1
|
Habib MR, Bu L, Posavi M, Zhong D, Yan G, Zhang SM. Yolk proteins of the schistosomiasis vector snail Biomphalaria glabrata revealed by multi-omics analysis. Sci Rep 2024; 14:1820. [PMID: 38245605 PMCID: PMC10799875 DOI: 10.1038/s41598-024-52392-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 01/18/2024] [Indexed: 01/22/2024] Open
Abstract
Vitellogenesis is the most important process in animal reproduction, in which yolk proteins play a vital role. Among multiple yolk protein precursors, vitellogenin (Vtg) is a well-known major yolk protein (MYP) in most oviparous animals. However, the nature of MYP in the freshwater gastropod snail Biomphalaria glabrata remains elusive. In the current study, we applied bioinformatics, tissue-specific transcriptomics, ovotestis-targeted proteomics, and phylogenetics to investigate the large lipid transfer protein (LLTP) superfamily and ferritin-like family in B. glabrata. Four members of LLTP superfamily (BgVtg1, BgVtg2, BgApo1, and BgApo2), one yolk ferritin (Bg yolk ferritin), and four soma ferritins (Bg ferritin 1, 2, 3, and 4) were identified in B. glabrata genome. The proteomic analysis demonstrated that, among the putative yolk proteins, BgVtg1 was the yolk protein appearing in the highest amount in the ovotestis, followed by Bg yolk ferritin. RNAseq profile showed that the leading synthesis sites of BgVtg1 and Bg yolk ferritin are in the ovotestis (presumably follicle cells) and digestive gland, respectively. Phylogenetic analysis indicated that BgVtg1 is well clustered with Vtgs of other vertebrates and invertebrates. We conclude that, vitellogenin (BgVtg1), not yolk ferritin (Bg yolk ferritin), is the major yolk protein precursor in the schistosomiasis vector snail B. glabrata.
Collapse
Affiliation(s)
- Mohamed R Habib
- Department of Biology, Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Lijing Bu
- Department of Biology, Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Marijan Posavi
- Department of Biology, Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Daibin Zhong
- Program in Public Health, College of Health Science, University of California, Irvine, CA, 92697, USA
| | - Guiyun Yan
- Program in Public Health, College of Health Science, University of California, Irvine, CA, 92697, USA
| | - Si-Ming Zhang
- Department of Biology, Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, NM, 87131, USA.
| |
Collapse
|
2
|
Huang J, E Z, Pan W, Li Z, Lin T, Ren C, Luo P, Ma B, Liu Y, Wu X, Hu C, Jiang X, Chen T. Metabolome and Transcriptome Association Analysis Reveals the Link Between Pigmentation and Nutrition Utilization in the Juveniles of Sea Cucumber Holothuria leucospilota. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:1110-1122. [PMID: 37853250 DOI: 10.1007/s10126-023-10263-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023]
Abstract
The sea cucumber Holothuria leucospilota is an economically and ecologically important tropical species. Following development into juveniles, H. leucospilota undergoes a color change from white to black, involving a pigmentation process for over a period of several months. In this study, a combination of liquid chromatography-tandem mass spectrometry (LC-MS/MS) and Next-Generation sequencing (NGS) were employed to investigate the changes in metabolomic and transcriptomic profiles during pigmentation in H. leucospilota juveniles. The metabolomic analysis identified a total of 341 metabolites, of which 52 were found to be differentially regulated (P < 0.05 and VIP > 1), with 27 being upregulated in white individuals and 25 in black individuals. Additionally, 632 differentially expressed genes (DEGs) were identified, with 380 genes upregulated in white samples and 252 genes upregulated in black samples. Interestingly, the melanin content and tyrosinase transcript levels did not display significant differences between the two groups. Metabolomic data suggested the involvement of the linoleic acid metabolic pathway in pigmentation. Transcriptomic analysis, coupled with realtime PCR validation, revealed a decrease in the transcript levels of digestive enzymes like α-amylase, maltase-glucoamylase, and trehalase after the juveniles changed to black. Furthermore, the mRNA expressions of major yolk proteins showed a decline, indicating a shift in the accumulation of protein nutrient sources. Overall, our findings suggest that during the pigmentation process in H. leucospilota, no significant changes were observed in the classical melanin pathway, while notable alterations were observed in their nutritional status. This study provides valuable insights into the regulatory mechanisms of pigmentation in marine organisms.
Collapse
Affiliation(s)
- Jiasheng Huang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology (LMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Zixuan E
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology (LMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Wenjie Pan
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology (LMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Zhi Li
- Shanghai Collaborative Innovation Centre for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
| | - Tiehao Lin
- Guangdong Institute for Drug Control, Guangzhou, 5106630, People's Republic of China
| | - Chunhua Ren
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology (LMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, People's Republic of China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Wuhan, 430072, People's Republic of China
| | - Peng Luo
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology (LMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, People's Republic of China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Wuhan, 430072, People's Republic of China
| | - Bo Ma
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology (LMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yang Liu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology (LMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xugan Wu
- Shanghai Collaborative Innovation Centre for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
| | - Chaoqun Hu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology (LMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, People's Republic of China
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning, 530007, People's Republic of China
| | - Xiao Jiang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology (LMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, People's Republic of China.
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Wuhan, 430072, People's Republic of China.
| | - Ting Chen
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology (LMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, People's Republic of China.
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Wuhan, 430072, People's Republic of China.
| |
Collapse
|
3
|
Wang Y, Song Y, Chang Y, Liu Y, Chen G, Xue C. Dynamic changes of peptidome and release of polysaccharide in sea cucumber (Apostichopus japonicus) hydrolysates depending on enzymatic hydrolysis approaches. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
D’Alessio S, Buckley KM, Kraev I, Hayes P, Lange S. Extracellular Vesicle Signatures and Post-Translational Protein Deimination in Purple Sea Urchin ( Strongylocentrotus purpuratus) Coelomic Fluid-Novel Insights into Echinodermata Biology. BIOLOGY 2021; 10:866. [PMID: 34571743 PMCID: PMC8464700 DOI: 10.3390/biology10090866] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 12/13/2022]
Abstract
The purple sea urchin (Strongylocentrotus purpuratus) is a marine invertebrate of the class Echinoidea that serves as an important research model for developmental biology, cell biology, and immunology, as well as for understanding regenerative responses and ageing. Peptidylarginine deiminases (PADs) are calcium-dependent enzymes that mediate post-translational protein deimination/citrullination. These alterations affect protein function and may also play roles in protein moonlighting. Extracellular vesicles (EVs) are membrane-bound vesicles that are released from cells as a means of cellular communication. Their cargo includes a range of protein and RNA molecules. EVs can be isolated from many body fluids and are therefore used as biomarkers in physiological and pathological responses. This study assessed EVs present in the coelomic fluid of the purple sea urchin (Strongylocentrotus purpuratus), and identified both total protein cargo as well as the deiminated protein cargo. Deiminated proteins in coelomic fluid EVs were compared with the total deiminated proteins identified in coelomic fluid to assess putative differences in deiminated protein targets. Functional protein network analysis for deiminated proteins revealed pathways for immune, metabolic, and gene regulatory functions within both total coelomic fluid and EVs. Key KEGG and GO pathways for total EV protein cargo furthermore showed some overlap with deimination-enriched pathways. The findings presented in this study add to current understanding of how post-translational deimination may shape immunity across the phylogeny tree, including possibly via PAD activity from microbiota symbionts. Furthermore, this study provides a platform for research on EVs as biomarkers in sea urchin models.
Collapse
Affiliation(s)
- Stefania D’Alessio
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK; (S.D.); (P.H.)
| | | | - Igor Kraev
- Electron Microscopy Suite, Faculty of Science, Technology, Engineering and Mathematics, Open University, Milton Keynes MK7 6AA, UK;
| | - Polly Hayes
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK; (S.D.); (P.H.)
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK; (S.D.); (P.H.)
- UCL EGA Institute for Women’s Health, Maternal and Fetal Medicine, London WC1E 6AU, UK
| |
Collapse
|
5
|
Weng N, Guagliardo P, Jiang H, Wang WX. NanoSIMS Imaging of Bioaccumulation and Subcellular Distribution of Manganese During Oyster Gametogenesis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:8223-8235. [PMID: 34032398 DOI: 10.1021/acs.est.1c02393] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Many bivalve mollusks display remarkable sex differentiation of gonadal accumulation of manganese (Mn), but the underlying processes responsible for such differences have seldom been explored. In this study, the accumulation of Mn in male and female gonads during the reproductive cycle of oysters was first examined, and the distributions of Mn in oocytes and sperm cells at different developmental stages were imaged by the nanoscale secondary ion mass spectrometry (NanoSIMS) at the subcellular level. We found that the distribution and accumulation of Mn during oogenesis were closely associated with the formation and translocation of cortical granules. This is the first time that the enrichment of Mn was directly visualized in cortical granules, which was identified as the major storage site of Mn in oocytes of oysters. Yolk granules were revealed as another storage pool of Mn in oyster oocytes with lower accumulation. In contrast, Mn was mainly distributed in the nucleus of sperm cells with accumulation levels much lower than those in cortical and yolk granules of oocytes. These results demonstrated great differences of the subcellular localization and accumulation capacity of Mn between oocytes and sperm cells in oysters, implying the sex differentiation in susceptibility of reproductive response to Mn stress. Our study also highlights the importance of gender difference in future biomonitoring and ecotoxicological studies of Mn in marine bivalves.
Collapse
Affiliation(s)
- Nanyan Weng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Paul Guagliardo
- Centre for Microscopy, Characterisation and Analysis, University of Western Australia, Perth, Western Australia 6009, Australia
| | - Haibo Jiang
- Centre for Microscopy, Characterisation and Analysis, University of Western Australia, Perth, Western Australia 6009, Australia
- School of Molecular Sciences, University of Western Australia, Perth, Western Australia 6009, Australia
| | - Wen-Xiong Wang
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
- School of Energy and Environment and State Key Laboratory of Marine Pollution, Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), City University of Hong Kong, Kowloon, Hong Kong, China
| |
Collapse
|
6
|
Jiang H, Tang D, Gao X, Lin C, Feng B, Du C, Jin S, Zhu J. Molecular cloning, characterisation and expression analysis of the vitellogenin genes vtgAo1 and vtgC during ovarian development in Chinese hook snout carp Opsariichthys bidens. Reprod Fertil Dev 2021; 33:455-465. [PMID: 33858563 DOI: 10.1071/rd20294] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/17/2021] [Indexed: 11/23/2022] Open
Abstract
Vitellogenesis is essential for oocyte maturation. Vitellogenin (Vtg), a yolk precursor protein, plays an important role in oogenesis and vitellogenesis. Chinese hook snout carp Opsariichthys bidens is an economically important freshwater fish in China whose reproductive and developmental biology are not well understood. In this study, we undertook histological analysis to examine ovary development and oogenesis in O. bidens. The ovaries were divided into Stages II-V and oocytes were divided into perinuclear oocytes, cortical alveoli oocytes, vitellogenic oocytes and mature oocytes. Full-length cDNA sequences were cloned of two vtg genes from the liver of O. bidens, namely Ob-vtgAo1 and Ob-vtgC. Ob-vtgAo1 and Ob-vtgC cDNA are made up of 4136 and 4392 bases respectively and encode proteins containing 1335 and 1250 amino acids respectively. Ob-vtgAo1 contains three yolk protein domains: lipovitellin heavy chain (LvH), phosvitin (Pv) and lipovitellin light chain (LvL), whereas Ob-VtgC contains LvH and LvL, which are incomplete Vtgs. Ob-vtgAo1 and Ob-vtgC mRNA expression was significantly higher in the liver of O. bidens than in all other tissues. In oocytes of Stage II-III ovaries, yolk granules are almost absent and ovarian and hepatic Ob-vtgAo1 and Ob-vtgC expression is low. At Stage IV, the oocyte is filled with yolk granules and ovarian and hepatic Ob-vtgAo1 and Ob-vtgC expression is significantly increased. Collectively, these findings help us better understand vitellogenesis in O. bidens.
Collapse
Affiliation(s)
- Huayu Jiang
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Daojun Tang
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Xinming Gao
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Chenwen Lin
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Binbin Feng
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Chen Du
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Shan Jin
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Junquan Zhu
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, PR China; and Corresponding author.
| |
Collapse
|
7
|
Eckelbarger KJ, Hodgson AN. Invertebrate oogenesis – a review and synthesis: comparative ovarian morphology, accessory cell function and the origins of yolk precursors. INVERTEBR REPROD DEV 2021. [DOI: 10.1080/07924259.2021.1927861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Kevin J. Eckelbarger
- Darling Marine Center, School of Marine Sciences, The University of Maine, Walpole, Maine, U.S.A
| | - Alan N. Hodgson
- Department of Zoology and Entomology, Rhodes University, Grahamstown, South Africa
| |
Collapse
|
8
|
Zou MM, Wang Q, Chu LN, Vasseur L, Zhai YL, Qin YD, He WY, Yang G, Zhou YY, Peng L, You MS. CRISPR/Cas9-induced vitellogenin knockout lead to incomplete embryonic development in Plutella xylostella. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 123:103406. [PMID: 32485215 DOI: 10.1016/j.ibmb.2020.103406] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 05/09/2020] [Accepted: 05/09/2020] [Indexed: 06/11/2023]
Abstract
Vitellogenin (Vg) is important for insect egg maturation and embryo development. In the present study, we characterized the molecular structure and expression profile of Vg gene, and analyzed its reproductive functions in diamondback moth, Plutella xylostella (L.), a destructive pest of cruciferous crops, using CRISPR/Cas9 system. The P. xylostella Vg (PxVg) included all conserved domains and motifs that were commonly found in most insect Vgs except for the polyserine tract. PxVg gene was highly expressed in female pupae and adults. PxVg protein was detected in eggs and female adults. PxVg was mainly expressed in the fat body and its protein was detected in most tissues, except in the midgut. CRISPR/Cas9-induced PxVg knockout successfully constructed a homozygous mutant strain with a 5-base pair nucleotide deletion. No PxVg protein was found in the mutant individuals and in their ovaries. There were no significant differences between wild (WT) and mutant (Mut-5) types of P. xylostella in terms of ovariole length and the number of fully developed oocytes in newly emerged females. No significant difference was observed in the number of eggs laid within two days, but there was a lower egg hatchability (84% for WT vs. 47% for Mut-5). This is the first study presenting the functions of Vg in ovary development, egg maturation, oviposition and embryonic development of P. xylostella. Our results suggest that the reproductive functions of Vg may be species-specific in insects. It is possible that Vg may not be the major egg yolk protein precursor in P. xylostella. Other "functional Vgs" closely involved in the yolk formation and oogenesis would need to be further explored in P. xylostella.
Collapse
Affiliation(s)
- Ming-Min Zou
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qing Wang
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Li-Na Chu
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Liette Vasseur
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, L2S 3A1, Canada
| | - Yi-Long Zhai
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yu-Dong Qin
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wei-Yi He
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Guang Yang
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuan-Yuan Zhou
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lu Peng
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Min-Sheng You
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
9
|
Feng J, Zhang L, Xia X, Hu W, Zhou P. Effect of geographic variation on the proteome of sea cucumber (Stichopus japonicus). Food Res Int 2020; 136:109498. [PMID: 32846579 DOI: 10.1016/j.foodres.2020.109498] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/09/2020] [Accepted: 06/24/2020] [Indexed: 12/26/2022]
Abstract
Sea cucumber is a sensitive organism that is easily challenged by environmental change. The aim of this study was to characterize the proteome of sea cucumbers from 5 main Chinese origins, including Xiamen (XM), Dalian (DL), Weihai (WH), Yantai (YT) and Qingdao (QD). In this work, a tandem mass tag (TMT) labeling proteomic approach was applied to identify and quantify the proteome of sea cucumber. A total of 5051 proteins were identified in the body wall; among those proteins, 1594 proteins (31.6%) were identified as enzyme proteins, and 33 proteins belonged to collagen. In addition, the 10 most highly abundant proteins were further discussed. Among all quantified proteins, 2266 were significantly differentially expressed proteins (SDEPs) across the 5 origins. These SDEPs were related to pigmentation (5 proteins), antioxidant activity (13 proteins), and immune system processes (29 proteins). Based on SDEPs, DL differed the most from QD and XM, as well as WH and YT, as shown in principal component analysis (PCA) and hierarchical clustering. In conclusion, one-fourth of the significantly different proteins found in the sea cucumber body wall among the 5 main Chinese locations indicated the sensitivity of sea cucumber to variations in temperature, environment, and feeding.
Collapse
Affiliation(s)
- Jianhui Feng
- State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Lina Zhang
- State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China.
| | - Xubin Xia
- Shandong Homey Aquatic Development CO., Rongcheng, Shandong Province 264000, China
| | - Wei Hu
- Shandong Homey Aquatic Development CO., Rongcheng, Shandong Province 264000, China
| | - Peng Zhou
- State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China.
| |
Collapse
|
10
|
Peng L, Wang Q, Zou MM, Qin YD, Vasseur L, Chu LN, Zhai YL, Dong SJ, Liu LL, He WY, Yang G, You MS. CRISPR/Cas9-Mediated Vitellogenin Receptor Knockout Leads to Functional Deficiency in the Reproductive Development of Plutella xylostella. Front Physiol 2020; 10:1585. [PMID: 32038281 PMCID: PMC6989618 DOI: 10.3389/fphys.2019.01585] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 12/17/2019] [Indexed: 12/18/2022] Open
Abstract
The vitellogenin receptor (VgR) belongs to the low-density lipoprotein receptor (LDLR) gene superfamily and plays an indispensable role in Vg transport, yolk deposition, and oocyte development. For this reason, it has become a promising target for pest control. The involvement of VgR in Vg transport and reproductive functions remains unclear in diamondback moths, Plutella xylostella (L.), a destructive pest of cruciferous crops. Here, we cloned and identified the complete cDNA sequence of P. xylostella VgR, which encoded 1805 amino acid residues and contained four conserved domains of LDLR superfamily. PxVgR was mainly expressed in female adults, more specifically in the ovary. PxVgR protein also showed the similar expression profile with the PxVgR transcript. CRISPR/Cas9-mediated PxVgR knockout created a homozygous mutant of P. xylostella with 5-bp-nucleotide deletion in the PxVgR. The expression deficiency of PxVgR protein was detected in the ovaries and eggs of mutant individuals. Vg protein was still detected in the eggs of the mutant individuals, but with a decreased expression level. However, PxVg transcripts were not significantly affected by the PxVgR knockout. Knockout of PxVgR resulted in shorter ovarioles of newly emerged females. No significant difference was detected between wild and mutant individuals in terms of the number of eggs laid in the first 3 days after mating. The loss of PxVgR gene resulted in smaller and whiter eggs and lower egg hatching rate. This study represents the first report on the functions of VgR in Vg transport, ovary development, oviposition, and embryonic development of P. xylostella using CRISPR/Cas9 technology. This study lays the foundation for understanding molecular mechanisms of P. xylostella reproduction, and for making use of VgR as a potential genetic-based molecular target for better control of the P. xylostella.
Collapse
Affiliation(s)
- Lu Peng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China.,Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China.,Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qing Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China.,Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China.,Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ming-Min Zou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China.,Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China.,Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yu-Dong Qin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China.,Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China.,Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Liette Vasseur
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China.,Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China.,Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.,Department of Biological Sciences, Brock University, St. Catharines, ON, Canada
| | - Li-Na Chu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China.,Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China.,Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yi-Long Zhai
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China.,Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China.,Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shi-Jie Dong
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China.,Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China.,Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Li-Li Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China.,Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China.,Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wei-Yi He
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China.,Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China.,Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guang Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China.,Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China.,Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Min-Sheng You
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China.,Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China.,Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
11
|
Tan K, Zhang H, Lim LS, Ma H, Li S, Zheng H. Roles of Carotenoids in Invertebrate Immunology. Front Immunol 2020; 10:3041. [PMID: 32010132 PMCID: PMC6979042 DOI: 10.3389/fimmu.2019.03041] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/11/2019] [Indexed: 12/29/2022] Open
Abstract
Carotenoids are biologically active pigments that are well-known to enhance the defense and immunity of the vertebrate system. However, in invertebrates, the role of carotenoids in immunity is not clear. Therefore, this study aims to review the scientific evidence for the role of carotenoids in invertebrate immunization. From the analysis of published literatures and recent studies from our laboratory, it is obvious that carotenoids are involved in invertebrate immunity in two ways. On the one hand, carotenoids can act as antioxidant enzymes to remove singlet oxygen, superoxide anion radicals, and hydroxyl radicals, thereby reducing SOD activity and reducing the cost of immunity. In some organisms, carotenoids have been shown to promote SOD activity by up-regulating the expression of the ZnCuSOD gene. Carotenoids, on the other hand, play a role in the expression and regulation of many genes involved in invertebrate immunity, including thioredoxins (TRX), peptidoglycan recognition receptor proteins (PGRPs), ferritins, prophenoloxidase (ProPO), vitellogenin (Vg), toll-like receptor (TLRs), heat shock proteins (HSPs), and CuZnSOD gene. The information in this review is very useful for updating our understanding of the progress of carotenoid research in invertebrate immunology and to help identify topics for future topics.
Collapse
Affiliation(s)
- Karsoon Tan
- Key Laboratory of Marine Biotechnology of Guangdong Province, Institute of Marine Sciences, Shantou University, Shantou, China.,Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou, China.,STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| | - Hongkuan Zhang
- Key Laboratory of Marine Biotechnology of Guangdong Province, Institute of Marine Sciences, Shantou University, Shantou, China.,Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou, China.,STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| | - Leong-Seng Lim
- Borneo Marine Research Institute, University Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Hongyu Ma
- Key Laboratory of Marine Biotechnology of Guangdong Province, Institute of Marine Sciences, Shantou University, Shantou, China.,Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou, China.,STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| | - Shengkang Li
- Key Laboratory of Marine Biotechnology of Guangdong Province, Institute of Marine Sciences, Shantou University, Shantou, China.,Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou, China.,STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| | - Huaiping Zheng
- Key Laboratory of Marine Biotechnology of Guangdong Province, Institute of Marine Sciences, Shantou University, Shantou, China.,Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou, China.,STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| |
Collapse
|
12
|
Chen C, Li HW, Ku WL, Lin CJ, Chang CF, Wu GC. Two distinct vitellogenin genes are similar in function and expression in the bigfin reef squid Sepioteuthis lessoniana. Biol Reprod 2019; 99:1034-1044. [PMID: 29901793 DOI: 10.1093/biolre/ioy131] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 06/11/2018] [Indexed: 01/21/2023] Open
Abstract
Unlike vitellogenin, which is the sole major precursor of yolk protein in all oviparous vertebrates, a variety of major precursor of yolk proteins are found among oviparous invertebrates. Sea urchins have a transferrin-like yolk protein, while all other major precursors of yolk proteins in oviparous invertebrates belong to the superfamily of large lipid transfer proteins (LLTPs). However, a comprehensive understanding of vitellogenesis is absent in cephalopods. To understand control of vitellogenesis by the LLTPs gene, two vitellogenins (VTG1 and VTG2), two apolipophorins (APOLP2A and APOLP2B), and a cytosolic large subunit of microsomal triglyceride transfer protein (MTTP) found in the bigfin reef squid. Only the two VTGs showed high levels of expression in mature females compared to males. We further analyzed the expression profile and localization of both VTGs/VTGs during ovarian development. Our data showed that VTGs/VTGs expressions were correlated to the female reproductive cycle. Ovarian VTG1 and VTG2 were localized in the follicle cells but not in oocytes. In addition, VTG1 and VTG2 were represented in follicle cells and oocytes. Thus, our results showed that both VTGs were synthesized by follicle cells and are then delivered to oocytes. In addition, we demonstrated that VTGs were the major precursor of yolk protein in bigfin reef squid. We also found differential proteolytic cleavage processes of VTG1 and VTG2 during VTGs accumulation in oocytes. Therefore, our data shed light on the molecular mechanism of the yolk accumulation pathway in cephalopods.
Collapse
Affiliation(s)
- Chih Chen
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Hau-Wen Li
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Wei-Lun Ku
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Chien-Ju Lin
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Ching-Fong Chang
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan.,Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| | - Guan-Chung Wu
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan.,Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| |
Collapse
|
13
|
Li C, Fang H, Xu D. Effect of seasonal high temperature on the immune response in Apostichopus japonicus by transcriptome analysis. FISH & SHELLFISH IMMUNOLOGY 2019; 92:765-771. [PMID: 31288099 DOI: 10.1016/j.fsi.2019.07.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 06/09/2023]
Abstract
The sea cucumber Apostichopus japonicus is a flourishing aquaculture species in China. However, there are challenges for sea cucumber aquaculture, one of which is the high temperature in summer. In this study, we explored the transcriptome expression profiles with seasons (APR, JUN and JUL) in the muscle tissue of A. japonicus. The temperature of the natural coast was 13 °C, 21 °C and 25 °C respectively when sampling. Compared with APR group, changes of expression profiles were more significant in JUL group than that in JUN group. A total of 46 differential expressed genes (DEGs) involved in both innate and adaptive immunity were highlighted, including 27 up-regulated and 19 down-regulated genes. They were further grouped into 10 sub-classes: heat shock, coagulation cascades, antigen processing and presentation, inflammatory response, transporter activity, immunoglobulin, lectin C, cell adhesion, reactive oxygen species (ROS) scavenging, apoptosis and autophagy. The study will offer deep insights of the molecular mechanisms underlying the physiological responses to seasonal high temperature in A. japonicus. Particularly, knowledge about the immunological effects of seasonal temperature on the species is critical for the optimal management practices for both wild and aquaculture populations.
Collapse
Affiliation(s)
- Chao Li
- College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Huahua Fang
- College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Dongxue Xu
- College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
14
|
Davidson PL, Thompson JW, Foster MW, Moseley MA, Byrne M, Wray GA. A comparative analysis of egg provisioning using mass spectrometry during rapid life history evolution in sea urchins. Evol Dev 2019; 21:188-204. [PMID: 31102332 PMCID: PMC7232848 DOI: 10.1111/ede.12289] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 12/20/2018] [Accepted: 02/27/2019] [Indexed: 01/20/2023]
Abstract
A dramatic life history switch that has evolved numerous times in marine invertebrates is the transition from planktotrophic (feeding) to lecithotrophic (nonfeeding) larval development-an evolutionary tradeoff with many important developmental and ecological consequences. To attain a more comprehensive understanding of the molecular basis for this switch, we performed untargeted lipidomic and proteomic liquid chromatography-tandem mass spectrometry on eggs and larvae from three sea urchin species: the lecithotroph Heliocidaris erythrogramma, the closely related planktotroph Heliocidaris tuberculata, and the distantly related planktotroph Lytechinus variegatus. We identify numerous molecular-level changes possibly associated with the evolution of lecithotrophy in H. erythrogramma. We find the massive lipid stores of H. erythrogramma eggs are largely composed of low-density, diacylglycerol ether lipids that, contrary to expectations, appear to support postmetamorphic development and survivorship. Rapid premetamorphic development in this species may instead be powered by upregulated carbohydrate metabolism or triacylglycerol metabolism. We also find proteins involved in oxidative stress regulation are upregulated in H. erythrogramma eggs, and apoB-like lipid transfer proteins may be important for echinoid oogenic nutrient provisioning. These results demonstrate how mass spectrometry can enrich our understanding of life history evolution and organismal diversity by identifying specific molecules associated with distinct life history strategies and prompt new hypotheses about how and why these adaptations evolve.
Collapse
Affiliation(s)
| | - J. Will Thompson
- Center for Genomic and Computational Biology, Duke University, Durham, North Carolina
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina
- Proteomics and Metabolomics Shared Resource, Duke University, Durham, North Carolina
| | - Matthew W. Foster
- Center for Genomic and Computational Biology, Duke University, Durham, North Carolina
- Department of Medicine, Duke University, Durham, North Carolina
- Proteomics and Metabolomics Shared Resource, Duke University, Durham, North Carolina
| | - M. Arthur Moseley
- Center for Genomic and Computational Biology, Duke University, Durham, North Carolina
- Department of Medicine, Duke University, Durham, North Carolina
- Proteomics and Metabolomics Shared Resource, Duke University, Durham, North Carolina
| | - Maria Byrne
- School of Medical Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Gregory A. Wray
- Department of Biology, Duke University, Durham, North Carolina
- Center for Genomic and Computational Biology, Duke University, Durham, North Carolina
| |
Collapse
|
15
|
Huo D, Sun L, Zhang L, Ru X, Liu S, Yang X, Yang H. Global-warming-caused changes of temperature and oxygen alter the proteomic profile of sea cucumber Apostichopus japonicus. J Proteomics 2019; 193:27-43. [DOI: 10.1016/j.jprot.2018.12.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 12/05/2018] [Accepted: 12/14/2018] [Indexed: 12/28/2022]
|
16
|
Xu D, Zhou S, Sun L. RNA-seq based transcriptional analysis reveals dynamic genes expression profiles and immune-associated regulation under heat stress in Apostichopus japonicus. FISH & SHELLFISH IMMUNOLOGY 2018; 78:169-176. [PMID: 29684611 DOI: 10.1016/j.fsi.2018.04.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/08/2018] [Accepted: 04/18/2018] [Indexed: 06/08/2023]
Abstract
In this study, we explored the gene expression profiles in Apostichopus japonicus under continuous heat stress (6 h, 48 h and 192 h) by applying RNA-seq technique. A total of 676, 1010 and 1083 differentially expressed genes were detected at three heat stress groups respectively, which suggested complex regulation of various biological processes. Then we focused on the changing of immune system under HS in sea cucumbers. Key immune-associated genes were involved in heat stress response, which were classified into six groups: heat shock proteins, transferrin superfamily members, effector genes, proteases, complement system, and pattern recognition receptors and signaling. Moreover, the mRNA expression of the immune-associated genes were validated by the real time PCR. Our results showed that an immunological strategy in this species was developed to confront abrupt elevated temperatures in the environment.
Collapse
Affiliation(s)
- Dongxue Xu
- College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China.
| | - Shun Zhou
- College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Lina Sun
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
17
|
Liew YJ, Zoccola D, Li Y, Tambutté E, Venn AA, Michell CT, Cui G, Deutekom ES, Kaandorp JA, Voolstra CR, Forêt S, Allemand D, Tambutté S, Aranda M. Epigenome-associated phenotypic acclimatization to ocean acidification in a reef-building coral. SCIENCE ADVANCES 2018; 4:eaar8028. [PMID: 29881778 PMCID: PMC5990304 DOI: 10.1126/sciadv.aar8028] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/27/2018] [Indexed: 05/18/2023]
Abstract
There are increasing concerns that the current rate of climate change might outpace the ability of reef-building corals to adapt to future conditions. Work on model systems has shown that environmentally induced alterations in DNA methylation can lead to phenotypic acclimatization. While DNA methylation has been reported in corals and is thought to associate with phenotypic plasticity, potential mechanisms linked to changes in whole-genome methylation have yet to be elucidated. We show that DNA methylation significantly reduces spurious transcription in the coral Stylophora pistillata. Furthermore, we find that DNA methylation also reduces transcriptional noise by fine-tuning the expression of highly expressed genes. Analysis of DNA methylation patterns of corals subjected to long-term pH stress showed widespread changes in pathways regulating cell cycle and body size. Correspondingly, we found significant increases in cell and polyp sizes that resulted in more porous skeletons, supporting the hypothesis that linear extension rates are maintained under conditions of reduced calcification. These findings suggest an epigenetic component in phenotypic acclimatization that provides corals with an additional mechanism to cope with environmental change.
Collapse
Affiliation(s)
- Yi Jin Liew
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Biological and Environmental Sciences and Engineering Division, Thuwal, Saudi Arabia
| | - Didier Zoccola
- Centre Scientifique de Monaco, Department of Marine Biology, Principality of Monaco
| | - Yong Li
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Biological and Environmental Sciences and Engineering Division, Thuwal, Saudi Arabia
| | - Eric Tambutté
- Centre Scientifique de Monaco, Department of Marine Biology, Principality of Monaco
| | - Alexander A. Venn
- Centre Scientifique de Monaco, Department of Marine Biology, Principality of Monaco
| | - Craig T. Michell
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Biological and Environmental Sciences and Engineering Division, Thuwal, Saudi Arabia
| | - Guoxin Cui
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Biological and Environmental Sciences and Engineering Division, Thuwal, Saudi Arabia
| | - Eva S. Deutekom
- Computational Science Lab, Faculty of Science, University of Amsterdam, Amsterdam, Netherlands
| | - Jaap A. Kaandorp
- Computational Science Lab, Faculty of Science, University of Amsterdam, Amsterdam, Netherlands
| | - Christian R. Voolstra
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Biological and Environmental Sciences and Engineering Division, Thuwal, Saudi Arabia
| | - Sylvain Forêt
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Denis Allemand
- Centre Scientifique de Monaco, Department of Marine Biology, Principality of Monaco
| | - Sylvie Tambutté
- Centre Scientifique de Monaco, Department of Marine Biology, Principality of Monaco
| | - Manuel Aranda
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Biological and Environmental Sciences and Engineering Division, Thuwal, Saudi Arabia
- Corresponding author.
| |
Collapse
|
18
|
Shang WH, Tang Y, Su SY, Han JR, Yan JN, Wu HT, Zhu BW. In silicoassessment and structural characterization of antioxidant peptides from major yolk protein of sea urchinStrongylocentrotus nudus. Food Funct 2018; 9:6435-6443. [DOI: 10.1039/c8fo01668b] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Sea urchin gonads have been demonstrated to contain major yolk protein (MYP), which can be hydrolyzed by enzymes to release biologically active peptides.
Collapse
Affiliation(s)
- Wen-Hui Shang
- School of Food Science and Technology
- Dalian Polytechnic University
- Dalian 116034
- P. R. China
| | - Yue Tang
- School of Food Science and Technology
- Dalian Polytechnic University
- Dalian 116034
- P. R. China
- National Engineering Research Center of Seafood
| | - Sheng-Yi Su
- School of Food Science and Technology
- Dalian Polytechnic University
- Dalian 116034
- P. R. China
| | - Jia-Run Han
- School of Food Science and Technology
- Dalian Polytechnic University
- Dalian 116034
- P. R. China
| | - Jia-Nan Yan
- School of Food Science and Technology
- Dalian Polytechnic University
- Dalian 116034
- P. R. China
| | - Hai-Tao Wu
- School of Food Science and Technology
- Dalian Polytechnic University
- Dalian 116034
- P. R. China
- National Engineering Research Center of Seafood
| | - Bei-Wei Zhu
- School of Food Science and Technology
- Dalian Polytechnic University
- Dalian 116034
- P. R. China
- National Engineering Research Center of Seafood
| |
Collapse
|
19
|
Vitellogenin’s putative role in Tegillarca granosa’s cadmium detoxification. Genes Genomics 2017. [DOI: 10.1007/s13258-016-0477-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
Chen M, Li X, Zhu A, Storey KB, Sun L, Gao T, Wang T. Understanding mechanism of sea cucumber Apostichopus japonicus aestivation: Insights from TMT-based proteomic study. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2016; 19:78-89. [DOI: 10.1016/j.cbd.2016.06.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 05/31/2016] [Accepted: 06/14/2016] [Indexed: 12/16/2022]
|
21
|
Torgasheva NA, Menzorova NI, Sibirtsev YT, Rasskazov VA, Zharkov DO, Nevinsky GA. Base excision DNA repair in the embryonic development of the sea urchin, Strongylocentrotus intermedius. MOLECULAR BIOSYSTEMS 2016; 12:2247-56. [PMID: 27158700 DOI: 10.1039/c5mb00906e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In actively proliferating cells, such as the cells of the developing embryo, DNA repair is crucial for preventing the accumulation of mutations and synchronizing cell division. Sea urchin embryo growth was analyzed and extracts were prepared. The relative activity of DNA polymerase, apurinic/apyrimidinic (AP) endonuclease, uracil-DNA glycosylase, 8-oxoguanine-DNA glycosylase, and other glycosylases was analyzed using specific oligonucleotide substrates of these enzymes; the reaction products were resolved by denaturing 20% polyacrylamide gel electrophoresis. We have characterized the profile of several key base excision repair activities in the developing embryos (2 blastomers to mid-pluteus) of the grey sea urchin, Strongylocentrotus intermedius. The uracil-DNA glycosylase specific activity sharply increased after blastula hatching, whereas the specific activity of 8-oxoguanine-DNA glycosylase steadily decreased over the course of the development. The AP-endonuclease activity gradually increased but dropped at the last sampled stage (mid-pluteus 2). The DNA polymerase activity was high at the first cleavage division and then quickly decreased, showing a transient peak at blastula hatching. It seems that the developing sea urchin embryo encounters different DNA-damaging factors early in development within the protective envelope and later as a free-floating larva, with hatching necessitating adaptation to the shift in genotoxic stress conditions. No correlation was observed between the dynamics of the enzyme activities and published gene expression data from developing congeneric species, S. purpuratus. The results suggest that base excision repair enzymes may be regulated in the sea urchin embryos at the level of covalent modification or protein stability.
Collapse
Affiliation(s)
- Natalya A Torgasheva
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 8 Lavrentieva Ave., Novosibirsk 630090, Russia. and Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia
| | - Natalya I Menzorova
- G. B. Elyakov Pacific Institute of Bioorganic Chemistry FEB RAS, 159 100 let Vladivostoku Ave., Vladivostok 690022, Russia
| | - Yurii T Sibirtsev
- G. B. Elyakov Pacific Institute of Bioorganic Chemistry FEB RAS, 159 100 let Vladivostoku Ave., Vladivostok 690022, Russia
| | - Valery A Rasskazov
- G. B. Elyakov Pacific Institute of Bioorganic Chemistry FEB RAS, 159 100 let Vladivostoku Ave., Vladivostok 690022, Russia
| | - Dmitry O Zharkov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 8 Lavrentieva Ave., Novosibirsk 630090, Russia. and Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia
| | - Georgy A Nevinsky
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 8 Lavrentieva Ave., Novosibirsk 630090, Russia. and Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia
| |
Collapse
|
22
|
Zazueta-Novoa V, Onorato TM, Reyes G, Oulhen N, Wessel GM. Complexity of Yolk Proteins and Their Dynamics in the Sea Star Patiria miniata. THE BIOLOGICAL BULLETIN 2016; 230:209-19. [PMID: 27365416 PMCID: PMC5103698 DOI: 10.1086/bblv230n3p209] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Oviparous animals store yolk proteins within the developing oocyte. These proteins are used in gametogenesis and as a nutritional source for embryogenesis. Vitellogenin and the major yolk protein are two of the most important yolk proteins among diverse species of invertebrates and vertebrates. Among the echinoderms, members of the subphyla Echinozoa (sea urchins and sea cucumbers) express the major yolk protein (MYP) but not vitellogenin (Vtg), while an initial report has documented that two Asterozoa (sea stars) express a vitellogenin. Our results show that sea stars contain two vitellogenins, Vtg 1 and Vtg 2, and MYP. In Patiria miniata, these genes are differentially expressed in the somatic and germ cells of the ovary: Vtg 1 is enriched in the somatic cells of the ovary but not in the oocytes, and Vtg 2 accumulates in both oocytes and somatic cells; MYP is not robustly present in either. Remarkably, Vtg 2 and MYP mRNA reappear in larvae; Vtg 2 is detected within cells of the ectoderm, and MYP accumulates in the coelomic pouches, the intestine, and the posterior enterocoel (PE), the site of germ line formation in this animal. Additionally, the Vtg 2 protein is present in oocytes, follicle cells, and developing embryos, but becomes undetectable following gastrulation. These results help elucidate the mechanisms involved in yolk dynamics, and provide molecular information that allows for greater understanding of the evolution of these important gene products.
Collapse
Affiliation(s)
- Vanesa Zazueta-Novoa
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, 185 Meeting Street, Box G-SFH, Providence, Rhode Island 02912; and
| | - Thomas M Onorato
- Department of Natural Sciences, LaGuardia Community College/CUNY, Room M207, 31-10 Thomson Avenue, Long Island City, New York 11101
| | - Gerardo Reyes
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, 185 Meeting Street, Box G-SFH, Providence, Rhode Island 02912; and Department of Natural Sciences, LaGuardia Community College/CUNY, Room M207, 31-10 Thomson Avenue, Long Island City, New York 11101
| | - Nathalie Oulhen
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, 185 Meeting Street, Box G-SFH, Providence, Rhode Island 02912; and
| | - Gary M Wessel
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, 185 Meeting Street, Box G-SFH, Providence, Rhode Island 02912; and
| |
Collapse
|
23
|
Alqaisi KM, Lamare MD, Grattan DR, Damsteegt EL, Schneider WJ, Lokman PM. A comparative study of vitellogenesis in Echinodermata: Lessons from the sea star. Comp Biochem Physiol A Mol Integr Physiol 2016; 198:72-86. [PMID: 27085373 DOI: 10.1016/j.cbpa.2016.04.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 04/02/2016] [Accepted: 04/09/2016] [Indexed: 11/19/2022]
Abstract
The provision of yolk precursor proteins to the oviparous egg is crucial for normal embryo development. In Echinodermata, a transferrin-like yolk component termed major yolk protein (MYP) is a major precursor protein in Echinoidea and Holothuroidea. In contrast, in Asteroidea a single vitellogenin (Vtg) was recently identified, but its role as primary yolk protein remains unclear. To resolve the apparent MYP-Vtg dichotomy in sea stars and to understand the dynamics of candidate yolk protein gene expression during the reproductive cycle, we investigated the molecular structures of sea star Vtg and MYP and quantified their transcript levels during oogenesis. By combining protein sequencing of the predominant proteins in ovulated eggs of Patiriella regularis with ovarian transcriptome sequencing and molecular cloning, we characterized two cDNAs encoding two bona fide Vtgs (PrVtg1 and PrVtg2) and a partial cDNA encoding MYP (PrMYP). PrMYP mRNA was found in low abundance in growing oocytes, possibly as maternal transcripts for translation after ovulation. In contrast, PrVtg transcripts, whose levels varied during the reproductive cycle, were not found in developing oocytes - rather, they were detected in ovarian follicle cells and pyloric caeca, indicating an extra-oocytic origin. Vtg accumulating in oocytes was stored in the form of cleaved products, which constituted the most abundant yolk polypeptides in ovulated sea star eggs; their levels decreased during early embryonic and larval development. Together, these traits are the hallmarks of a classical yolk protein - and hence, we contend that Vtg, and not MYP, is the main yolk protein in asteroids.
Collapse
Affiliation(s)
- Khalid M Alqaisi
- Department of Zoology, University of Otago, 340 Great King Street, Dunedin 9016, New Zealand.
| | - Miles D Lamare
- Department of Marine Science, University of Otago, 310 Castle Street, Dunedin 9016, New Zealand
| | - Dave R Grattan
- Department of Anatomy, University of Otago, 270 Great King Street, Dunedin 9016, New Zealand
| | - Erin L Damsteegt
- Department of Zoology, University of Otago, 340 Great King Street, Dunedin 9016, New Zealand
| | - Wolfgang J Schneider
- Department of Medical Biochemistry, Medical University of Vienna, Max F. Perutz Laboratories, Dr. Bohr Gasse 9, 1030 Vienna, Austria
| | - P Mark Lokman
- Department of Zoology, University of Otago, 340 Great King Street, Dunedin 9016, New Zealand
| |
Collapse
|
24
|
Herath HMLPB, Elvitigala DAS, Godahewa GI, Whang I, Lee J. Molecular insights into a molluscan transferrin homolog identified from disk abalone (Haliotis discus discus) evidencing its detectable role in host antibacterial defense. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 53:222-233. [PMID: 26191782 DOI: 10.1016/j.dci.2015.07.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 07/14/2015] [Accepted: 07/16/2015] [Indexed: 06/04/2023]
Abstract
The basic function of transferrin is to bind iron (III) ions in the medium and to deliver them to the locations where they are required for metabolic processes. It also takes part in the host immune defense mainly via its ability to bind to iron (III) ions. Hence, transferrin is also identified as an important acute-phase protein in host immunity. Abalones are major shellfish aquaculture crops that are susceptible to a range of marine microbial infections. Since transferrin is known to be a major player in innate immunity, in the present study we sought to identify, and molecularly and functionally characterize a transferrin-like gene from disk abalone (Haliotis discus discus) named as AbTrf. AbTrf consisted of a 2187-bp open reading frame (ORF) which encodes a 728 amino acid (aa) protein. The putative amino acid sequence of AbTrf harbored N- and C-terminal transferrin-like domains, active sites for iron binding, and conserved cysteine residues. A constitutive tissue specific AbTrf expression pattern was detected by qPCR in abalones where mantle and muscle showed high AbTrf expression levels. Three immune challenge experiments were conducted using Vibrio parahaemolyticus, Listeria monocytogenes and LPS as stimuli and, subsequently, AbTrf mRNA expression levels were quantified in gill and hemocytes in a time-course manner. The mRNA expression was greatly induced in both tissues in response to both challenges. Evidencing the functional property of transferrins, recombinant AbTrf N-terminal domain (AbTrf-N) showed dose-dependent iron (III) binding activity detected by chrome azurol S (CAS) assay system. Moreover, recombinant AbTrf-N could significantly inhibit the growth of iron-dependent bacterium, Escherichia coli in a dose-dependent manner. However, AbTrf-N was unable to show any detectable bacteriostatic activity against iron-independent bacterium Lactobacillus plantarum (L. plantarum) even at its highest concentration. Collectively, our results suggest that AbTrf might play a significant role in the host innate immunity, possibly by withholding iron from pathogens.
Collapse
Affiliation(s)
- H M L P B Herath
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea
| | - Don Anushka Sandaruwan Elvitigala
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea
| | - G I Godahewa
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea
| | - Ilson Whang
- Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea.
| |
Collapse
|
25
|
Song PC, Wu TM, Hong MC, Chen MC. Elevated temperature inhibits recruitment of transferrin-positive vesicles and induces iron-deficiency genes expression in Aiptasia pulchella host-harbored Symbiodinium. Comp Biochem Physiol B Biochem Mol Biol 2015; 188:1-7. [PMID: 25997368 DOI: 10.1016/j.cbpb.2015.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 05/08/2015] [Accepted: 05/11/2015] [Indexed: 10/23/2022]
Abstract
Coral bleaching is the consequence of disruption of the mutualistic Cnidaria-dinoflagellate association. Elevated seawater temperatures have been proposed as the most likely cause of coral bleaching whose severity is enhanced by a limitation in the bioavailability of iron. Iron is required by numerous organisms including the zooxanthellae residing inside the symbiosome of cnidarian cells. However, the knowledge of how symbiotic zooxanthellae obtain iron from the host cells and how elevated water temperature affects the association is very limited. Since cellular iron acquisition is known to be mediated through transferrin receptor-mediated endocytosis, a vesicular trafficking pathway specifically regulated by Rab4 and Rab5, we set out to examine the roles of these key proteins in the iron acquisition by the symbiotic Symbiodinium. Thus, we hypothesized that the iron recruitments into symbiotic zooxanthellae-housed symbiosomes may be dependent on rab4/rab5-mediated fusion with vesicles containing iron-bound transferrins and will be retarded under elevated temperature. In this study, we cloned a novel monolobal transferrin (ApTF) gene from the tropical sea anemone Aiptasia pulchella and confirmed that the association of ApTF with A. pulchella Rab4 (ApRab4) or A. pulchella Rab5 (ApRab5) vesicles is inhibited by elevated temperature through immunofluorescence analysis. We confirmed the iron-deficient phenomenon by demonstrating the induced overexpression of iron-deficiency-responsive genes, flavodoxin and high-affinity iron permease 1, and reduced intracellular iron concentration in zooxanthellae under desferrioxamine B (iron chelator) and high temperature treatment. In conclusion, our data are consistent with algal iron deficiency being a contributing factor for the thermal stress-induced bleaching of symbiotic cnidarians.
Collapse
Affiliation(s)
- Po-Ching Song
- Institute of Marine Biology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Tsung-Meng Wu
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung 916, Taiwan, ROC
| | - Ming-Chang Hong
- Department of Marine Biotechnology, National Kaohsiung Marine University, Kaohsiung 81143, Taiwan, ROC
| | - Ming-Chyuan Chen
- Department of Marine Biotechnology, National Kaohsiung Marine University, Kaohsiung 81143, Taiwan, ROC.
| |
Collapse
|
26
|
Trapp J, Geffard O, Imbert G, Gaillard JC, Davin AH, Chaumot A, Armengaud J. Proteogenomics of Gammarus fossarum to document the reproductive system of amphipods. Mol Cell Proteomics 2014; 13:3612-25. [PMID: 25293947 DOI: 10.1074/mcp.m114.038851] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Because of their ecological importance, amphipod crustacea are employed worldwide as test species in environmental risk assessment. Although proteomics allows new insights into the molecular mechanisms related to the stress response, such investigations are rare for these organisms because of the lack of comprehensive protein sequence databases. Here, we propose a proteogenomic approach for identifying specific proteins of the freshwater amphipod Gammarus fossarum, a keystone species in European freshwater ecosystems. After deep RNA sequencing, we created a comprehensive ORF database. We identified and annotated the most relevant proteins detected through a shotgun tandem mass spectrometry analysis carried out on the proteomes from three major tissues involved in the organism's reproductive function: the male and female reproductive systems, and the cephalon, where different neuroendocrine glands are present. The 1,873 mass-spectrometry-certified proteins represent the largest crustacean proteomic resource to date, with 218 proteins being lineage specific. Comparative proteomics between the male and female reproductive systems indicated key proteins with strong sexual dimorphism. Protein expression profiles during spermatogenesis at seven different stages highlighted the major gammarid proteins involved in the different facets of reproduction.
Collapse
Affiliation(s)
- Judith Trapp
- From the ‡Irstea, Unité de Recherche MALY, Laboratoire d'écotoxicologie, CS70077, F-69626 Villeurbanne, France; §CEA, DSV, IBEB, Lab Biochim System Perturb, Bagnols-sur-Cèze, F-30207, France
| | - Olivier Geffard
- From the ‡Irstea, Unité de Recherche MALY, Laboratoire d'écotoxicologie, CS70077, F-69626 Villeurbanne, France;
| | - Gilles Imbert
- §CEA, DSV, IBEB, Lab Biochim System Perturb, Bagnols-sur-Cèze, F-30207, France
| | | | - Anne-Hélène Davin
- §CEA, DSV, IBEB, Lab Biochim System Perturb, Bagnols-sur-Cèze, F-30207, France
| | - Arnaud Chaumot
- From the ‡Irstea, Unité de Recherche MALY, Laboratoire d'écotoxicologie, CS70077, F-69626 Villeurbanne, France
| | - Jean Armengaud
- §CEA, DSV, IBEB, Lab Biochim System Perturb, Bagnols-sur-Cèze, F-30207, France
| |
Collapse
|
27
|
Dev S, Robinson JJ. Comparative biochemical analysis of the major yolk protein in the sea urchin egg and coelomic fluid. Dev Growth Differ 2014; 56:480-90. [DOI: 10.1111/dgd.12148] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 06/04/2014] [Accepted: 06/04/2014] [Indexed: 11/27/2022]
Affiliation(s)
- Shemul Dev
- Department of Biochemistry; Memorial University of Newfoundland; St. John's Newfoundland A1B3X9 Canada
| | - John J. Robinson
- Department of Biochemistry; Memorial University of Newfoundland; St. John's Newfoundland A1B3X9 Canada
| |
Collapse
|
28
|
Molecular cloning, characterization and expression analysis of melanotransferrin from the sea cucumber Apostichopus japonicus. Mol Biol Rep 2014; 41:3781-91. [PMID: 24535270 DOI: 10.1007/s11033-014-3243-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Accepted: 02/07/2014] [Indexed: 10/25/2022]
Abstract
Melanotransferrin (MTf), a member of the transferrin families, plays an important role in immune response. But the research about MTf in sea cucumber is limited till now. In this study, the Melanotransferrin (Aj-MTf) gene was firstly cloned and characterized from the sea cucumber Apostichoupus japonicus by reverse transcriptase polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends. The full-length cDNA of Aj-MTf is 2,840 bp in length and contains a 2,184 bp open reading frame that encodes a polypeptide of 727 amino acids. An iron-responsive element-like structure is located at the 5'-UTR of Aj-MTf cDNA. Sequence analysis shows that the Aj-MTf contains two conserved domains, and the binding-iron (III) sites, including eight amino acid residues (D81,Y109,Y215,H283,D425,Y454,Y565 and H634) and three N-linked glycosylation sites (N121V122S123,N173A174S175 and N673S674T675). Quantitative real-time polymerase chain reaction (qRT-PCR) analyses suggested that the Aj-MTf expressions in the coelomic fluid, body cavity wall and respiratory trees were significantly changed from 4 to 24 h post lipopolysaccharide (LPS) injection. The mRNA levels of Aj-MTf in coelomic fluid was significantly up-regulated at 12 and 24 h in treatment group, and Aj-MTf shared a similar expression pattern with C-type lectin in coelomic fluid, while both genes appears to gradually increase after 4 h of LPS injection. These results indicate that the Aj-MTf plays a pivotal role in immune responses to the LPS challenge in sea cucumber, and provide new information that it is complementary to the sea cucumber immune genes and initiate new researches concerning the genetic basis of the holothurian immune response.
Collapse
|
29
|
Mercurio S, Di Benedetto C, Sugni M, Candia Carnevali MD. Primary cell cultures from sea urchin ovaries: a new experimental tool. In Vitro Cell Dev Biol Anim 2013; 50:139-45. [PMID: 24002666 DOI: 10.1007/s11626-013-9686-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 08/22/2013] [Indexed: 11/28/2022]
Abstract
In the present work, primary cell cultures from ovaries of the edible sea urchin Paracentrotus lividus were developed in order to provide a simple and versatile experimental tool for researches in echinoderm reproductive biology. Ovary cell phenotypes were identified and characterized by different microscopic techniques. Although cell cultures could be produced from ovaries at all stages of maturation, the cells appeared healthier and viable, displaying a higher survival rate, when ovaries at early stages of gametogenesis were used. In terms of culture medium, ovarian cells were successfully cultured in modified Leibovitz-15 medium, whereas poor results were obtained in minimum essential medium Eagle and medium 199. Different substrates were tested, but ovarian cells completely adhered only on poly-L-lysine. To improve in vitro conditions and stimulate cell proliferation, different serum-supplements were tested. Fetal calf serum and an originally developed pluteus extract were detrimental to cell survival, apparently accelerating processes of cell death. In contrast, cells cultured with sea urchin egg extract appeared larger and healthier, displaying an increased longevity that allowed maintaining them for up to 1 month. Overall, our study provides new experimental bases and procedures for producing successfully long-term primary cell cultures from sea urchin ovaries offering a good potential to study echinoid oogenesis in a controlled system and to investigate different aspects of echinoderm endocrinology and reproductive biology.
Collapse
Affiliation(s)
- Silvia Mercurio
- Department of Biosciences, University of Milan, via Celoria, 26-20133, Milan, Italy,
| | | | | | | |
Collapse
|
30
|
Dheilly NM, Raftos DA, Haynes PA, Smith LC, Nair SV. Shotgun proteomics of coelomic fluid from the purple sea urchin, Strongylocentrotus purpuratus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 40:35-50. [PMID: 23353016 DOI: 10.1016/j.dci.2013.01.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 01/03/2013] [Accepted: 01/04/2013] [Indexed: 05/20/2023]
Abstract
The purple sea urchin has a complex immune system that is likely mediated by gene expression in coelomocytes (blood cells). A broad array of potential immune receptors and immune response proteins has been deduced from their gene models. Here we use shotgun mass spectrometry to describe 307 proteins with possible immune function in sea urchins including proteins involved in the complement pathway and numerous SRCRs. The relative abundance of dual oxidase 1, ceruloplasmin, ferritin and transferrin suggests the production of reactive oxygen species in coelomocytes and the sequestration of iron. Proteins such as selectin, cadherin, talin, galectin, amassin and the Von Willebrand factor may be involved in generating a strong clotting reaction. Cell signaling proteins include a guanine nucleotide binding protein, the Rho GDP dissociation factor, calcium storage molecules and a variety of lipoproteins. However, based on this dataset, the expression of TLRs, NLRs and fibrinogen domain containing proteins in coelomic fluid and coelomocytes could not be verified.
Collapse
Affiliation(s)
- Nolwenn M Dheilly
- Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia.
| | | | | | | | | |
Collapse
|
31
|
Wu LT, Hui JHL, Chu KH. Origin and evolution of yolk proteins: expansion and functional diversification of large lipid transfer protein superfamily. Biol Reprod 2013; 88:102. [PMID: 23426435 DOI: 10.1095/biolreprod.112.104752] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Vitellogenin (VTG) and apolipoprotein (APO) play a central role in animal reproduction and lipid circulation, respectively. Although previous studies have examined the structural and functional relationships of these large lipid transfer proteins (LLTPs) from an evolutionary perspective, the mechanism in generating these different families have not been addressed in invertebrates. In this study, the most comprehensive phylogenetic and genomic analysis of the LLTP superfamily genes is carried out. We propose the expansion and diversification of LLTPs in invertebrates are mediated via retrotransposon-mediated duplications, followed by either subfunctionalization or neofunctionalization in different lineages. In agreement with a previous hypothesis, our analysis suggests that all LLTPs originate from a series of duplications of a primitive yolk protein gene similar to VTG. Two early consecutive duplications of the yolk protein genes resulted in the formation of microsomal triglyceride transfer protein (MTP) and the APO gene ancestor. Gains and losses of domains and genes occurred in each of these families in different animal lineages, with MTP becoming truncated. MTP maintained only the components stabilizing the huge lipoprotein particle. Surprisingly, for the first time, two VTG-like protein families were found to independently arise in the lineages of insects. This work consolidates the reconstruction of the evolutionary roadmap of the LLTP superfamily and provides the first mechanistic explanation on the expansion of family members via retrotransposition in invertebrates.
Collapse
Affiliation(s)
- Long Tao Wu
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | | | | |
Collapse
|
32
|
Abstract
Vitellogenin genes (vtg) encode large lipid transfer proteins (LLTPs) that are typically female-specific, functioning as precursors to major yolk proteins (MYPs). Within the phylum Echinodermata, however, the MYP of the Echinozoa (Echinoidea + Holothuroidea) is expressed by an unrelated transferrin-like gene that has a reproductive function in both sexes. We investigated egg proteins in the Asterozoa (Asteroidea + Ophiuroidea), a sister clade to the Echinozoa, showing that eggs of the asteroid Parvulastra exigua contain a vitellogenin protein (Vtg). vtg is expressed by P. exigua, a species with large eggs and nonfeeding larvae, and by the related asterinid Patiriella regularis which has small eggs and feeding larvae. In the Asteroidea, therefore, the reproductive function of vtg is conserved despite significant life history evolution. Like the echinozoan MYP gene, asteroid vtg is expressed in both sexes and may play a role in the development of both ovaries and testes. Phylogenetic analysis indicated that a putative Vtg from the sea urchin genome, a likely pseudogene, does not clade with asteroid Vtg. We propose the following sequence as a potential pathway for the evolution of YP genes in the Echinodermata: (1) the ancestral echinoderm produced YPs derived from Vtg, (2) bisexual vtg expression subsequently evolved in the echinoderm lineage, (3) the reproductive function of vtg was assumed by a transferrin-like gene in the ancestral echinozoan, and (4) redundant echinozoan vtg was released from stabilizing selection.
Collapse
|
33
|
Bodnar A. Proteomic profiles reveal age-related changes in coelomic fluid of sea urchin species with different life spans. Exp Gerontol 2013; 48:525-30. [PMID: 23453931 DOI: 10.1016/j.exger.2013.01.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 12/14/2012] [Accepted: 01/28/2013] [Indexed: 01/17/2023]
Abstract
Sea urchins have a different life history from humans and traditional model organisms used to study the process of aging. Sea urchins grow indeterminately, reproduce throughout their life span and some species have been shown to exhibit negligible senescence with no increase in mortality rate at advanced ages. Despite these properties, different species of sea urchins are reported to have very different natural life spans providing a unique model to investigate cellular mechanisms underlying life span determination and negligible senescence. To gain insight into the biological changes that accompany aging in these animals, proteomic profiles were examined in coelomic fluid from young and old sea urchins of three species with different life spans: short-lived Lytechinus variegatus, long-lived Strongylocentrotus franciscanus and Strongylocentrotus purpuratus which has an intermediate life span. The proteomic profiles of cell-free coelomic fluid were complex with many proteins exhibiting different forms and extensive post-translational modifications. Approximately 20% of the protein spots on 2-D gels showed more than two-fold change with age in each of the species. Changes that are consistent with age in all three species may prove to be useful biomarkers for age-determination for these commercially fished marine invertebrates and also may provide clues to mechanisms of negligible senescence. Among the proteins that change with age, the ectodomain of low-density lipoprotein receptor-related protein 4 (LRP4) was significantly increased in the coelomic fluid of all three sea urchin species suggesting that the Wnt signaling pathway should be further investigated for its role in negligible senescence.
Collapse
Affiliation(s)
- Andrea Bodnar
- Bermuda Institute of Ocean Sciences, St. George's GE 01, Bermuda.
| |
Collapse
|
34
|
Walker CW, Lesser M, Unuma T. Sea Urchin Gametogenesis – Structural, Functional and Molecular/Genomic Biology. DEVELOPMENTS IN AQUACULTURE AND FISHERIES SCIENCE 2013. [DOI: 10.1016/b978-0-12-396491-5.00003-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
35
|
Dheilly NM, Haynes PA, Raftos DA, Nair SV. Time course proteomic profiling of cellular responses to immunological challenge in the sea urchin, Heliocidaris erythrogramma. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 37:243-56. [PMID: 22446733 DOI: 10.1016/j.dci.2012.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 02/09/2012] [Accepted: 03/12/2012] [Indexed: 05/20/2023]
Abstract
Genome sequences and high diversity cDNA arrays have provided a detailed molecular understanding of immune responses in a number of invertebrates, including sea urchins. However, complementary analyses have not been undertaken at the level of proteins. Here, we use shotgun proteomics to describe changes in the abundance of proteins from coelomocytes of sea urchins after immunological challenge and wounding. The relative abundance of 345 reproducibly identified proteins were measured 6, 24 and 48 h after injection. Significant changes in the relative abundance of 188 proteins were detected. These included pathogen-binding proteins, such as the complement component C3 and scavenger receptor cysteine rich proteins, as well as proteins responsible for cytoskeletal remodeling, endocytosis and intracellular signaling. An initial systemic reaction to wounding was followed by a more specific response to immunological challenge involving proteins such as apolipophorin, dual oxidase, fibrocystin L, aminopeptidase N and α-2-macroglobulin.
Collapse
Affiliation(s)
- Nolwenn M Dheilly
- Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| | | | | | | |
Collapse
|
36
|
Gaffney JP, Valentine AM. Beyond bilobal: transferrin homologs having unusual domain architectures. Biochim Biophys Acta Gen Subj 2011; 1820:212-7. [PMID: 21985891 DOI: 10.1016/j.bbagen.2011.09.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 09/02/2011] [Accepted: 09/24/2011] [Indexed: 01/03/2023]
Abstract
BACKGROUND Most transferrin family proteins have a familiar bilobal structure, the result of an ancient gene duplication, with an iron binding site in each of two homologous lobes. Scattered throughout the evolutionary tree from algae to mammals, though, are transferrin homologs having other kinds of domain architectures. SCOPE OF REVIEW This review covers a variety of unusual transferrin forms, including monolobals, bilobals with one or both iron-binding sites abrogated, bilobals accessorized with long insertions or with membrane anchors, and even trilobals. The monolobal transferrin homologs from marine invertebrate ascidians are especially highlighted here. MAJOR CONCLUSIONS Unusual transferrin homologs appear scattered through much of the evolutionary tree. For some of these proteins, iron binding and/or iron transport appear to be the primary roles; for others they clearly are not. Many are incompletely or not at all studied. GENERAL SIGNIFICANCE Taken together, these proteins begin to offer a glimpse into how the transferrin architecture has been repurposed for a diversity of applications. This article is part of a Special Issue entitled Transferrins: Molecular mechanisms of iron transport and disorders.
Collapse
|
37
|
Unuma T, Sawaguchi S, Yamano K, Ohta H. Accumulation of the major yolk protein and zinc in the agametogenic sea urchin gonad. THE BIOLOGICAL BULLETIN 2011; 221:227-237. [PMID: 22042441 DOI: 10.1086/bblv221n2p227] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Sea urchins of both sexes store the nutrients necessary for gametogenesis in nutritive phagocytes of the agametogenic gonad. A zinc-binding protein termed the major yolk protein (MYP) is stored here as two isoforms: the egg-type (predominant in egg yolk granules) and the coelomic fluid-type (a precursor with greater zinc-binding capacity). MYP is used during gametogenesis as material for synthesizing gametic proteins and other components. We investigated its accumulation and relationship to zinc contents in gonads during the non-reproductive season in Pseudocentrotus depressus. MYP constituted most of the protein in coelomic fluid and gonads. Both ovaries and testes grew gradually, accumulating MYP and zinc during the year. Total zinc contents and the ratio of coelomic fluid-type to egg-type protein were higher in ovaries than in testes as gametogenesis approached. Most of the zinc in the coelomic fluid was bound to MYP, and the concentrations of MYP and zinc were elevated toward the onset of oogenesis in the female coelomic fluid. Thus, MYP accumulates in the agametogenic ovaries and testes during the non-reproductive season, playing a role as a carrier to transport zinc to the gonad. Transportation of zinc by MYP is more active in females than in males.
Collapse
Affiliation(s)
- Tatsuya Unuma
- Hokkaido National Fisheries Research Institute, Fisheries Research Agency, Kushiro, Hokkaido 085-0802, Japan.
| | | | | | | |
Collapse
|
38
|
Mizutani K, Toyoda M, Mikami B. X-ray structures of transferrins and related proteins. Biochim Biophys Acta Gen Subj 2011; 1820:203-11. [PMID: 21855609 DOI: 10.1016/j.bbagen.2011.08.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 07/21/2011] [Accepted: 08/03/2011] [Indexed: 11/25/2022]
Abstract
BACKGROUND Transferrins are a group of iron-binding proteins including serum transferrin, lactoferrin and ovotransferrin. SCOPE OF REVIEW The structures of transferrins are discussed. GENERAL SIGNIFICANCE The typical transferrin molecules are folded into two homologous lobes. X-ray crystallography revealed that each lobe is further divided into two similarly sized domains, and that an iron-binding site is contained within the inter-domain cleft. The six iron coordination sites are occupied by four residues and a bidentate carbonate anion. MAJOR CONCLUSIONS The structures of the apo- and holo-forms revealed that the transferrins undergo a large-scale conformational change upon the uptake and release of irons: domains rotate as rigid bodies around a screw axis passing through inter-domain contacts. The iron-release mechanism of transferrin N-lobe is also revealed by X-ray crystallography; two basic residues in two domains form an unusual hydrogen bond in neutral pH, and the bond should be broken and facilitate iron release at a low pH of the endosome. For ovotransferrin, the iron release kinetics of two lobes correspond well with the numbers of anion binding sites found in crystal structures. The structures of transferrins bound to other metals revealed that the flexibility of the transferrin structure allows the ability to bind to other metals. This article is part of a Special Issue entitled Transferrins: Molecular mechanisms of iron transport and disorders.
Collapse
Affiliation(s)
- Kimihiko Mizutani
- Laboratory of Applied Structural Biology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan.
| | | | | |
Collapse
|
39
|
Lambert LA. Molecular evolution of the transferrin family and associated receptors. Biochim Biophys Acta Gen Subj 2011; 1820:244-55. [PMID: 21693173 DOI: 10.1016/j.bbagen.2011.06.002] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 06/01/2011] [Accepted: 06/07/2011] [Indexed: 12/26/2022]
Abstract
BACKGROUND In vertebrates, serum transferrins are essential iron transporters that have bind and release Fe(III) in response to receptor binding and changes in pH. Some family members such as lactoferrin and melanotransferrin can also bind iron while others have lost this ability and have gained other functions, e.g., inhibitor of carbonic anhydrase (mammals), saxiphilin (frogs) and otolith matrix protein 1 (fish). SCOPE OF REVIEW This article provides an overview of the known transferrin family members and their associated receptors and interacting partners. MAJOR CONCLUSIONS The number of transferrin genes has proliferated as a result of multiple duplication events, and the resulting paralogs have developed a wide array of new functions. Some homologs in the most primitive metazoan groups resemble both serum and melanotransferrins, but the major yolk proteins show considerable divergence from the rest of the family. Among the transferrin receptors, the lack of TFR2 in birds and reptiles, and the lack of any TFR homologs among the insects draw attention to the differences in iron transport and regulation in those groups. GENERAL SIGNIFICANCE The transferrin family members are important because of their clinical significance, interesting biochemical properties, and evolutionary history. More work is needed to better understand the functions and evolution of the non-vertebrate family members. This article is part of a Special Issue entitled Molecular Mechanisms of Iron Transport and Disorders.
Collapse
Affiliation(s)
- Lisa A Lambert
- Department of Biology, Chatham University, Woodland Road, Pittsburgh, PA 15232, USA.
| |
Collapse
|
40
|
Reunov AA, Crawford BJ, Reunova YA. An investigation of yolk-protein localization in the testes of the starfish Pisaster ochraceus. CAN J ZOOL 2010. [DOI: 10.1139/z10-060] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The distribution of the yolk epitope, PY4F8, was studied in the testes of the starfish Pisaster ochraceus (Brandt, 1835). Western blots have revealed that testes only show one 180 kDa band, whereas ovaries exhibit four PY4F8 bands at 90, 110, 120, and 180 kDa. This finding suggests that male yolk is less complex than female yolk. It was shown that PY4F8-positive material abounds in the hemal sinus of testes. Moreover, this epitope was found in the basal lamina, in the lumen of the testes, and in the cytoplasm of auxiliary and spermatogenic cells. It is likely that a hemal testis barrier is absent in P. ochraceus, and this lack allows direct penetration of nutrition to sustain metabolism of both spermatogenic and auxiliary cells. Morphologically, this penetration is possible through the gaps between adjacent auxiliary cell bases. Yolk granules containing the PY4F8 epitope are located in spermatogonia and spermatocytes, but not in spermatids and sperm. Therefore, yolk may play an important role in early spermatogenesis, but it does not participate at the final stage of sperm formation.
Collapse
Affiliation(s)
- Arkadiy A. Reunov
- A.V. Zhirmunsky Institute of Marine Biology, Far Eastern Branch of Russian Academy of Sciences, Patchevsky St., 17, Vladivostok 690041, Russia
- University of Victoria, Division of Medical Science, Victoria, BC V8W 2Y2, Canada
| | - Bruce J. Crawford
- A.V. Zhirmunsky Institute of Marine Biology, Far Eastern Branch of Russian Academy of Sciences, Patchevsky St., 17, Vladivostok 690041, Russia
- University of Victoria, Division of Medical Science, Victoria, BC V8W 2Y2, Canada
| | - Yulia A. Reunova
- A.V. Zhirmunsky Institute of Marine Biology, Far Eastern Branch of Russian Academy of Sciences, Patchevsky St., 17, Vladivostok 690041, Russia
- University of Victoria, Division of Medical Science, Victoria, BC V8W 2Y2, Canada
| |
Collapse
|
41
|
Borges JCS, Branco PC, Pressinotti LN, Severino D, da Silva JRMC. Intranuclear crystalloids of Antarctic sea urchins as a biomarker for oil contamination. Polar Biol 2010. [DOI: 10.1007/s00300-009-0762-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
42
|
Molecular characterization of the major yolk protein of the Japanese common sea cucumber (Apostichopus japonicus) and its expression profile during ovarian development. Comp Biochem Physiol A Mol Integr Physiol 2010; 155:34-40. [DOI: 10.1016/j.cbpa.2009.09.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 09/02/2009] [Accepted: 09/02/2009] [Indexed: 11/23/2022]
|
43
|
A transferrin-like homolog in amphioxus Branchiostoma belcheri: Identification, expression and functional characterization. Mol Immunol 2009; 46:3117-24. [DOI: 10.1016/j.molimm.2009.06.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 05/22/2009] [Accepted: 06/03/2009] [Indexed: 12/12/2022]
|
44
|
The sea urchin major yolk protein is synthesized mainly in the gut inner epithelium and the gonadal nutritive phagocytes before and during gametogenesis. Mol Reprod Dev 2009; 77:59-68. [DOI: 10.1002/mrd.21103] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
45
|
Ramírez-Gómez F, Ortiz-Pineda PA, Rivera-Cardona G, García-Arrarás JE. LPS-induced genes in intestinal tissue of the sea cucumber Holothuria glaberrima. PLoS One 2009; 4:e6178. [PMID: 19584914 PMCID: PMC2702171 DOI: 10.1371/journal.pone.0006178] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 06/16/2009] [Indexed: 01/16/2023] Open
Abstract
Metazoan immunity is mainly associated with specialized cells that are directly involved with the immune response. Nevertheless, both in vertebrates and invertebrates other organs might respond to immune activation and participate either directly or indirectly in the ongoing immune process. However, most of what is known about invertebrate immunity has been restricted to immune effector cells and little information is available on the immune responses of other tissues or organs. We now focus on the immune reactions of the intestinal tissue of an echinoderm. Our study employs a non-conventional model, the echinoderm Holothuria glaberrima, to identify intestinal molecules expressed after an immune challenge presented by an intra-coelomic injection of lipopolysaccharides (LPS). The expression profiles of intestinal genes expressed differentially between LPS-injected animals and control sea water-injected animals were determined using a custom-made Agilent microarray with 7209 sea cucumber intestinal ESTs. Fifty (50) unique sequences were found to be differentially expressed in the intestine of LPS-treated sea cucumbers. Seven (7) of these sequences represented homologues of known proteins, while the remaining (43) had no significant similarity with any protein, EST or RNA database. The known sequences corresponded to cytoskeletal proteins (Actin and alpha-actinin), metabolic enzymes (GAPDH, Ahcy and Gnmt), metal ion transport/metabolism (major yolk protein) and defense/recognition (fibrinogen-like protein). The expression pattern of 11 genes was validated using semi-quantitative RT-PCR. Nine of these corroborated the microarray results and the remaining two showed a similar trend but without statistical significance. Our results show some of the molecular events by which the holothurian intestine responds to an immune challenge and provide important information to the study of the evolution of the immune response.
Collapse
Affiliation(s)
| | - Pablo A. Ortiz-Pineda
- Department of Biology, University of Puerto Rico, Río Piedras, San Juan, Puerto Rico
| | | | - José E. García-Arrarás
- Department of Biology, University of Puerto Rico, Río Piedras, San Juan, Puerto Rico
- * E-mail:
| |
Collapse
|
46
|
Jorgensen P, Steen JAJ, Steen H, Kirschner MW. The mechanism and pattern of yolk consumption provide insight into embryonic nutrition in Xenopus. Development 2009; 136:1539-48. [PMID: 19363155 DOI: 10.1242/dev.032425] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Little is known about how metabolism changes during development. For most animal embryos, yolk protein is a principal source of nutrition, particularly of essential amino acids. Within eggs, yolk is stored inside large organelles called yolk platelets (YPs). We have gained insight into embryonic nutrition in the African clawed frog Xenopus laevis by studying YPs. Amphibians follow the ancestral pattern in which all embryonic cells inherit YPs from the egg cytoplasm. These YPs are consumed intracellularly at some point during embryogenesis, but it was not known when, where or how yolk consumption occurs. We have identified the novel yolk protein Seryp by biochemical and mass spectrometric analyses of purified YPs. Within individual YPs, Seryp is degraded to completion earlier than the major yolk proteins, thereby providing a molecular marker for YPs engaged in yolk proteolysis. We demonstrate that yolk proteolysis is a quantal process in which a subset of dormant YPs within embryonic cells are reincorporated into the endocytic system and become terminal degradative compartments. Yolk consumption is amongst the earliest aspects of differentiation. The rate of yolk consumption is also highly tissue specific, suggesting that nutrition in early amphibian embryos is tissue autonomous. But yolk consumption does not appear to be triggered by embryonic cells declining to a critically small size. Frog embryos offer a promising platform for the in vivo analysis of metabolism.
Collapse
Affiliation(s)
- Paul Jorgensen
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
47
|
Unuma T, Konishi K, Kiyomoto M, Matranga V, Yamano K, Ohta H, Yokota Y. The major yolk protein is synthesized in the digestive tract and secreted into the body cavities in sea urchin larvae. Mol Reprod Dev 2009; 76:142-50. [PMID: 18500722 DOI: 10.1002/mrd.20939] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Major yolk protein (MYP), a transferrin superfamily protein contained in yolk granules of sea urchin eggs, also occurs in the coelomic fluid of male and female adult sea urchins regardless of their reproductive cycle. MYP in the coelomic fluid (CFMYP; 180 kDa) has a zinc-binding capacity and has a higher molecular mass than MYP in eggs (EGMYP; 170 kDa). CFMYP is thought to be synthesized in the digestive tract and secreted into the coelomic fluid where it is involved in the transport of zinc derived from food. To clarify when and where MYP synthesis starts, we investigated the expression of MYP during larval development and growth in Pseudocentrotus depressus. MYP mRNA was detected using RT-PCR in the early 8-arm pluteus stage and its expression persisted until after metamorphosis. Real-time RT-PCR revealed that MYP mRNA increased exponentially from the early 8-arm stage to metamorphosis. Western blotting showed that maternal EGMYP disappeared by the 4-arm stage and that newly synthesized CFMYP was present at and after the mid 8-arm stage. In the late 8-arm larvae, MYP mRNA was detected in the digestive tract using in situ hybridization, and the protein was found in the somatocoel and the blastocoel-derived space between the somatocoel and epidermis using immunohistochemistry. These results suggest that CFMYP is synthesized in the digestive tract and secreted into the body cavities at and after the early 8-arm stage. We assume that in larvae, CFMYP transports zinc derived from food via the body cavities to various tissues, as suggested for adults.
Collapse
Affiliation(s)
- Tatsuya Unuma
- Japan Sea National Fisheries Research Institute, Fisheries Research Agency, Suido-cho, Niigata, Japan.
| | | | | | | | | | | | | |
Collapse
|
48
|
ZHOU ZC. MYP gene expressions at transcription level in different stages of gonad of sea urchin Strongylocentrotus intermedius and hybrids. YI CHUAN = HEREDITAS 2009; 30:1453-8. [PMID: 19073555 DOI: 10.3724/sp.j.1005.2008.01453] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
49
|
Hayley M, Sun M, Merschrod EF, Davis PJ, Robinson JJ. Biochemical analysis of the interaction of calcium with toposome: A major protein component of the sea urchin egg and embryo. J Cell Biochem 2008; 103:1464-71. [PMID: 17786928 DOI: 10.1002/jcb.21531] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We have investigated the biochemical and functional properties of toposome, a major protein component of sea urchin eggs and embryos. Atomic force microscopy was utilized to demonstrate that a Ca(2+)-driven change in secondary structure facilitated toposome binding to a lipid bilayer. Thermal denaturation studies showed that toposome was dependent upon calcium in a manner paralleling the effect of this cation on secondary and tertiary structure. The calcium-induced, secondary, and tertiary structural changes had no effect on the chymotryptic cleavage pattern. However, the digestion pattern of toposome bound to phosphatidyl serine liposomes did vary as a function of calcium concentration. We also investigated the interaction of this protein with various metal ions. Calcium, Mg(2+), Ba(2+), Cd(2+), Mn(2+), and Fe(3+) all bound to toposome. In addition, Cd(2+) and Mn(2+) displaced Ca(2+), prebound to toposome, while Mg(2+), Ba(2+), and Fe(3+) had no effect. Collectively, these results further enhance our understanding of the role of Ca(2+) in modulating the biological activity of toposome.
Collapse
Affiliation(s)
- Michael Hayley
- Department of Biochemistry, Memorial University of Newfoundland, St John's, Newfoundland, Canada A1B 3X9
| | | | | | | | | |
Collapse
|
50
|
Roux MM, Radeke MJ, Goel M, Mushegian A, Foltz KR. 2DE identification of proteins exhibiting turnover and phosphorylation dynamics during sea urchin egg activation. Dev Biol 2008; 313:630-47. [DOI: 10.1016/j.ydbio.2007.10.053] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2007] [Revised: 10/29/2007] [Accepted: 10/31/2007] [Indexed: 10/22/2022]
|