1
|
Petjukevics A, Skute N. Chlorophyll fluorescence changes, as plant early state indicator under different water salinity regimes on the invasive macrophyte Elodea canadensis (Michx., 1803). ONE ECOSYSTEM 2022. [DOI: 10.3897/oneeco.7.e82389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Analysis of the photosynthetic apparatus provides information on the physiological state of plants. The changes of metabolites in plant cells analysed with the pulsed chlorophyll fluorometer make it possible to determine these changes in plant cells even in the presence of insignificant cell damage. The possible effects of different salinity levels, 0.584, 1.461, 2.922 and 5.844 PSU (denoting Practical Salinity Unit) on the fluorescence properties of the pigment complexes of the aquatic invasive E. canadensis photosynthetic apparatus were investigated. Information about E. canadensis macrophyte photosynthetic systems (PSI and PSII) was obtained. After a prolonged impact, the results indicate that high salinity levels in substrates 2.922 and 5.844 PSU seriously affect plant photosynthetic apparatus inhibition. The decrease in ∆Fv/Fm΄ values at 2.922 and 5.844 PSU indicates general deterioration in macrophytes' physiological state. In the post-stress period, photosynthesis intensified. An interesting feature was noted: a low water salinity level (0.584) stimulates chlorophyll formation and increases the FvFm parameter. The research revealed the influence of salinity levels in the substrate on the photosynthesis processes in plants. The PSII system of submerged macrophytes responds rapidly to high salinity levels, probably due to the inhibition of protein synthesis. These data provide information for further bio-diagnosis of overall plant health and prediction of exposure levels, as well as the ability to make predictions of invasive plant growth and spread. The invasion of this plant macrophyte causes the most serious concern in Europe nowadays.
Collapse
|
2
|
Protopopov FF, Todorenko DA, Nikolaev IN, Alekseev AA, Bratkovskaya LB, Matorin DN. The Fluorescence of Phytoplankton Chlorophyll from the Moskva River in the Presence of Mercury Ions. Biophysics (Nagoya-shi) 2021. [DOI: 10.1134/s0006350921050195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
3
|
Sun C, Li C, Mu W, Ma L, Xie H, Xu J. The photosynthetic physiological response and purification effect of Salix babylonica to 2, 4-dinitrophenol wastewater. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 24:675-683. [PMID: 34455875 DOI: 10.1080/15226514.2021.1962799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Phytoremediation technology based on living green plants would clean up water pollution. Through hydroponic experiment, the effects of different concentration of 2, 4-dinitrophenol (2, 4-DNP) on the photosynthetic and chlorophyll fluorescence parameters of Salix babylonica, and the absorption and purification effect of S. babylonica on 2, 4-DNP were measured to explore the tolerance of S. babylonica to 2, 4-DNP and the feasibility to purify dinitrophenol waste water by it. The biomass, actual photochemical efficiency (PSII), net photosynthetic rate (Pn), photochemical quenching coefficient (qP), stomatal conductance (Gs), transpiration rate (Tr), maximum photochemical efficiency (Fv/Fm) and chlorophyll content of the S. babylonica showed downward trend with the increasing exposure concentrations of 2,4-DNP, but the intercellular CO2 concentration (Ci) appeared upward trend. Non-photochemical quenching coefficient (NPQ) increased at 5 mg L-1, then declined with the increase concentrations of 2, 4-DNP. In addition, the percent removal of 2, 4-DNP in 20 mg L-1 waste water was 91.4%. In conclusion, 2, 4-DNP significantly inhibits Pn of S. babylonica and the reduction of Pn was caused by decreasing Gs, carboxylation efficiency and chlorophyll content. When the concentration of 2, 4-DNP is not more than 20 mg L-1, S. babylonica can remove 2, 4-DNP efficiently.
Collapse
Affiliation(s)
- Chaofan Sun
- Forestry College of Shandong Agricultural University, Taian, China
| | - Chuanrong Li
- Forestry College of Shandong Agricultural University, Taian, China
- State Forestry and Grassland Administration Key Laboratory of Silviculture in downstream areas of the Yellow River, China
| | - Wenxiu Mu
- Forestry College of Shandong Agricultural University, Taian, China
| | - Luyao Ma
- Forestry College of Shandong Agricultural University, Taian, China
| | - Huicheng Xie
- Forestry College of Shandong Agricultural University, Taian, China
- State Forestry and Grassland Administration Key Laboratory of Silviculture in downstream areas of the Yellow River, China
| | - Jingwei Xu
- Shandong Provincial Academy of Forestry, Jinnan, China
| |
Collapse
|
4
|
Lee H, Depuydt S, Shin K, Choi S, Kim G, Lee YH, Park JT, Han T, Park J. Assessment of Various Toxicity Endpoints in Duckweed ( Lemna minor) at the Physiological, Biochemical, and Molecular Levels as a Measure of Diuron Stress. BIOLOGY 2021; 10:biology10070684. [PMID: 34356539 PMCID: PMC8301316 DOI: 10.3390/biology10070684] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/08/2021] [Accepted: 07/15/2021] [Indexed: 11/16/2022]
Abstract
The common, broad-spectrum herbicide diuron poses some risks to the environment due to its long persistence and high toxicity. Therefore, the effective monitoring of diuron residues will inform efforts to assess its impacts on ecosystems. In this study, we evaluated the toxicity targets of diuron in the model aquatic macrophyte Lemna minor at the physiological (growth and photosynthetic efficiency), biochemical (pigment biosynthesis and reactive oxygen species (ROS) levels), and molecular (rbcL transcript) levels. The toxicity of diuron was detectable after 48 h of exposure and the order of sensitivity of toxicity endpoints was gene transcription > maximum electron transport rate (ETRmax) > non-photochemical quenching (NPQ) > maximum quantum yield (Fv/Fm) > ROS > fresh weight > chlorophyll b > chlorophyll a > total frond area > carotenoids. Under diuron stress, pigment, ROS, and gene transcript levels increased while frond area, fresh weight, and photosynthesis (Fv/Fm and ETRmax) gradually decreased with the increasing duration of exposure. Notably, ROS levels, Fv/Fm, frond area, and fresh weight were highly correlated with diuron concentration. The growth endpoints (frond area and fresh weight) showed a strong negative correlation with ROS levels and a positive correlation with Fv/Fm and ETRmax. These findings shed light on the relative sensitivity of different endpoints for the assessment of diuron toxicity.
Collapse
Affiliation(s)
- Hojun Lee
- Department of Marine Science, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Korea; (H.L.); (S.C.); (G.K.); (T.H.)
- Ghent University Global Campus, 119-5 Songdomunhwa-ro, Yeonsu-gu, Incheon 21985, Korea;
| | - Stephen Depuydt
- Ghent University Global Campus, 119-5 Songdomunhwa-ro, Yeonsu-gu, Incheon 21985, Korea;
| | - Kisik Shin
- Water Environmental Engineering Research Division, National Institute of Environmental Research, 42 Hwangyeong-ro, Seo-gu, Incheon 22689, Korea;
| | - Soyeon Choi
- Department of Marine Science, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Korea; (H.L.); (S.C.); (G.K.); (T.H.)
| | - Geonhee Kim
- Department of Marine Science, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Korea; (H.L.); (S.C.); (G.K.); (T.H.)
| | - Yun Haeng Lee
- Division of Life Sciences, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Korea; (Y.H.L.); (J.T.P.)
| | - Joon Tae Park
- Division of Life Sciences, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Korea; (Y.H.L.); (J.T.P.)
| | - Taejun Han
- Department of Marine Science, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Korea; (H.L.); (S.C.); (G.K.); (T.H.)
- Ghent University Global Campus, 119-5 Songdomunhwa-ro, Yeonsu-gu, Incheon 21985, Korea;
| | - Jihae Park
- Ghent University Global Campus, 119-5 Songdomunhwa-ro, Yeonsu-gu, Incheon 21985, Korea;
- Correspondence:
| |
Collapse
|
5
|
Mendrik FM, Henry TB, Burdett H, Hackney CR, Waller C, Parsons DR, Hennige SJ. Species-specific impact of microplastics on coral physiology. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:116238. [PMID: 33321308 DOI: 10.1016/j.envpol.2020.116238] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/18/2020] [Accepted: 12/04/2020] [Indexed: 05/23/2023]
Abstract
There is evidence that microplastic (MP) pollution can negatively influence coral health; however, mechanisms are unknown and most studies have used MP exposure concentrations that are considerably higher than current environmental conditions. Furthermore, whether MP exposure influences coral susceptibility to other stressors such as ocean warming is unknown. Our objective was to determine the physiology response of corals exposed to MP concentrations that have been observed in-situ at ambient and elevated temperature that replicates ocean warming. Here, two sets of short-term experiments were conducted at ambient and elevated temperature, exposing the corals Acroporasp. and Seriatopora hystrix to microspheres and microfibres. Throughout the experiments, gross photosynthesis and net respiration was quantified using a 4-chamber coral respirometer, and photosynthetic yields of photosystem II were measured using Pulse-Amplitude Modulated (PAM) fluorometry. Results indicate the effect of MP exposure is dependent on MP type, coral species, and temperature. MP fibres (but not spheres) reduced photosynthetic capability of Acropora sp., with a 41% decrease in photochemical efficiency at ambient temperature over 12 days. No additional stress response was observed at elevated temperature; photosynthetic performance significantly increased in Seriatopora hystrix exposed to MP spheres. These findings show that a disruption to coral photosynthetic ability can occur at MP concentrations that have been observed in the marine environment and that MP pollution impact on corals remains an important aspect for further research.
Collapse
Affiliation(s)
- F M Mendrik
- School of GeoSciences, University of Edinburgh, Edinburgh, EH93FE, UK; Energy and Environment Institute, University of Hull, Cottingham Road, Hull, East Riding, HU6 7RX, UK.
| | - T B Henry
- School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - H Burdett
- School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh, EH14 4AS, UK; Lyell Centre for Earth and Marine Science and Technology, Edinburgh, EH14 4BA, UK
| | - C R Hackney
- Geography, Politics and Sociology, Newcastle University, Newcastle Upon Tyne, UK
| | - C Waller
- Department of Biology and Marine Sciences, School of Science and Engineering, University of Hull, Cottingham Road, Hull, East Riding, HU6 7RX, UK
| | - D R Parsons
- Energy and Environment Institute, University of Hull, Cottingham Road, Hull, East Riding, HU6 7RX, UK
| | - S J Hennige
- School of GeoSciences, University of Edinburgh, Edinburgh, EH93FE, UK
| |
Collapse
|
6
|
Reis LLD, Alho LDOG, Abreu CBD, Melão MDGG. Using multiple endpoints to assess the toxicity of cadmium and cobalt for chlorophycean Raphidocelis subcapitata. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111628. [PMID: 33396148 DOI: 10.1016/j.ecoenv.2020.111628] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 10/31/2020] [Accepted: 11/05/2020] [Indexed: 06/12/2023]
Abstract
Metals may cause damage to the biota of contaminated environments. Moreover, using multiple endpoints in ecotoxicological studies is useful to better elucidate the mechanisms of toxicity of these compounds. Therefore, this study aimed to evaluate the effects of cadmium (Cd) and cobalt (Co) on growth, biochemical and photosynthetic parameters of the microalgae Raphidocelis subcapitata, through quantification of lipid classes composition, chlorophyll a (Chl a) content, maximum (ΦM) and effective (Φ'M) quantum yields and efficiency of the oxygen-evolving complex (OEC). Both metals affected the algal population growth, with an IC50-96h of 0.67 and 1.53 μM of Cd and Co, respectively. Moreover, the metals led to an increase in the total lipid content and reduced efficiency of OEC and ΦM. Cell density was the most sensitive endpoint to detect Cd toxicity after 96 h of treatment. Regarding Co, the photosynthetic parameters were the most affected and the total lipid content was the most sensitive endpoint as it was altered by the exposure to this metal in all concentrations. Cd led to increased contents of the lipid class wax esters (0.89 μM) and phospholipids (PL - at 0.89 and 1.11 μM) and decreased values of triglycerides (at 0.22 μM) and acetone-mobile polar lipids (AMPL - at 0.44 and 1.11 μM). The percentage of free fatty acids (FFA) and PL of microalgae exposed to Co increased, whereas AMPL decreased in all concentrations tested. We were able to detect differences between the toxicity mechanisms of each metal, especially how Co interferes in the microalgae at a biochemical level. Furthermore, to the best of our knowledge, this is the first study reporting Co effects in lipid classes of a freshwater Chlorophyceae. The damage caused by Cd and Co may reach higher trophic levels, causing potential damage to the aquatic communities as microalgae are primary producers and the base of the food chain.
Collapse
Affiliation(s)
- Larissa Luiza Dos Reis
- Universidade Federal de São Carlos - UFSCar, Department of Hydrobiology, Rodovia Washington Luís, Km 235, Zip Code 13565-905, São Carlos, SP, Brazil; Post-Graduate Program in Ecology and Natural Resources (PPGERN), Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luís, Km 235, Zip Code 13565-905, São Carlos, SP, Brazil.
| | - Lays de Oliveira Gonçalves Alho
- Universidade Federal de São Carlos - UFSCar, Department of Hydrobiology, Rodovia Washington Luís, Km 235, Zip Code 13565-905, São Carlos, SP, Brazil; Post-Graduate Program in Ecology and Natural Resources (PPGERN), Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luís, Km 235, Zip Code 13565-905, São Carlos, SP, Brazil.
| | - Cínthia Bruno de Abreu
- Universidade Federal de São Carlos - UFSCar, Department of Hydrobiology, Rodovia Washington Luís, Km 235, Zip Code 13565-905, São Carlos, SP, Brazil; Post-Graduate Program in Ecology and Natural Resources (PPGERN), Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luís, Km 235, Zip Code 13565-905, São Carlos, SP, Brazil.
| | - Maria da Graça Gama Melão
- Universidade Federal de São Carlos - UFSCar, Department of Hydrobiology, Rodovia Washington Luís, Km 235, Zip Code 13565-905, São Carlos, SP, Brazil.
| |
Collapse
|
7
|
Zhang M, Steinman AD, Xue Q, Zhao Y, Xu Y, Xie L. Effects of erythromycin and sulfamethoxazole on Microcystis aeruginosa: Cytotoxic endpoints, production and release of microcystin-LR. JOURNAL OF HAZARDOUS MATERIALS 2020; 399:123021. [PMID: 32937707 DOI: 10.1016/j.jhazmat.2020.123021] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 05/18/2020] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
Antibiotics can cause severe ecological problems for aquatic ecosystems due to their wide use and incomplete removal. Microcystis aeruginosa was exposed to different levels of erythromycin (ERY) and sulfamethoxazole (SMX) separately to assess their cytotoxic effects on harmful cyanobacteria. The production and release of the toxin MC-LR was measured, and several endpoints were investigated using flow cytometry (FCM) for 7 d. ERY resulted in cell membrane hyperpolarization and a hormesis effect on growth rate and chlorophyll a fluorescence at environmentally relevant concentrations (0.5 and 5 μg/L). Microcystis exhibited elevated photosynthesis and hyperpolarization at 50 and 125 μg/L of SMX. An increase of metabolically non-active cells was observed in either ERY or SMX cultures while stimulation of esterase activity was also found at 7 d. ERY and SMX caused damage of membrane integrity due to the overproduction of ROS, which led to increased release of MC-LR. MC-LR production apparently was induced by ERY (0.5-500 μg/L) and SMX (50 and 125 μg/L). In conclusion, ERY and SMX can disrupt the physiological status of Microcystis cells and stimulate the production and release of MC-LR, which can exacerbate potential risks to water systems.
Collapse
Affiliation(s)
- Mingchen Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China; Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Alan D Steinman
- Annis Water Resources Institute, Grand Valley State University, 740 West Shoreline Drive, Muskegon, MI, 49441, USA
| | - Qingju Xue
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China
| | - Yanyan Zhao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China
| | - Yan Xu
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| | - Liqiang Xie
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China.
| |
Collapse
|
8
|
Sun C, Li W, Xu Y, Hu N, Ma J, Cao W, Sun S, Hu C, Zhao Y, Huang Q. Effects of carbon nanotubes on the toxicities of copper, cadmium and zinc toward the freshwater microalgae Scenedesmus obliquus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 224:105504. [PMID: 32450458 DOI: 10.1016/j.aquatox.2020.105504] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/26/2020] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
Due to their unique structure and properties, carbon nanotubes (CNTs) released into the aquatic environment can potentially influence the behavior of other coexisting pollutants, thereby altering their toxicity to aquatic organisms. In this study, the toxicities of multi-walled CNTs and three heavy metals, copper (Cu), cadmium (Cd) and zinc (Zn) were determined individually. Following this, CNTs with low concentrations (1 and 5 mg/L) were co-exposed with Cu, Cd or Zn to the microalgae Scenedesmus obliquus, to investigate the effects and underlying mechanisms of CNTs on metal toxicity. Results showed that CNTs, especially at a concentration of 5 mg/L, promoted algae growth and enhanced photosynthetic efficiency via increasing exciton trap efficiency and quantum yield for electron transport. Introduction of CNTs appeared to alleviate the adverse effects of Cu, Cd or Zn on microalgae, indicated by algae growth, total chlorophyll content and photosynthetic indices. However, these effects differed greatly for different metals, depending on both the toxicity of each metal and the exposure period (4 day and 8 day). Enhancement of photosynthesis and interference of metal uptake by CNTs, have a crucial role in the effects of CNTs on metal toxicity.
Collapse
Affiliation(s)
- Chen Sun
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, PR China
| | - Wen Li
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, PR China
| | - Yinfeng Xu
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, PR China
| | - Naitao Hu
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Jun Ma
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, PR China
| | - Weixing Cao
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, PR China
| | - Shiqing Sun
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, PR China
| | - Changwei Hu
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, PR China.
| | - Yongjun Zhao
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, PR China
| | - Qingguo Huang
- Department of Crop and Soil Sciences, University of Georgia, Griffin, GA 30223, United States
| |
Collapse
|
9
|
Schütz V, Bigler L, Girel S, Laschke L, Sicker D, Schulz M. Conversions of Benzoxazinoids and Downstream Metabolites by Soil Microorganisms. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00238] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
10
|
Xue Q, Wang R, Xu W, Wang J, Tan L. The stresses of allelochemicals isolated from culture solution of diatom Phaeodactylum tricornutum Bohlin on growth and physiology of two marine algae. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 205:51-57. [PMID: 30321860 DOI: 10.1016/j.aquatox.2018.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 10/05/2018] [Accepted: 10/05/2018] [Indexed: 06/08/2023]
Abstract
The allelopathic effects of extracts isolated from the culture filtrate of diatom Phaeodactylum triconutum Bohlin on typical marine microalgae Prorocentrum donghaiense Lu and Dunaliella salina Teodoresco were investigated by determining different physiological and biochemical parameters, such as growth rate, membrane systems and esterase activity under controlled laboratory conditions. The growth of P. donghaiense was significantly inhibited immediately after exposure to the allelochemicals, while the algae density of D. salina was less sensitive. Chlorophyll-a content, membrane systems, as well as esterase activity were simultaneously investigated by flow cytometry with particular fluorescent markers and exhibited changeable sensitivities. The results demonstrated that the membrane systems of P. donghaiense were suppressed by the allelochemicals directly, causing loss of integrity and membrane penetration. Esterase activity was the most sensitive indicator as that of P. donghaiense cells significantly increased in short time and was inhibited subsequently. However, the membrane of D. salina remained intact still after exposure to the extracts and the esterase activity was only inhibited on last day during experiment period. Membrane potential and chlorophyll-a content of the two marine algae also showed somewhat different changes, as that of P. donghaiense cells were impaired after 5 day exposure to all volume conditions while these two characteristics of D. salina was only suppressed by exposure to high volume of the allelochemicals on day 6. The present results indicated that the inhibition of culture filtrate of P. triconutum on P. donghaiense was algicidal whereas the effect on D. salina appeared to be algistatic.
Collapse
Affiliation(s)
- Qiaona Xue
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Rui Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Wenjing Xu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Jiangtao Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China.
| | - Liju Tan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
11
|
Wang C, Chang XL, Shi Q, Zhang X. Uptake and Transfer of 13C-Fullerenols from Scenedesmus obliquus to Daphnia magna in an Aquatic Environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:12133-12141. [PMID: 30335979 DOI: 10.1021/acs.est.8b03121] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Fullerenol, a water-soluble polyhydroxylated fullerene nanomaterial, enters aquatic organisms and ecosystems through different ingestion exposures and may pose environmental risks. The study of their uptake routes and transfer in aquatic systems is scarce. Herein, we quantitatively investigated the aquatic uptake and transfer of 13C-fullerenols from Scenedesmus obliquus to Daphnia magna using 13C-skeleton-labeling techniques. The bioaccumulation and depuration of fullerenol in Daphnia magna increased with exposure doses and time, reaching steady state within 16 h in aqueous and feeding-affected aqueous routes. The capacity of Daphnia magna to ingest fullerenol via the aqueous route was much higher than that via the dietary route. From the aqueous to feeding-affected aqueous, the kinetic analysis demonstrated the bioaccumulation factors decreases, which revealed that algae suppressed Daphnia magna uptake of fullerenols. The aqueous route was the primary fullerenols ingestion pathway for Daphnia magna. Kinetic analysis of the accumulation and transfer in Daphnia magna via the dietary route indicated low transfer efficiency of fullerenol along the Scenedesmus obliquus-Daphnia magna food chain. Using stable isotope labeling techniques, these quantitative data revealed that carbon nanomaterials underwent complex aquatic accumulation and transfer from primary producers to secondary consumers and algae inhibited their transfer in food chains.
Collapse
Affiliation(s)
- Chenglong Wang
- Key Lab for Biomedical Effects of Nanomaterials and Nanosafety , Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049 , China
| | - Xue-Ling Chang
- Key Lab for Biomedical Effects of Nanomaterials and Nanosafety , Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049 , China
| | - Qiuyue Shi
- Key Lab of Urban Environment and Health , Institute of Urban Environment, Chinese Academy of Sciences , Xiamen 361021 , China
| | - Xian Zhang
- Key Lab of Urban Environment and Health , Institute of Urban Environment, Chinese Academy of Sciences , Xiamen 361021 , China
| |
Collapse
|
12
|
Cheng L, He Y, Tian Y, Liu B, Zhang Y, Zhou Q, Wu Z. Comparative biotoxicity of N-Phenyl-1-naphthylamine and N-Phenyl-2-naphthylamine on cyanobacteria Microcystis aeruginosa. CHEMOSPHERE 2017; 176:183-191. [PMID: 28260658 DOI: 10.1016/j.chemosphere.2017.02.110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 02/04/2017] [Accepted: 02/21/2017] [Indexed: 06/06/2023]
Abstract
N-Phenyl-1-naphthylamine (P1NA) and N-Phenyl-2-naphthylamine (P2NA) are both widely used as antioxidant and plant secondary metabolites. In this study, growth, esterase, photosynthetic activity and cell membrane integrity were used as biomarkers to compare biotoxicity of P1NA and P2NA on Microcystis aeruginosa. According to the results, a dose-response relationship was observed only between P1NA concentrations and growth inhibition. The EC50 (48 h) of P1NA calculated from growth inhibition was 16.62 μM, while that of P2NA was not detected. When the esterase and photosynthetic activity were applied to evaluate the biotoxicity, it was found that a concentration of 20 μM P1NA, P2NA caused reduction of esterase activity and Fv/Fm of M. aeruginosa to 22.2 and 3.3%, 97.5 and 92.1%, respectively, after 48 h exposure. The percentage of membrane-damaged cells was increased as P1NA exposure concentration increased, but that was not detected when exposure to P2NA. The difference substituted position in the molecular structure of P1NA and P2NA leads to different toxicological properties and only P1NA was found highly toxic to M. aeruginosa. The toxicity is due to that only P1NA can be biotransformed to 1,4-naphthoquinone, which could induce overproduction of intracellular ROS as well as result in oxidative damage and growth inhibition of test organism.
Collapse
Affiliation(s)
- Long Cheng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yun Tian
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Biyun Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Yongyuan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Qiaohong Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Zhenbin Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
13
|
Seoane M, Esperanza M, Rioboo C, Herrero C, Cid Á. Flow cytometric assay to assess short-term effects of personal care products on the marine microalga Tetraselmis suecica. CHEMOSPHERE 2017; 171:339-347. [PMID: 28030786 DOI: 10.1016/j.chemosphere.2016.12.097] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 11/29/2016] [Accepted: 12/20/2016] [Indexed: 06/06/2023]
Abstract
Large quantities of personal care products (PCPs) are used daily and many of their chemical ingredients are subsequently released into marine environments. Cultures of the marine microalga Tetraselmis suecica were exposed for 24 h to three emerging compounds included in the main classes of PCPs: the UV filter benzophenone-3 (BP-3), the disinfectant triclosan (TCS) and the fragrance tonalide (AHTN). Concentrations tested, expressed as cellular quota (pg cell-1), ranged from 5 to 40 for BP-3, from 2 to 16 for TCS and from 1.2 to 2.4 for AHTN. A small cytometric panel was carried out to evaluate key cytotoxicity biomarkers including inherent cell properties, growth and metabolic activity and cytoplasmic membrane properties. BP-3 caused a significant increase in growth rate, metabolic activity and chlorophyll a fluorescence from 10 pg cell-1. However, growth and esterase activity decreased in cells exposed to all TCS and AHTN concentrations, except the lowest ones. Also these two compounds provoked a significant swelling of cells, more pronounced in the case of TCS-exposed cells. Although all treated cells remained viable, changes in membrane potential were observed. BP-3 and AHTN caused a significant depolarization of cells from 10 to 1.6 pg cell-1, respectively; however all TCS concentrations assayed caused a noticeable hyperpolarization of cells. Metabolic activity and cytoplasmic membrane potential were the most sensitive parameters. It can be concluded that the toxicological model used and the toxicological parameters evaluated are suitable to assess the toxicity of these emerging contaminants.
Collapse
Affiliation(s)
- Marta Seoane
- Laboratorio de Microbiología, Facultad de Ciencias, Universidade da Coruña, Campus da Zapateira s/n, 15071 A Coruña, Spain
| | - Marta Esperanza
- Laboratorio de Microbiología, Facultad de Ciencias, Universidade da Coruña, Campus da Zapateira s/n, 15071 A Coruña, Spain
| | - Carmen Rioboo
- Laboratorio de Microbiología, Facultad de Ciencias, Universidade da Coruña, Campus da Zapateira s/n, 15071 A Coruña, Spain
| | - Concepción Herrero
- Laboratorio de Microbiología, Facultad de Ciencias, Universidade da Coruña, Campus da Zapateira s/n, 15071 A Coruña, Spain
| | - Ángeles Cid
- Laboratorio de Microbiología, Facultad de Ciencias, Universidade da Coruña, Campus da Zapateira s/n, 15071 A Coruña, Spain.
| |
Collapse
|
14
|
Olivé I, Silva J, Lauritano C, Costa MM, Ruocco M, Procaccini G, Santos R. Linking gene expression to productivity to unravel long- and short-term responses of seagrasses exposed to CO 2 in volcanic vents. Sci Rep 2017; 7:42278. [PMID: 28205566 PMCID: PMC5304229 DOI: 10.1038/srep42278] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 01/09/2017] [Indexed: 11/09/2022] Open
Abstract
Ocean acidification is a major threat for marine life but seagrasses are expected to benefit from high CO2. In situ (long-term) and transplanted (short-term) plant incubations of the seagrass Cymodocea nodosa were performed near and away the influence of volcanic CO2 vents at Vulcano Island to test the hypothesis of beneficial effects of CO2 on plant productivity. We relate, for the first time, the expression of photosynthetic, antioxidant and metal detoxification-related genes to net plant productivity (NPP). Results revealed a consistent pattern between gene expression and productivity indicating water origin as the main source of variability. However, the hypothesised beneficial effect of high CO2 around vents was not supported. We observed a consistent long- and short-term pattern of gene down-regulation and 2.5-fold NPP decrease in plants incubated in water from the vents and a generalized up-regulation and NPP increase in plants from the vent site incubated with water from the Reference site. Contrastingly, NPP of specimens experimentally exposed to a CO2 range significantly correlated with CO2 availability. The down-regulation of metal-related genes in C. nodosa leaves exposed to water from the venting site suggests that other factors than heavy metals, may be at play at Vulcano confounding the CO2 effects.
Collapse
Affiliation(s)
- Irene Olivé
- CCMar-Centre of Marine Sciences, ALGAE - Marine Plant Ecology Research Group. Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - João Silva
- CCMar-Centre of Marine Sciences, ALGAE - Marine Plant Ecology Research Group. Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Chiara Lauritano
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy
| | - Monya M Costa
- CCMar-Centre of Marine Sciences, ALGAE - Marine Plant Ecology Research Group. Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Miriam Ruocco
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy
| | | | - Rui Santos
- CCMar-Centre of Marine Sciences, ALGAE - Marine Plant Ecology Research Group. Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
15
|
Baxter L, Brain RA, Lissemore L, Solomon KR, Hanson ML, Prosser RS. Influence of light, nutrients, and temperature on the toxicity of atrazine to the algal species Raphidocelis subcapitata: Implications for the risk assessment of herbicides. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 132:250-259. [PMID: 27340884 DOI: 10.1016/j.ecoenv.2016.06.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 06/14/2016] [Accepted: 06/15/2016] [Indexed: 06/06/2023]
Abstract
The acute toxicity of herbicides to algae is commonly assessed under conditions (e.g., light intensity, water temperature, concentration of nutrients, pH) prescribed by standard test protocols. However, the observed toxicity may vary with changes in one or more of these parameters. This study examined variation in toxicity of the herbicide atrazine to a representative green algal species Raphidocelis subcapitata (formerly Pseudokirchneriella subcapitata) with changes in light intensity, water temperature, concentrations of nutrients or combinations of these three parameters. Conditions were chosen that could be representative of the intensive corn growing Midwestern region of the United States of America where atrazine is used extensively. Varying light intensity (4-58µmol/m(2)s) resulted in no observable trend in 96-h EC50 values for growth rate. EC50 values for PSII yield generally increased with decreasing light intensity but not significantly in all cases. The 96-h EC50 values for growth rate decreased with decreases in temperature (20-5°C) from standard conditions (25°C), but EC50 values for PSII yield at lower temperatures were not significantly different from standard conditions. Finally, there was no clear trend in 96-h EC50 values for both endpoints with increases in nitrogen (4.1-20mg/L) and phosphorus (0.24-1.2mg/L). The 96-h EC50 values for both endpoints under combinations of conditions mimicking aquatic systems in the Midwestern U.S. were not significantly different from EC50 values generated under standard test conditions. This combination of decreased light intensity and temperature and increased nutrients relative to standard conditions does not appear to significantly affect the observed toxicity of atrazine to R. subcapitata. For atrazine specifically, and for perhaps other herbicides, this means current laboratory protocols are useful for extrapolating to effects on algae under realistic environmental conditions.
Collapse
Affiliation(s)
- Leilan Baxter
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| | | | - Linda Lissemore
- University of Guelph Laboratory Services Division, Guelph, Ontario, Canada
| | - Keith R Solomon
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Mark L Hanson
- Department of Environment and Geography, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ryan S Prosser
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada.
| |
Collapse
|
16
|
Esperanza M, Seoane M, Rioboo C, Herrero C, Cid Á. Early alterations on photosynthesis-related parameters in Chlamydomonas reinhardtii cells exposed to atrazine: A multiple approach study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 554-555:237-245. [PMID: 26950638 DOI: 10.1016/j.scitotenv.2016.02.175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 02/18/2016] [Accepted: 02/18/2016] [Indexed: 06/05/2023]
Abstract
Chlamydomonas reinhardtii cells were exposed to a sublethal concentration of the widespread herbicide atrazine for 3h. Physiological cellular parameters, such as chlorophyll a fluorescence and oxidative stress monitored by flow cytometry and pigments levels were altered in microalgal cells exposed to 0.25 μM of atrazine. Furthermore, the effects of this herbicide on C. reinhardtii were explored using "omics" techniques. Transcriptomic analyses, carried out by RNA-Seq technique, displayed 9 differentially expressed genes, related to photosynthesis, between control cultures and atrazine exposed cultures. Proteomic profiles were obtained using iTRAQ tags and MALDI-MS/MS analysis, identifying important changes in the proteome during atrazine stress; 5 proteins related to photosynthesis were downexpressed. The results of these experiments advance the understanding of photosynthetic adjustments that occur during an early herbicide exposure. Inhibition of photosynthesis induced by atrazine toxicity will affect the entire physiological and biochemical states of microalgal cells.
Collapse
Affiliation(s)
- Marta Esperanza
- Laboratorio de Microbiología, Facultad de Ciencias, Universidad de A Coruña, Campus de A Zapateira, s/n 15071 A Coruña, Spain
| | - Marta Seoane
- Laboratorio de Microbiología, Facultad de Ciencias, Universidad de A Coruña, Campus de A Zapateira, s/n 15071 A Coruña, Spain
| | - Carmen Rioboo
- Laboratorio de Microbiología, Facultad de Ciencias, Universidad de A Coruña, Campus de A Zapateira, s/n 15071 A Coruña, Spain
| | - Concepción Herrero
- Laboratorio de Microbiología, Facultad de Ciencias, Universidad de A Coruña, Campus de A Zapateira, s/n 15071 A Coruña, Spain
| | - Ángeles Cid
- Laboratorio de Microbiología, Facultad de Ciencias, Universidad de A Coruña, Campus de A Zapateira, s/n 15071 A Coruña, Spain.
| |
Collapse
|
17
|
Rocha ACS, Reis-Henriques MA, Galhano V, Ferreira M, Guimarães L. Toxicity of seven priority hazardous and noxious substances (HNSs) to marine organisms: Current status, knowledge gaps and recommendations for future research. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 542:728-749. [PMID: 26546768 DOI: 10.1016/j.scitotenv.2015.10.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Revised: 10/07/2015] [Accepted: 10/08/2015] [Indexed: 06/05/2023]
Abstract
Shipping industry and seaborne trade have rapidly increased over the last fifty years, mainly due to the continuous increasing demand for chemicals and fuels. Consequently, despite current regulations, the occurrence of accidental spills poses an important risk. Hazardous and noxious substances (HNSs) have been raising major concern among environmental managers and scientific community for their heterogeneity, hazardous potential towards aquatic organisms and associated social-economic impacts. A literature review on ecotoxicological hazards to aquatic organisms was conducted for seven HNSs: acrylonitrile, n-butyl acrylate, cyclohexylbenzene, hexane, isononanol, trichloroethylene and xylene. Information on the mechanisms of action of the selected HNS was also reviewed. The main purpose was to identify: i) knowledge gaps in need of being addressed in future research; and ii) a set of possible biomarkers suitable for ecotoxicological assessment and monitoring in both estuarine and marine systems. Main gaps found concern the scarcity of information available on ecotoxicological effects of HNS towards marine species and their poorly understood mode of action in wildlife. Differences were found between the sensitivity of freshwater and seawater organisms, so endpoints produced in the former may not be straightforwardly employed in evaluations for the marine environment. The relationship between sub-individual effects and higher level detrimental alterations (e.g. behavioural, morphological, reproductive effects and mortality) are not fully understood. In this context, a set of biomarkers associated to neurotoxicity, detoxification and anti-oxidant defences is suggested as potential indicators of toxic exposure/effects of HNS in marine organisms. Overall, to support the development of contingency plans and the establishment of environmental safety thresholds, it will be necessary to undertake targeted research on HNS ecotoxicity in the marine environment. Research should address these issues under more realistic exposure scenarios reflecting the prevailing spatial and temporal variability in ecological and environmental conditions.
Collapse
Affiliation(s)
- A Cristina S Rocha
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Rua dos Bragas, 289, 4050-123 Porto, Portugal.
| | - Maria Armanda Reis-Henriques
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Rua dos Bragas, 289, 4050-123 Porto, Portugal
| | - Victor Galhano
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Rua dos Bragas, 289, 4050-123 Porto, Portugal
| | - Marta Ferreira
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Rua dos Bragas, 289, 4050-123 Porto, Portugal.
| | - Laura Guimarães
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Rua dos Bragas, 289, 4050-123 Porto, Portugal
| |
Collapse
|
18
|
Protopopov FF, Matorin DN, Seifullina NK, Bratkovskaya LB, Zayadan BK. Effect of methylmercury on the light dependence fluorescence parameters in a green alga Chlamydomonas moewusii. Microbiology (Reading) 2015. [DOI: 10.1134/s0026261715060119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
19
|
Tao X, Yu Y, Fortner JD, He Y, Chen Y, Hughes JB. Effects of aqueous stable fullerene nanocrystal (nC60) on Scenedesmus obliquus: evaluation of the sub-lethal photosynthetic responses and inhibition mechanism. CHEMOSPHERE 2015; 122:162-167. [PMID: 25479812 DOI: 10.1016/j.chemosphere.2014.11.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Revised: 11/09/2014] [Accepted: 11/14/2014] [Indexed: 06/04/2023]
Abstract
Understanding sub-lethal effects of nanomaterial may be particularly important to determining ecosystem responses as current levels of nanomaterial release are low compared to levels projected for the future. In this work, the sub-lethal effects of water stable, nanocrystalline fullerenes as C60 (termed nC60) were studied on Scenedesmusobliquus, a globally distributed phytoplankton. Sub-lethal concentration for S. obliquus was firstly determined as 0.09mgL(-1) using the standard 72h exposure tests (OECD Guideline 201). Subsequent sub-lethal experiment of nC60 on the S. obliquus was carried out for 60d and focused on the photosynthesis processes. The results demonstrate that upon sub-lethal exposure, the photosynthetic products of polysaccharide, soluble protein and total lipid were decreased with exposure time. The photosynthetic pigments of chlorophyll a and chlorophyll b were negatively impacted. Further investigations indicate that the decrements in photosynthetic products and pigments were mainly due to the algal Mg(2+) decrement (by 40%) at the sub-lethal concentration (0.09mgL(-1)) of nC60. The decrement in Mg(2+) of S. obliquus was due to the inhibition of Mg(2+)-ATPase activity caused by nC60. Sum up, these results not only describe the sub-lethal effects but also provide the probably mechanism for sub-lethal effects of nC60 on exposed S. obliquus.
Collapse
Affiliation(s)
- Xianji Tao
- Aquaculture Genetics and Breeding Technology Center in Shanghai Ocean University, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yanxiang Yu
- Aquaculture Genetics and Breeding Technology Center in Shanghai Ocean University, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - John D Fortner
- Department of Energy, Environmental and Chemical Engineering, Washington University, St. Louis, MO 63130, United States
| | - Yiliang He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yongsheng Chen
- College of Engineering, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Joseph B Hughes
- College of Engineering, Drexel University, Philadelphia, PA 19104, United States
| |
Collapse
|
20
|
Xu Z, Xu YJ. Rapid field estimation of biochemical oxygen demand in a subtropical eutrophic urban lake with chlorophyll a fluorescence. ENVIRONMENTAL MONITORING AND ASSESSMENT 2015; 187:4171. [PMID: 25446719 DOI: 10.1007/s10661-014-4171-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 11/17/2014] [Indexed: 06/04/2023]
Abstract
Development of a technique for rapid field estimation of biochemical oxygen demand (BOD) is necessary for cost-effective monitoring and management of urban lakes. While several studies reported the usefulness of laboratory tryptophan-like fluorescence technique in predicting 5-day BOD (BOD₅) of wastewater and leachates, little is known about the predictability of field chlorophyll fluorescence measurements for BOD of urban lake waters that are constantly exposed to the mixture of chemical compounds. This study was conducted to develop a numeric relationship between chlorophyll a fluorescence and BOD for a eutrophic urban lake that is widely representative of lake water conditions in the subtropical southern USA. From October 2012 to September 2013, in situ measurements at the studied lake were made every 2 weeks on chlorophyll a fluorescence and other water quality parameters including water temperature, pH, dissolved oxygen, and specific conductivity. Water samples were taken for 5-day BOD and 10-day BOD (BOD₁₀) analysis with and without incubation. The results showed a clear seasonal trend of both BOD measurements being high during the summer and low during the winter. There was a linear, positive relationship between chlorophyll a fluorescence and BOD, and the relationship appeared to be stronger with the 10-day BOD (r(2) = 0.83) than with the 5-day BOD (r(2) = 0.76). BOD dropped each day with declining chlorophyll a fluorescence, suggesting that die-off of phytoplankton has been the main consumption of oxygen in the studied lake. Ambient conditions such as rainfall and water temperature may have partially affected BOD variation.
Collapse
Affiliation(s)
- Zhen Xu
- School of Renewable Natural Resources, Louisiana State University Agricultural Center, Baton Rouge, LA, 70803, USA
| | | |
Collapse
|
21
|
Kottuparambil S, Kim YJ, Choi H, Kim MS, Park A, Park J, Shin W, Han T. A rapid phenol toxicity test based on photosynthesis and movement of the freshwater flagellate, Euglena agilis Carter. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 155:9-14. [PMID: 24953851 DOI: 10.1016/j.aquatox.2014.05.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 05/01/2014] [Accepted: 05/12/2014] [Indexed: 06/03/2023]
Abstract
Phenol, a monosubstituted aromatic hydrocarbon with various commercial uses, is a major organic constituent in industrial wastewaters. The ecotoxic action of phenol for aquatic environment is well known. In this study, rapid phenol toxicity tests (1h) were developed based on chlorophyll a (Chl a) fluorescence and the movement parameters of the freshwater flagellate, Euglena agilis Carter. Phenol significantly reduced the maximum quantum yield (Fv/Fm) of photosystem II (PS II) and the maximum photosynthetic electron transport rate (rETRmax) with median effective concentration (EC50) values of 8.94 and 4.67 mM, respectively. Phenol reduced the motility and triggered change in the swimming velocity of the test organism. Among the parameters tested, velocity was the most sensitive biomarker with an EC50 of 3.17 mM. The EC50 values for Fv/Fm, motility, and velocity appear to overlap the permitted levels of phenol. In conclusion, the photosynthesis and movement of E. agilis can be fast and sensitive risk assessment parameters for the evaluation of phenol toxicity in municipal and industrial effluents.
Collapse
Affiliation(s)
- Sreejith Kottuparambil
- Institute of Green Environmental Research Center, Incheon National University, Incheon 406 840, Republic of Korea
| | - Youn-Jung Kim
- Institute of Green Environmental Research Center, Incheon National University, Incheon 406 840, Republic of Korea; Department of Marine Science, Incheon National University, Incheon 406 840, Republic of Korea; Green-Pioneer (Ltd.), Incheon National University, Incheon 406 840, Republic of Korea
| | - Hoon Choi
- Institute of Green Environmental Research Center, Incheon National University, Incheon 406 840, Republic of Korea
| | - Mi-Sung Kim
- Institute of Green Environmental Research Center, Incheon National University, Incheon 406 840, Republic of Korea
| | - Areum Park
- Institute of Green Environmental Research Center, Incheon National University, Incheon 406 840, Republic of Korea
| | - Jihae Park
- Institute of Green Environmental Research Center, Incheon National University, Incheon 406 840, Republic of Korea
| | - Woongghi Shin
- Department of Biology, Chungnam University, Daejeon 306 764, Republic of Korea
| | - Taejun Han
- Institute of Green Environmental Research Center, Incheon National University, Incheon 406 840, Republic of Korea; Department of Marine Science, Incheon National University, Incheon 406 840, Republic of Korea; Green-Pioneer (Ltd.), Incheon National University, Incheon 406 840, Republic of Korea.
| |
Collapse
|
22
|
Lomba L, Muñiz S, Pino MR, Navarro E, Giner B. Ecotoxicity studies of the levulinate ester series. ECOTOXICOLOGY (LONDON, ENGLAND) 2014; 23:1484-1493. [PMID: 25081381 DOI: 10.1007/s10646-014-1290-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/03/2014] [Indexed: 06/03/2023]
Abstract
The increasing interest in the development of novel green solvents has led to the synthesis of benign alternative products with minimized environmental impacts. However, most of published studies on green solvents focus primarily on their physicochemical properties, with limited emphasis on absence of ecotoxicological assessment. In this study, we evaluated the acute ecotoxicity of four levulinates (levulinic acid, methyl levulinate, ethyl levulinate and butyl levulinate) on freshwater algae (Chlamydomonas reinhardtii), bacteria (Vibrio fischeri), daphnids (Daphnia magna) and earthworms (Eisenia foetida) using various dose-response tests. As a general trend, the toxicity of levulinate esters in aquatic exposure (assessed as the EC50) increased as a function of increasing alkyl chain length; accordingly, the most toxic compound for the aquatic organisms was butyl levulinate, followed by ethyl levulinate and methyl levulinate. The most toxic compound for E. foetida (terrestrial exposure) was methyl levulinate, followed by ethyl levulinate, butyl levulinate and levulinic acid; in this case, we observed an inverse relationship between toxicity and alkyl chain length. Based on both the lowest EC50 found in the aquatic media and the ratio between predicted environmental concentration and the predicted no-effect concentration, we have estimated the maximum allowable values in the environment for these chemicals to be 1.093 mg L(-1) for levulinic acid, 2.761 mg L(-1) for methyl levulinate, 0.982 mg L(-1) for ethyl levulinate and 0.151 mg L(-1) for butyl levulinate.
Collapse
Affiliation(s)
- Laura Lomba
- Facultad de Ciencias de la Salud, Universidad San Jorge, Villanueva de Gállego, 50830, Zaragoza, Spain
| | | | | | | | | |
Collapse
|
23
|
Zhang D, Deng C, Pan X. Excess Ca(2+) does not alleviate but increases the toxicity of Hg(2+) to photosystem II in Synechocystis sp. (Cyanophyta). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2013; 97:160-5. [PMID: 23953992 DOI: 10.1016/j.ecoenv.2013.07.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 07/21/2013] [Accepted: 07/25/2013] [Indexed: 05/03/2023]
Abstract
This study demonstrated that excess Ca(2+) increased the toxicity of Hg(2+) to PSII of cyanobacterium Synechocystis sp. using fast rise chlorophyll fluorescence test. Excess Ca(2+) increased the inhibitory effect of Hg(2+) on O2 evolution. Exposure to Hg(2+) caused increase in functional antenna size (ABS/RC), trapping rate of reaction center (TR0/RC), dissipated energy flux per reaction center (DI0/RC) and maximum quantum yield of non-photochemical deexcitation ( [Formula: see text] ), indicating that some reaction centers were transformed to dissipation sinks under Hg(2+) stress. Hg(2+) stress slowed down electron transport on both donor side and acceptor side and caused accumulation of P680(+). Excess Ca(2+) intensified all the Hg(2+) toxic effects on PSII function and led to dysfunction of PSII. The number of reaction centers that were transformed into dissipation sinks increased with increasing Ca(2+) concentration.
Collapse
Affiliation(s)
- Daoyong Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, China
| | | | | |
Collapse
|
24
|
Choi CJ, Berges JA, Young EB. Rapid effects of diverse toxic water pollutants on chlorophyll a fluorescence: variable responses among freshwater microalgae. WATER RESEARCH 2012; 46:2615-2626. [PMID: 22406285 DOI: 10.1016/j.watres.2012.02.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 01/24/2012] [Accepted: 02/11/2012] [Indexed: 05/31/2023]
Abstract
Chlorophyll a fluorescence of microalgae is a compelling indicator of toxicity of dissolved water contaminants, because it is easily measured and responds rapidly. While different chl a fluorescence parameters have been examined, most studies have focused on single species and/or a narrow range of toxins. We assessed the utility of one chl a fluorescence parameter, the maximum quantum yield of PSII (F(v)/F(m)), for detecting effects of nine environmental pollutants from a range of toxin classes on 5 commonly found freshwater algal species, as well as the USEPA model species, Pseudokirchneriella subcapitata. F(v)/F(m) declined rapidly over <20 min in response to low concentrations of photosynthesis-specific herbicides Diuron(®) and metribuzin (both <40 nM), atrazine (<460 nM) and terbuthylazine (<400 nM). However, F(v)/F(m) also responded rapidly and in a dose-dependent way to toxins glyphosate (<90 μM), and KCN (<1 mM) which have modes of action not specific to photosynthesis. F(v)/F(m) was insensitive to 30-40 μM insecticides methyl parathion, carbofuran and malathion. Algal species varied in their sensitivity to toxins. No single species was the most sensitive to all nine toxins, but for six toxins to which algal F(v)/F(m) responded significantly, the model species P. subcapitata was less sensitive than other taxa. In terms of suppression of F(v)/F(m) within 80 min, patterns of concentration-dependence differed among toxins; most showed Michaelis-Menten saturation kinetics, with half-saturation constant (K(m)) values for the PSII inhibitors ranging from 0.14 μM for Diuron(®) to 6.6 μM for terbuthylazine, compared with a K(m) of 330 μM for KCN. Percent suppression of F(v)/F(m) by glyphosate increased exponentially with concentration. F(v)/F(m) provides a sensitive and easily-measured parameter for rapid and cost-effective detection of effects of many dissolved toxins. Field-portable fluorometers will facilitate field testing, however distinct responses between different species may complicate net F(v)/F(m) signal from a community.
Collapse
Affiliation(s)
- Chang Jae Choi
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA.
| | | | | |
Collapse
|
25
|
Cai Y, Cao F, Cheng W, Zhang G, Wu F. Modulation of exogenous glutathione in phytochelatins and photosynthetic performance against cd stress in the two rice genotypes differing in Cd tolerance. Biol Trace Elem Res 2011; 143:1159-73. [PMID: 21191821 DOI: 10.1007/s12011-010-8929-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2010] [Accepted: 12/07/2010] [Indexed: 10/18/2022]
Abstract
Greenhouse hydroponic experiments were conducted using Cd-sensitive (Xiushui63) and tolerant (Bing97252) rice genotypes to evaluate genotypic differences in response of photosynthesis and phytochelatins to Cd toxicity in the presence of exogenous glutathione (GSH). Plant height, chlorophyll content, net photosynthetic rate (Pn), and biomass decreased in 5 and 50 μM Cd treatments, and Cd-sensitive genotype showed more severe reduction than the tolerant one. Cadmium stress caused decrease in maximal photochemical efficiency of PSII (Fv/Fm) and effective PSII quantum yield [Y(II)] and increase in quantum yield of regulated energy dissipation [Y(NPQ)], with changes in Cd-sensitive genotype being more evident. Cadmium-induced phytochelatins (PCs), GSH, and cysteine accumulation was observed in roots of both genotypes, with markedly higher level in PCs and GSH on day 5 in Bing97252 compared with that measured in Xiushui63. Exogenous GSH significantly alleviated growth inhibition in Xiushui63 under 5 μM Cd and in both genotypes in 50 μM Cd. External GSH significantly increased chlorophyll content, Pn, Fv/Fm, and Y(II) of plants exposed to Cd, but decreased Y(NPQ) and the coefficient of non-photochemical quenching (qN). GSH addition significantly increased root GSH content in plants under Cd exposure (except day 5 of 50 μM Cd) and induced up-regulation in PCs of 5 μM-Cd-treated Bing97252 throughout the 15-day and Xiushui63 of 5-day exposure. The results suggest that genotypic difference in the tolerance to Cd stress was positively linked to the capacity in elevation of GSH and PCs, and that alleviation of Cd toxicity by GSH is related to significant improvement in chlorophyll content, photosynthetic performance, and root GSH levels.
Collapse
Affiliation(s)
- Yue Cai
- Department of Agronomy, College of Agriculture and Biotechnology, Huajiachi Campus, Zhejiang University, Hangzhou, 310029, People's Republic of China
| | | | | | | | | |
Collapse
|
26
|
Cañero AI, Cox L, Redondo-Gómez S, Mateos-Naranjo E, Hermosín MC, Cornejo J. Effect of the herbicides terbuthylazine and glyphosate on photosystem II photochemistry of young olive (Olea europaea) plants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:5528-34. [PMID: 21517077 DOI: 10.1021/jf200875u] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The purpose of this study was to understand the effect produced by the addition of the herbicides terbuthylazine (N(2)-tert-butyl-6-chloro-N(4)-ethyl-1,3,5-triazine-2,4-diamine) and glyphosate (N-(phosphonomethyl)glycine) on photosystem II photochemistry of young plants of Olea europaea L. under greenhouse conditions. The effect of soil amendment with an organic residue from olive oil production was also assessed. Terbuthylazine reduced the efficiency of photosystem II photochemistry of plants due to chronic photoinhibition, and this effect was counterbalanced by soil amendment with the organic waste, whereas the photosystem II photochemistry of olive plants was not affected by glyphosate or by glyphosate and organic waste addition. In this study, we have shown that the soil application of terbuthylazine is a source of indirect phytotoxicity for olive plants. We have also observed that the olive plants were not affected by higher amounts of glyphosate in the soil.
Collapse
Affiliation(s)
- Ana I Cañero
- Instituto de Recursos Naturales y Agrobiologia de Sevilla, CSIC, Seville, Spain
| | | | | | | | | | | |
Collapse
|
27
|
Matorin DN, Karateyeva AV, Osipov VA, Lukashev EP, Seifullina NK, Rubin AB. Influence of carbon nanotubes on chlorophyll fluorescence parameters of green algae Chlamydomonas reinhardtii. ACTA ACUST UNITED AC 2010. [DOI: 10.1134/s199507801005006x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Bonnineau C, Guasch H, Proia L, Ricart M, Geiszinger A, Romaní AM, Sabater S. Fluvial biofilms: A pertinent tool to assess beta-blockers toxicity. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2010; 96:225-233. [PMID: 19945176 DOI: 10.1016/j.aquatox.2009.10.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 10/27/2009] [Accepted: 10/29/2009] [Indexed: 05/28/2023]
Abstract
Among increasingly used pharmaceutical products, beta-blockers have been commonly reported at low concentrations in rivers and littoral waters of Europe and North America. Little is known about the toxicity of these chemicals in freshwater ecosystems while their presence may lead to chronic pollution. Hence, in this study the acute toxicity of 3 beta-blockers: metoprolol, propranolol and atenolol on fluvial biofilms was assessed by using several biomarkers. Some were indicative of potential alterations in biofilm algae (photosynthetic efficiency), and others in biofilm bacteria (peptidase activity, bacterial mortality). Propranolol was the most toxic beta-blocker, mostly affecting the algal photosynthetic process. The exposure to 531microg/L of propranolol caused 85% of inhibition of photosynthesis after 24h. Metoprolol was particularly toxic for bacteria. Though estimated No-Effect Concentrations (NEC) were similar to environmental concentrations, higher concentrations of the toxic (503microg/L metoprolol) caused an increase of 50% in bacterial mortality. Atenolol was the least toxic of the three tested beta-blockers. Effects superior to 50% were only observed at very high concentration (707mg/L). Higher toxicity of metoprolol and propranolol might be due to better absorption within biofilms of these two chemicals. Since beta-blockers are mainly found in mixtures in rivers, their differential toxicity could have potential relevant consequences on the interactions between algae and bacteria within river biofilms.
Collapse
|
29
|
Antal TK, Graevskaya EE, Matorin DN, Volgusheva AA, Osipov VA, Krendeleva TE, Rubin AB. Assessment of the effects of methylmercury and copper ions on primary processes of photosynthesis in green microalga Chlamydomonas moewusii by analysis of the kinetic curves of variable chlorophyll fluorescence. Biophysics (Nagoya-shi) 2009. [DOI: 10.1134/s0006350909040149] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
30
|
Mateos-Naranjo E, Redondo-Gómez S, Cox L, Cornejo J, Figueroa ME. Effectiveness of glyphosate and imazamox on the control of the invasive cordgrass Spartina densiflora. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2009; 72:1694-700. [PMID: 19577295 DOI: 10.1016/j.ecoenv.2009.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Revised: 03/12/2009] [Accepted: 06/11/2009] [Indexed: 05/09/2023]
Abstract
The south-American cordgrass, Spartina densiflora, has become the dominant plant species on recent tidal marsh restorations in the Doñana National Park (SW Spain). We examined the effect of different doses of glyphosate (720-7200 g a.i. ha(-1)) and imazamox (20-68 g a.i. ha(-1)) on growth and photosynthetic apparatus of S. densiflora. Imazamox had no effect on neither on growth nor photosynthetic apparatus of S. densiflora. On the contrary, glyphosate inhibited photochemical efficiency of photosynthesis from day one. Net photosynthetic rate, stomatal conductance and photosynthetic pigments and the number of new tillers were reduced. Glyphosate at high doses (ca. 7200 g a.i. ha(-1)) could be an appropriate method of control, since it has a negative effect over the photosynthetic apparatus and growth of S. densiflora. Furthermore, glyphosate and its main metabolite, AMPA, were not extracted from the soil, since they were retained by the very high iron and aluminum oxide content of this soil.
Collapse
Affiliation(s)
- E Mateos-Naranjo
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Apartado 1095, Sevilla 41080, Spain.
| | | | | | | | | |
Collapse
|
31
|
Matorin DN, Osipov VA, Seifullina NK, Venediktov PS, Rubin AB. Increased toxic effect of methylmercury on Chlorella vulgaris under high light and cold stress conditions. Microbiology (Reading) 2009. [DOI: 10.1134/s0026261709030102] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
32
|
Aksmann A, Tukaj Z. Intact anthracene inhibits photosynthesis in algal cells: a fluorescence induction study on Chlamydomonas reinhardtii cw92 strain. CHEMOSPHERE 2008; 74:26-32. [PMID: 18980775 DOI: 10.1016/j.chemosphere.2008.09.064] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Revised: 09/11/2008] [Accepted: 09/23/2008] [Indexed: 05/27/2023]
Abstract
Short-term (24h) experiments were performed to examine the effect of anthracene (ANT) on Chlamydomonas reinhardtii cw92 grown in a batch culture system aerated with 2.5% CO(2). At concentrations ranging from 0.7 to 5.6 microM, ANT inhibited the growth of population in a concentration-dependent manner and EC(50) calculated amounted to 1.6 microM. At concentrations from 0.7 to 4.2 microM ANT stimulated respiration and inhibited the intensity of photosynthesis but did not affect chlorophyll content in the cells. ANT influenced chlorophyll a fluorescence parameters, measured by OJIP test (O, J, I and P are the different steps of fluorescence induction curve). ANT diminished the performance index (PI), the yield of primary photochemistry (phi(Po)), the yield of electron transport (phi(Epsilonomicron), the efficiency of moving the electron beyond Qa(-) (Psi(0)) and the fraction of active oxygen evolving complexes (OEC). The fraction of active PS II reaction centres in the treated samples dramatically dropped. The most pronounced changes in ANT-treated cells were observed in the stimulation of energy dissipation parameter (DI(0)/RC). The only OJIP parameter that was not influenced by ANT was energy absorption by photosynthetic antennae (ABS). The results lead to a conclusion that the inhibition of photosynthesis may be a consequence of unspecific ANT-membrane interaction, resulting from hydrophobic character of this hydrocarbon.
Collapse
Affiliation(s)
- Anna Aksmann
- Department of Plant Physiology, University of Gdańsk, Gdynia, Poland
| | | |
Collapse
|
33
|
How to confirm identified toxicants in effect-directed analysis. Anal Bioanal Chem 2008; 390:1959-73. [DOI: 10.1007/s00216-007-1808-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Revised: 12/10/2007] [Accepted: 12/12/2007] [Indexed: 10/22/2022]
|
34
|
Redondo-Gómez S, Mateos-Naranjo E, Cox L, Cornejo J, Figueroa E. Effect of herbicide and soil amendment on growth and photosynthetic responses in olive crops. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2007; 42:523-8. [PMID: 17562460 DOI: 10.1080/19312450701392466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Diuron [3-(3,4-dichlorophenyl)- = 1,1-dimethylurea] and simazine (6-chloro-N(2), N(4)-diethyl-1,3,5-triazine-2,4-diamine) are soil-applied herbicides used in olive crops. The objective of this study is to investigate the combined effect of these herbicides and the amendment of soil with an organic waste (OW) from the olive oil production industry on the growth and photosynthetic apparatus of adult olive trees and to compare the results with those obtained by Redondo-Gómez et al. for two-year-old trees. For this purpose, growth rate, gas exchange and chlorophyll fluorescence parameters were measured in 38-year-old olive trees, after one and two months of soil herbicide treatment and/or OW amendment. Soil co-application of OW and herbicide increases the quantum efficiency of Photosystem II (PSII) and the assimilation of CO(2) in olive trees, which led to a higher relative growth rate of the branches and leaves in length. Herbicide treatment reduced the photosynthetic efficiency in olive trees after two months of soil application, while this reduction is evident from week one in younger trees.
Collapse
Affiliation(s)
- Susana Redondo-Gómez
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Sevilla, Spain.
| | | | | | | | | |
Collapse
|
35
|
Redondo-Gómez S, Cox L, Cornejo J, Figueroa E. Combined effect of diuron and simazine on photosystem II photochemistry in a sandy soil and soil amended with solid olive-mill waste. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2007; 42:249-54. [PMID: 17454377 DOI: 10.1080/03601230701229122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Diuron (3-(3,4-dichlorophenyl)- = 1,1-dimethylurea) and simazine (6-chloro-N(2), N(4)-diethyl-1,3,5-triazine-2,4-diamine) are soil-applied herbicides used in olive crops. The objective of this study is to investigate the effect of these herbicides on Photosystem II photochemistry of Olea europaea L., and whether the amendment of soil with an organic waste (OW) from olive oil production industry modifies this effect. For this purpose, herbicide soil adsorption studies, with unamended and OW-amended soil, and chlorophyll fluorescence measurements in adult olive leaves, after one, two and three weeks of soil herbicide treatment and/or OW amendment, were performed. Soil application of these herbicides reduced the efficiency of Photosystem II photochemistry of olive trees due to chronic photoinhibition, and this effect is counterbalanced by the addition of OW to the soil. OW reduces herbicide uptake by the plant due to an increase in herbicide adsorption.
Collapse
|
36
|
Shitanda I, Takada K, Sakai Y, Tatsuma T. Amperometric Biosensing Systems Based on Motility and Gravitaxis of Flagellate Algae for Aquatic Risk Assessment. Anal Chem 2005; 77:6715-8. [PMID: 16223261 DOI: 10.1021/ac050894b] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Electrochemical biosensing systems for toxic substances were developed on the basis of motility and negative gravitaxis of the unicellular flagellate Chlamydomonas reinhardtii. Changes in the flagellar movement of the flagellates in response to three toxic chemicals, toluene, copper(II) sulfate, and nickel(II) chloride, were monitored as changes in the redox currents for a coexisiting redox marker. The gravitaxis-based flagellate biosensing system was more sensitive to toluene than the motility-based system. A thin-layer flagellate biosensor was also developed. In comparison with the conventional algal biosensors monitoring the photosynthetic activity, the gravitaxis-based thin-layer sensor was more sensitive by more than 1 order of magnitude.
Collapse
Affiliation(s)
- Isao Shitanda
- Institute of Industrial Science, University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | | | | | | |
Collapse
|
37
|
Bueno M, Fillat MF, Strasser RJ, Maldonado-Rodriguez R, Marina N, Smienk H, Gómez-Moreno C, Barja F. Effects of lindane on the photosynthetic apparatus of the cyanobacterium Anabaena: fluorescence induction studies and immunolocalization of ferredoxin-NADP+ reductase. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2004; 11:98-106. [PMID: 15108857 DOI: 10.1007/bf02979709] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
INTENTION, GOAL, SCOPE, BACKGROUND Cyanobacteria have the natural ability to degrade moderate amounts of organic pollutants. However, when pollutant concentration exceeds the level of tolerance, bleaching of the cells and death occur within 24 hours. Under stress conditions, cyanobacterial response includes the short-term adaptation of the photosynthetic apparatus to light quality, named state transitions. Moreover, prolonged stresses produce changes in the functional organization of phycobilisomes and in the core-complexes of both photosystems, which can result in large changes in the PS II fluorescence yield. The localization of ferredoxin-NADP+ reductase (FNR) at the ends of some peripheral rods of the cyanobacterial phycobilisomes, makes this protein a useful marker to check phycobilisome integrity. OBJECTIVE The goal of this work is to improve the knowledge of the mechanism of action of a very potent pesticide, lindane (gamma-hexaclorociclohexane), in the cyanobacterium Anabaena sp., which can be considered a potential candidate for bioremediation of pesticides. We have studied the effect of lindane on the photosynthetic apparatus of Anabaena using fluorescence induction studies. As ferredoxin-NADP+ reductase plays a key role in the response to oxidative stress in several systems, changes in synthesis, degradation and activity of FNR were analyzed. Immunolocalization of this enzyme was used as a marker of phycobilisome integrity. The knowledge of the changes caused by lindane in the photosynthetic apparatus is essential for rational further design of genetically-modified cyanobacteria with improved biorremediation abilities. METHODS Polyphasic chlorophyll a fluorescence rise measurements (OJIP) have been used to evaluate the vitality and stress adaptation of the nitrogen-fixing cyanobacterium Anabaena PCC 7119 in the presence of increasing concentrations of lindane. Effects of the pesticide on the ultrastructure have been investigated by electron microscopy, and FNR has been used as a marker of phycobilisome integrity. RESULTS AND DISCUSSION Cultures of Anabaena sp. treated with moderate amounts of lindane showed a decrease in growth rate followed by a recovery after 72 hours of pesticide treatment. Concentrations of lindane below 5 ppm increased the photosynthetic performance and activity of the cells. Higher amounts of pesticide caused a decrease in these activities which seems to be due to a non-competitive inhibition of PS II. Active PS II units are converted into non-QA reducing, so called heat sink centers. Specific activity and amount of FNR in lindane-treated cells were similar to the values measured in control cultures. Release of FNR from the thylakoid after 48 hours of exposure to 5 ppm of lindane towards the cytoplasm was detected by immunogold labeling and electron microscopy. CONCLUSIONS From these results, we conclude that the photosynthetic performance and activity of the cells are slightly increased in the presence of lindane up to 5 ppm. Moreover, in those conditions, lindane did not produce significant changes in the synthesis, degradation or activity of FNR. The high capability of Anabaena to tolerate lindane makes this cyanobacterium a good candidate for phytoremediation of polluted areas. RECOMMENDATION AND OUTLOOK The results of this study show that cultures of Anabaena PCC 7119 tolerate lindane up to 5 ppm, without significant changes in the photosynthetic vitality index of the cells. However, a slight increase in phycobiliprotein synthesis is observed, which is related to total protein content. This change might be due to degradation of proteins less stable than phycobiliproteins. An identification of the proteins with altered expression pattern in the presence of the pesticide remains the subject of further work and will provide valuable information for the preparation of strains which are highly tolerant to lindane.
Collapse
Affiliation(s)
- Marta Bueno
- Department of Biochemistry and Molecular and Cell Biology, Faculty of Sciences, Pedro Cerbuna 12, University of Zaragoza, Spain
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Eullaffroy P, Vernet G. The F684/F735 chlorophyll fluorescence ratio: a potential tool for rapid detection and determination of herbicide phytotoxicity in algae. WATER RESEARCH 2003; 37:1983-1990. [PMID: 12691882 DOI: 10.1016/s0043-1354(02)00621-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The use of herbicides constitutes the principal method of weed control but the introduction of these compounds into the aquatic environment (primarily through runoff) may have severe consequences for non-target plants. In this study, we describe a sensitive and inexpensive method for detection of photosynthesis-inhibiting herbicides, based on chlorophyll (Chl) fluorescence emission. Algae exhibited a Chl fluorescence signature with two maxima around 684 and 735 nm, correlated with the total Chl content of the algal suspension. The ratio of these two maxima (i.e. F684/F735) can be used as an indicator of stress in the photosynthetic apparatus, and thus represents a very simple method for in vivo evaluation of the health status of algae. Determination of the F684/F735 fluorescence ratio revealed the presence and phytotoxicity of atrazine, metribuzin, terbuthylazine, diuron, DCPMU, DCPU and paraquat. The toxic effect of these pollutants was estimated by monitoring the increase in the F684/F735 value, which reflects photosystem II and photosystem I photochemistry. We observed a drastic increase in the magnitude of this ratio, correlating quantitatively with herbicide concentration and corresponding to a decline in algal photosynthetic activity. For the tested herbicides affecting photosynthetic electron transport, the magnitude of the effect was as follows: diuron= DCPMU > metribuzin > atrazine > terbuthylazine > paraquat > DCPU. The F684/F735 Chl fluorescence ratio thus gives toxicity responses which compare favourably with tests such as the algal growth inhibition test, and could therefore be used to detect the presence and phytotoxicity of herbicides in aquatic environments.
Collapse
Affiliation(s)
- Philippe Eullaffroy
- Laboratoire d'Eco-Toxicologie U.F.R. Sciences, Université de Reims Champagne-Ardenne, B.P. 1039, France.
| | | |
Collapse
|
39
|
Jovanić BR, Dramićanin MD. In vivo monitoring of chlorophyll ?uorescence response to low-dose?-irradiation in pumpkin (cucurbita pepo) leaves. LUMINESCENCE 2003; 18:274-7. [PMID: 14587079 DOI: 10.1002/bio.738] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The effect of gamma-irradiation on the in vivo-measured chlorophyll fluorescence in a pumpkin leaves (Cucurbita pepo) has been investigated. Plants were grown in the same environment, then divided into several groups and irradiated at ambient conditions at small dose levels (up to 13.4 Gy) with (60)Co gamma-rays. The post-irradiation effect on chlorophyll status in the leaves was examined by measuring chlorophyll fluorescence 2 days (48 h) after exposure. It is undoubtedly found that the value of fluorescence intensity ratio (FIR) at 690 nm and 735 nm (F(690)/F(735)) depends upon the ionizing radiation dose. Even with the smallest dose of 3.35 Gy, ionizing radiation notably altered the fluorescence spectra of leaves. The spectra difference was manifested by decrease of FIR due to changed chlorophyll luminescence, the possible reason for which could be increase of chlorophyll concentration during the recovery process of the plant. The potential implications of these results for plant physiological status monitoring, as well as for pollution detection and assessment, are discussed in brief.
Collapse
Affiliation(s)
- B R Jovanić
- Institute of Physics, Centre for Experimental Physics, Laboratory for Multidisciplinary Research, Pregrevica 118, PO Box 68, 11080 Zemun, Yugoslavia.
| | | |
Collapse
|
40
|
Weber-Lotfi F, Guillemaut P, Poirey R, Schmitz M, Dietrich A. Biochemical and molecular studies on declining and decline-resistant spruce in the north-east of France. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2002; 9:122-9. [PMID: 12008292 DOI: 10.1007/bf02987459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In declining forests of the Vosges mountains (northeast of France), we previously observed that the yellowing of spruce (Picea abies L. cv. Karsten) needles was associated with impairment of the free radical scavenging capacity of the cells and coincided with chronic exposure to ozone. Chloroplasts of yellow needles were characterized by an abnormal accumulation of photosystem II (PSII) D1-protein in the thylakoids. Further experiments carried out on declining and decline-resistant individual spruce trees characterized in previous studies showed that needle yellowing was associated with impairment of the overall anti-oxidative defense in both the cytosol and the chloroplasts. Both enzymic (peroxidases) and non-enzymic (carotenoids) oxidant scavengers were shown to be affected in the declining spruce. PSII D1-protein accumulation seemed to result from a stabilization of the polypeptide, which led us to hypothesize that oxidative processes might interfere with the specific degradation of this protein in declining spruce, with destructive consequences for the photosystems.
Collapse
Affiliation(s)
- Frédérique Weber-Lotfi
- Institut de Biologie Moléculaire des Plantes du CNRS, Université Louis Pasteur, 12 rue du Général Zimmer, F-67084 Strasbourg, France
| | | | | | | | | |
Collapse
|
41
|
Kobbia IA, Battah MG, Shabana EF, Eladel HM. Chlorophyll a fluorescence and photosynthetic activity as tools for the evaluation of simazine toxicity to Protosiphon botryoides and Anabaena variabilis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2001; 49:101-105. [PMID: 11386722 DOI: 10.1006/eesa.2000.1955] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
On studying the effect of simazine on Protosiphon botryoides and Anabaena variabilis, data revealed that chlorophyll a content and dry weight were decreased with the increase in simazine concentration. High concentration of simazine (0.8 mg L(-1)) reduced gross photosynthesis and carbohydrate content, whereas protein content and respiration rate were increased. Algal cell recovery from simazine toxic effect occurred after 2 and 4 days for Anabaena and Protosiphon, respectively, which may be attributed to the difference in algal genotype of the tested organisms.
Collapse
Affiliation(s)
- I A Kobbia
- Botany Department, Faculty of Science, Cairo University, Egypt
| | | | | | | |
Collapse
|