1
|
Tiwari P, Kumar A, Das RN, Malhotra V, VijayRaghavan K. A Tendon Cell Specific RNAi Screen Reveals Novel Candidates Essential for Muscle Tendon Interaction. PLoS One 2015; 10:e0140976. [PMID: 26488612 PMCID: PMC4619581 DOI: 10.1371/journal.pone.0140976] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 10/02/2015] [Indexed: 01/01/2023] Open
Abstract
Tendons are fibrous connective tissue which connect muscles to the skeletal elements thus acting as passive transmitters of force during locomotion and provide appropriate body posture. Tendon-derived cues, albeit poorly understood, are necessary for proper muscle guidance and attachment during development. In the present study, we used dorsal longitudinal muscles of Drosophila and their tendon attachment sites to unravel the molecular nature of interactions between muscles and tendons. We performed a genetic screen using RNAi-mediated knockdown in tendon cells to find out molecular players involved in the formation and maintenance of myotendinous junction and found 21 candidates out of 2507 RNAi lines screened. Of these, 19 were novel molecules in context of myotendinous system. Integrin-βPS and Talin, picked as candidates in this screen, are known to play important role in the cell-cell interaction and myotendinous junction formation validating our screen. We have found candidates with enzymatic function, transcription activity, cell adhesion, protein folding and intracellular transport function. Tango1, an ER exit protein involved in collagen secretion was identified as a candidate molecule involved in the formation of myotendinous junction. Tango1 knockdown was found to affect development of muscle attachment sites and formation of myotendinous junction. Tango1 was also found to be involved in secretion of Viking (Collagen type IV) and BM-40 from hemocytes and fat cells.
Collapse
Affiliation(s)
- Prabhat Tiwari
- National Centre for Biological Sciences-Tata Institute of Fundamental Research, Bangalore, India
| | - Arun Kumar
- National Centre for Biological Sciences-Tata Institute of Fundamental Research, Bangalore, India
| | - Rudra Nayan Das
- National Centre for Biological Sciences-Tata Institute of Fundamental Research, Bangalore, India
| | | | - K. VijayRaghavan
- National Centre for Biological Sciences-Tata Institute of Fundamental Research, Bangalore, India
- * E-mail:
| |
Collapse
|
2
|
Bower DV, Lee HK, Lansford R, Zinn K, Warburton D, Fraser SE, Jesudason EC. Airway branching has conserved needs for local parasympathetic innervation but not neurotransmission. BMC Biol 2014; 12:92. [PMID: 25385196 PMCID: PMC4255442 DOI: 10.1186/s12915-014-0092-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Accepted: 10/20/2014] [Indexed: 11/24/2022] Open
Abstract
Background Parasympathetic signaling has been inferred to regulate epithelial branching as well as organ regeneration and tumor development. However, the relative contribution of local nerve contact versus secreted signals remains unclear. Here, we show a conserved (vertebrates to invertebrates) requirement for intact local nerves in airway branching, persisting even when cholinergic neurotransmission is blocked. Results In the vertebrate lung, deleting enhanced green fluorescent protein (eGFP)-labeled intrinsic neurons using a two-photon laser leaves adjacent cells intact, but abolishes branching. Branching is unaffected by similar laser power delivered to the immediately adjacent non-neural mesodermal tissue, by blocking cholinergic receptors or by blocking synaptic transmission with botulinum toxin A. Because adjacent vasculature and epithelial proliferation also contribute to branching in the vertebrate lung, the direct dependence on nerves for airway branching was tested by deleting neurons in Drosophila embryos. A specific deletion of neurons in the Drosophila embryo by driving cell-autonomous RicinA under the pan-neuronal elav enhancer perturbed Drosophila airway development. This system confirmed that even in the absence of a vasculature or epithelial proliferation, airway branching is still disrupted by neural lesioning. Conclusions Together, this shows that airway morphogenesis requires local innervation in vertebrates and invertebrates, yet neurotransmission is dispensable. The need for innervation persists in the fly, wherein adjacent vasculature and epithelial proliferation are absent. Our novel, targeted laser ablation technique permitted the local function of parasympathetic innervation to be distinguished from neurotransmission. Electronic supplementary material The online version of this article (doi:10.1186/s12915-014-0092-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Danielle V Bower
- Division of Biological Sciences, California Institute of Technology, Pasadena, USA. .,The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, USA. .,Biological Imaging Center, California Institute of Technology, 1200 E. California Blvd, MC 139-74, Pasadena, CA, 91125, USA.
| | - Hyung-Kook Lee
- Division of Biological Sciences, California Institute of Technology, Pasadena, USA.
| | - Rusty Lansford
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, USA.
| | - Kai Zinn
- Division of Biological Sciences, California Institute of Technology, Pasadena, USA.
| | - David Warburton
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, USA.
| | - Scott E Fraser
- Division of Biological Sciences, California Institute of Technology, Pasadena, USA. .,Biological Sciences and Biomedical Engineering, University of Southern California, Los Angeles, USA. .,Biological Imaging Center, California Institute of Technology, 1200 E. California Blvd, MC 139-74, Pasadena, CA, 91125, USA.
| | - Edwin C Jesudason
- Division of Biological Sciences, California Institute of Technology, Pasadena, USA. .,The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, USA. .,Division of Child Health, University of Liverpool, Liverpool, UK. .,Biological Imaging Center, California Institute of Technology, 1200 E. California Blvd, MC 139-74, Pasadena, CA, 91125, USA.
| |
Collapse
|
3
|
Butí E, Mesquita D, Araújo SJ. Hedgehog is a positive regulator of FGF signalling during embryonic tracheal cell migration. PLoS One 2014; 9:e92682. [PMID: 24651658 PMCID: PMC3961400 DOI: 10.1371/journal.pone.0092682] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 02/25/2014] [Indexed: 11/18/2022] Open
Abstract
Cell migration is a widespread and complex process that is crucial for morphogenesis and for the underlying invasion and metastasis of human cancers. During migration, cells are steered toward target sites by guidance molecules that induce cell direction and movement through complex intracellular mechanisms. The spatio-temporal regulation of the expression of these guidance molecules is of extreme importance for both normal morphogenesis and human disease. One way to achieve this precise regulation is by combinatorial inputs of different transcription factors. Here we used Drosophila melanogaster mutants with migration defects in the ganglionic branches of the tracheal system to further clarify guidance regulation during cell migration. By studying the cellular consequences of overactivated Hh signalling, using ptc mutants, we found that Hh positively regulates Bnl/FGF levels during embryonic stages. Our results show that Hh modulates cell migration non-autonomously in the tissues surrounding the action of its activity. We further demonstrate that the Hh signalling pathway regulates bnl expression via Stripe (Sr), a zinc-finger transcription factor with homology to the Early Growth Response (EGR) family of vertebrate transcription factors. We propose that Hh modulates embryonic cell migration by participating in the spatio-temporal regulation of bnl expression in a permissive mode. By doing so, we provide a molecular link between the activation of Hh signalling and increased chemotactic responses during cell migration.
Collapse
Affiliation(s)
- Elisenda Butí
- Developmental Biology Department, Institute of Molecular Biology of Barcelona (IBMB-CSIC), Barcelona, Spain
- Cell and Developmental Biology Programme, Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain
| | - Duarte Mesquita
- Developmental Biology Department, Institute of Molecular Biology of Barcelona (IBMB-CSIC), Barcelona, Spain
- Cell and Developmental Biology Programme, Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain
| | - Sofia J. Araújo
- Developmental Biology Department, Institute of Molecular Biology of Barcelona (IBMB-CSIC), Barcelona, Spain
- Cell and Developmental Biology Programme, Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain
- * E-mail:
| |
Collapse
|
4
|
Bharadwaj R, Roy M, Ohyama T, Sivan-Loukianova E, Delannoy M, Lloyd TE, Zlatic M, Eberl DF, Kolodkin AL. Cbl-associated protein regulates assembly and function of two tension-sensing structures in Drosophila. Development 2013; 140:627-38. [PMID: 23293294 DOI: 10.1242/dev.085100] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cbl-associated protein (CAP) localizes to focal adhesions and associates with numerous cytoskeletal proteins; however, its physiological roles remain unknown. Here, we demonstrate that Drosophila CAP regulates the organization of two actin-rich structures in Drosophila: muscle attachment sites (MASs), which connect somatic muscles to the body wall; and scolopale cells, which form an integral component of the fly chordotonal organs and mediate mechanosensation. Drosophila CAP mutants exhibit aberrant junctional invaginations and perturbation of the cytoskeletal organization at the MAS. CAP depletion also results in collapse of scolopale cells within chordotonal organs, leading to deficits in larval vibration sensation and adult hearing. We investigate the roles of different CAP protein domains in its recruitment to, and function at, various muscle subcellular compartments. Depletion of the CAP-interacting protein Vinculin results in a marked reduction in CAP levels at MASs, and vinculin mutants partially phenocopy Drosophila CAP mutants. These results show that CAP regulates junctional membrane and cytoskeletal organization at the membrane-cytoskeletal interface of stretch-sensitive structures, and they implicate integrin signaling through a CAP/Vinculin protein complex in stretch-sensitive organ assembly and function.
Collapse
Affiliation(s)
- Rajnish Bharadwaj
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Dilks SA, DiNardo S. Non-cell-autonomous control of denticle diversity in the Drosophila embryo. Development 2010; 137:1395-404. [PMID: 20332154 DOI: 10.1242/dev.045450] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Certain Drosophila embryonic epidermal cells construct actin-based protrusions, called denticles, which exhibit stereotyped, column-specific differences in size, density and hook orientation. This precise denticle pattern is conserved throughout all drosophilids yet studied, and screening for mutations that affect this pattern has been used to identify genes involved in development and signaling. However, how column-specific differences are specified and the mechanism(s) involved have remained elusive. Here, we show that the transcription factor Stripe is required for multiple aspects of this column-specific denticle pattern, including denticle hook orientation. The induction of stripe expression in certain denticle field cells appears to be the primary mechanism by which developmental pathways assign denticle hook orientation. Furthermore, we show that the cytoskeletal linker protein Short stop (Shot) functions both cell-autonomously and non-autonomously to specify denticle hook orientation via interaction with the microtubule cytoskeleton. We propose that stripe mediates its effect on hook orientation, in part, via upregulation of shot.
Collapse
Affiliation(s)
- Stacie A Dilks
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
6
|
Abstract
Many organs including the mammalian lung and vascular system consist of branched tubular networks that transport essential gases or fluids, but the genetic programs that control the development of these complex three-dimensional structures are not well understood. The Drosophila melanogaster tracheal (respiratory) system is a network of interconnected epithelial tubes that transports oxygen and other gases in the body and provides a paradigm of branching morphogenesis. It develops by sequential sprouting of primary, secondary, and terminal branches from an epithelial sac of approximately 80 cells in each body segment of the embryo. Mapping of the cell movements and shape changes during the sprouting process has revealed that distinct mechanisms of epithelial migration and tube formation are used at each stage of branching. Genetic dissection of the process has identified a general program in which a fibroblast growth factor (FGF) and fibroblast growth factor receptor (FGFR) are used repeatedly to control branch budding and outgrowth. At each stage of branching, the mechanisms controlling FGF expression and the downstream signal transduction pathway change, altering the pattern and structure of the branches that form. During terminal branching, FGF expression is regulated by hypoxia, ensuring that tracheal structure matches cellular oxygen need. A branch diversification program operates in parallel to the general budding program: Regional signals locally modify the general program, conferring specific structural features and other properties on individual branches, such as their substrate outgrowth preferences, differences in tube size and shape, and the ability to fuse to other branches to interconnect the network.
Collapse
Affiliation(s)
- Amin Ghabrial
- Howard Hughes Medical Institute, Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305-5307, USA
| | | | | | | |
Collapse
|