC4967105 DOI: 10.1007/s00018-016-2223-0] [Citation(s) in RCA: 1801] [Impact Index Per Article: 200.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 04/07/2016] [Accepted: 04/08/2016] [Indexed: 12/12/2022]
Abstract
The multifunctional regulator nuclear factor erythroid 2-related factor (Nrf2) is considered not only as a cytoprotective factor regulating the expression of genes coding for anti-oxidant, anti-inflammatory and detoxifying proteins, but it is also a powerful modulator of species longevity. The vertebrate Nrf2 belongs to Cap 'n' Collar (Cnc) bZIP family of transcription factors and shares a high homology with SKN-1 from Caenorhabditis elegans or CncC found in Drosophila melanogaster. The major characteristics of Nrf2 are to some extent mimicked by Nrf2-dependent genes and their proteins including heme oxygenase-1 (HO-1), which besides removing toxic heme, produces biliverdin, iron ions and carbon monoxide. HO-1 and their products exert beneficial effects through the protection against oxidative injury, regulation of apoptosis, modulation of inflammation as well as contribution to angiogenesis. On the other hand, the disturbances in the proper HO-1 level are associated with the pathogenesis of some age-dependent disorders, including neurodegeneration, cancer or macular degeneration. This review summarizes our knowledge about Nrf2 and HO-1 across different phyla suggesting their conservative role as stress-protective and anti-aging factors.
Collapse
Affiliation(s)
- Agnieszka Loboda
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland.
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.
| | - Milena Damulewicz
- Department of Cell Biology and Imaging, Faculty of Biology and Earth Sciences, Jagiellonian University, Krakow, Poland
| | - Elzbieta Pyza
- Department of Cell Biology and Imaging, Faculty of Biology and Earth Sciences, Jagiellonian University, Krakow, Poland
| | - Alicja Jozkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Jozef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
15
|
Buffering of Genetic Regulatory Networks in Drosophila melanogaster. Genetics 2016; 203:1177-90. [PMID: 27194752 DOI: 10.1534/genetics.116.188797] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/17/2016] [Indexed: 01/01/2023] Open
Abstract
Regulatory variation in gene expression can be described by cis- and trans-genetic components. Here we used RNA-seq data from a population panel of Drosophila melanogaster test crosses to compare allelic imbalance (AI) in female head tissue between mated and virgin flies, an environmental change known to affect transcription. Indeed, 3048 exons (1610 genes) are differentially expressed in this study. A Bayesian model for AI, with an intersection test, controls type I error. There are ∼200 genes with AI exclusively in mated or virgin flies, indicating an environmental component of expression regulation. On average 34% of genes within a cross and 54% of all genes show evidence for genetic regulation of transcription. Nearly all differentially regulated genes are affected in cis, with an average of 63% of expression variation explained by the cis-effects. Trans-effects explain 8% of the variance in AI on average and the interaction between cis and trans explains an average of 11% of the total variance in AI. In both environments cis- and trans-effects are compensatory in their overall effect, with a negative association between cis- and trans-effects in 85% of the exons examined. We hypothesize that the gene expression level perturbed by cis-regulatory mutations is compensated through trans-regulatory mechanisms, e.g., trans and cis by trans-factors buffering cis-mutations. In addition, when AI is detected in both environments, cis-mated, cis-virgin, and trans-mated-trans-virgin estimates are highly concordant with 99% of all exons positively correlated with a median correlation of 0.83 for cis and 0.95 for trans We conclude that the gene regulatory networks (GRNs) are robust and that trans-buffering explains robustness.
Collapse
|
16
|
Lee J, Lee S, Chen C, Shim H, Kim-Ha J. shotregulates the microtubule reorganization required for localization of axis-determining mRNAs during oogenesis. FEBS Lett 2016; 590:431-44. [DOI: 10.1002/1873-3468.12086] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/15/2016] [Accepted: 01/25/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Jiyeon Lee
- Department of Integrative Bioscience and Biotechnology; College of Life Sciences; Sejong University; Gwangjin-gu Seoul South Korea
| | - Sujung Lee
- Department of Integrative Bioscience and Biotechnology; College of Life Sciences; Sejong University; Gwangjin-gu Seoul South Korea
| | - Cheng Chen
- Department of Integrative Bioscience and Biotechnology; College of Life Sciences; Sejong University; Gwangjin-gu Seoul South Korea
| | - Hyeran Shim
- Department of Integrative Bioscience and Biotechnology; College of Life Sciences; Sejong University; Gwangjin-gu Seoul South Korea
| | - Jeongsil Kim-Ha
- Department of Integrative Bioscience and Biotechnology; College of Life Sciences; Sejong University; Gwangjin-gu Seoul South Korea
| |
Collapse
|
17
|
Brigaud I, Duteyrat JL, Chlasta J, Le Bail S, Couderc JL, Grammont M. Transforming Growth Factor β/activin signalling induces epithelial cell flattening during Drosophila oogenesis. Biol Open 2015; 4:345-54. [PMID: 25681395 PMCID: PMC4359740 DOI: 10.1242/bio.201410785] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Although the regulation of epithelial morphogenesis is essential for the formation of tissues and organs in multicellular organisms, little is known about how signalling pathways control cell shape changes in space and time. In the Drosophila ovarian epithelium, the transition from a cuboidal to a squamous shape is accompanied by a wave of cell flattening and by the ordered remodelling of E-cadherin-based adherens junctions. We show that activation of the TGFβ pathway is crucial to determine the timing, the degree and the dynamic of cell flattening. Within these cells, TGFβ signalling controls cell-autonomously the formation of Actin filament and the localisation of activated Myosin II, indicating that internal forces are generated and used to remodel AJ and to promote cytoskeleton rearrangement. Our results also reveal that TGFβ signalling controls Notch activity and that its functions are partly executed through Notch. Thus, we demonstrate that the cells that undergo the cuboidal-to-squamous transition produce active cell-shaping mechanisms, rather than passively flattening in response to a global force generated by the growth of the underlying cells. Thus, our work on TGFβ signalling provides new insights into the mechanisms through which signal transduction cascades orchestrate cell shape changes to generate proper organ structure.
Collapse
Affiliation(s)
- Isabelle Brigaud
- Université Lyon 1, Lyon and Centre de Génétique Moléculaire et Cellulaire, CNRS UMR 5534, Villeurbanne, France
| | - Jean-Luc Duteyrat
- Université Lyon 1, Lyon and Centre de Génétique Moléculaire et Cellulaire, CNRS UMR 5534, Villeurbanne, France
| | - Julien Chlasta
- Université Lyon 1, Lyon and Centre de Génétique Moléculaire et Cellulaire, CNRS UMR 5534, Villeurbanne, France Laboratoire Joliot Curie, CNRS, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Sandrine Le Bail
- CNRS 6293, Clermont University, Inserm U1103, UMR GReD, UFR Médecine, Clermont-Ferrand F-63001, France
| | - Jean-Louis Couderc
- CNRS 6293, Clermont University, Inserm U1103, UMR GReD, UFR Médecine, Clermont-Ferrand F-63001, France
| | - Muriel Grammont
- Université Lyon 1, Lyon and Centre de Génétique Moléculaire et Cellulaire, CNRS UMR 5534, Villeurbanne, France Laboratoire Joliot Curie, CNRS, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| |
Collapse
|
18
|
Legent K, Tissot N, Guichet A. Visualizing Microtubule Networks During Drosophila Oogenesis Using Fixed and Live Imaging. Methods Mol Biol 2015; 1328:99-112. [PMID: 26324432 DOI: 10.1007/978-1-4939-2851-4_7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The microtubule cytoskeleton is a plastic network of polarized cables. These polymers of tubulin provide orientated routes for the dynamic transport of cytoplasmic molecules and organelles, through which cell polarity is established and maintained. The role of microtubule-mediated transport in the asymmetric localization of axis polarity determinants, in the Drosophila oocyte, has been the subject of extensive studies in the past years. However, imaging the distribution of microtubule fibers in a large cell, where vitellogenesis ensures the uptake of a thick and hazy yolk, presents a series of technical challenges. This chapter briefly reviews some of these aspects and describes two methods designed to circumvent these difficulties. We provide a detailed protocol for the visualization by immunohistochemistry of the three-dimensional organization of tubulin cables in the oocyte. Additionally, we detail the stepwise procedure for the live imaging of microtubule dynamics and network remodeling, using fluorescently labeled microtubule-associated proteins.
Collapse
Affiliation(s)
- Kevin Legent
- Institut Jacques Monod, UMR 7592 - CNRS, Université Paris Diderot, 15 rue Hélène Brion, Bât Buffon, 75205, Paris, France
| | | | | |
Collapse
|
19
|
Maddox AS, Azoury J, Dumont J. Polar body cytokinesis. Cytoskeleton (Hoboken) 2012; 69:855-68. [PMID: 22927361 DOI: 10.1002/cm.21064] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Accepted: 08/20/2012] [Indexed: 02/04/2023]
Abstract
Polar body cytokinesis is the physical separation of a small polar body from a larger oocyte or ovum. This maternal meiotic division shares many similarities with mitotic and spermatogenic cytokinesis, but there are several distinctions, which will be discussed in this review. We synthesize results from many different model species, including those popular for their genetics and several that are more obscure in modern cell biology. The site of polar body division is determined before anaphase, by the eccentric, cortically associated meiotic spindle. Depending on the species, either the actin or microtubule cytoskeleton is required for spindle anchoring. Chromatin is necessary and sufficient to elicit differentiation of the associated cortex, via Ran-based signaling. The midzone of the anaphase spindle serves as a hub for regulatory complexes that elicit Rho activation, and ultimately actomyosin contractile ring assembly and contraction. Polar body cytokinesis uniquely requires another Rho family GTPase, Cdc42, for dynamic reorganization of the polar cortex. This is perhaps due to the considerable asymmetry of this division, wherein the polar body and the oocyte/ovum have distinct fates and very different sizes. Thus, maternal meiotic cytokinesis appears to occur via simultaneous polar relaxation and equatorial contraction, since the polar body is extruded from the spherical oocyte through the nascent contractile ring. As such, polar body cytokinesis is an interesting and important variation on the theme of cell division.
Collapse
Affiliation(s)
- Amy Shaub Maddox
- Institut de recherche en immunology et en cancerologie (IRIC), Université de Montréal, Montréal, Quebec, Canada.
| | | | | |
Collapse
|
20
|
Anterior-posterior axis specification in Drosophila oocytes: identification of novel bicoid and oskar mRNA localization factors. Genetics 2011; 188:883-96. [PMID: 21625003 DOI: 10.1534/genetics.111.129312] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The Drosophila melanogaster anterior-posterior axis is established during oogenesis by the localization of bicoid and oskar mRNAs to the anterior and posterior poles of the oocyte. Although genetic screens have identified some trans-acting factors required for the localization of these transcripts, other factors may have been missed because they also function at other stages of oogenesis. To circumvent this problem, we performed a screen for revertants and dominant suppressors of the bicaudal phenotype caused by expressing Miranda-GFP in the female germline. Miranda mislocalizes oskar mRNA/Staufen complexes to the oocyte anterior by coupling them to the bicoid localization pathway, resulting in the formation of an anterior abdomen in place of the head. In one class of revertants, Miranda still binds Staufen/oskar mRNA complexes, but does not localize to the anterior, identifying an anterior targeting domain at the N terminus of Miranda. This has an almost identical sequence to the N terminus of vertebrate RHAMM, which is also a large coiled-coil protein, suggesting that it may be a divergent Miranda ortholog. In addition, we recovered 30 dominant suppressors, including multiple alleles of the spectroplakin, short stop, a lethal complementation group that prevents oskar mRNA anchoring, and a female sterile complementation group that disrupts the anterior localization of bicoid mRNA in late oogenesis. One of the single allele suppressors proved to be a mutation in the actin nucleator, Cappuccino, revealing a previously unrecognized function of Cappuccino in pole plasm anchoring and the induction of actin filaments by Long Oskar protein.
Collapse
|
21
|
Wilson MJ, Abbott H, Dearden PK. The evolution of oocyte patterning in insects: multiple cell-signaling pathways are active during honeybee oogenesis and are likely to play a role in axis patterning. Evol Dev 2011; 13:127-37. [DOI: 10.1111/j.1525-142x.2011.00463.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
22
|
Abstract
The orthogonal axes of Drosophila are established during oogenesis through a hierarchical series of symmetry-breaking steps, most of which can be traced back to asymmetries inherent in the architecture of the ovary. Oogenesis begins with the formation of a germline cyst of 16 cells connected by ring canals. Two of these 16 cells have four ring canals, whereas the others have fewer. The first symmetry-breaking step is the selection of one of these two cells to become the oocyte. Subsequently, the germline cyst becomes surrounded by somatic follicle cells to generate individual egg chambers. The second symmetry-breaking step is the posterior positioning of the oocyte within the egg chamber, a process mediated by adhesive interactions with a special group of somatic cells. Posterior oocyte positioning is accompanied by a par gene-dependent repolarization of the microtubule network, which establishes the posterior cortex of the oocyte. The next two steps of symmetry breaking occur during midoogenesis after the volume of the oocyte has increased about 10-fold. First, a signal from the oocyte specifies posterior follicle cells, polarizing a symmetric prepattern present within the follicular epithelium. Second, the posterior follicle cells send a signal back to the oocyte, which leads to a second repolarization of the oocyte microtubule network and the asymmetric migration of the oocyte nucleus. This process again requires the par genes. The repolarization of the microtubule network results in the transport of bicoid and oskar mRNAs, the anterior and posterior determinants, respectively, of the embryonic axis, to opposite poles of the oocyte. The asymmetric positioning of the oocyte nucleus defines a cortical region of the oocyte where gurken mRNA is localized, thus breaking the dorsal-ventral symmetry of the egg and embryo.
Collapse
Affiliation(s)
- Siegfried Roth
- Institute of Developmental Biology, University of Cologne, Gyrhofstr. 17, D-50923 Cologne, Germany.
| | | |
Collapse
|
23
|
Cáceres L, Nilson LA. Translational repression of gurken mRNA in the Drosophila oocyte requires the hnRNP Squid in the nurse cells. Dev Biol 2008; 326:327-34. [PMID: 19100729 DOI: 10.1016/j.ydbio.2008.11.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Revised: 11/21/2008] [Accepted: 11/22/2008] [Indexed: 10/21/2022]
Abstract
Establishment of the Drosophila dorsal-ventral axis depends upon the correct localization of gurken mRNA and protein within the oocyte. gurken mRNA becomes localized to the presumptive dorsal anterior region of the oocyte, but is synthesized in the adjoining nurse cells. Normal gurken localization requires the heterogeneous nuclear ribonucleoprotein Squid, which binds to the gurken 3' untranslated region. However, whether Squid functions in the nurse cells or the oocyte is unknown. To address this question, we generated genetic mosaics in which half of the nurse cells attached to a given oocyte are unable to produce Squid. In these mosaics, gurken mRNA is localized normally but ectopically translated during the dorsal anterior localization process, even though the oocyte contains abundant Squid produced by the wild type nurse cells. These data indicate that translational repression of gurken mRNA requires Squid function in the nurse cells. We propose that Squid interacts with gurken mRNA in the nurse cell nuclei and, together with other factors, maintains gurken in a translationally silent state during its transport to the dorsal anterior region of the oocyte. This translational repression is not required for gurken mRNA localization, indicating that the information repressing translation is separable from that regulating localization.
Collapse
Affiliation(s)
- Lucía Cáceres
- Department of Biology, McGill University, QC, Canada
| | | |
Collapse
|
24
|
Gervais L, Claret S, Januschke J, Roth S, Guichet A. PIP5K-dependent production of PIP2 sustains microtubule organization to establish polarized transport in the Drosophila oocyte. Development 2008; 135:3829-38. [PMID: 18948416 DOI: 10.1242/dev.029009] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The attachment of the cytoskeleton to the plasma membrane is crucial in controlling the polarized transport of cell-fate-determining molecules. Attachment involves adaptor molecules, which have the capacity to bind to both the plasma membrane and elements of the cytoskeleton, such as microtubules and actin filaments. Using the Drosophila oocyte as a model system, we show that the type I phosphatidylinositol 4-phosphate 5-kinase (PIP5K), Skittles, is necessary to sustain the organization of microtubules and actin cytoskeleton required for the asymmetric transport of oskar, bicoid and gurken mRNAs and thereby controls the establishment of cell polarity. We show that Skittles function is crucial to synthesize and maintain phosphatidylinositol 4,5 bisphosphate (PIP2) at the plasma membrane in the oocyte. Reduction of Skittles activity impairs activation at the plasma membrane of Moesin, a member of the ERM family known to link the plasma membrane to the actin-based cytoskeleton. Furthermore, we provide evidence that Skittles, by controlling the localization of Bazooka, Par-1 and Lgl, but not Lkb1, to the cell membrane, regulates PAR polarity proteins and the maintenance of specific cortical domains along the anteroposterior axis.
Collapse
Affiliation(s)
- Louis Gervais
- Institut Jacques Monod, Unité Mixte de Recherche 7592, CNRS, Universités Paris 7, 2 place Jussieu, F-75251, Paris Cedex 05, France
| | | | | | | | | |
Collapse
|
25
|
Jaramillo AM, Weil TT, Goodhouse J, Gavis ER, Schupbach T. The dynamics of fluorescently labeled endogenous gurken mRNA in Drosophila. J Cell Sci 2008; 121:887-94. [PMID: 18303053 PMCID: PMC2327291 DOI: 10.1242/jcs.019091] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During Drosophila oogenesis, the targeted localization of gurken (grk) mRNA leads to the establishment of the axis polarity of the egg. In early stages of oogenesis, grk mRNA is found at the posterior of the oocyte, whereas in the later stages grk mRNA is positioned at the dorsal anterior corner of the oocyte. In order to visualize the real-time localization and anchorage of endogenous grk mRNA in living oocytes, we have utilized the MS2-MCP system. We show that MCP-GFP-tagged endogenous grk mRNA localizes properly within wild-type oocytes and behaves aberrantly in mutant backgrounds. Fluorescence recovery after photobleaching (FRAP) experiments of localized grk mRNA in egg chambers reveal a difference in the dynamics of grk mRNA between young and older egg chambers. grk mRNA particles, as a population, are highly dynamic molecules that steadily lose their dynamic nature as oogenesis progresses. This difference in dynamics is attenuated in K10 and sqd(1) mutants such that mislocalized grk mRNA in older stages is much more dynamic compared with that in wild-type controls. By contrast, in flies with compromised dynein activity, properly localized grk mRNA is much more static. Taken together, we have observed the nature of localized grk mRNA in live oocytes and propose that its maintenance changes from a dynamic to a static process as oogenesis progresses.
Collapse
|
26
|
Garcia-Lopez A, Monferrer L, Garcia-Alcover I, Vicente-Crespo M, Alvarez-Abril MC, Artero RD. Genetic and chemical modifiers of a CUG toxicity model in Drosophila. PLoS One 2008; 3:e1595. [PMID: 18270582 PMCID: PMC2220037 DOI: 10.1371/journal.pone.0001595] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Accepted: 01/18/2008] [Indexed: 11/19/2022] Open
Abstract
Non-coding CUG repeat expansions interfere with the activity of human Muscleblind-like (MBNL) proteins contributing to myotonic dystrophy 1 (DM1). To understand this toxic RNA gain-of-function mechanism we developed a Drosophila model expressing 60 pure and 480 interrupted CUG repeats in the context of a non-translatable RNA. These flies reproduced aspects of the DM1 pathology, most notably nuclear accumulation of CUG transcripts, muscle degeneration, splicing misregulation, and diminished Muscleblind function in vivo. Reduced Muscleblind activity was evident from the sensitivity of CUG-induced phenotypes to a decrease in muscleblind genetic dosage and rescue by MBNL1 expression, and further supported by the co-localization of Muscleblind and CUG repeat RNA in ribonuclear foci. Targeted expression of CUG repeats to the developing eye and brain mushroom bodies was toxic leading to rough eyes and semilethality, respectively. These phenotypes were utilized to identify genetic and chemical modifiers of the CUG-induced toxicity. 15 genetic modifiers of the rough eye phenotype were isolated. These genes identify putative cellular processes unknown to be altered by CUG repeat RNA, and they include mRNA export factor Aly, apoptosis inhibitor Thread, chromatin remodelling factor Nurf-38, and extracellular matrix structural component Viking. Ten chemical compounds suppressed the semilethal phenotype. These compounds significantly improved viability of CUG expressing flies and included non-steroidal anti-inflammatory agents (ketoprofen), muscarinic, cholinergic and histamine receptor inhibitors (orphenadrine), and drugs that can affect sodium and calcium metabolism such as clenbuterol and spironolactone. These findings provide new insights into the DM1 phenotype, and suggest novel candidates for DM1 treatments.
Collapse
Affiliation(s)
| | - Lidon Monferrer
- Department of Genetics, University of Valencia, Burjasot, Spain
| | | | | | | | - Ruben D. Artero
- Department of Genetics, University of Valencia, Burjasot, Spain
- *E-mail:
| |
Collapse
|
27
|
Shravage BV, Altmann G, Technau M, Roth S. The role of Dpp and its inhibitors during eggshell patterning in Drosophila. Development 2007; 134:2261-71. [PMID: 17507396 DOI: 10.1242/dev.02856] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Drosophila eggshell is patterned by the combined action of the epidermal growth factor [EGF; Gurken (Grk)] and transforming growth factor beta [TGF-beta; Decapentaplegic (Dpp)] signaling cascades. Although Grk signaling alone can induce asymmetric gene expression within the follicular epithelium, here we show that the ability of Grk to induce dorsoventral polarity within the eggshell strictly depends on Dpp. Dpp, however, specifies at least one anterior region of the eggshell in the absence of Grk. Dpp forms an anteriorposterior morphogen gradient within the follicular epithelium and synergizes with the dorsoventral gradient of Grk signaling. High levels of Grk and Dpp signaling induce the operculum, whereas lower levels of both pathways induce the dorsal appendages. We provide evidence that the crosstalk between both pathways occurs at least at two levels. First, Dpp appears to directly enhance the levels of EGF pathway activity within the follicular epithelium. Second, Dpp and EGF signaling collaborate in controlling the expression of Dpp inhibitors. One of these inhibitors is Drosophila sno (dSno), a homolog of the Ski/Sno family of vertebrate proto-oncogenes, which synergizes with daughters against dpp and brinker to set the posterior and lateral limits of the region, giving rise to dorsal follicle cells.
Collapse
Affiliation(s)
- Bhupendra V Shravage
- Institute of Developmental Biology, University of Cologne, Gyrhofstr.17, D-50931, Germany
| | | | | | | |
Collapse
|
28
|
Bernardi F, Cavaliere V, Andrenacci D, Gargiulo G. Dpp signaling down-regulates the expression of VM32E eggshell gene during Drosophila oogenesis. Dev Dyn 2006; 235:768-75. [PMID: 16372348 DOI: 10.1002/dvdy.20660] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Among the members of the Drosophila melanogaster vitelline membrane protein gene family, VM32E has the unique feature of being a component of both the vitelline and the endochorion layers. The VM32E gene is expressed at stage 10 of egg chamber development in the main body follicle cells, and it is repressed in the anterior and posterior follicle cells. Here, we show that this spatial restriction of VM32E gene expression is conserved in the D. pseudoobscura orthologous gene, suggestive of a conserved function of VM32E protein. The VM32E gene is not expressed in the centripetal migrating follicle cells, where the Decapentaplegic (Dpp) pathway is active in patterning the anterior eggshell structures. By analyzing the native VM32E gene and the activity of specific VM32E regulatory regions, in genetic backgrounds altering the Dpp pathway, we show that VM32E gene is negatively regulated by the Dpp signaling. Therefore, it appears that the Dpp signaling pathway executes its control on eggshell morphogenesis also by controlling the expression of eggshell structural genes.
Collapse
Affiliation(s)
- Fabio Bernardi
- Dipartimento di Biologia Evoluzionistica Sperimentale, Bologna, Italy
| | | | | | | |
Collapse
|
29
|
Atkey MR, Lachance JFB, Walczak M, Rebello T, Nilson LA. Capicua regulates follicle cell fate in the Drosophila ovary through repression of mirror. Development 2006; 133:2115-23. [PMID: 16672346 DOI: 10.1242/dev.02369] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The dorsoventral axis of the Drosophila egg is established by dorsally localized activation of the epidermal growth factor receptor (Egfr) in the ovarian follicular epithelium. Subsequent positive- and negative-feedback regulation generates two dorsolateral follicle cell primordia that will produce the eggshell appendages. A dorsal midline domain of low Egfr activity between the appendage primordia defines their dorsal boundary, but little is known about the mechanisms that establish their ventral limit. We demonstrate that the transcriptional repressor Capicua is required cell autonomously in ventral and lateral follicle cells to repress dorsal fates, and functions in this process through the repression of mirror. Interestingly, ectopic expression of mirror in the absence of capicua is observed only in the anterior half of the epithelium. We propose that Capicua regulates the pattern of follicle cell fates along the dorsoventral axis by blocking the induction of appendage determinants, such as mirror, by anterior positional cues.
Collapse
|
30
|
Claussen M, Suter B. BicD-dependent localization processes: from Drosophilia development to human cell biology. Ann Anat 2006; 187:539-53. [PMID: 16320833 DOI: 10.1016/j.aanat.2005.07.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Many eukaryotic cells depend on proper cell polarization for their development and physiological function. The establishment of these polarities often involve the subcellular localization of a specific subset of proteins, RNAs and organelles. In Drosophila, the microtubule-dependent BicD (BicaudalD) localization machinery is involved in the proper localization of mRNA during oogenesis and embryogenesis and the proper positioning of the oocyte and photoreceptor nuclei. BicD acts together with the minus-end directed motor dynein as well as Egl and Lis-1. The finding that the mammalian homologs of BicD function in retrograde Golgi-to-ER transport has supported the view that BicD may be part of a repeatedly used and evolutionary conserved localization machinery. In this review we focus on the various processes in which BicD is involved during Drosophilian development and in mammals. In addition, we evaluate the interactions between BicD, the dynein localization machinery and associated factors.
Collapse
Affiliation(s)
- Maike Claussen
- Institute of Cell Biology, University of Berne, Baltzerstrasse 4, 3012 Bern, Switzerland
| | | |
Collapse
|
31
|
Januschke J, Gervais L, Gillet L, Keryer G, Bornens M, Guichet A. The centrosome-nucleus complex and microtubule organization in the Drosophila oocyte. Development 2005; 133:129-39. [PMID: 16319114 DOI: 10.1242/dev.02179] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Molecular motors transport the axis-determining mRNAs oskar, bicoid and gurken along microtubules (MTs) in the Drosophila oocyte. However, it remains unclear how the underlying MT network is organized and how this transport takes place. We have identified a centriole-containing centrosome close to the oocyte nucleus. Remarkably, the centrosomal components, gamma-tubulin and Drosophila pericentrin-like protein also strongly accumulate at the periphery of this nucleus. MT polymerization after cold-induced disassembly in wild type and in gurken mutants suggests that in the oocyte the centrosome-nucleus complex is an active center of MT polymerization. We further report that the MT network comprises two perpendicular MT subsets that undergo dynamic rearrangements during oogenesis. This MT reorganization parallels the successive steps in localization of gurken and oskar mRNAs. We propose that in addition to a highly polarized microtubule scaffold specified by the cortex oocyte, the repositioning of the nucleus and its tightly associated centrosome could control MT reorganization and, hence, oocyte polarization.
Collapse
Affiliation(s)
- Jens Januschke
- Institut Jacques Monod, Unité Mixte Recherche 7592, CNRS, Université Paris 6 et Paris 7, 2 place Jussieu, 75251 Paris Cedex 05, France
| | | | | | | | | | | |
Collapse
|
32
|
Motola S, Neuman-Silberberg FS. spoonbill, a new Drosophila female-sterile mutation, interferes with chromosome organization and dorsal-ventral patterning of the egg. Dev Dyn 2004; 230:535-45. [PMID: 15188438 DOI: 10.1002/dvdy.20066] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We have identified a new mutation, spoonbill (spoon), which interferes with two developmental processes during Drosophila oogenesis, nurse cell-nuclei chromatin organization and anterior-dorsal patterning of the eggshell. Here, we describe the localization patterns of key regulators of axis determination and the expression of follicle cell-specific markers involved in eggshell patterning in egg chambers from spoonbill females. Our molecular characterization of the patterning defects associated with the mutation reveals abnormalities in two major signaling pathways, the grk/Egfr and the Dpp/TGF-beta, that together control the elaborate patterning of the anterior follicular epithelium. The function of spoonbill appears to be required for dpp transcription in a specialized population of follicle cells and for the selective transport of grk mRNA from the nurse cells into the oocyte, as well as for its proper localization and translation. This finding places the spoonbill gene upstream of both pathways.
Collapse
Affiliation(s)
- Shmulik Motola
- Department of Molecular Genetics of Development, Faculty of Health Sciences, Ben-Gurion University Cancer Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | |
Collapse
|
33
|
Nezis IP, Stravopodis DJ, Papassideri IS, Stergiopoulos C, Margaritis LH. Morphological irregularities and features of resistance to apoptosis in thedcp-1/pita double mutated egg chambers duringDrosophila oogenesis. ACTA ACUST UNITED AC 2004; 60:14-23. [PMID: 15547953 DOI: 10.1002/cm.20043] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In the present study, we demonstrate the most novel characteristic morphological features of Drosophila egg chambers lacking both dcp-1 and pita functions in the germline cells. Dcp-1 is an effector caspase and it has been previously shown to play an important role during Drosophila oogenesis [McCall and Steller, 1998 : Science 279 : 230-234; Laundrie et al., 2003 : Genetics 165 : 1881-1888; Peterson et al., 2003 : Dev Biol 260 : 113-123]. The completion of sequencing and annotation of the Drosophila genome has revealed that the dcp-1 gene is nested within an intron of another distinct gene, called pita, a member of the C2H2 zinc finger protein family that regulates transcriptional initiation. The dcp-1(-/-)/pita(-/-) nurse cells exhibit euchromatic nuclei (delay of apoptosis) during the late stages of oogenesis, as revealed by conventional light and electron microscopy. The phalloidin-FITC staining discloses significant defects in actin cytoskeleton arrangement. The actin bundles fail to organize properly and the distribution of actin filaments in the ring canals is changed compared to the wild type. The oocyte and the chorion structures have been also modified. The oocyte nucleus is out of position and the chorion appears to contain irregular foldings, while the respiratory filaments obtain an altered morphology. The dcp-1(-/-)/pita(-/-) egg chambers do not exhibit the rare events of spontaneously induced apoptosis, observed for the wild type flies, during mid-oogenesis. Interestingly, the mutated egg chambers are protected by staurosporine-induced apoptosis in a percentage of 40%, strongly suggesting the essential role of dcp-1 and/or pita during mid-oogenesis.
Collapse
Affiliation(s)
- Ioannis P Nezis
- Faculty of Biology, Department of Cell Biology and Biophysics, University of Athens, Athens, Greece
| | | | | | | | | |
Collapse
|
34
|
Poels J, Vanden Broeck J. Insect basic leucine zipper proteins and their role in cyclic AMP-dependent regulation of gene expression. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 241:277-309. [PMID: 15548422 DOI: 10.1016/s0074-7696(04)41005-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The cAMP-protein kinase A (PKA) pathway is an important intracellular signal transduction cascade that can be activated by a large variety of stimuli. Activation or inhibition of this pathway will ultimately affect the transcriptional regulation of various genes through distinct responsive sites. In vertebrates, the best- characterized nuclear targets of PKA are the cyclic AMP response element-binding (CREB) proteins. It is now well established that CREB is not only regulated by PKA, but many other kinases can exert an effect as well. Since CREB-like proteins were also discovered in invertebrates, several studies unraveling their physiological functions in this category of metazoans have been performed. This review will mainly focus on the presence and regulation of CREB proteins in insects. Differences in transcriptional responses to the PKA pathway and other CREB-regulating stimuli between cells, tissues, and even organisms can be partially attributed to the presence of different CREB isoforms. In addition, the regulation of CREB appears to show some important differences between insects and vertebrates. Since CREB is a basic leucine zipper (bZip) protein, other insect members of this important family of transcriptional regulators will be briefly discussed as well.
Collapse
Affiliation(s)
- Jeroen Poels
- Laboratory for Developmental Physiology, Genomics and Proteomics, Catholic University Leuven, B-3000 Leuven, Belgium
| | | |
Collapse
|
35
|
Abstract
Development requires a precise program of gene expression to be carried out. Much work has focussed on the regulatory networks that control gene expression, for example in response to external cues. However, it is important to recognize that these regulatory events take place within the physical context of the nucleus, and that the physical position of a gene within the nuclear volume can have strong influences on its regulation and interactions. The first part of this review will summarize what is currently known about nuclear architecture, that is, the large-scale three-dimensional arrangement of chromosome loci within the nucleus. The remainder of the review will examine developmental processes from the point of view of the nucleus.
Collapse
Affiliation(s)
- Wallace F Marshall
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
36
|
Roth S. The origin of dorsoventral polarity in Drosophila. Philos Trans R Soc Lond B Biol Sci 2003; 358:1317-29; discussion 1329. [PMID: 14511478 PMCID: PMC1693232 DOI: 10.1098/rstb.2003.1325] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In Drosophila dorsoventral (DV) polarity arises during oogenesis when the oocyte nucleus moves from a central posterior to an asymmetrical anterior position. Nuclear movement is a symmetry-breaking step and establishes orthogonality between the anteroposterior and the DV axes. The asymmetrically anchored nucleus defines a cortical region within the oocyte which accumulates high levels of gurken messenger RNA (mRNA) and protein. Gurken is an ovarian-specific member of the transforming growth factor-alpha (TGF-alpha) family of secreted ligands. Secreted Gurken forms a concentration gradient that results in a dorsal-to-ventral gradient of EGF receptor activation in the follicle cells surrounding the oocyte. This leads to concentration-dependent activation or repression of target genes of the EGF pathway in the follicular epithelium. One outcome of this process is the restriction of pipe expression to a ventral domain that comprises 40% of the egg circumference. Pipe presumably modifies extracellular matrix components that are secreted by the follicle cells and are present at the ventral side of embryo after egg deposition. Here, they activate a proteolytic cascade that generates a gradient of the diffusible ligand, Spätzle. Spätzle activates the Toll receptor at the surface of the embryo that stimulates the nuclear uptake of the transcription factor Dorsal. This leads to a nuclear concentration gradient of Dorsal that specifies the cell types along the DV axis of the embryo.
Collapse
Affiliation(s)
- Siegfried Roth
- Institut für Entwicklungsbiologie, Universität Köln, Gyrhofstrasse 17, 50923 Köln, Germany.
| |
Collapse
|
37
|
Martin SG, Leclerc V, Smith-Litière K, St Johnston D. The identification of novel genes required for Drosophila anteroposterior axis formation in a germline clone screen using GFP-Staufen. Development 2003; 130:4201-15. [PMID: 12874138 DOI: 10.1242/dev.00630] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The anteroposterior axis of Drosophila is defined during oogenesis, when the polarisation of the oocyte microtubule cytoskeleton directs the localisation of bicoid and oskar mRNAs to the anterior and posterior poles, respectively. Although maternal-effect lethal and female-sterile screens have identified many mutants that disrupt these processes, these screens could not recover mutations in essential genes. Here we describe a genetic screen in germline clones for mutants that disrupt the localisation of GFP-Staufen in living oocytes, which overcomes this limitation. As Staufen localises to the posterior with oskar mRNA and to the anterior with bicoid mRNA, it acts as a marker for both poles of the oocyte, allowing the identification of mutants that affect the localisation of either mRNA, as well as mutants that disrupt oocyte polarity. Using this approach, we have identified 23 novel complementation groups on chromosome 3R that disrupt anteroposterior axis formation. Analyses of new alleles of spn-E and orb show that both SPN-E and ORB proteins are required to organise the microtubule cytoskeleton at stage 9, and to prevent premature cytoplasmic streaming. Furthermore, yps mutants partially suppress the premature cytoplasmic streaming of orb mutants. As orb, yps and spn-E encode RNA-binding proteins, they may regulate the translation of unidentified RNAs necessary for the polarisation of the microtubule cytoskeleton.
Collapse
Affiliation(s)
- Sophie G Martin
- The Wellcome Trust/Cancer Research UK Institute and the Department of Genetics, University of Cambridge, Tennis Court Rd, Cambridge CB2 1QR, UK
| | | | | | | |
Collapse
|
38
|
Jaglarz MK, Nowak Z, Biliński SM. The Balbiani body and generation of early asymmetry in the oocyte of a tiger beetle. Differentiation 2003; 71:142-51. [PMID: 12641568 DOI: 10.1046/j.1432-0436.2003.710205.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The developmental changes within the Balbiani body in previtellogenic and early vitellogenic oocytes of a tiger beetle, Pseudoxycheila angustata, are described. Our study showed that the Balbiani body forms in a juxtanuclear position in previtellogenic oocytes. Subsequently, it disperses within the ooplasm while multivesicular bodies, a prominent component of the Balbiani body in this species, segregate out and are targeted to the posterior pole of the oocyte. We demonstrated that the Balbiani body is a temporary site of organelle accumulation and sorting and it is involved in the creation of an early polarity during oogenesis. Our data suggest that the multivesicular bodies, initially associated with the Balbiani body, may ultimately contribute to the formation of the pole plasm (oosome). Our study is the first description of the presence of the Balbiani body in oocytes of an insect with a meroistic ovary and only the second known example of the Balbiani body in insects in general. In addition, we showed, for the first time, that the components of Balbiani body participate in the formation of the pole plasm in insects. Interestingly, the oocytes of a European species of tiger beetles do not develop the Balbiani body. We discuss the developmental and evolutionary aspects of this finding.
Collapse
|
39
|
Abstract
We analyze pattern formation in the model of cell communication in Drosophila egg development. The model describes the regulatory network formed by the epidermal growth factor receptor (EGFR) and its ligands. The network is activated by the oocyte-derived input that is modulated by feedback loops within the follicular epithelium. We analyze these dynamics within the framework of a recently proposed mathematical model of EGFR signaling (Shvartsman et al. [2002] Development 129:2577-2589). The emphasis is on the large-amplitude solutions of the model that can be correlated with the experimentally observed patterns of protein and gene expression. Our analysis of transitions between the major classes of patterns in the model can be used to interpret the experimentally observed phenotypic transitions in eggshell morphology in Drosophila melanogaster. The existence of complex patterns in the model can be used to account for complex eggshell morphologies in related fly species.
Collapse
Affiliation(s)
- Michal Pribyl
- Department of Chemical Engineering and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA
| | | | | |
Collapse
|
40
|
Januschke J, Gervais L, Dass S, Kaltschmidt JA, Lopez-Schier H, St Johnston D, Brand AH, Roth S, Guichet A. Polar transport in the Drosophila oocyte requires Dynein and Kinesin I cooperation. Curr Biol 2002; 12:1971-81. [PMID: 12477385 DOI: 10.1016/s0960-9822(02)01302-7] [Citation(s) in RCA: 170] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND The cytoskeleton and associated motors play an important role in the establishment of intracellular polarity. Microtubule-based transport is required in many cell types for the asymmetric localization of mRNAs and organelles. A striking example is the Drosophila oocyte, where microtubule-dependent processes govern the asymmetric positioning of the nucleus and the localization to distinct cortical domains of mRNAs that function as cytoplasmic determinants. A conserved machinery for mRNA localization and nuclear positioning involving cytoplasmic Dynein has been postulated; however, the precise role of plus- and minus end-directed microtubule-based transport in axis formation is not yet understood. RESULTS Here, we show that mRNA localization and nuclear positioning at mid-oogenesis depend on two motor proteins, cytoplasmic Dynein and Kinesin I. Both of these microtubule motors cooperate in the polar transport of bicoid and gurken mRNAs to their respective cortical domains. In contrast, Kinesin I-mediated transport of oskar to the posterior pole appears to be independent of Dynein. Beside their roles in RNA transport, both motors are involved in nuclear positioning and in exocytosis of Gurken protein. Dynein-Dynactin complexes accumulate at two sites within the oocyte: around the nucleus in a microtubule-independent manner and at the posterior pole through Kinesin-mediated transport. CONCLUSION The microtubule motors cytoplasmic Dynein and Kinesin I, by driving transport to opposing microtubule ends, function in concert to establish intracellular polarity within the Drosophila oocyte. Furthermore, Kinesin-dependent localization of Dynein suggests that both motors are components of the same complex and therefore might cooperate in recycling each other to the opposite microtubule pole.
Collapse
Affiliation(s)
- Jens Januschke
- Laboratory of Developmental Biology, Institut Jacques Monod, 2 place Jussieu, 75251 Paris Cedex 05, France
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Duncan JE, Warrior R. The cytoplasmic dynein and kinesin motors have interdependent roles in patterning the Drosophila oocyte. Curr Biol 2002; 12:1982-91. [PMID: 12477386 DOI: 10.1016/s0960-9822(02)01303-9] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Motor proteins of the minus end-directed cytoplasmic dynein and plus end-directed kinesin families provide the principal means for microtubule-based transport in eukaryotic cells. Despite their opposing polarity, these two classes of motors may cooperate in vivo. In Drosophila circumstantial evidence suggests that dynein acts in the localization of determinants and signaling factors during oogenesis. However, the pleiotropic requirement for dynein throughout development has made it difficult to establish its specific role. RESULTS We analyzed dynein function in the oocyte by disrupting motor activity through temporally restricted expression of the dynactin subunit, dynamitin. Our results indicate that dynein is required for several processes that impact patterning; such processes include localization of bicoid (bcd) and gurken (grk) mRNAs and anchoring of the oocyte nucleus to the cell cortex. Surprisingly, dynein function is sensitive to reduction in kinesin levels, and germ line clones lacking kinesin show defects in dorsal follicle cell fate, grk mRNA localization, and nuclear attachment that are similar to those resulting from the loss of dynein. Significantly, dynein and dynactin localization is perturbed in these animals. Conversely, kinesin localization also depends on dynein activity. CONCLUSIONS We demonstrate that dynein is required for nuclear anchoring and localization of cellular determinants during oogenesis. Strikingly, mutations in the kinesin motor also disrupt these processes and perturb dynein and dynactin localization. These results indicate that the activity of the two motors is interdependent and suggest a model in which kinesin affects patterning indirectly through its role in the localization and recycling of dynein.
Collapse
Affiliation(s)
- Jason E Duncan
- Program in Molecular Biology, University of Southern California, Los Angeles, CA 90089, USA
| | | |
Collapse
|
42
|
Brendza RP, Serbus LR, Saxton WM, Duffy JB. Posterior localization of dynein and dorsal-ventral axis formation depend on kinesin in Drosophila oocytes. Curr Biol 2002; 12:1541-5. [PMID: 12225672 PMCID: PMC3209760 DOI: 10.1016/s0960-9822(02)01108-9] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To establish the major body axes, late Drosophila oocytes localize determinants to discrete cortical positions: bicoid mRNA to the anterior cortex, oskar mRNA to the posterior cortex, and gurken mRNA to the margin of the anterior cortex adjacent to the oocyte nucleus (the "anterodorsal corner"). These localizations depend on microtubules that are thought to be organized such that plus end-directed motors can move cargoes, like oskar, away from the anterior/lateral surfaces and hence toward the posterior pole. Likewise, minus end-directed motors may move cargoes toward anterior destinations. Contradicting this, cytoplasmic dynein, a minus-end motor, accumulates at the posterior. Here, we report that disruption of the plus-end motor kinesin I causes a shift of dynein from posterior to anterior. This provides an explanation for the dynein paradox, suggesting that dynein is moved as a cargo toward the posterior pole by kinesin-generated forces. However, other results present a new transport polarity puzzle. Disruption of kinesin I causes partial defects in anterior positioning of the nucleus and severe defects in anterodorsal localization of gurken mRNA. Kinesin may generate anterodorsal forces directly, despite the apparent preponderance of minus ends at the anterior cortex. Alternatively, kinesin I may facilitate cytoplasmic dynein-based anterodorsal forces by repositioning dynein toward microtubule plus ends.
Collapse
|
43
|
Peri F, Technau M, Roth S. Mechanisms of Gurken-dependentpiperegulation and the robustness of dorsoventral patterning inDrosophila. Development 2002; 129:2965-75. [PMID: 12050143 DOI: 10.1242/dev.129.12.2965] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The restriction of Pipe, a potential glycosaminoglycan-modifying enzyme, to ventral follicle cells of the egg chamber is essential for dorsoventral axis formation in the Drosophila embryo. pipe repression depends on the TGFα-like ligand Gurken, which activates the Drosophila EGF receptor in dorsal follicle cells. An analysis of Raf mutant clones shows that EGF signalling is required cell-autonomously in all dorsal follicle cells along the anteroposterior axis of the egg chamber to repress pipe. However, the autoactivation of EGF signalling important for dorsal follicle cell patterning has no influence on pipe expression. Clonal analysis shows that also the mirror-fringe cassette suggested to establish a secondary signalling centre in the follicular epithelium is not involved in pipe regulation. These findings support the view that the pipe domain is directly delimited by a long-range Gurken gradient. Pipe induces ventral cell fates in the embryo via activation of the Spätzle/Toll pathway. However, large dorsal patches of ectopic pipe expression induced by Raf clones rarely affect embryonic patterning if they are separated from the endogenous pipe domain. This indicates that potent inhibitory processes prevent pipe dependent Toll activation at the dorsal side of the egg.
Collapse
Affiliation(s)
- Francesca Peri
- Institut für Entwicklungsbiologie, Universität zu Köln, Gyrhofstr. 17, D-50923 Köln, Germany
| | | | | |
Collapse
|