1
|
Gu R, Wu T, Fu J, Sun YJ, Sun XX. Advances in the genetic etiology of female infertility. J Assist Reprod Genet 2024:10.1007/s10815-024-03248-w. [PMID: 39320554 DOI: 10.1007/s10815-024-03248-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/07/2024] [Indexed: 09/26/2024] Open
Abstract
Human reproduction is a complex process involving gamete maturation, fertilization, embryo cleavage and development, blastocyst formation, implantation, and live birth. If any of these processes are abnormal or arrest, reproductive failure will occur. Infertility is a state of reproductive dysfunction caused by various factors. Advances in molecular genetics, including cell and molecular genetics, and high-throughput sequencing technologies, have found that genetic factors are important causes of infertility. Genetic variants have been identified in infertile women or men and can cause gamete maturation arrest, poor quality gametes, fertilization failure, and embryonic developmental arrest during assisted reproduction technology (ART), and thus reduce the clinical success rates of ART. This article reviews clinical studies on repeated in vitro fertilization (IVF)/intracytoplasmic sperm injection (ICSI) failures caused by ovarian dysfunction, oocyte maturation defects, oocyte abnormalities, fertilization disorders, and preimplantation embryonic development arrest due to female genetic etiology, the accumulation of pathogenic genes and gene pathogenic loci, and the functional mechanism and clinical significance of pathogenic genes in gametogenesis and early embryonic development.
Collapse
Affiliation(s)
- Ruihuan Gu
- Department of Shanghai Ji'ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, 352 Dalin Road, Shanghai, 200011, China
| | - Tianyu Wu
- Institute of Pediatrics, State Key Laboratory of Genetic Engineering, Institutes of BiomedicalSciences, Shanghai Key Laboratory of Medical Epigenetics, Children's Hospital of Fudan University, Fudan University, Shanghai, 200032, China
| | - Jing Fu
- Department of Shanghai Ji'ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, 352 Dalin Road, Shanghai, 200011, China
| | - Yi-Juan Sun
- Department of Shanghai Ji'ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, 352 Dalin Road, Shanghai, 200011, China.
| | - Xiao-Xi Sun
- Department of Shanghai Ji'ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, 352 Dalin Road, Shanghai, 200011, China.
| |
Collapse
|
2
|
Slim R. Genetics and Genomics of Gestational Trophoblastic Disease. Hematol Oncol Clin North Am 2024:S0889-8588(24)00081-9. [PMID: 39322462 DOI: 10.1016/j.hoc.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
This article focuses on hydatidiform mole (HM), which is the most common form of gestational trophoblastic disease and the most studied at the genomic and genetic levels. We summarize current laboratory methods to diagnose HM, discuss their limitations and advantages, and share the lessons we have learned. We also provide an overview of the history of recurrent HM, their known genetic etiologies, and the mechanisms of their formation.
Collapse
Affiliation(s)
- Rima Slim
- Department of Human Genetics, McGill University Health Centre Research Institute, 1001 Decarie Boulevard, EM0.3210, Montreal, Quebec H4A3J1, Canada.
| |
Collapse
|
3
|
Singh V, Schimenti JC. Relevance, strategies, and added value of mouse models in androgenetics. Andrology 2024. [PMID: 39300831 DOI: 10.1111/andr.13761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/27/2024] [Accepted: 09/04/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Male Infertility is a prevalent condition worldwide, and a substantial fraction of cases are thought to have a genetic basis. Investigations into the responsible genes is limited experimentally, so mice have been used extensively to identify genes required for fertility and to understand their functions. OBJECTIVES To review the progress made in reproductive genetics based on experiments in mice, the impact upon clinical fertility genetics, and discuss how evolving technologies will continue to advance our understanding of human infertility genes. RESULTS AND DISCUSSION Gene knockout studies in mice have shown that several hundreds of genes are required for normal fertility and that this number is much higher in males than in females. In addition to gene discovery, the mouse is a powerful platform for functionally dissecting genetic pathways, modeling putative human infertility variants, identifying contraceptive targets, and developing in vitro gametogenesis. CONCLUSION These ongoing studies in mice have made an enormous contribution to our understanding of the genetics of human reproduction in the sense that the "parts list" of genes for mammalian gametogenesis is being elucidated. This would have been impossible to do in humans, and in vitro systems are not yet adequate to associate genes with andrological phenotypes, especially in the germline.
Collapse
Affiliation(s)
- Vertika Singh
- Department of Biomedical Sciences, Cornell College of Veterinary Medicine, Ithaca, New York, USA
| | - John C Schimenti
- Department of Biomedical Sciences, Cornell College of Veterinary Medicine, Ithaca, New York, USA
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, New York, USA
| |
Collapse
|
4
|
Lampitto M, Barchi M. Recent advances in mechanisms ensuring the pairing, synapsis and segregation of XY chromosomes in mice and humans. Cell Mol Life Sci 2024; 81:194. [PMID: 38653846 PMCID: PMC11039559 DOI: 10.1007/s00018-024-05216-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/04/2024] [Accepted: 03/20/2024] [Indexed: 04/25/2024]
Abstract
Sex chromosome aneuploidies are among the most common variations in human whole chromosome copy numbers, with an estimated prevalence in the general population of 1:400 to 1:1400 live births. Unlike whole-chromosome aneuploidies of autosomes, those of sex chromosomes, such as the 47, XXY aneuploidy that causes Klinefelter Syndrome (KS), often originate from the paternal side, caused by a lack of crossover (CO) formation between the X and Y chromosomes. COs must form between all chromosome pairs to pass meiotic checkpoints and are the product of meiotic recombination that occurs between homologous sequences of parental chromosomes. Recombination between male sex chromosomes is more challenging compared to both autosomes and sex chromosomes in females, as it is restricted within a short region of homology between X and Y, called the pseudo-autosomal region (PAR). However, in normal individuals, CO formation occurs in PAR with a higher frequency than in any other region, indicating the presence of mechanisms that promote the initiation and processing of recombination in each meiotic division. In recent years, research has made great strides in identifying genes and mechanisms that facilitate CO formation in the PAR. Here, we outline the most recent and relevant findings in this field. XY chromosome aneuploidy in humans has broad-reaching effects, contributing significantly also to Turner syndrome, spontaneous abortions, oligospermia, and even infertility. Thus, in the years to come, the identification of genes and mechanisms beyond XY aneuploidy is expected to have an impact on the genetic counseling of a wide number of families and adults affected by these disorders.
Collapse
Affiliation(s)
- Matteo Lampitto
- Section of Anatomy, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Marco Barchi
- Section of Anatomy, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.
- Section of Anatomy, Department of Medicine, Saint Camillus International University of Health Sciences, Rome, Italy.
| |
Collapse
|
5
|
Wu X, Tian Y, Yu Y, He X, Tang X, Li S, Shu J, Guo X. Novel MEI1 mutations cause chromosomal and DNA methylation abnormalities leading to embryonic arrest and implantation failure. Mol Genet Genomics 2024; 299:18. [PMID: 38416203 DOI: 10.1007/s00438-024-02113-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/05/2024] [Indexed: 02/29/2024]
Abstract
This study presents a case of a female infertile patient suffering from embryonic arrest and recurrent implantation failure. The primary objective was to assess the copy number variations (CNVs) and DNA methylation of her embryos. Genetic diagnosis was conducted by whole-exome sequencing and validated through Sanger sequencing. CNV evaluation of two cleavage stage embryos was performed using whole-genome sequencing, while DNA methylation and CNV assessment of two blastocysts were carried out using whole-genome bisulfite sequencing. We identified two novel pathogenic frameshift variants in the MEI1 gene (NM_152513.3, c.3002delC, c.2264_2268 + 11delGTGAGGTATGGACCAC) in the proband. These two variants were inherited from her heterozygous parents, consistent with autosomal recessive genetic transmission. Notably, two Day 3 embryos and two Day 6 blastocysts were all aneuploid, with numerous monosomy and trisomy events. Moreover, global methylation levels greatly deviated from the optimized window of 0.25-0.27, measuring 0.344 and 0.168 for the respective blastocysts. This study expands the mutational spectrum of MEI1 and is the first to document both aneuploidy and abnormal methylation levels in embryos from a MEI1-affected female patient presenting with embryonic arrest. Given that females affected by MEI1 mutations might experience either embryonic arrest or monospermic androgenetic hydatidiform moles due to the extrusion of all maternal chromosomes, the genetic makeup of the arrested embryos of MEI1 patients provides important clues for understanding the different disease mechanisms of the two phenotypes.
Collapse
Affiliation(s)
- Xiangli Wu
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
- Center for Reproductive Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuqing Tian
- Department of Postgraduate Education, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Yiqi Yu
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
- Center for Reproductive Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xujun He
- Center for Reproductive Medicine, Department of Genetics and Genomic Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xiaohua Tang
- Center for Reproductive Medicine, Department of Genetics and Genomic Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Shishi Li
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jing Shu
- Center for Reproductive Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyan Guo
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
- Center for Reproductive Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
6
|
Giannattasio T, Testa E, Faieta M, Lampitto M, Nardozi D, di Cecca S, Russo A, Barchi M. The proper interplay between the expression of Spo11 splice isoforms and the structure of the pseudoautosomal region promotes XY chromosomes recombination. Cell Mol Life Sci 2023; 80:279. [PMID: 37682311 PMCID: PMC10491539 DOI: 10.1007/s00018-023-04912-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 09/09/2023]
Abstract
XY chromosome missegregation is relatively common in humans and can lead to sterility or the generation of aneuploid spermatozoa. A leading cause of XY missegregation in mammals is the lack of formation of double-strand breaks (DSBs) in the pseudoautosomal region (PAR), a defect that may occur in mice due to faulty expression of Spo11 splice isoforms. Using a knock-in (ki) mouse that expresses only the single Spo11β splice isoform, here we demonstrate that by varying the genetic background of mice, the length of chromatin loops extending from the PAR axis and the XY recombination proficiency varies. In spermatocytes of C57Spo11βki/- mice, in which loops are relatively short, recombination/synapsis between XY is fairly normal. In contrast, in cells of C57/129Spo11βki/- males where PAR loops are relatively long, formation of DSBs in the PAR (more frequently the Y-PAR) and XY synapsis fails at a high rate, and mice produce sperm with sex-chromosomal aneuploidy. However, if the entire set of Spo11 splicing isoforms is expressed by a wild type allele in the C57/129 background, XY recombination and synapsis is recovered. By generating a Spo11αki mouse model, we prove that concomitant expression of SPO11β and SPO11α isoforms, boosts DSB formation in the PAR. Based on these findings, we propose that SPO11 splice isoforms cooperate functionally in promoting recombination in the PAR, constraining XY asynapsis defects that may arise due to differences in the conformation of the PAR between mouse strains.
Collapse
Affiliation(s)
- Teresa Giannattasio
- Department of Biomedicine and Prevention, Section of Anatomy, University of Rome Tor Vergata, Rome, Italy
| | - Erika Testa
- Department of Biomedicine and Prevention, Section of Anatomy, University of Rome Tor Vergata, Rome, Italy
| | - Monica Faieta
- Department of Biomedicine and Prevention, Section of Anatomy, University of Rome Tor Vergata, Rome, Italy
| | - Matteo Lampitto
- Department of Biomedicine and Prevention, Section of Anatomy, University of Rome Tor Vergata, Rome, Italy
| | - Daniela Nardozi
- Department of Biomedicine and Prevention, Section of Anatomy, University of Rome Tor Vergata, Rome, Italy
| | - Stefano di Cecca
- Department of Biomedicine and Prevention, Section of Anatomy, University of Rome Tor Vergata, Rome, Italy
| | - Antonella Russo
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Marco Barchi
- Department of Biomedicine and Prevention, Section of Anatomy, University of Rome Tor Vergata, Rome, Italy.
- Department of Biomedical Science, Lady of Good Counsel University, Tirana, Albania.
| |
Collapse
|
7
|
Ozturk S. Genetic variants underlying developmental arrests in human preimplantation embryos. Mol Hum Reprod 2023; 29:gaad024. [PMID: 37335858 DOI: 10.1093/molehr/gaad024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 06/03/2023] [Indexed: 06/21/2023] Open
Abstract
Developmental arrest in preimplantation embryos is one of the major causes of assisted reproduction failure. It is briefly defined as a delay or a failure of embryonic development in producing viable embryos during ART cycles. Permanent or partial developmental arrest can be observed in the human embryos from one-cell to blastocyst stages. These arrests mainly arise from different molecular biological defects, including epigenetic disturbances, ART processes, and genetic variants. Embryonic arrests were found to be associated with a number of variants in the genes playing key roles in embryonic genome activation, mitotic divisions, subcortical maternal complex formation, maternal mRNA clearance, repairing DNA damage, transcriptional, and translational controls. In this review, the biological impacts of these variants are comprehensively evaluated in the light of existing studies. The creation of diagnostic gene panels and potential ways of preventing developmental arrests to obtain competent embryos are also discussed.
Collapse
Affiliation(s)
- Saffet Ozturk
- Department of Histology and Embryology, Akdeniz University School of Medicine, Antalya, Turkey
| |
Collapse
|
8
|
Ding X, Singh P, Schimenti K, Tran TN, Fragoza R, Hardy J, Orwig KE, Olszewska M, Kurpisz MK, Yatsenko AN, Conrad DF, Yu H, Schimenti JC. In vivo versus in silico assessment of potentially pathogenic missense variants in human reproductive genes. Proc Natl Acad Sci U S A 2023; 120:e2219925120. [PMID: 37459509 PMCID: PMC10372637 DOI: 10.1073/pnas.2219925120] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 05/25/2023] [Indexed: 07/20/2023] Open
Abstract
Infertility is a heterogeneous condition, with genetic causes thought to underlie a substantial fraction of cases. Genome sequencing is becoming increasingly important for genetic diagnosis of diseases including idiopathic infertility; however, most rare or minor alleles identified in patients are variants of uncertain significance (VUS). Interpreting the functional impacts of VUS is challenging but profoundly important for clinical management and genetic counseling. To determine the consequences of these variants in key fertility genes, we functionally evaluated 11 missense variants in the genes ANKRD31, BRDT, DMC1, EXO1, FKBP6, MCM9, M1AP, MEI1, MSH4 and SEPT12 by generating genome-edited mouse models. Nine variants were classified as deleterious by most functional prediction algorithms, and two disrupted a protein-protein interaction (PPI) in the yeast two hybrid (Y2H) assay. Though these genes are essential for normal meiosis or spermiogenesis in mice, only one variant, observed in the MCM9 gene of a male infertility patient, compromised fertility or gametogenesis in the mouse models. To explore the disconnect between predictions and outcomes, we compared pathogenicity calls of missense variants made by ten widely used algorithms to 1) those annotated in ClinVar and 2) those evaluated in mice. All the algorithms performed poorly in terms of predicting the effects of human missense variants modeled in mice. These studies emphasize caution in the genetic diagnoses of infertile patients based primarily on pathogenicity prediction algorithms and emphasize the need for alternative and efficient in vitro or in vivo functional validation models for more effective and accurate VUS description to either pathogenic or benign categories.
Collapse
Affiliation(s)
- Xinbao Ding
- College of Veterinary Medicine, Department of Biomedical Sciences, Cornell University, Ithaca, NY14853
| | - Priti Singh
- College of Veterinary Medicine, Department of Biomedical Sciences, Cornell University, Ithaca, NY14853
| | - Kerry Schimenti
- College of Veterinary Medicine, Department of Biomedical Sciences, Cornell University, Ithaca, NY14853
| | - Tina N. Tran
- College of Veterinary Medicine, Department of Biomedical Sciences, Cornell University, Ithaca, NY14853
| | - Robert Fragoza
- Department of Computational Biology, Cornell University, Ithaca, NY14853
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY14853
| | - Jimmaline Hardy
- School of Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA15213
| | - Kyle E. Orwig
- School of Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA15213
| | - Marta Olszewska
- Institute of Human Genetics, Polish Academy of Sciences, Poznan60-479, Poland
| | - Maciej K. Kurpisz
- Institute of Human Genetics, Polish Academy of Sciences, Poznan60-479, Poland
| | - Alexander N. Yatsenko
- School of Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA15213
| | - Donald F. Conrad
- Oregon Health & Science University, Division of Genetics, Oregon National Primate Research Center, Beaverton, OR97006
| | - Haiyuan Yu
- Department of Computational Biology, Cornell University, Ithaca, NY14853
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY14853
| | - John C. Schimenti
- College of Veterinary Medicine, Department of Biomedical Sciences, Cornell University, Ithaca, NY14853
| |
Collapse
|
9
|
Sahin GN, Yildirim RM, Seli E. Embryonic arrest: causes and implications. Curr Opin Obstet Gynecol 2023; 35:184-192. [PMID: 37039141 DOI: 10.1097/gco.0000000000000871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
PURPOSE OF REVIEW Embryonic arrest is a key determinant of the number of euploid blastocysts obtained after IVF. Here, we review factors that are implicated in the developmental arrest of preimplantation embryos and their relevance for assisted reproduction outcomes. RECENT FINDINGS Among the treatment options available to infertile women, IVF is the one associated with most favorable outcomes. The cumulative pregnancy rates in women undergoing IVF are determined by aneuploidy rate (age), ovarian response to stimulation (ovarian reserve), and the rate of embryo developmental arrest. Mutations in maternal effect genes, especially those encoding for subcortical maternal complex, have been implicated in human embryo developmental arrest. In addition, perturbation of biological processes, such as mitochondrial unfolded protein response and long noncoding RNA regulatory pathways, may play a role. However, how each of these factors contributes to embryos' arrest in different cohorts and age groups has not been determined. SUMMARY Arrest of human embryos during preimplantation development is a common occurrence and is partly responsible for the limited number of euploid blastocysts obtained in assisted reproduction cycles. Although genetic and metabolic causes have been implicated, the mechanisms responsible for human embryo developmental arrest remain poorly characterized.
Collapse
Affiliation(s)
- Gizem N Sahin
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Raziye M Yildirim
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Emre Seli
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
- IVIRMA New Jersey, Basking Ridge, New Jersey, USA
| |
Collapse
|
10
|
Ozturk S. Genetic variants underlying spermatogenic arrests in men with non-obstructive azoospermia. Cell Cycle 2023; 22:1021-1061. [PMID: 36740861 PMCID: PMC10081088 DOI: 10.1080/15384101.2023.2171544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/29/2022] [Accepted: 01/18/2023] [Indexed: 02/07/2023] Open
Abstract
Spermatogenic arrest is a severe form of non-obstructive azoospermia (NOA), which occurs in 10-15% of infertile men. Interruption in spermatogenic progression at premeiotic, meiotic, or postmeiotic stage can lead to arrest in men with NOA. Recent studies have intensively focused on defining genetic variants underlying these spermatogenic arrests by making genome/exome sequencing. A number of variants were discovered in the genes involving in mitosis, meiosis, germline differentiation and other basic cellular events. Herein, defined variants in NOA cases with spermatogenic arrests and created knockout mouse models for the related genes are comprehensively reviewed. Also, importance of gene panel-based screening for NOA cases was discussed. Screening common variants in these infertile men with spermatogenic arrests may contribute to elucidating the molecular background and designing novel treatment strategies.
Collapse
Affiliation(s)
- Saffet Ozturk
- Department of Histology and Embryology, Akdeniz University School of Medicine, Antalya, Turkey
| |
Collapse
|
11
|
Giannattasio T, Testa E, Palombo R, Chellini L, Franceschini F, Crevenna Á, Petkov PM, Paronetto MP, Barchi M. The RNA-binding protein FUS/TLS interacts with SPO11 and PRDM9 and localize at meiotic recombination hotspots. Cell Mol Life Sci 2023; 80:107. [PMID: 36967403 PMCID: PMC10040399 DOI: 10.1007/s00018-023-04744-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/29/2023]
Abstract
In mammals, meiotic recombination is initiated by the introduction of DNA double strand breaks (DSBs) into narrow segments of the genome, defined as hotspots, which is carried out by the SPO11/TOPOVIBL complex. A major player in the specification of hotspots is PRDM9, a histone methyltransferase that, following sequence-specific DNA binding, generates trimethylation on lysine 4 (H3K4me3) and lysine 36 (H3K36me3) of histone H3, thus defining the hotspots. PRDM9 activity is key to successful meiosis, since in its absence DSBs are redirected to functional sites and synapsis between homologous chromosomes fails. One protein factor recently implicated in guiding PRDM9 activity at hotspots is EWS, a member of the FET family of proteins that also includes TAF15 and FUS/TLS. Here, we demonstrate that FUS/TLS partially colocalizes with PRDM9 on the meiotic chromosome axes, marked by the synaptonemal complex component SYCP3, and physically interacts with PRDM9. Furthermore, we show that FUS/TLS also interacts with REC114, one of the axis-bound SPO11-auxiliary factors essential for DSB formation. This finding suggests that FUS/TLS is a component of the protein complex that promotes the initiation of meiotic recombination. Accordingly, we document that FUS/TLS coimmunoprecipitates with SPO11 in vitro and in vivo. The interaction occurs with both SPO11β and SPO11α splice isoforms, which are believed to play distinct functions in the formation of DSBs in autosomes and male sex chromosomes, respectively. Finally, using chromatin immunoprecipitation experiments, we show that FUS/TLS is localized at H3K4me3-marked hotspots in autosomes and in the pseudo-autosomal region, the site of genetic exchange between the XY chromosomes.
Collapse
Affiliation(s)
- Teresa Giannattasio
- University of Rome "Tor Vergata", Section of Anatomy, Via Montpellier, 1, 00133, Rome, Italy
| | - Erika Testa
- University of Rome "Tor Vergata", Section of Anatomy, Via Montpellier, 1, 00133, Rome, Italy
| | - Ramona Palombo
- Laboratory of Molecular and Cellular Neurobiology, Fondazione Santa Lucia, CERC, 00143, Rome, Italy
| | - Lidia Chellini
- Laboratory of Molecular and Cellular Neurobiology, Fondazione Santa Lucia, CERC, 00143, Rome, Italy
| | - Flavia Franceschini
- University of Rome "Tor Vergata", Section of Anatomy, Via Montpellier, 1, 00133, Rome, Italy
| | - Álvaro Crevenna
- European Molecular Biology Laboratory, Neurobiology and Epigenetics Unit, Monterotondo, Italy
| | | | - Maria Paola Paronetto
- Laboratory of Molecular and Cellular Neurobiology, Fondazione Santa Lucia, CERC, 00143, Rome, Italy.
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 6, 00135, Rome, Italy.
| | - Marco Barchi
- University of Rome "Tor Vergata", Section of Anatomy, Via Montpellier, 1, 00133, Rome, Italy.
| |
Collapse
|
12
|
Bi-allelic MEI1 variants cause meiosis arrest and non-obstructive azoospermia. J Hum Genet 2023; 68:383-392. [PMID: 36759719 DOI: 10.1038/s10038-023-01119-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/23/2022] [Accepted: 12/29/2022] [Indexed: 02/11/2023]
Abstract
Non-obstructive azoospermia (NOA) is characterized by the failure of sperm production due to testicular disorders and represents the most severe form of male infertility. Growing evidences have indicated that gene defects could be the potential cause of NOA via genome-wide sequencing approaches. Here, bi-allelic deleterious variants in meiosis inhibitor protein 1 (MEI1) were identified by whole-exome sequencing in four Chinese patients with NOA. Testicular pathologic analysis and immunohistochemical staining revealed that spermatogenesis is arrested at spermatocyte stage, with defective programmed DNA double-strand breaks (DSBs) homoeostasis and meiotic chromosome synapsis in patients carrying the variants. In addition, our results showed that one missense variant (c.G186C) reduced the expression of MEI1 and one frameshift variant (c.251delT) led to truncated proteins of MEI1 in in vitro. Furthermore, the missense variant (c.T1585A) was assumed to affect the interaction between MEI1 and its partners via bioinformatic analysis. Collectively, our findings provide direct genetic and functional evidences that bi-allelic variants in MEI1 could cause defective DSBs homoeostasis and meiotic chromosome synapsis, which subsequently lead to meiosis arrest and male infertility. Thus, our study deepens our knowledge of the role of MEI1 in male fertility and provides a novel insight to understand the genetic aetiology of NOA.
Collapse
|
13
|
Hou X, Zeb A, Dil S, Zhou J, Zhang H, Shi B, Muhammad Z, Khan I, Zaman Q, Shah WA, Jiang X, Wu L, Ma H, Shi Q. A homozygous KASH5 frameshift mutation causes diminished ovarian reserve, recurrent miscarriage, and non-obstructive azoospermia in humans. Front Endocrinol (Lausanne) 2023; 14:1128362. [PMID: 36864840 PMCID: PMC9971600 DOI: 10.3389/fendo.2023.1128362] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/03/2023] [Indexed: 02/16/2023] Open
Abstract
The meiosis-specific LINC complex, composed of the KASH5 and SUN1 proteins, tethers the moving chromosomes to the nuclear envelope to facilitate homolog pairing and is essential for gametogenesis. Here, we applied whole-exome sequencing for a consanguineous family with five siblings suffering from reproductive failure, and identified a homozygous frameshift mutation in KASH5 (c.1270_1273del, p.Arg424Thrfs*20). This mutation leads to the absence of KASH5 protein expression in testes and non-obstructive azoospermia (NOA) due to meiotic arrest before the pachytene stage in the affected brother. The four sisters displayed diminished ovarian reserve (DOR), with one sister never being pregnant but still having dominant follicle at 35 years old and three sisters suffering from at least 3 miscarriages occurring within the third month of gestation. The truncated KASH5 mutant protein, when expressed in cultured cells, displays a similar localization encircling the nucleus and a weakened interaction with SUN1, as compared with the full-length KASH5 proteins, which provides a potential explanation for the phenotypes in the affected females. This study reported sexual dimorphism for influence of the KASH5 mutation on human germ cell development, and extends the clinical manifestations associated with KASH5 mutations, providing genetic basis for the molecular diagnosis of NOA, DOR, and recurrent miscarriage.
Collapse
Affiliation(s)
- Xiaoning Hou
- The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Biomedical Sciences and Health Laboratory of Anhui Province, Hefei, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, China
| | - Aurang Zeb
- The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Biomedical Sciences and Health Laboratory of Anhui Province, Hefei, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, China
| | - Sobia Dil
- The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Biomedical Sciences and Health Laboratory of Anhui Province, Hefei, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, China
| | - Jianteng Zhou
- The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Biomedical Sciences and Health Laboratory of Anhui Province, Hefei, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, China
| | - Huan Zhang
- The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Biomedical Sciences and Health Laboratory of Anhui Province, Hefei, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, China
| | - Baolu Shi
- The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Biomedical Sciences and Health Laboratory of Anhui Province, Hefei, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, China
| | - Zubair Muhammad
- The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Biomedical Sciences and Health Laboratory of Anhui Province, Hefei, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, China
| | - Ihsan Khan
- The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Biomedical Sciences and Health Laboratory of Anhui Province, Hefei, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, China
| | - Qamar Zaman
- The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Biomedical Sciences and Health Laboratory of Anhui Province, Hefei, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, China
| | - Wasim Akbar Shah
- The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Biomedical Sciences and Health Laboratory of Anhui Province, Hefei, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, China
| | - Xiaohua Jiang
- The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Biomedical Sciences and Health Laboratory of Anhui Province, Hefei, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, China
| | - Limin Wu
- The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Biomedical Sciences and Health Laboratory of Anhui Province, Hefei, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, China
| | - Hui Ma
- The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Biomedical Sciences and Health Laboratory of Anhui Province, Hefei, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, China
- *Correspondence: Qinghua Shi, ; Hui Ma,
| | - Qinghua Shi
- The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Biomedical Sciences and Health Laboratory of Anhui Province, Hefei, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, China
- *Correspondence: Qinghua Shi, ; Hui Ma,
| |
Collapse
|
14
|
Fei CF, Zhou LQ. Gene mutations impede oocyte maturation, fertilization, and early embryonic development. Bioessays 2022; 44:e2200007. [PMID: 35900055 DOI: 10.1002/bies.202200007] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 12/11/2022]
Abstract
Reproductive diseases are a long-standing problem and have become more common in the world. Currently, 15% of the world's population suffers from infertility, and half of them are women. Maturation of oocytes, successful fertilization, and high-quality embryos are prerequisites for pregnancy. With the development of assisted reproductive technology and advanced genetic assays, we have found that infertility in many young female patients is caused by mutations in various developmental regulators. These pathogenic factors may result in impediment of oocyte maturation, failure of fertilization or early embryonic development arrest. In this review, we categorize these clinically-identified, mutated genetic factors by their molecular characteristics: nuclear factors (PALT2, TRIP13, WEE2, TBPL2, REC114, MEI1 and CDC20), cytoplasmic factors (TLE6, PADI6, NLRP2/5, FBXO43, MOS and BTG4), a factor unique to primates (TUBB8), cell membrane factor (PANX1), and zona pellucida factors (ZP1-3). We compared discrepancies observed in phenotypes between human and mouse models to provide clues for clinical diagnosis and treatment of related reproductive diseases.
Collapse
Affiliation(s)
- Cai-Feng Fei
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Li-Quan Zhou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
15
|
Wang Y, Wang Y, Zang J, Chen H, He Y. ZmPRD1 is essential for double-strand break formation, but is not required for bipolar spindle assembly during maize meiosis. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3386-3400. [PMID: 35201286 DOI: 10.1093/jxb/erac075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Homologs of PUTATIVE RECOMBINATION INITIATION DEFECT 1 (PRD1) are known to be essential for meiotic double-strand break (DSB) formation in mouse (Mus musculus), Arabidopsis, and rice (Oryza sativa). Recent research has shown that rice PRD1 also plays an unanticipated role in meiotic bipolar spindle assembly, revealing that PRD1 has multiple functions in plant meiosis. In this study, we characterize the meiotic function of PRD1 in maize (Zea mays; ZmPRD1). Our results show that Zmprd1 mutant plants display normal vegetative growth but have complete male and female sterility. Meiotic DSB formation is fully abolished in mutant meiocytes, leading to failure in homologous pairing, synapsis, and recombination. ZmPRD1 exhibits a different pattern of chromosome localization compared to its rice homologs. The ZmPRD1 protein interacts with several DSB-forming proteins, but does not directly interact with the kinetochore proteins REC8 and SGO1. Possibly as a result of this, there are no significant abnormalities of bipolar spindle assembly in Zmprd1 meiocytes. Overall, our results demonstrate that ZmPRD1 is essential for DSB formation and homologous recombination in maize meiosis. However, the recently-identified function of PRD1 in bipolar spindle assembly during rice meiosis is not conserved in maize.
Collapse
Affiliation(s)
- Yazhong Wang
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, China Agricultural University, Beijing, China
| | - Yan Wang
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, China Agricultural University, Beijing, China
| | - Jie Zang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Huabang Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yan He
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, China Agricultural University, Beijing, China
| |
Collapse
|
16
|
Ozturk S. Molecular determinants of the meiotic arrests in mammalian oocytes at different stages of maturation. Cell Cycle 2022; 21:547-571. [PMID: 35072590 PMCID: PMC8942507 DOI: 10.1080/15384101.2022.2026704] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 12/21/2021] [Accepted: 01/03/2022] [Indexed: 01/26/2023] Open
Abstract
Mammalian oocytes undergo two rounds of developmental arrest during maturation: at the diplotene of the first meiotic prophase and metaphase of the second meiosis. These arrests are strictly regulated by follicular cells temporally producing the secondary messengers, cAMP and cGMP, and other factors to regulate maturation promoting factor (composed of cyclin B1 and cyclin-dependent kinase 1) levels in the oocytes. Out of these normally appearing developmental arrests, permanent arrests may occur in the oocytes at germinal vesicle (GV), metaphase I (MI), or metaphase II (MII) stage. This issue may arise from absence or altered expression of the oocyte-related genes playing key roles in nuclear and cytoplasmic maturation. Additionally, the assisted reproductive technology (ART) applications such as ovarian stimulation and in vitro culture conditions both of which harbor various types of chemical agents may contribute to forming the permanent arrests. In this review, the molecular determinants of developmental and permanent arrests occurring in the mammalian oocytes are comprehensively evaluated in the light of current knowledge. As number of permanently arrested oocytes at different stages is increasing in ART centers, potential approaches for inducing permanent arrests to obtain competent oocytes are discussed.
Collapse
Affiliation(s)
- Saffet Ozturk
- Department of Histology and Embryology, Akdeniz University School of Medicine, Antalya, Turkey
| |
Collapse
|
17
|
Dong J, Zhang H, Mao X, Zhu J, Li D, Fu J, Hu J, Wu L, Chen B, Sun Y, Mu J, Zhang Z, Sun X, Zhao L, Wang W, Wang W, Zhou Z, Zeng Y, Du J, Li Q, He L, Jin L, Kuang Y, Wang L, Sang Q. Novel biallelic mutations in MEI1: expanding the phenotypic spectrum to human embryonic arrest and recurrent implantation failure. Hum Reprod 2021; 36:2371-2381. [PMID: 34037756 DOI: 10.1093/humrep/deab118] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/15/2021] [Indexed: 11/12/2022] Open
Abstract
STUDY QUESTION Are any novel mutations and corresponding new phenotypes, other than recurrent hydatidiform moles, seen in patients with MEI1 mutations? SUMMARY ANSWER We identified several novel mutations in MEI1 causing new phenotypes of early embryonic arrest and recurrent implantation failure. WHAT IS KNOWN ALREADY It has been reported that biallelic mutations in MEI1, encoding meiotic double-stranded break formation protein 1, cause azoospermia in men and recurrent hydatidiform moles in women. STUDY DESIGN, SIZE, DURATION We first focused on a pedigree in which two sisters were diagnosed with recurrent hydatidiform moles in December 2018. After genetic analysis, two novel mutations in MEI1 were identified. We then expanded the mutational screening to patients with the phenotype of embryonic arrest, recurrent implantation failure, and recurrent pregnancy loss, and found another three novel MEI1 mutations in seven new patients from six families recruited from December 2018 to May 2020. PARTICIPANTS/MATERIALS, SETTING, METHODS Nine primary infertility patients were recruited from the reproduction centers in local hospitals. Genomic DNA from the affected individuals, their family members, and healthy controls was extracted from peripheral blood. The MEI1 mutations were screened using whole-exome sequencing and were confirmed by the Sanger sequencing. In silico analysis of mutations was performed with Sorting Intolerant From Tolerant (SIFT) and Protein Variation Effect Analyzer (PROVEAN). The influence of the MEI1 mutations was determined by western blotting and minigene analysis in vitro. MAIN RESULTS AND THE ROLE OF CHANCE In this study, we identified five novel mutations in MEI1 in nine patients from seven independent families. Apart from recurrent hydatidiform moles, biallelic mutations in MEI1 were also associated with early embryonic arrest and recurrent implantation failure. In addition, we demonstrated that protein-truncating and missense mutations reduced the protein level of MEI1, while the splicing mutations caused abnormal alternative splicing of MEI1. LIMITATIONS, REASONS FOR CAUTION Owing to the lack of in vivo data from the oocytes of the patients, the exact molecular mechanism(s) involved in the phenotypes remains unknown and should be further investigated using knock-out or knock-in mice. WIDER IMPLICATIONS OF THE FINDINGS Our results not only reveal the important role of MEI1 in human oocyte meiosis and early embryonic development, but also extend the phenotypic and mutational spectrum of MEI1 and provide new diagnostic markers for genetic counseling of clinical patients. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the National Key Research and Development Program of China (2018YFC1003800, 2017YFC1001500, and 2016YFC1000600), the National Natural Science Foundation of China (81725006, 81822019, 81771581, 81971450, and 81971382), the project supported by the Shanghai Municipal Science and Technology Major Project (2017SHZDZX01), the Project of the Shanghai Municipal Science and Technology Commission (19JC1411001), the Natural Science Foundation of Shanghai (19ZR1444500), the Shuguang Program of the Shanghai Education Development Foundation and the Shanghai Municipal Education Commission (18SG03), the Shanghai Health and Family Planning Commission Foundation (20154Y0162), the Strategic Collaborative Research Program of the Ferring Institute of Reproductive Medicine, Ferring Pharmaceuticals and the Chinese Academy of Sciences (FIRMC200507) and the Chongqing Key Laboratory of Human Embryo Engineering (2020KFKT008). No competing interests are declared. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Jie Dong
- Institute of Pediatrics, Children's Hospital of Fudan University and Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Hong Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiaoyan Mao
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junhua Zhu
- Department of Gynecology and Obstetrics, The First Hospital of YuLin, Shaanxi, China
| | - Da Li
- Reproductive Medicine Center, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jing Fu
- Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Jijun Hu
- Department of Reproductive Medicine, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ling Wu
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Biaobang Chen
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China
| | - Yiming Sun
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Jian Mu
- Institute of Pediatrics, Children's Hospital of Fudan University and Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Zhihua Zhang
- Institute of Pediatrics, Children's Hospital of Fudan University and Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Xiaoxi Sun
- Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Lin Zhao
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China.,Chongqing Key Laboratory of Human Embryo Engineering, Chongqing Health Center for Women and Children, Chongqing, China
| | - Wenjing Wang
- Institute of Pediatrics, Children's Hospital of Fudan University and Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Weijie Wang
- Institute of Pediatrics, Children's Hospital of Fudan University and Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Zhou Zhou
- Institute of Pediatrics, Children's Hospital of Fudan University and Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Yang Zeng
- Institute of Pediatrics, Children's Hospital of Fudan University and Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Jing Du
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China.,Chongqing Key Laboratory of Human Embryo Engineering, Chongqing Health Center for Women and Children, Chongqing, China
| | - Qiaoli Li
- Institute of Pediatrics, Children's Hospital of Fudan University and Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Lin He
- Bio-X Center, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Yanping Kuang
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Wang
- Institute of Pediatrics, Children's Hospital of Fudan University and Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Qing Sang
- Institute of Pediatrics, Children's Hospital of Fudan University and Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| |
Collapse
|
18
|
Verrilli L, Johnstone E, Allen-Brady K, Welt C. Shared genetics between nonobstructive azoospermia and primary ovarian insufficiency. F&S REVIEWS 2021; 2:204-213. [PMID: 36177363 PMCID: PMC9518791 DOI: 10.1016/j.xfnr.2021.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
OBJECTIVE Primary ovarian insufficiency (POI) and Non-obstructive azoospermia (NOA) both represent disease states of early, and often complete, failure of gametogenesis. Because oogenesis and spermatogenesis share the same conserved steps in meiosis I, it is possible that inherited defects in meiosis I could lead to shared causes of both POI and NOA. Currently, known genes that contribute to both POI and NOA are limited. In this review article, we provide a systematic review of genetic mutations in which both POI and NOA phenotypes exist. EVIDENCE REVIEW A PubMed literature review was conducted from January 1, 2000 through October 2020. We included all studies that demonstrated human cases of POI or NOA due to a specific genetic mutation either within the same family or in separate families. RESULTS We identified 33 papers that encompassed 10 genes of interest with mutations implicated in both NOA and POI. The genes were all involved in processes of meiosis I. CONCLUSION Mutations in genes involved in processes of meiosis I may cause both NOA and POI. Identifying these unique phenotypes among shared genotypes leads to biologic plausibility that the key error occurs early in gametogenesis with an etiology shared among both male and female offspring. From a clinical standpoint, this shared relationship may help us better understand and identify individuals at high risk for gonadal failure within families and suggests that clinicians obtain history for opposite sex family members when approaching a new diagnosis of POI or NOA.
Collapse
Affiliation(s)
- Lauren Verrilli
- University of Utah School of Medicine, Department of Obstetrics and Gynecology, 30 N 1900 E #2B200, Salt Lake City, UT 84132
| | - Erica Johnstone
- University of Utah School of Medicine, Department of Obstetrics and Gynecology, 30 N 1900 E #2B200, Salt Lake City, UT 84132
| | - Kristina Allen-Brady
- University of Utah School of Medicine, Division of Epidemiology, Department of Internal Medicine, 296 Chipeta Way, Salt Lake City, UT 84108
| | - Corrine Welt
- University of Utah School of Medicine, Division of Endocrinology, Metabolism and Diabetes, Salt Lake City, UT 84132
| |
Collapse
|
19
|
Verma P, Parte P. Revisiting the Characteristics of Testicular Germ Cell Lines GC-1(spg) and GC-2(spd)ts. Mol Biotechnol 2021; 63:941-952. [PMID: 34125394 DOI: 10.1007/s12033-021-00352-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/04/2021] [Indexed: 01/22/2023]
Abstract
Spermatogenesis is a multifaceted and meticulously orchestrated process involving meiosis, chromatin build up, transcriptional and translational hushing, and spermiogenesis. Male germ cell lines GC-1spg (GC-1) and GC-2(spd)ts (GC-2) provide a useful resource to comprehend the molecular events occurring during such a tightly regulated process. Using cDNA microarray, expression profiling of GC-1 and GC-2 cell lines was done to precisely understand their characteristics and uniqueness. Our observations indicate that whilst both the cell lines are indeed of testicular origin, GC-2 is not haploid as was originally thought. Data analysis of the 23,351 transcripts detected in GC-1 and 20,992 in GC-2 cell lines demonstrates an 80% transcript overlap between GC-1 and GC-2 cells and ~ 40% similarity of both with the primary spermatocyte transcriptome. 3152 and 793 transcripts exclusive to GC-1 and GC-2, respectively, were identified. The presence of transcripts for 36 genes was validated in these cell lines including those showing testis-specific expression, as well as genes not reported previously. Overall, this study provides the transcriptome database of GC-1 and GC-2 cells. Analysis of the data demonstrates the transcriptomic transitions between GC-1 and GC-2 thus providing a glimpse to the process of germ cell differentiation from type B spermatogonium into preleptotene spermatocyte.
Collapse
Affiliation(s)
- Pratibha Verma
- Department of Gamete Immunobiology, ICMR - National Institute for Research in Reproductive Health, Mumbai, 400012, India
| | - Priyanka Parte
- Department of Gamete Immunobiology, ICMR - National Institute for Research in Reproductive Health, Mumbai, 400012, India.
| |
Collapse
|
20
|
Gòdia M, Casellas J, Ruiz-Herrera A, Rodríguez-Gil JE, Castelló A, Sánchez A, Clop A. Whole genome sequencing identifies allelic ratio distortion in sperm involving genes related to spermatogenesis in a swine model. DNA Res 2021; 27:5906030. [PMID: 32931559 PMCID: PMC7750926 DOI: 10.1093/dnares/dsaa019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 09/02/2020] [Indexed: 12/28/2022] Open
Abstract
Transmission Ratio Distortion (TRD), the uneven transmission of an allele from a parent to its offspring, can be caused by allelic differences affecting gametogenesis, fertilization or embryogenesis. However, TRD remains vaguely studied at a genomic scale. We sequenced the diploid and haploid genomes of three boars from leukocytes and spermatozoa at 50x to shed light into the genetic basis of spermatogenesis-caused Allelic Ratio Distortion (ARD). We first developed a Binomial model to identify ARD by simultaneously analysing all three males. This led to the identification of 55 ARD SNPs, most of which were animal-specific. We then evaluated ARD individually within each pig by a Fisher’s exact test and identified two shared genes (TOP3A and UNC5B) and four shared genomic regions harbouring distinct ARD SNPs in the three boars. The shared genomic regions contained candidate genes with functions related to spermatogenesis including AK7, ARID4B, BDKRB2, GSK3B, NID1, NSMCE1, PALB2, VRK1 and ZC3H13. Using the Fisher’s test, we also identified 378 genes containing variants with protein damaging potential in at least one boar, a high proportion of which, including FAM120B, TDRD15, JAM2 or AOX4 among others, are associated to spermatogenesis. Overall, our results show that sperm is subjected to ARD with variants associated to a wide variety of genes involved in different stages of spermatogenesis.
Collapse
Affiliation(s)
- Marta Gòdia
- Center for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Cerdanyola del Vallès, Catalonia 08193, Spain
| | - Joaquim Casellas
- Department of Animal and Food Sciences, Autonomous University of Barcelona, Cerdanyola del Vallès, Catalonia 08193, Spain
| | - Aurora Ruiz-Herrera
- Departament de Biologia Cel.lular, Fisiologia i Immunologia, Autonomous University of Barcelona, Cerdanyola del Vallès, Catalonia 08193, Spain.,Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina (IBB), Autonomous University of Barcelona, Cerdanyola del Vallès, Catalonia 08193, Spain
| | - Joan E Rodríguez-Gil
- Unit of Animal Reproduction, Department of Animal Medicine and Surgery, Autonomous University of Barcelona, Cerdanyola del Vallès, Catalonia 08193, Spain
| | - Anna Castelló
- Center for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Cerdanyola del Vallès, Catalonia 08193, Spain.,Department of Animal and Food Sciences, Autonomous University of Barcelona, Cerdanyola del Vallès, Catalonia 08193, Spain
| | - Armand Sánchez
- Center for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Cerdanyola del Vallès, Catalonia 08193, Spain.,Department of Animal and Food Sciences, Autonomous University of Barcelona, Cerdanyola del Vallès, Catalonia 08193, Spain
| | - Alex Clop
- Center for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Cerdanyola del Vallès, Catalonia 08193, Spain.,Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Catalonia 08003, Spain
| |
Collapse
|
21
|
Jiao Y, Fan S, Jabeen N, Zhang H, Khan R, Murtaza G, Jiang H, Ali A, Li Y, Bao J, Zhang B, Xu J, Xu B, Hussain HMJ, Zaman Q, Khan I, Bukhari I, Iqbal F, Yousaf A, Dil S, Khan M, Ahmad N, Ma H, Jiang X, Zhang Y, Shi Q. A TOP6BL mutation abolishes meiotic DNA double-strand break formation and causes human infertility. Sci Bull (Beijing) 2020; 65:2120-2129. [PMID: 36732965 DOI: 10.1016/j.scib.2020.08.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/07/2020] [Accepted: 07/23/2020] [Indexed: 02/04/2023]
Abstract
Meiosis is pivotal for sexual reproduction and fertility. Meiotic programmed DNA double-strand breaks (DSBs) initiate homologous recombination, ensuring faithful chromosome segregation and generation of gametes. However, few studies have focused on meiotic DSB formation in human reproduction. Here, we report four infertile siblings born to a consanguineous marriage, with three brothers suffering from non-obstructive azoospermia and one sister suffering from unexplained infertility with normal menstrual cycles and normal ovary sizes with follicular activity. An autosomal recessive mutation in TOP6BL was found co-segregating with infertility in this family. Investigation of one male patient revealed failure in programmed meiotic DSB formation and meiotic arrest prior to pachytene stage of prophase I. Mouse models carrying similar mutations to that in patients recapitulated the spermatogenic abnormalities of the patient. Pathogenicity of the mutation in the female patient was supported by observations in mice that meiotic programmed DSBs failed to form in mutant oocytes and oocyte maturation failure due to absence of meiotic recombination. Our study thus illustrates the phenotypical characteristics and the genotype-phenotype correlations of meiotic DSB formation failure in humans.
Collapse
Affiliation(s)
- Yuying Jiao
- First Affiliated Hospital of University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei 230027, China
| | - Suixing Fan
- First Affiliated Hospital of University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei 230027, China
| | - Nazish Jabeen
- First Affiliated Hospital of University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei 230027, China
| | - Huan Zhang
- First Affiliated Hospital of University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei 230027, China
| | - Ranjha Khan
- First Affiliated Hospital of University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei 230027, China
| | - Ghulam Murtaza
- First Affiliated Hospital of University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei 230027, China
| | - Hanwei Jiang
- First Affiliated Hospital of University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei 230027, China
| | - Asim Ali
- First Affiliated Hospital of University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei 230027, China
| | - Yang Li
- First Affiliated Hospital of University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei 230027, China
| | - Jianqiang Bao
- First Affiliated Hospital of University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei 230027, China
| | - Beibei Zhang
- First Affiliated Hospital of University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei 230027, China
| | - Jianze Xu
- First Affiliated Hospital of University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei 230027, China
| | - Bo Xu
- First Affiliated Hospital of University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei 230027, China
| | - Hafiz Muhammad Jafar Hussain
- First Affiliated Hospital of University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei 230027, China
| | - Qumar Zaman
- First Affiliated Hospital of University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei 230027, China
| | - Ihsan Khan
- First Affiliated Hospital of University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei 230027, China
| | - Ihtisham Bukhari
- First Affiliated Hospital of University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei 230027, China
| | - Furhan Iqbal
- Institute of Pure and Applied Biology, Zoology Division, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Ayesha Yousaf
- First Affiliated Hospital of University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei 230027, China
| | - Sobia Dil
- First Affiliated Hospital of University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei 230027, China
| | - Manan Khan
- First Affiliated Hospital of University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei 230027, China
| | - Niaz Ahmad
- Shahbaz Sharif District Hospital, Multan 60800, Pakistan
| | - Hui Ma
- First Affiliated Hospital of University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei 230027, China.
| | - Xiaohua Jiang
- First Affiliated Hospital of University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei 230027, China.
| | - Yuanwei Zhang
- First Affiliated Hospital of University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei 230027, China.
| | - Qinghua Shi
- First Affiliated Hospital of University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei 230027, China.
| |
Collapse
|
22
|
Jiao SY, Yang YH, Chen SR. Molecular genetics of infertility: loss-of-function mutations in humans and corresponding knockout/mutated mice. Hum Reprod Update 2020; 27:154-189. [PMID: 33118031 DOI: 10.1093/humupd/dmaa034] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 07/15/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Infertility is a major issue in human reproductive health, affecting an estimated 15% of couples worldwide. Infertility can result from disorders of sex development (DSD) or from reproductive endocrine disorders (REDs) with onset in infancy, early childhood or adolescence. Male infertility, accounting for roughly half of all infertility cases, generally manifests as decreased sperm count (azoospermia or oligozoospermia), attenuated sperm motility (asthenozoospermia) or a higher proportion of morphologically abnormal sperm (teratozoospermia). Female infertility can be divided into several classical types, including, but not limited to, oocyte maturation arrest, premature ovarian insufficiency (POI), fertilization failure and early embryonic arrest. An estimated one half of infertility cases have a genetic component; however, most genetic causes of human infertility are currently uncharacterized. The advent of high-throughput sequencing technologies has greatly facilitated the identification of infertility-associated gene mutations in patients over the past 20 years. OBJECTIVE AND RATIONALE This review aims to conduct a narrative review of the genetic causes of human infertility. Loss-of-function mutation discoveries related to human infertility are summarized and further illustrated in tables. Corresponding knockout/mutated animal models of causative genes for infertility are also introduced. SEARCH METHODS A search of the PubMed database was performed to identify relevant studies published in English. The term 'mutation' was combined with a range of search terms related to the core focus of the review: infertility, DSD, REDs, azoospermia or oligozoospermia, asthenozoospermia, multiple morphological abnormalities of the sperm flagella (MMAF), primary ciliary dyskinesia (PCD), acephalic spermatozoa syndrome (ASS), globozoospermia, teratozoospermia, acrosome, oocyte maturation arrest, POI, zona pellucida, fertilization defects and early embryonic arrest. OUTCOMES Our search generated ∼2000 records. Overall, 350 articles were included in the final review. For genetic investigation of human infertility, the traditional candidate gene approach is proceeding slowly, whereas high-throughput sequencing technologies in larger cohorts of individuals is identifying an increasing number of causative genes linked to human infertility. This review provides a wide panel of gene mutations in several typical forms of human infertility, including DSD, REDs, male infertility (oligozoospermia, MMAF, PCD, ASS and globozoospermia) and female infertility (oocyte maturation arrest, POI, fertilization failure and early embryonic arrest). The causative genes, their identified mutations, mutation rate, studied population and their corresponding knockout/mutated mice of non-obstructive azoospermia, MMAF, ASS, globozoospermia, oocyte maturation arrest, POI, fertilization failure and early embryonic arrest are further illustrated by tables. In this review, we suggest that (i) our current knowledge of infertility is largely obtained from knockout mouse models; (ii) larger cohorts of clinical cases with distinct clinical characteristics need to be recruited in future studies; (iii) the whole picture of genetic causes of human infertility relies on both the identification of more mutations for distinct types of infertility and the integration of known mutation information; (iv) knockout/mutated animal models are needed to show whether the phenotypes of genetically altered animals are consistent with findings in human infertile patients carrying a deleterious mutation of the homologous gene; and (v) the molecular mechanisms underlying human infertility caused by pathogenic mutations are largely unclear in most current studies. WILDER IMPLICATIONS It is important to use our current understanding to identify avenues and priorities for future research in the field of genetic causes of infertility as well as to apply mutation knowledge to risk prediction, genetic diagnosis and potential treatment for human infertility.
Collapse
Affiliation(s)
- Shi-Ya Jiao
- Education Key Laboratory of Cell Proliferation & Regulation Biology, College of Life Sciences, Beijing Normal University, 100875 Beijing, China
| | - Yi-Hong Yang
- Reproduction Medical Center of West China Second University Hospital, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, 610041 Chengdu, China
| | - Su-Ren Chen
- Education Key Laboratory of Cell Proliferation & Regulation Biology, College of Life Sciences, Beijing Normal University, 100875 Beijing, China
| |
Collapse
|
23
|
Sun J, Cui K, Li ZP, Gao B, Huang B, Liu Q, Shi D. Improved early development potence of in vitro fertilization embryos by treatment with tubacin increasing acetylated tubulin of matured porcine oocytes. Mech Dev 2020; 164:103631. [PMID: 32828904 DOI: 10.1016/j.mod.2020.103631] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 12/21/2022]
Abstract
To improve the developmental potential of in vitro embryos is a long-term concern field for human assisted reproduction and animal in vitro embryo production practice. In the current study, we examined the effects and mechanism of an HDAC6 inhibitor, tubacin, on the maturation of porcine oocytes and in vitro development of porcine IVF embryos. It has been demonstrated the effect of tubacin on the acetylation level of α-tubulin in porcine oocytes. As a result, the maturation rate of porcine oocytes was significantly improved (P < 0.05), and the following development potent of blastocysts forming rate was also significantly increased (P < 0.05). We found that the increased acetylation of α-tubulin significantly reduced the abnormal rate of microtubule, furthermore, the proportion of mitochondria in the vicinity of in vitro fertilization (IVF) nucleus was significantly enhanced in Metaphase I (MI) and Metaphase II (MII) stages. The expression levels of microtubule assembly genes (TUBA1A, αTAT1 and MAP2) significantly up-regulated in MI and MII stages. Together, these results suggest that treatment of porcine oocytes during maturation with tubacin could promote their IVF embryos developmental competence by altering spindle formation, mitochondrial concentration and genes expression patterns of matured porcine oocytes.
Collapse
Affiliation(s)
- JunMing Sun
- Laboratory Animal Center, Guangxi Medical University, Nanning, Guangxi 530021, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi 530005, China.
| | - KuiQing Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi 530005, China
| | - Zhi Peng Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi 530005, China
| | - BangJun Gao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi 530005, China
| | - Ben Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi 530005, China
| | - QingYou Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi 530005, China.
| | - DeShun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi 530005, China.
| |
Collapse
|
24
|
Loss of Cx43 in Murine Sertoli Cells Leads to Altered Prepubertal Sertoli Cell Maturation and Impairment of the Mitosis-Meiosis Switch. Cells 2020; 9:cells9030676. [PMID: 32164318 PMCID: PMC7140672 DOI: 10.3390/cells9030676] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 12/12/2022] Open
Abstract
Male factor infertility is a problem in today’s society but many underlying causes are still unknown. The generation of a conditional Sertoli cell (SC)-specific connexin 43 (Cx43) knockout mouse line (SCCx43KO) has provided a translational model. Expression of the gap junction protein Cx43 between adjacent SCs as well as between SCs and germ cells (GCs) is known to be essential for the initiation and maintenance of spermatogenesis in different species and men. Adult SCCx43KO males show altered spermatogenesis and are infertile. Thus, the present study aims to identify molecular mechanisms leading to testicular alterations in prepubertal SCCx43KO mice. Transcriptome analysis of 8-, 10- and 12-day-old mice was performed by next-generation sequencing (NGS). Additionally, candidate genes were examined by qRT-PCR and immunohistochemistry. NGS revealed many significantly differentially expressed genes in the SCCx43KO mice. For example, GC-specific genes were mostly downregulated and found to be involved in meiosis and spermatogonial differentiation (e.g., Dmrtb1, Sohlh1). In contrast, SC-specific genes implicated in SC maturation and proliferation were mostly upregulated (e.g., Amh, Fshr). In conclusion, Cx43 in SCs appears to be required for normal progression of the first wave of spermatogenesis, especially for the mitosis-meiosis switch, and also for the regulation of prepubertal SC maturation.
Collapse
|
25
|
Novel homozygous mutations in PATL2 lead to female infertility with oocyte maturation arrest. J Assist Reprod Genet 2020; 37:841-847. [PMID: 32048119 DOI: 10.1007/s10815-020-01698-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 01/17/2020] [Indexed: 12/11/2022] Open
Abstract
PURPOSE To identify the disease gene in 40 patients with female infertility due to oocyte maturation arrest. METHODS Genomic DNA was extracted from peripheral blood of 40 patients and their family members. Whole-exome sequencing was performed on the patients, and the PATL2 mutations were identified and confirmed by Sanger sequencing. Harmfulness of the mutations was analyzed by SIFT, Polyphen-2, Mutation Taster, and M-CAP software, and we used western immunoblotting analysis to check the effect of mutations on PATL2 protein expression in vitro. RESULTS Two novel missense mutations c.1528C>A (p.Pro510Thr) and c.1376C>A (p.Ser459Tyr) in PATL2 were identified in three patients (7.5%) from two consanguineous families in our cohort. We found that mutations in PATL2 resulted in variable oocyte phenotypes, including GV arrest, MI arrest, and morphologic abnormalities. Western immunoblotting analysis showed that the expression levels of the two novel mutant PATL2 proteins decreased significantly. CONCLUSIONS We identified two novel PATL2 mutations that caused oocyte maturation arrest and abnormal morphology, and variable phenotypes in patients.
Collapse
|
26
|
Advances Towards How Meiotic Recombination Is Initiated: A Comparative View and Perspectives for Plant Meiosis Research. Int J Mol Sci 2019; 20:ijms20194718. [PMID: 31547623 PMCID: PMC6801837 DOI: 10.3390/ijms20194718] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 09/19/2019] [Accepted: 09/19/2019] [Indexed: 12/14/2022] Open
Abstract
Meiosis is an essential cell-division process for ensuring genetic diversity across generations. Meiotic recombination ensures the accuracy of genetic interchange between homolous chromosomes and segregation of parental alleles. Programmed DNA double-strand breaks (DSBs), catalyzed by the evolutionarily conserved topoisomerase VIA (a subunit of the archaeal type II DNA topoisomerase)-like enzyme Spo11 and several other factors, is a distinctive feature of meiotic recombination initiation. The meiotic DSB formation and its regulatory mechanisms are similar among species, but certain aspects are distinct. In this review, we introduced the cumulative knowledge of the plant proteins crucial for meiotic DSB formation and technical advances in DSB detection. We also summarized the genome-wide DSB hotspot profiles for different model organisms. Moreover, we highlighted the classical views and recent advances in our knowledge of the regulatory mechanisms that ensure the fidelity of DSB formation, such as multifaceted kinase-mediated phosphorylation and the consequent high-dimensional changes in chromosome structure. We provided an overview of recent findings concerning DSB formation, distribution and regulation, all of which will help us to determine whether meiotic DSB formation is evolutionarily conserved or varies between plants and other organisms.
Collapse
|
27
|
Horiuchi K, Perez-Cerezales S, Papasaikas P, Ramos-Ibeas P, López-Cardona AP, Laguna-Barraza R, Fonseca Balvís N, Pericuesta E, Fernández-González R, Planells B, Viera A, Suja JA, Ross PJ, Alén F, Orio L, Rodriguez de Fonseca F, Pintado B, Valcárcel J, Gutiérrez-Adán A. Impaired Spermatogenesis, Muscle, and Erythrocyte Function in U12 Intron Splicing-Defective Zrsr1 Mutant Mice. Cell Rep 2019; 23:143-155. [PMID: 29617656 DOI: 10.1016/j.celrep.2018.03.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/28/2017] [Accepted: 03/08/2018] [Indexed: 11/18/2022] Open
Abstract
The U2AF35-like ZRSR1 has been implicated in the recognition of 3' splice site during spliceosome assembly, but ZRSR1 knockout mice do not show abnormal phenotypes. To analyze ZRSR1 function and its precise role in RNA splicing, we generated ZRSR1 mutant mice containing truncating mutations within its RNA-recognition motif. Homozygous mutant mice exhibited severe defects in erythrocytes, muscle stretch, and spermatogenesis, along with germ cell sloughing and apoptosis, ultimately leading to azoospermia and male sterility. Testis RNA sequencing (RNA-seq) analyses revealed increased intron retention of both U2- and U12-type introns, including U12-type intron events in genes with key functions in spermatogenesis and spermatid development. Affected U2 introns were commonly found flanking U12 introns, suggesting functional cross-talk between the two spliceosomes. The splicing and tissue defects observed in mutant mice attributed to ZRSR1 loss of function suggest a physiological role for this factor in U12 intron splicing.
Collapse
Affiliation(s)
- Keiko Horiuchi
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra, Dr. Aiguader 88, 08003 Barcelona, Spain; Department of Quantitative Biology and Medicine, Research Center for Advanced Science and Technology (RCAST), University of Tokyo, Tokyo 153-8904, Japan
| | - Serafín Perez-Cerezales
- Dpto. de Reproducción Animal, INIA, Avda Puerta de Hierro nº 12. Local 10, 28040 Madrid, Spain
| | - Panagiotis Papasaikas
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Priscila Ramos-Ibeas
- Dpto. de Reproducción Animal, INIA, Avda Puerta de Hierro nº 12. Local 10, 28040 Madrid, Spain
| | | | - Ricardo Laguna-Barraza
- Dpto. de Reproducción Animal, INIA, Avda Puerta de Hierro nº 12. Local 10, 28040 Madrid, Spain
| | - Noelia Fonseca Balvís
- Dpto. de Reproducción Animal, INIA, Avda Puerta de Hierro nº 12. Local 10, 28040 Madrid, Spain
| | - Eva Pericuesta
- Dpto. de Reproducción Animal, INIA, Avda Puerta de Hierro nº 12. Local 10, 28040 Madrid, Spain
| | - Raul Fernández-González
- Dpto. de Reproducción Animal, INIA, Avda Puerta de Hierro nº 12. Local 10, 28040 Madrid, Spain
| | - Benjamín Planells
- Dpto. de Reproducción Animal, INIA, Avda Puerta de Hierro nº 12. Local 10, 28040 Madrid, Spain
| | - Alberto Viera
- Unidad de Biología Celular, Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Jose Angel Suja
- Unidad de Biología Celular, Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Pablo Juan Ross
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| | - Francisco Alén
- Dpto. Psicobiología, Facultad de Psicología, UCM, Campus de Somosaguas, Madrid, Spain
| | - Laura Orio
- Dpto. Psicobiología, Facultad de Psicología, UCM, Campus de Somosaguas, Madrid, Spain
| | - Fernando Rodriguez de Fonseca
- Dpto. Psicobiología, Facultad de Psicología, UCM, Campus de Somosaguas, Madrid, Spain; UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga-Hospital Universitario Regional de Málaga, Avda. Carlos Haya 82, Pabellón de Gobierno, 29010 Málaga, Spain
| | - Belén Pintado
- Servicio de Transgénicos, CNB-CSIC, UAM, Madrid, Spain
| | - Juan Valcárcel
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra, Dr. Aiguader 88, 08003 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain.
| | - Alfonso Gutiérrez-Adán
- Dpto. de Reproducción Animal, INIA, Avda Puerta de Hierro nº 12. Local 10, 28040 Madrid, Spain.
| |
Collapse
|
28
|
Cyclin B3 is dispensable for mouse spermatogenesis. Chromosoma 2019; 128:473-487. [PMID: 31446450 DOI: 10.1007/s00412-019-00725-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 08/09/2019] [Accepted: 08/14/2019] [Indexed: 10/26/2022]
Abstract
Cyclins, as regulatory partners of cyclin-dependent kinases (CDKs), control the switch-like cell cycle transitions that orchestrate orderly duplication and segregation of genomes. Compared to mitosis, relatively little is known about how cyclin-CDK complexes control meiosis, the specialized cell division that generates gametes for sexual production. Mouse cyclin B3 was previously shown to have expression restricted to the beginning of meiosis, making it a candidate to regulate meiotic events. Indeed, female mice lacking cyclin B3 are sterile because oocytes arrest at the metaphase-to-anaphase transition of meiosis I. However, whether cyclin B3 functions during spermatogenesis was untested. Here, we found that males lacking cyclin B3 are fertile and show no detectable defects in spermatogenesis based on histological analysis of seminiferous tubules. Cytological analysis further showed no detectable defects in homologous chromosome synapsis or meiotic progression, and suggested that recombination is initiated and completed efficiently. Moreover, absence of cyclin B3 did not exacerbate previously described meiotic defects in mutants deficient for cyclin E2, suggesting a lack of redundancy between these cyclins. Thus, unlike in females, cyclin B3 is not essential for meiosis in males despite its prominent meiosis-specific expression.
Collapse
|
29
|
Gheldof A, Mackay DJG, Cheong Y, Verpoest W. Genetic diagnosis of subfertility: the impact of meiosis and maternal effects. J Med Genet 2019; 56:271-282. [PMID: 30728173 PMCID: PMC6581078 DOI: 10.1136/jmedgenet-2018-105513] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 12/24/2018] [Accepted: 12/27/2018] [Indexed: 02/06/2023]
Abstract
During reproductive age, approximately one in seven couples are confronted with fertility problems. While the aetiology is diverse, including infections, metabolic diseases, hormonal imbalances and iatrogenic effects, it is becoming increasingly clear that genetic factors have a significant contribution. Due to the complex nature of infertility that often hints at a multifactorial cause, the search for potentially causal gene mutations in idiopathic infertile couples has remained difficult. Idiopathic infertility patients with a suspicion of an underlying genetic cause can be expected to have mutations in genes that do not readily affect general health but are only essential in certain processes connected to fertility. In this review, we specifically focus on genes involved in meiosis and maternal-effect processes, which are of critical importance for reproduction and initial embryonic development. We give an overview of genes that have already been linked to infertility in human, as well as good candidates which have been described in other organisms. Finally, we propose a phenotypic range in which we expect an optimal diagnostic yield of a meiotic/maternal-effect gene panel.
Collapse
Affiliation(s)
- Alexander Gheldof
- Center for Medical Genetics, Universitair Ziekenhuis Brussel, Brussels, Belgium
- Reproduction and Genetics Department, Vrije Universiteit Brussel, Brussels, Belgium
| | - Deborah J G Mackay
- Faculty of Medicine, University of Southampton, Southampton University Hospital, Southampton, UK
| | - Ying Cheong
- Complete Fertility, Human Development of Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Willem Verpoest
- Reproduction and Genetics Department, Vrije Universiteit Brussel, Brussels, Belgium
- Center for Reproductive Medicine, Universitair Ziekenhuis Brussel, Brussels, Belgium
| |
Collapse
|
30
|
Ghieh F, Mitchell V, Mandon-Pepin B, Vialard F. Genetic defects in human azoospermia. Basic Clin Androl 2019; 29:4. [PMID: 31024732 PMCID: PMC6477738 DOI: 10.1186/s12610-019-0086-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 03/07/2019] [Indexed: 02/07/2023] Open
Abstract
As with many other diseases, genetic testing in human azoospermia was initially restricted to karyotype analyses (leading to diagnostic chromosome rearrangement tests for Klinefelter and other syndromes). With the advent of molecular biology in the 1980s, genetic screening was broadened to analyses of Y chromosome microdeletions and the gene coding for the cystic fibrosis transmembrane conductance regulator (CFTR). Decades later, the emergence of whole-genome techniques has led to the identification of other genetic defects associated with human azoospermia. Although TEX11 and ADGRG2 defects are frequently described in men with azoospermia, most of the causal gene defects found to date are private (i.e. identified in a small number of consanguineous families). Here, we provide an up-to-date overview of all the types of genetic defects known to be linked to human azoospermia and try to give clinical practice guidelines according to azoospermia phenotype. Along with homozygous mutations, polymorphisms and epigenetic defects are also briefly discussed. However, as these variations predispose to azoospermia, a specific review will be needed to compile data on all the particular genetic variations reported in the literature.
Collapse
Affiliation(s)
- Farah Ghieh
- 1EA7404-GIG, UFR des Sciences de la Santé Simone Veil, UVSQ, Montigny le Bretonneux, France
| | - Valérie Mitchell
- 2CHU Lille, Reproductive Biology Institute-Spermiologie-CECOS, Jeanne de Flandre Hospital, Lille, France.,3EA4308 "Gametogenesis and Gamete Quality", University of Lille, Lille, France
| | | | - François Vialard
- 1EA7404-GIG, UFR des Sciences de la Santé Simone Veil, UVSQ, Montigny le Bretonneux, France.,Genetics Division, CHI de Poissy St Germain en Laye, Poissy, France
| |
Collapse
|
31
|
Christou-Kent M, Kherraf ZE, Amiri-Yekta A, Le Blévec E, Karaouzène T, Conne B, Escoffier J, Assou S, Guttin A, Lambert E, Martinez G, Boguenet M, Fourati Ben Mustapha S, Cedrin Durnerin I, Halouani L, Marrakchi O, Makni M, Latrous H, Kharouf M, Coutton C, Thierry-Mieg N, Nef S, Bottari SP, Zouari R, Issartel JP, Ray PF, Arnoult C. PATL2 is a key actor of oocyte maturation whose invalidation causes infertility in women and mice. EMBO Mol Med 2019; 10:emmm.201708515. [PMID: 29661911 PMCID: PMC5938616 DOI: 10.15252/emmm.201708515] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The genetic causes of oocyte meiotic deficiency (OMD), a form of primary infertility characterised by the production of immature oocytes, remain largely unexplored. Using whole exome sequencing, we found that 26% of a cohort of 23 subjects with OMD harboured the same homozygous nonsense pathogenic mutation in PATL2, a gene encoding a putative RNA‐binding protein. Using Patl2 knockout mice, we confirmed that PATL2 deficiency disturbs oocyte maturation, since oocytes and zygotes exhibit morphological and developmental defects, respectively. PATL2's amphibian orthologue is involved in the regulation of oocyte mRNA as a partner of CPEB. However, Patl2's expression profile throughout oocyte development in mice, alongside colocalisation experiments with Cpeb1, Msy2 and Ddx6 (three oocyte RNA regulators) suggest an original role for Patl2 in mammals. Accordingly, transcriptomic analysis of oocytes from WT and Patl2−/− animals demonstrated that in the absence of Patl2, expression levels of a select number of highly relevant genes involved in oocyte maturation and early embryonic development are deregulated. In conclusion, PATL2 is a novel actor of mammalian oocyte maturation whose invalidation causes OMD in humans.
Collapse
Affiliation(s)
- Marie Christou-Kent
- Genetics, Epigenetics and Therapies of Infertility, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
| | - Zine-Eddine Kherraf
- Genetics, Epigenetics and Therapies of Infertility, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
| | - Amir Amiri-Yekta
- Genetics, Epigenetics and Therapies of Infertility, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France.,UM GI-DPI, CHU de Grenoble, Grenoble, France.,Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Emilie Le Blévec
- Genetics, Epigenetics and Therapies of Infertility, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
| | - Thomas Karaouzène
- Genetics, Epigenetics and Therapies of Infertility, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
| | - Béatrice Conne
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Jessica Escoffier
- Genetics, Epigenetics and Therapies of Infertility, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
| | - Said Assou
- IRMB, INSERM U1183, CHRU Montpellier, Université Montpellier, Montpellier, France
| | - Audrey Guttin
- Grenoble Neuroscience Institute, INSERM 1216, Université Grenoble Alpes, Grenoble, France
| | - Emeline Lambert
- Genetics, Epigenetics and Therapies of Infertility, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
| | - Guillaume Martinez
- Genetics, Epigenetics and Therapies of Infertility, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France.,UM GI-DPI, CHU de Grenoble, Grenoble, France.,UM de Génétique Chromosomique, CHU de Grenoble, Grenoble, France
| | - Magalie Boguenet
- Genetics, Epigenetics and Therapies of Infertility, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
| | | | - Isabelle Cedrin Durnerin
- Service de Médecine de la Reproduction, Centre Hospitalier Universitaire Jean Verdier, Assistance Publique - Hôpitaux de Paris, Bondy, France
| | - Lazhar Halouani
- Polyclinique les Jasmins, Centre d'Aide Médicale à la Procréation, Centre Urbain Nord, Tunis, Tunisia
| | - Ouafi Marrakchi
- Polyclinique les Jasmins, Centre d'Aide Médicale à la Procréation, Centre Urbain Nord, Tunis, Tunisia
| | - Mounir Makni
- Polyclinique les Jasmins, Centre d'Aide Médicale à la Procréation, Centre Urbain Nord, Tunis, Tunisia
| | - Habib Latrous
- Polyclinique les Jasmins, Centre d'Aide Médicale à la Procréation, Centre Urbain Nord, Tunis, Tunisia
| | - Mahmoud Kharouf
- Polyclinique les Jasmins, Centre d'Aide Médicale à la Procréation, Centre Urbain Nord, Tunis, Tunisia
| | - Charles Coutton
- Genetics, Epigenetics and Therapies of Infertility, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France.,UM GI-DPI, CHU de Grenoble, Grenoble, France.,UM de Génétique Chromosomique, CHU de Grenoble, Grenoble, France
| | | | - Serge Nef
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Serge P Bottari
- Genetics, Epigenetics and Therapies of Infertility, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
| | - Raoudha Zouari
- Polyclinique les Jasmins, Centre d'Aide Médicale à la Procréation, Centre Urbain Nord, Tunis, Tunisia
| | - Jean Paul Issartel
- Grenoble Neuroscience Institute, INSERM 1216, Université Grenoble Alpes, Grenoble, France
| | - Pierre F Ray
- Genetics, Epigenetics and Therapies of Infertility, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France.,UM GI-DPI, CHU de Grenoble, Grenoble, France
| | - Christophe Arnoult
- Genetics, Epigenetics and Therapies of Infertility, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
| |
Collapse
|
32
|
Kumar R, Oliver C, Brun C, Juarez-Martinez AB, Tarabay Y, Kadlec J, de Massy B. Mouse REC114 is essential for meiotic DNA double-strand break formation and forms a complex with MEI4. Life Sci Alliance 2018; 1:e201800259. [PMID: 30569039 PMCID: PMC6288613 DOI: 10.26508/lsa.201800259] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/04/2018] [Accepted: 12/04/2018] [Indexed: 12/20/2022] Open
Abstract
Programmed formation of DNA double-strand breaks (DSBs) initiates the meiotic homologous recombination pathway. This pathway is essential for proper chromosome segregation at the first meiotic division and fertility. Meiotic DSBs are catalyzed by Spo11. Several other proteins are essential for meiotic DSB formation, including three evolutionarily conserved proteins first identified in Saccharomyces cerevisiae (Mer2, Mei4, and Rec114). These three S. cerevisiae proteins and their mouse orthologs (IHO1, MEI4, and REC114) co-localize on the axes of meiotic chromosomes, and mouse IHO1 and MEI4 are essential for meiotic DSB formation. Here, we show that mouse Rec114 is required for meiotic DSB formation. Moreover, MEI4 forms a complex with REC114 and IHO1 in mouse spermatocytes, consistent with cytological observations. We then demonstrated in vitro the formation of a stable complex between REC114 C-terminal domain and MEI4 N-terminal domain. We further determine the structure of the REC114 N-terminal domain that revealed similarity with Pleckstrin homology domains. These analyses provide direct insights into the architecture of these essential components of the meiotic DSB machinery.
Collapse
Affiliation(s)
- Rajeev Kumar
- Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318 Institut National de la Recherche Agronomique-AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Cecilia Oliver
- Institut de Génétique Humaine, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, Montpellier, France
| | - Christine Brun
- Institut de Génétique Humaine, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, Montpellier, France
| | - Ariadna B Juarez-Martinez
- Institut de Biologie Structurale, Université Grenoble Alpes, Commissariat à l'Energie Atomique et aux Energies Alternatives, CNRS, Grenoble, France
| | - Yara Tarabay
- Institut de Génétique Humaine, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, Montpellier, France
| | - Jan Kadlec
- Institut de Biologie Structurale, Université Grenoble Alpes, Commissariat à l'Energie Atomique et aux Energies Alternatives, CNRS, Grenoble, France
| | - Bernard de Massy
- Institut de Génétique Humaine, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, Montpellier, France
| |
Collapse
|
33
|
Nguyen NMP, Ge ZJ, Reddy R, Fahiminiya S, Sauthier P, Bagga R, Sahin FI, Mahadevan S, Osmond M, Breguet M, Rahimi K, Lapensee L, Hovanes K, Srinivasan R, Van den Veyver IB, Sahoo T, Ao A, Majewski J, Taketo T, Slim R. Causative Mutations and Mechanism of Androgenetic Hydatidiform Moles. Am J Hum Genet 2018; 103:740-751. [PMID: 30388401 DOI: 10.1016/j.ajhg.2018.10.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/03/2018] [Indexed: 11/17/2022] Open
Abstract
Androgenetic complete hydatidiform moles are human pregnancies with no embryos and affect 1 in every 1,400 pregnancies. They have mostly androgenetic monospermic genomes with all the chromosomes originating from a haploid sperm and no maternal chromosomes. Androgenetic complete hydatidiform moles were described in 1977, but how they occur has remained an open question. We identified bi-allelic deleterious mutations in MEI1, TOP6BL/C11orf80, and REC114, with roles in meiotic double-strand breaks formation in women with recurrent androgenetic complete hydatidiform moles. We investigated the occurrence of androgenesis in Mei1-deficient female mice and discovered that 8% of their oocytes lose all their chromosomes by extruding them with the spindles into the first polar body. We demonstrate that Mei1-/- oocytes are capable of fertilization and 5% produce androgenetic zygotes. Thus, we uncover a meiotic abnormality in mammals and a mechanism for the genesis of androgenetic zygotes that is the extrusion of all maternal chromosomes and their spindles into the first polar body.
Collapse
Affiliation(s)
| | - Zhao-Jia Ge
- Department of Human Genetics, McGill University Health Centre, Montréal, QC H4A 3J1, Canada
| | - Ramesh Reddy
- Department of Human Genetics, McGill University Health Centre, Montréal, QC H4A 3J1, Canada
| | - Somayyeh Fahiminiya
- Department of Human Genetics, McGill University Health Centre, Montréal, QC H4A 3J1, Canada; Genome Québec Innovation Center, Montréal, QC H3A 0G1, Canada
| | - Philippe Sauthier
- Department of Obstetrics and Gynecology, Gynecologic Oncology Division, Centre Hospitalier de l'Université de Montréal, Réseau des Maladies Trophoblastiques du Québec, Montréal, QC H2X 0C1, Canada
| | - Rashmi Bagga
- Department of Obstetrics & Gynecology, Post Graduate Institute of Medical, Education and Research, PGIMER, Chandigarh 160012, India
| | - Feride Iffet Sahin
- Department of Medical Genetics, Faculty of Medicine, Baskent University, 06810 Ankara, Turkey
| | - Sangeetha Mahadevan
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Matthew Osmond
- Department of Human Genetics, McGill University Health Centre, Montréal, QC H4A 3J1, Canada; Genome Québec Innovation Center, Montréal, QC H3A 0G1, Canada
| | - Magali Breguet
- Department of Obstetrics and Gynecology, Gynecologic Oncology Division, Centre Hospitalier de l'Université de Montréal, Réseau des Maladies Trophoblastiques du Québec, Montréal, QC H2X 0C1, Canada
| | - Kurosh Rahimi
- Department of Pathology, Centre Hospitalier de l'Université de Montréal, Montréal, QC H2X 0C1, Canada
| | - Louise Lapensee
- Ovo Clinic, Montréal, QC H4P 2S4, Canada; Department of Obstetrics and Gynecology, Centre Hospitalier de l'Université de Montréal, Montréal, QC H2X 0C1, Canada
| | | | - Radhika Srinivasan
- Cytology & Gynecological Pathology, Post Graduate Institute of Medical Education and Research PGIMER, Chandigarh 160012, India
| | | | | | - Asangla Ao
- Department of Human Genetics, McGill University Health Centre, Montréal, QC H4A 3J1, Canada; Department of Obstetrics and Gynecology, McGill University Health Centre, Montréal, QC H4A 3J1, Canada
| | - Jacek Majewski
- Department of Human Genetics, McGill University Health Centre, Montréal, QC H4A 3J1, Canada; Genome Québec Innovation Center, Montréal, QC H3A 0G1, Canada
| | - Teruko Taketo
- Department of Obstetrics and Gynecology, McGill University Health Centre, Montréal, QC H4A 3J1, Canada; Department of Surgery, McGill University Health Centre, Montréal, QC H4A 3J1, Canada; Department of Biology, McGill University, Montréal, QC H3A 0G4, Canada
| | - Rima Slim
- Department of Human Genetics, McGill University Health Centre, Montréal, QC H4A 3J1, Canada; Department of Obstetrics and Gynecology, McGill University Health Centre, Montréal, QC H4A 3J1, Canada.
| |
Collapse
|
34
|
Maddirevula S, Coskun S, Alhassan S, Elnour A, Alsaif HS, Ibrahim N, Abdulwahab F, Arold ST, Alkuraya FS. Female Infertility Caused by Mutations in the Oocyte-Specific Translational Repressor PATL2. Am J Hum Genet 2017; 101:603-608. [PMID: 28965844 DOI: 10.1016/j.ajhg.2017.08.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 08/11/2017] [Indexed: 12/23/2022] Open
Abstract
Infertility is a relatively common disorder of the reproductive system and remains unexplained in many cases. In vitro fertilization techniques have uncovered previously unrecognized infertility phenotypes, including oocyte maturation arrest, the molecular etiology of which remains largely unknown. We report two families affected by female-limited infertility caused by oocyte maturation failure. Positional mapping and whole-exome sequencing revealed two homozygous, likely deleterious variants in PATL2, each of which fully segregates with the phenotype within the respective family. PATL2 encodes a highly conserved oocyte-specific mRNP repressor of translation. Previous data have shown the strict requirement for PATL2 in oocyte-maturation in model organisms. Data gathered from the families in this study suggest that the role of PATL2 is conserved in humans and expand our knowledge of the factors that are necessary for female meiosis.
Collapse
Affiliation(s)
- Sateesh Maddirevula
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Serdar Coskun
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Saad Alhassan
- Department of Obstetrics and Gynecology, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Atif Elnour
- Dr. Sulaiman Al Habib Medical Group, Olaya Complex, Riyadh 11643, Saudi Arabia
| | - Hessa S Alsaif
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Niema Ibrahim
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Firdous Abdulwahab
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Stefan T Arold
- King Abdullah University of Science and Technology, Computational Bioscience Research Center, Division of Biological and Environmental Sciences and Engineering, Thuwal 23955-6900, Saudi Arabia
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia; Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia.
| |
Collapse
|
35
|
Wu Q, Fukuda K, Kato Y, Zhou Z, Deng CX, Saga Y. Sexual Fate Change of XX Germ Cells Caused by the Deletion of SMAD4 and STRA8 Independent of Somatic Sex Reprogramming. PLoS Biol 2016; 14:e1002553. [PMID: 27606421 PMCID: PMC5015973 DOI: 10.1371/journal.pbio.1002553] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 08/17/2016] [Indexed: 12/20/2022] Open
Abstract
The differential programming of sperm and eggs in gonads is a fundamental topic in reproductive biology. Although the sexual fate of germ cells is believed to be determined by signaling factors from sexually differentiated somatic cells in fetal gonads, the molecular mechanism that determines germ cell fate is poorly understood. Herein, we show that mothers against decapentaplegic homolog 4 (SMAD4) in germ cells is required for female-type differentiation. Germ cells in Smad4-deficient ovaries respond to retinoic acid signaling but fail to undergo meiotic prophase I, which coincides with the weaker expression of genes required for follicular formation, indicating that SMAD4 signaling is essential for oocyte differentiation and meiotic progression. Intriguingly, germline-specific deletion of Smad4 in Stra8-null female germ cells resulted in the up-regulation of genes required for male gonocyte differentiation, including Nanos2 and PLZF, suggesting the initiation of male-type differentiation in ovaries. Moreover, our transcriptome analyses of mutant ovaries revealed that the sex change phenotype is achieved without global gene expression changes in somatic cells. Our results demonstrate that SMAD4 and STRA8 are essential factors that regulate the female fate of germ cells. Double ablation of SMAD4 and STRA8 causes female-to-male switching of XX germ cells without affecting somatic cell fate. This suggests that SMAD4 and STRA8 are essential intrinsic factors that determine the female fate of germ cells, collaborating to suppress expression of male genes. Mammalian sex depends on a male-specific gene, sex-determining region Y (SRY), which is located on the Y chromosome. Individuals lacking this gene will develop as female. Accordingly, germ cell fate also changes from male to female in the absence of SRY. Therefore, it is thought that somatic cells regulate germ cells to become sperm or oocytes. However, it is largely unknown what factor is responsible for sexual fate determination in germ cells. In fetal ovaries, retinoic acid (RA) initiates STRA8 expression in germ cells and induces meiosis. Female germ cells without STRA8 fail to enter meiosis but still progress to oogenesis and form oocyte-like cells, indicating that RA is not the regulator of oogenesis. Here, we found that female germ cells lacking both SMAD4 and STRA8 (but not a single knockout) develop as male gonocyte-like cells in ovaries, indicating that these two factors work as female germ cell determinants. To our surprise, the sexual fate switch observed in the double knockout ovary is not accompanied by gene expression changes in somatic cells, revealing the unexpected finding that somatic factors controlled by SRY are dispensable for the upregulation of male-specific genes in germ cells.
Collapse
Affiliation(s)
- Quan Wu
- Department of Genetics, Sokendai, Mishima, Japan
- Division of Mammalian Development, National Institute of Genetics, Mishima, Japan
| | - Kurumi Fukuda
- Department of Genetics, Sokendai, Mishima, Japan
- Division of Mammalian Development, National Institute of Genetics, Mishima, Japan
| | - Yuzuru Kato
- Division of Mammalian Development, National Institute of Genetics, Mishima, Japan
| | - Zhi Zhou
- Division of Mammalian Development, National Institute of Genetics, Mishima, Japan
| | - Chu-Xia Deng
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Yumiko Saga
- Department of Genetics, Sokendai, Mishima, Japan
- Division of Mammalian Development, National Institute of Genetics, Mishima, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
36
|
P31comet, a member of the synaptonemal complex, participates in meiotic DSB formation in rice. Proc Natl Acad Sci U S A 2016; 113:10577-82. [PMID: 27601671 DOI: 10.1073/pnas.1607334113] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The human mitotic arrest-deficient 2 (Mad2) binding protein p31(comet) participates in the spindle checkpoint and coordinates cell cycle events in mitosis although its function in meiosis remains unknown in all organisms. Here, we reveal P31(comet) as a synaptonemal complex (SC) protein in rice (Oryza sativa L.). In p31(comet), homologous pairing and synapsis are eliminated, leading to the homologous nondisjunction and complete sterility. The failure in loading of histone H2AX phosphorylation (γH2AX) in p31(comet), together with the suppressed chromosome fragmentation in rice completion of meiotic recombination 1 (com1) p31(comet) and radiation sensitive 51c (rad51c) p31(comet) double mutants, indicates that P31(comet) plays an essential role in double-strand break (DSB) formation. Interestingly, the dynamic colocalization pattern between P31(comet) and ZEP1 (a transverse filament protein of SC) by immunostaining, as well as the interaction between P31(comet) and CENTRAL REGION COMPONENT 1 (CRC1) in yeast two-hybrid assays, suggests possible involvement of P31(comet) in SC installation. Together, these data indicate that P31(comet) plays a key role in DSB formation and SC installation, mainly through its cooperation with CRC1.
Collapse
|
37
|
Cloutier JM, Mahadevaiah SK, ElInati E, Nussenzweig A, Tóth A, Turner JMA. Histone H2AFX Links Meiotic Chromosome Asynapsis to Prophase I Oocyte Loss in Mammals. PLoS Genet 2015; 11:e1005462. [PMID: 26509888 PMCID: PMC4624946 DOI: 10.1371/journal.pgen.1005462] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 07/23/2015] [Indexed: 11/19/2022] Open
Abstract
Chromosome abnormalities are common in the human population, causing germ cell loss at meiotic prophase I and infertility. The mechanisms driving this loss are unknown, but persistent meiotic DNA damage and asynapsis may be triggers. Here we investigate the contribution of these lesions to oocyte elimination in mice with chromosome abnormalities, e.g. Turner syndrome (XO) and translocations. We show that asynapsed chromosomes trigger oocyte elimination at diplonema, which is linked to the presence of phosphorylated H2AFX (γH2AFX). We find that DNA double-strand break (DSB) foci disappear on asynapsed chromosomes during pachynema, excluding persistent DNA damage as a likely cause, and demonstrating the existence in mammalian oocytes of a repair pathway for asynapsis-associated DNA DSBs. Importantly, deletion or point mutation of H2afx restores oocyte numbers in XO females to wild type (XX) levels. Unexpectedly, we find that asynapsed supernumerary chromosomes do not elicit prophase I loss, despite being enriched for γH2AFX and other checkpoint proteins. These results suggest that oocyte loss cannot be explained simply by asynapsis checkpoint models, but is related to the gene content of asynapsed chromosomes. A similar mechanistic basis for oocyte loss may operate in humans with chromosome abnormalities. Chromosome abnormalities, such as aneuploidies and structural variants (i.e. translocations, inversions), are strikingly common in the human population, causing disorders such as Down syndrome and Turner syndrome. One important consequence of chromosome abnormalities in mammals is errors during meiosis, the specialized cell division that generates sperm and eggs for reproduction. As a result of these meiotic errors, patients with chromosome abnormalities oftentimes suffer from infertility due to loss of developing germ cells. The precise molecular mechanism for germ cell losses and infertility due to chromosome abnormalities is not well understood, but is hypothesized to result from a surveillance mechanism, which has evolved to prevent aneuploidies from developing from abnormal germ cells. In mammals, meiotic surveillance mechanisms have been hypothesized to monitor for unrepaired DNA double-strand breaks (DSB) and/or chromosome pairing/synapsis errors. Here we test these hypotheses using a variety of chromosomally variant mouse models. We find that germ cell loss in female mice with chromosome abnormalities is dependent on phosphorylation of the histone variant H2AFX, an epigenetic mark involved in the transcriptional silencing of asynapsed chromosomes during meiosis. These data inform a silencing-based mechanism of germ cell loss in patients with chromosome abnormalities and for the prophase I surveillance system which safeguards against aneuploidy.
Collapse
Affiliation(s)
| | | | - Elias ElInati
- The Francis Crick Institute, Mill Hill Laboratory, London, United Kingdom
| | - André Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, Maryland, United States of America
| | - Attila Tóth
- Institute of Physiological Chemistry, Technische Universität Dresden, Dresden, Germany
| | - James M. A. Turner
- The Francis Crick Institute, Mill Hill Laboratory, London, United Kingdom
- * E-mail:
| |
Collapse
|
38
|
Li B, Wu W, Luo H, Liu Z, Liu H, Li Q, Pan Z. Molecular characterization and epigenetic regulation of Mei1 in cattle and cattle-yak. Gene 2015; 573:50-6. [PMID: 26165450 DOI: 10.1016/j.gene.2015.07.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 06/29/2015] [Accepted: 07/08/2015] [Indexed: 11/28/2022]
Abstract
Mei1 is required for the homologous recombination of meiosis during the mammalian spermatogenesis. However, the knowledge about bovine Mei1 (bMei1) is still limited. In the present study, we cloned and characterized the bMei1, and investigated the epigenetic regulatory mechanism of bMei1 expression in vivo and in vitro. The full length coding region of bMei1 was 3819bp, which encoded a polypeptide of 1272 amino acids. Real-time PCR showed that the mRNA expression level of bMei1 in the testis of cattle-yak with meiotic arrest and male infertility was significantly decreased as compared with cattle (P<0.01). Conversely, the methylation levels of bMei1 promoter and gene body in the testis of cattle-yak were significantly increased. Additionally, the expression level of bMei1 in bovine mammary epithelial cells (BMECs) was activated by treatment with the methyltransferase inhibitor 5-aza-2' deoxycytidine (5-Aza-CdR). Our data suggest that bMei1 may play an important role in the meiosis of spermatogenesis and may be involved in cattle-yak male sterility, and its transcription was regulated by DNA methylation.
Collapse
Affiliation(s)
- Bojiang Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wangjun Wu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hua Luo
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zequn Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Honglin Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Qifa Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Zengxiang Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
39
|
Kumar R, Ghyselinck N, Ishiguro KI, Watanabe Y, Kouznetsova A, Höög C, Strong E, Schimenti J, Daniel K, Toth A, de Massy B. MEI4 – a central player in the regulation of meiotic DNA double-strand break formation in the mouse. J Cell Sci 2015; 128:1800-11. [PMID: 25795304 PMCID: PMC4446737 DOI: 10.1242/jcs.165464] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 03/18/2015] [Indexed: 11/20/2022] Open
Abstract
The formation of programmed DNA double-strand breaks (DSBs) at the beginning of meiotic prophase marks the initiation of meiotic recombination. Meiotic DSB formation is catalyzed by SPO11 and their repair takes place on meiotic chromosome axes. The evolutionarily conserved MEI4 protein is required for meiotic DSB formation and is localized on chromosome axes. Here, we show that HORMAD1, one of the meiotic chromosome axis components, is required for MEI4 localization. Importantly, the quantitative correlation between the level of axis-associated MEI4 and DSB formation suggests that axis-associated MEI4 could be a limiting factor for DSB formation. We also show that MEI1, REC8 and RAD21L are important for proper MEI4 localization. These findings on MEI4 dynamics during meiotic prophase suggest that the association of MEI4 to chromosome axes is required for DSB formation, and that the loss of this association upon DSB repair could contribute to turning off meiotic DSB formation.
Collapse
Affiliation(s)
- Rajeev Kumar
- Institute of Human Genetics, UPR 1142, CNRS. 141, Rue de la Cardonille, 34396 Montpellier, France
| | - Norbert Ghyselinck
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104 - INSERM U964, Department of Functional Genomics and Cancer, 1 rue Laurent Fries, BP10142, 67404 ILLKIRCH CEDEX, France
| | - Kei-ichiro Ishiguro
- Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Yoshinori Watanabe
- Department of Cell and Molecular Biology (CMB), Berzelius Väg 35, Box 285, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Anna Kouznetsova
- Department of Cell and Molecular Biology (CMB), Berzelius Väg 35, Box 285, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Christer Höög
- Department of Cell and Molecular Biology (CMB), Berzelius Väg 35, Box 285, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Edward Strong
- Cornell University, College of Veterinary Medicine T9014A, Ithaca, NY 14853 USA
| | - John Schimenti
- Cornell University, College of Veterinary Medicine T9014A, Ithaca, NY 14853 USA
| | - Katrin Daniel
- Institute of Physiological Chemistry, Medical Faculty of TU Dresden, Fiedlerstrasse 42, 01307 Dresden, Germany
| | - Attila Toth
- Institute of Physiological Chemistry, Medical Faculty of TU Dresden, Fiedlerstrasse 42, 01307 Dresden, Germany
| | - Bernard de Massy
- Institute of Human Genetics, UPR 1142, CNRS. 141, Rue de la Cardonille, 34396 Montpellier, France
| |
Collapse
|
40
|
Lam I, Keeney S. Mechanism and regulation of meiotic recombination initiation. Cold Spring Harb Perspect Biol 2014; 7:a016634. [PMID: 25324213 DOI: 10.1101/cshperspect.a016634] [Citation(s) in RCA: 297] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Meiotic recombination involves the formation and repair of programmed DNA double-strand breaks (DSBs) catalyzed by the conserved Spo11 protein. This review summarizes recent studies pertaining to the formation of meiotic DSBs, including the mechanism of DNA cleavage by Spo11, proteins required for break formation, and mechanisms that control the location, timing, and number of DSBs. Where appropriate, findings in different organisms are discussed to highlight evolutionary conservation or divergence.
Collapse
Affiliation(s)
- Isabel Lam
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York 10065 Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Scott Keeney
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York 10065 Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065 Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| |
Collapse
|
41
|
Knittel G, Metzner M, Beck-Engeser G, Kan A, Ahrends T, Eilat D, Huppi K, Wabl M. Insertional hypermutation in mineral oil-induced plasmacytomas. Eur J Immunol 2014; 44:2785-801. [PMID: 24975032 PMCID: PMC4165787 DOI: 10.1002/eji.201344322] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 05/22/2014] [Accepted: 06/24/2014] [Indexed: 01/07/2023]
Abstract
Unless stimulated by a chronic inflammatory agent, such as mineral oil, plasma cell tumors are rare in young BALB/c mice. This raises the questions: What do inflammatory tissues provide to promote mutagenesis? And what is the nature of mutagenesis? We determined that mineral oil-induced plasmacytomas produce large amounts of endogenous retroelements--ecotropic and polytropic murine leukemia virus and intracisternal A particles. Therefore, plasmacytoma formation might occur, in part, by de novo insertion of these retroelements, induced or helped by the inflammation. We recovered up to ten de novo insertions in a single plasmacytoma, mostly in genes with common retroviral integration sites. Additional integrations accompany tumor evolution from a solid tumor through several generations in cell culture. The high frequency of de novo integrations into cancer genes suggests that endogenous retroelements are coresponsible for plasmacytoma formation and progression in BALB/c mice.
Collapse
Affiliation(s)
- Gero Knittel
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143-0414
| | - Mirjam Metzner
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143-0414
| | - Gabriele Beck-Engeser
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143-0414
| | - Ada Kan
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143-0414
| | - Tomasz Ahrends
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143-0414
| | - Dan Eilat
- Department of Medicine, Hadassah University Hospital and The Hebrew University Faculty of Medicine, Jerusalem 91120, Israel
| | - Konrad Huppi
- National Cancer Institute, Genetics Branch, Gene Silencing Section, Bethesda, MD 20892
| | - Matthias Wabl
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143-0414
| |
Collapse
|
42
|
Baumann C, De La Fuente R. Role of polycomb group protein cbx2/m33 in meiosis onset and maintenance of chromosome stability in the Mammalian germline. Genes (Basel) 2014; 2:59-80. [PMID: 22200029 PMCID: PMC3244348 DOI: 10.3390/genes2010059] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Polycomb group proteins (PcG) are major epigenetic regulators, essential for establishing heritable expression patterns of developmental control genes. The mouse PcG family member M33/Cbx2 (Chromobox homolog protein 2) is a component of the Polycomb-Repressive Complex 1 (PRC1). Targeted deletion of Cbx2/M33 in mice results in homeotic transformations of the axial skeleton, growth retardation and male-to-female sex reversal. In this study, we tested whether Cbx2 is involved in the control of chromatin remodeling processes during meiosis. Our analysis revealed sex reversal in 28.6% of XY(-/-) embryos, in which a hypoplastic testis and a contralateral ovary were observed in close proximity to the kidney, while the remaining male mutant fetuses exhibited bilateral testicular hypoplasia. Notably, germ cells recovered from Cbx2((XY-/-)) testes on day 18.5 of fetal development exhibited premature meiosis onset with synaptonemal complex formation suggesting a role for Cbx2 in the control of meiotic entry in male germ cells. Mutant females exhibited small ovaries with significant germ cell loss and a high proportion of oocytes with abnormal synapsis and non-homologous interactions at the pachytene stage as well as formation of univalents at diplotene. These defects were associated with failure to resolve DNA double strand breaks marked by persistent γH2AX and Rad51 foci at the late pachytene stage. Importantly, two factors required for meiotic silencing of asynapsed chromatin, ubiquitinated histone H2A (ubH2A) and the chromatin remodeling protein BRCA1, co-localized with fully synapsed chromosome axes in the majority of Cbx2((-/-)) oocytes. These results provide novel evidence that Cbx2 plays a critical and previously unrecognized role in germ cell viability, meiosis onset and homologous chromosome synapsis in the mammalian germline.
Collapse
Affiliation(s)
- Claudia Baumann
- Female Germ Cell Biology Group, Department of Clinical Studies, Center for Animal Transgenesis and Germ Cell Research, School of Veterinary Medicine, University of Pennsylvania, New Bolton Center, 382 West Street Road, Kennett Square, PA 19348, USA; E-Mail:
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, 501 D.W. Brooks Drive, Athens, GA 30602, USA
| | - Rabindranath De La Fuente
- Female Germ Cell Biology Group, Department of Clinical Studies, Center for Animal Transgenesis and Germ Cell Research, School of Veterinary Medicine, University of Pennsylvania, New Bolton Center, 382 West Street Road, Kennett Square, PA 19348, USA; E-Mail:
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, 501 D.W. Brooks Drive, Athens, GA 30602, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-706-542-5864; Fax: +1-706-542-3015
| |
Collapse
|
43
|
Evidence Implicating CCNB1IP1, a RING Domain-Containing Protein Required for Meiotic Crossing Over in Mice, as an E3 SUMO Ligase. Genes (Basel) 2014; 1:440-51. [PMID: 21779533 PMCID: PMC3139512 DOI: 10.3390/genes1030440] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The RING domain-containing protein CCNB1IP1 (Cyclin B1 Interacting Protein 1) is a putative ubiquitin E3 ligase that is essential for chiasmata formation, and hence fertility, in mice. Previous studies in cultured cells indicated that CCNB1IP1 targets Cyclin B for degradation, thus playing a role in cell cycle regulation. Mice homozygous for a mutant allele (mei4) of Ccnb1ip1 display no detectable phenotype other than meiotic failure from an absence of chiasmata. CCNB1IP1 is not conserved in key model organisms such as yeast and Drosophila, and there are no features of the protein that implicate clear mechanisms for a role in recombination. To gain insight into CCNB1IP1’s function in meiotic cells, we raised a specific antibody and determined that the protein appears in pachynema. This indicates that CCNB1IP1 is involved with crossover intermediate maturation, rather than early (leptotene) specification of a subset of SPO11-induced double strand breaks towards the crossover pathway. Additionally, a yeast 2-hybrid (Y2H) screen revealed that CCNB1IP1 interacts with SUMO2 and a set of proteins enriched for consensus sumoylation sites. The Y2H studies, combined with scrutiny of CCNB1IP1 domains, implicate this protein as an E3 ligase of the sumoylation cascade. We hypothesize CCNB1IP1 represents a novel meiosis-specific SUMO E3 ligase critical to resolution of recombination intermediates into mature chiasmata.
Collapse
|
44
|
Abstract
According to the Dobzhansky-Muller model, hybrid sterility is a consequence of the independent evolution of related taxa resulting in incompatible genomic interactions of their hybrids. The model implies that the incompatibilities evolve randomly, unless a particular gene or nongenic sequence diverges much faster than the rest of the genome. Here we propose that asynapsis of heterospecific chromosomes in meiotic prophase provides a recurrently evolving trigger for the meiotic arrest of interspecific F1 hybrids. We observed extensive asynapsis of chromosomes and disturbance of the sex body in >95% of pachynemas of Mus m. musculus × Mus m. domesticus sterile F1 males. Asynapsis was not preceded by a failure of double-strand break induction, and the rate of meiotic crossing over was not affected in synapsed chromosomes. DNA double-strand break repair was delayed or failed in unsynapsed autosomes, and misexpression of chromosome X and chromosome Y genes was detected in single pachynemas and by genome-wide expression profiling. Oocytes of F1 hybrid females showed the same kind of synaptic problems but with the incidence reduced to half. Most of the oocytes with pachytene asynapsis were eliminated before birth. We propose the heterospecific pairing of homologous chromosomes as a preexisting condition of asynapsis in interspecific hybrids. The asynapsis may represent a universal mechanistic basis of F1 hybrid sterility manifested by pachytene arrest. It is tempting to speculate that a fast-evolving subset of the noncoding genomic sequence important for chromosome pairing and synapsis may be the culprit.
Collapse
|
45
|
Abstract
RanBPM is a multimodular scaffold protein that interacts with a great variety of molecules including nuclear, cytoplasmic, and membrane proteins. By building multiprotein complexes, RanBPM is thought to regulate various signaling pathways, especially in the immune and nervous system. However, the diversity of these interactions does not facilitate the identification of its precise mechanism of action, and therefore the physiological role of RanBPM still remains unclear. Recently, RanBPM has been shown to be critical for the fertility of both genders in mouse. Although mechanistically it is still unclear how RanBPM affects gametogenesis, the data collected so far suggest that it is a key player in this process. Here, we examine the RanBPM sterility phenotype in the context of other genetic mutations affecting mouse gametogenesis to investigate whether this scaffold protein affects the function of other known proteins whose deficiency results in similar sterility phenotypes.
Collapse
Affiliation(s)
- Sandrine Puverel
- Neural Development Section, Mouse Cancer Genetics Program, Center for Cancer Research, NCI, Frederick, Maryland, USA.
| | | |
Collapse
|
46
|
Abstract
This commentary provides a summary of existing meiotic mutants affecting the synaptonemal complex and meiotic recombination in order to contextualize the recent discovery of SPATA22/repro42 through ENU mutagenesis.
Collapse
Affiliation(s)
- Gregory M Buchold
- Gamete Biology Group, Laboratory of Reproduction and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA.
| |
Collapse
|
47
|
La Salle S, Palmer K, O'Brien M, Schimenti JC, Eppig J, Handel MA. Spata22, a novel vertebrate-specific gene, is required for meiotic progress in mouse germ cells. Biol Reprod 2012; 86:45. [PMID: 22011390 DOI: 10.1095/biolreprod.111.095752] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The N-ethyl-N-nitrosourea-induced repro42 mutation, identified by a forward genetics strategy, causes both male and female infertility, with no other apparent phenotypes. Positional cloning led to the discovery of a nonsense mutation in Spata22, a hitherto uncharacterized gene conserved among bony vertebrates. Expression of both transcript and protein is restricted predominantly to germ cells of both sexes. Germ cells of repro42 mutant mice express Spata22 transcript, but not SPATA22 protein. Gametogenesis is profoundly affected by the mutation, and germ cells in repro42 mutant mice do not progress beyond early meiotic prophase, with subsequent germ cell loss in both males and females. The Spata22 gene is essential for one or more key events of early meiotic prophase, as homologous chromosomes of mutant germ cells do not achieve normal synapsis or repair meiotic DNA double-strand breaks. The repro42 mutation thus identifies a novel mammalian germ cell-specific gene required for meiotic progression.
Collapse
|
48
|
Baillet A, Mandon-Pépin B, Veitia R, Cotinot C. [Genetics of early ovarian differentiation: recent data]. Biol Aujourdhui 2012; 205:201-21. [PMID: 22251856 DOI: 10.1051/jbio/2011021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Indexed: 11/14/2022]
Abstract
Early ovarian development has long been thought of as a default pathway switched on passively by the absence of SRY gene. Recent genetic and transcriptomic studies challenge this view and show that two master pathways simultaneously repress male-specific genes and activate female-specific genetic cascades. This antagonistic action is maintained from embryonic stages to adulthood. The differentiation of the ovarian somatic component is regulated by both the forkhead transcription factor FOXL2 (alone or in combination with oestrogens according to the species) and β-catenin pathway activated by Wnt4 and Rspo1. The sex-specific change in the fate of primordial germ cells depends on the gonad environment. Female gonocytes actively proliferate by mitosis then enter meiosis I until the diplotene stage. Primordial follicle formation occurs when oocytes are individually surrounded with pre-granulosa cells. In mammals, the population of primordial follicles serves as a resting and finite pool of oocytes available during the female reproductive life span. Recent data on factors controlling these molecular processes will be presented in this review.
Collapse
Affiliation(s)
- Adrienne Baillet
- Laboratoire de Génétique et Biologie Cellulaire, EA 4589 Université de Versailles Saint-Quentin-en-Yvelines, École Pratique des Hautes Études, 78035 Versailles Cedex, France
| | | | | | | |
Collapse
|
49
|
Genetics of Meiosis and Recombination in Mice. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY VOLUME 298 2012; 298:179-227. [DOI: 10.1016/b978-0-12-394309-5.00005-5] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
50
|
Edlinger B, Schlögelhofer P. Have a break: determinants of meiotic DNA double strand break (DSB) formation and processing in plants. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:1545-63. [PMID: 21220780 DOI: 10.1093/jxb/erq421] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Meiosis is an essential process for sexually reproducing organisms, leading to the formation of specialized generative cells. This review intends to highlight current knowledge of early events during meiosis derived from various model organisms, including plants. It will particularly focus on cis- and trans-requirements of meiotic DNA double strand break (DSB) formation, a hallmark event during meiosis and a prerequisite for recombination of genetic traits. Proteins involved in DSB formation in different organisms, emphasizing the known factors from plants, will be introduced and their functions outlined. Recent technical advances in DSB detection and meiotic recombination analysis will be reviewed, as these new tools now allow analysis of early meiotic recombination in plants with incredible accuracy. To anticipate future directions in plant meiosis research, unpublished results will be included wherever possible.
Collapse
Affiliation(s)
- Bernd Edlinger
- University of Vienna, Max F. Perutz Laboratories, Department of Chromosome Biology, Dr. Bohr-Gasse 1, Vienna, Austria
| | | |
Collapse
|