1
|
Megalin and Vitamin D Metabolism—Implications in Non-Renal Tissues and Kidney Disease. Nutrients 2022; 14:nu14183690. [PMID: 36145066 PMCID: PMC9506339 DOI: 10.3390/nu14183690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Megalin is an endocytic receptor abundantly expressed in proximal tubular epithelial cells and other calciotropic extrarenal cells expressing vitamin D metabolizing enzymes, such as bone and parathyroid cells. The receptor functions in the uptake of the vitamin D-binding protein (DBP) complexed to 25 hydroxyvitamin D3 (25(OH)D3), facilitating the intracellular conversion of precursor 25(OH)D3 to the active 1,25 dihydroxyvitamin D3 (1,25(OH)2D3). The significance of renal megalin-mediated reabsorption of 25(OH)D3 and 1,25(OH)2D3 has been well established experimentally, and other studies have demonstrated relevant roles of extrarenal megalin in regulating vitamin D homeostasis in mammary cells, fat, muscle, bone, and mesenchymal stem cells. Parathyroid gland megalin may regulate calcium signaling, suggesting intriguing possibilities for megalin-mediated cross-talk between calcium and vitamin D regulation in the parathyroid; however, parathyroid megalin functionality has not been assessed in the context of vitamin D. Within various models of chronic kidney disease (CKD), megalin expression appears to be downregulated; however, contradictory results have been observed between human and rodent models. This review aims to provide an overview of the current knowledge of megalin function in the context of vitamin D metabolism, with an emphasis on extrarenal megalin, an area that clearly requires further investigation.
Collapse
|
2
|
Zhang C, Miller CL, Gorkhali R, Zou J, Huang K, Brown EM, Yang JJ. Molecular Basis of the Extracellular Ligands Mediated Signaling by the Calcium Sensing Receptor. Front Physiol 2016; 7:441. [PMID: 27746744 PMCID: PMC5043022 DOI: 10.3389/fphys.2016.00441] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 09/16/2016] [Indexed: 12/20/2022] Open
Abstract
Ca2+-sensing receptors (CaSRs) play a central role in regulating extracellular calcium concentration ([Ca2+]o) homeostasis and many (patho)physiological processes in multiple organs. This regulation is orchestrated by a cooperative response to extracellular stimuli such as small changes in Ca2+, Mg2+, amino acids, and other ligands. In addition, CaSR is a pleiotropic receptor regulating several intracellular signaling pathways, including calcium mobilization and intracellular calcium oscillation. Nearly 200 mutations and polymorphisms have been found in CaSR in relation to a variety of human disorders associated with abnormal Ca2+ homeostasis. In this review, we summarize efforts directed at identifying binding sites for calcium and amino acids. Both homotropic cooperativity among multiple calcium binding sites and heterotropic cooperativity between calcium and amino acid were revealed using computational modeling, predictions, and site-directed mutagenesis coupled with functional assays. The hinge region of the bilobed Venus flytrap (VFT) domain of CaSR plays a pivotal role in coordinating multiple extracellular stimuli, leading to cooperative responses from the receptor. We further highlight the extensive number of disease-associated mutations that have also been shown to affect CaSR's cooperative action via several types of mechanisms. These results provide insights into the molecular bases of the structure and functional cooperativity of this receptor and other members of family C of the G protein-coupled receptors (cGPCRs) in health and disease states, and may assist in the prospective development of novel receptor-based therapeutics.
Collapse
Affiliation(s)
- Chen Zhang
- Department of Chemistry, Georgia State University Atlanta, GA, USA
| | | | - Rakshya Gorkhali
- Department of Chemistry, Georgia State University Atlanta, GA, USA
| | - Juan Zou
- Department of Chemistry, Georgia State University Atlanta, GA, USA
| | - Kenneth Huang
- Department of Chemistry, Georgia State University Atlanta, GA, USA
| | - Edward M Brown
- Center for Diagnostics and Therapeutics, Georgia State UniversityAtlanta, GA, USA; Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's HospitalBoston, MA, USA
| | - Jenny J Yang
- Department of Chemistry, Georgia State University Atlanta, GA, USA
| |
Collapse
|
3
|
Ellinger I. The Calcium-Sensing Receptor and the Reproductive System. Front Physiol 2016; 7:371. [PMID: 27625611 PMCID: PMC5003915 DOI: 10.3389/fphys.2016.00371] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 08/11/2016] [Indexed: 12/14/2022] Open
Abstract
Active placental transport of maternal serum calcium (Ca2+) to the offspring is pivotal for proper development of the fetal skeleton as well as various organ systems. Moreover, extracellular Ca2+ levels impact on distinct processes in mammalian reproduction. The calcium-sensing receptor (CaSR) translates changes in extracellular Ca2+-concentrations into cellular reactions. This review summarizes current knowledge on the expression of CaSR and its putative functions in reproductive organs. CaSR was detected in placental cells mediating materno-fetal Ca2+-transport such as the murine intraplacental yolk sac (IPYS) and the human syncytiotrophoblast. As shown in casr knock-out mice, ablation of CaSR downregulates transplacental Ca2+-transport. Receptor expression was reported in human and rat ovarian surface epithelial (ROSE) cells, where CaSR activation stimulates cell proliferation. In follicles of various species a role of CaSR activation in oocyte maturation was suggested. Based on studies in avian follicles, the activation of CaSR expressed in granulosa cells may support the survival of follicles after their selection. CaSR in rat and equine sperms was functionally linked to sperm motility and sperm capacitation. Implantation involves complex interactions between the blastocyst and the uterine epithelium. During early pregnancy, CaSR expression at the implantation site as well as in decidual cells indicates that CaSR is important for blastocyst implantation and decidualization in the rat uterus. Localization of CaSR in human extravillous cytotrophoblasts suggests a role of CaSR in placentation. Overall, evidence for functional involvement of CaSR in physiologic mammalian reproductive processes exists. Moreover, several studies reported altered expression of CaSR in cells of reproductive tissues under pathologic conditions. However, in many tissues we still lack knowledge on physiological ligands activating CaSR, CaSR-linked G-proteins, activated intracellular signaling pathway, and functional relevance of CaSR activation. Clearly, more work is required in the future to decode the complex physiologic and pathophysiologic relationship of CaSR and the mammalian reproductive system.
Collapse
Affiliation(s)
- Isabella Ellinger
- Pathophysiology of the Placenta, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University Vienna Vienna, Austria
| |
Collapse
|
4
|
Halls ML, Bathgate RAD, Sutton SW, Dschietzig TB, Summers RJ. International Union of Basic and Clinical Pharmacology. XCV. Recent advances in the understanding of the pharmacology and biological roles of relaxin family peptide receptors 1-4, the receptors for relaxin family peptides. Pharmacol Rev 2015; 67:389-440. [PMID: 25761609 DOI: 10.1124/pr.114.009472] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Relaxin, insulin-like peptide 3 (INSL3), relaxin-3, and INSL5 are the cognate ligands for the relaxin family peptide (RXFP) receptors 1-4, respectively. RXFP1 activates pleiotropic signaling pathways including the signalosome protein complex that facilitates high-sensitivity signaling; coupling to Gα(s), Gα(i), and Gα(o) proteins; interaction with glucocorticoid receptors; and the formation of hetero-oligomers with distinctive pharmacological properties. In addition to relaxin-related ligands, RXFP1 is activated by Clq-tumor necrosis factor-related protein 8 and by small-molecular-weight agonists, such as ML290 [2-isopropoxy-N-(2-(3-(trifluoromethylsulfonyl)phenylcarbamoyl)phenyl)benzamide], that act allosterically. RXFP2 activates only the Gα(s)- and Gα(o)-coupled pathways. Relaxin-3 is primarily a neuropeptide, and its cognate receptor RXFP3 is a target for the treatment of depression, anxiety, and autism. A variety of peptide agonists, antagonists, biased agonists, and an allosteric modulator target RXFP3. Both RXFP3 and the related RXFP4 couple to Gα(i)/Gα(o) proteins. INSL5 has the properties of an incretin; it is secreted from the gut and is orexigenic. The expression of RXFP4 in gut, adipose tissue, and β-islets together with compromised glucose tolerance in INSL5 or RXFP4 knockout mice suggests a metabolic role. This review focuses on the many advances in our understanding of RXFP receptors in the last 5 years, their signal transduction mechanisms, the development of novel compounds that target RXFP1-4, the challenges facing the field, and current prospects for new therapeutics.
Collapse
Affiliation(s)
- Michelle L Halls
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (M.L.H., R.J.S.); Neuropeptides Division, Florey Institute of Neuroscience and Mental Health and Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia (R.A.D.B.); Neuroscience Drug Discovery, Janssen Research & Development, LLC, San Diego, California (S.W.S.); Immundiagnostik AG, Bensheim, Germany (T.B.D.); and Charité-University Medicine Berlin, Campus Mitte, Medical Clinic for Cardiology and Angiology, Berlin, Germany (T.B.D.)
| | - Ross A D Bathgate
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (M.L.H., R.J.S.); Neuropeptides Division, Florey Institute of Neuroscience and Mental Health and Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia (R.A.D.B.); Neuroscience Drug Discovery, Janssen Research & Development, LLC, San Diego, California (S.W.S.); Immundiagnostik AG, Bensheim, Germany (T.B.D.); and Charité-University Medicine Berlin, Campus Mitte, Medical Clinic for Cardiology and Angiology, Berlin, Germany (T.B.D.)
| | - Steve W Sutton
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (M.L.H., R.J.S.); Neuropeptides Division, Florey Institute of Neuroscience and Mental Health and Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia (R.A.D.B.); Neuroscience Drug Discovery, Janssen Research & Development, LLC, San Diego, California (S.W.S.); Immundiagnostik AG, Bensheim, Germany (T.B.D.); and Charité-University Medicine Berlin, Campus Mitte, Medical Clinic for Cardiology and Angiology, Berlin, Germany (T.B.D.)
| | - Thomas B Dschietzig
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (M.L.H., R.J.S.); Neuropeptides Division, Florey Institute of Neuroscience and Mental Health and Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia (R.A.D.B.); Neuroscience Drug Discovery, Janssen Research & Development, LLC, San Diego, California (S.W.S.); Immundiagnostik AG, Bensheim, Germany (T.B.D.); and Charité-University Medicine Berlin, Campus Mitte, Medical Clinic for Cardiology and Angiology, Berlin, Germany (T.B.D.)
| | - Roger J Summers
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (M.L.H., R.J.S.); Neuropeptides Division, Florey Institute of Neuroscience and Mental Health and Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia (R.A.D.B.); Neuroscience Drug Discovery, Janssen Research & Development, LLC, San Diego, California (S.W.S.); Immundiagnostik AG, Bensheim, Germany (T.B.D.); and Charité-University Medicine Berlin, Campus Mitte, Medical Clinic for Cardiology and Angiology, Berlin, Germany (T.B.D.)
| |
Collapse
|
5
|
De S, Kuwahara S, Saito A. The endocytic receptor megalin and its associated proteins in proximal tubule epithelial cells. MEMBRANES 2014; 4:333-55. [PMID: 25019425 PMCID: PMC4194038 DOI: 10.3390/membranes4030333] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 06/23/2014] [Accepted: 07/01/2014] [Indexed: 02/08/2023]
Abstract
Receptor-mediated endocytosis in renal proximal tubule epithelial cells (PTECs) is important for the reabsorption and metabolization of proteins and other substances, including carrier-bound vitamins and trace elements, in glomerular filtrates. Impairment of this endocytic process results in the loss of such substances and development of proteinuria, which is an important clinical indicator of kidney diseases and is also a risk marker for cardiovascular disease. Megalin, a member of the low-density lipoprotein receptor gene family, is a multiligand receptor expressed in the apical membrane of PTECs and plays a central role in the endocytic process. Megalin interacts with various intracellular adaptor proteins for intracellular trafficking and cooperatively functions with other membrane molecules, including the cubilin-amnionless complex. Evidence suggests that megalin and the cubilin-amnionless complex are involved in the uptake of toxic substances into PTECs, which leads to the development of kidney disease. Studies of megalin and its associated molecules will be useful for future development of novel strategies for the diagnosis and treatment of kidney diseases.
Collapse
Affiliation(s)
- Shankhajit De
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8510, Japan.
| | - Shoji Kuwahara
- Department of Applied Molecular Medicine, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8510, Japan.
| | - Akihiko Saito
- Department of Applied Molecular Medicine, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8510, Japan.
| |
Collapse
|
6
|
Bathgate RAD, Halls ML, van der Westhuizen ET, Callander GE, Kocan M, Summers RJ. Relaxin family peptides and their receptors. Physiol Rev 2013; 93:405-80. [PMID: 23303914 DOI: 10.1152/physrev.00001.2012] [Citation(s) in RCA: 379] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
There are seven relaxin family peptides that are all structurally related to insulin. Relaxin has many roles in female and male reproduction, as a neuropeptide in the central nervous system, as a vasodilator and cardiac stimulant in the cardiovascular system, and as an antifibrotic agent. Insulin-like peptide-3 (INSL3) has clearly defined specialist roles in male and female reproduction, relaxin-3 is primarily a neuropeptide involved in stress and metabolic control, and INSL5 is widely distributed particularly in the gastrointestinal tract. Although they are structurally related to insulin, the relaxin family peptides produce their physiological effects by activating a group of four G protein-coupled receptors (GPCRs), relaxin family peptide receptors 1-4 (RXFP1-4). Relaxin and INSL3 are the cognate ligands for RXFP1 and RXFP2, respectively, that are leucine-rich repeat containing GPCRs. RXFP1 activates a wide spectrum of signaling pathways to generate second messengers that include cAMP and nitric oxide, whereas RXFP2 activates a subset of these pathways. Relaxin-3 and INSL5 are the cognate ligands for RXFP3 and RXFP4 that are closely related to small peptide receptors that when activated inhibit cAMP production and activate MAP kinases. Although there are still many unanswered questions regarding the mode of action of relaxin family peptides, it is clear that they have important physiological roles that could be exploited for therapeutic benefit.
Collapse
Affiliation(s)
- R A D Bathgate
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences & Department of Pharmacology, Monash University, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
7
|
Abstract
Calcium transport and calcium signalling mechanisms in bone cells have, in many cases, been discovered by study of diseases with disordered bone metabolism. Calcium matrix deposition is driven primarily by phosphate production, and disorders in bone deposition include abnormalities in membrane phosphate transport such as in chondrocalcinosis, and defects in phosphate-producing enzymes such as in hypophosphatasia. Matrix removal is driven by acidification, which dissolves the mineral. Disorders in calcium removal from bone matrix by osteoclasts cause osteopetrosis. On the other hand, although bone is central to management of extracellular calcium, bone is not a major calcium sensing organ, although calcium sensing proteins are expressed in both osteoblasts and osteoclasts. Intracellular calcium signals are involved in secondary control including cellular motility and survival, but the relationship of these findings to specific diseases is not clear. Intracellular calcium signals may regulate the balance of cell survival versus proliferation or anabolic functional response as part of signalling cascades that integrate the response to primary signals via cell stretch, estrogen, tyrosine kinase, and tumor necrosis factor receptors.
Collapse
Affiliation(s)
- H C Blair
- Department of Pathology, University of Pittsburgh, PA 15261, USA
| | | | | | | |
Collapse
|
8
|
Fisher CE, Howie SEM. The role of megalin (LRP-2/Gp330) during development. Dev Biol 2006; 296:279-97. [PMID: 16828734 DOI: 10.1016/j.ydbio.2006.06.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2005] [Revised: 04/21/2006] [Accepted: 06/05/2006] [Indexed: 11/17/2022]
Abstract
Megalin (LRP-2/GP330), a member of the LDL receptor family, is an endocytic receptor expressed mainly in polarised epithelial cells. Identified as the pathogenic autoantigen of Heymann nephritis in rats, its functions have been studied in greatest detail in adult mammalian kidney, but there is increasing recognition of its involvement in embryonic development. The megalin homologue LRP-1 is essential for growth and development in Caenorhabditis elegans and megalin plays a role in CNS development in zebrafish. There is now also evidence for a homologue in Drosophila. However, most research concerns mammalian embryogenesis; it is widely accepted to be important during forebrain development and the developing renal proximal tubule. Megalin is also expressed in lung, eye, intestine, uterus, oviduct, and male reproductive tract. It is found in yolk sacs and the outer cells of pre-implantation mouse embryos, where interactions with cubilin result in nutrient endocytosis, and it may be important during implantation. Models for megalin interaction(s) with Sonic Hedgehog (Shh) have been proposed. The importance of Shh signalling during embryogenesis is well established; how and when megalin interacts with Shh is becoming a pertinent question in developmental biology.
Collapse
Affiliation(s)
- Carolyn E Fisher
- Centre for Inflammation Research, Queen's Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH 16 4JT, Scotland, UK.
| | | |
Collapse
|
9
|
Zaidi M, Moonga BS, Huang CLH. Calcium sensing and cell signaling processes in the local regulation of osteoclastic bone resorption. Biol Rev Camb Philos Soc 2004; 79:79-100. [PMID: 15005174 DOI: 10.1017/s1464793103006262] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The skeletal matrix in terrestrial vertebrates undergoes continual cycles of removal and replacement in the processes of bone growth, repair and remodeling. The osteoclast is uniquely important in bone resorption and thus is implicated in the pathogenesis of clinically important bone and joint diseases. Activated osteoclasts form a resorptive hemivacuole with the bone surface into which they release both acid and osteoclastic lysosomal hydrolases. This article reviews cell physiological studies of the local mechanisms that regulate the resorptive process. These used in vitro methods for the isolation, culture and direct study of the properties of neonatal rat osteoclasts. They demonstrated that both local microvascular agents and products of the bone resorptive process such as ambient Ca2+ could complement longer-range systemic regulatory mechanisms such as those that might be exerted through calcitonin (CT). Thus elevated extracellular [Ca2+], or applications of surrogate divalent cation agonists for Ca2+, inhibited bone resorptive activity and produced parallel increases in cytosolic [Ca2+], cell retraction and longer-term inhibition of enzyme release in isolated rat osteoclasts. These changes showed specificity, inactivation, and voltage-dependent properties that implicated a cell surface Ca2+ receptor (CaR) sensitive to millimolar extracellular [Ca2+]. Pharmacological, biophysical and immunochemical evidence implicated a ryanodine-receptor (RyR) type II isoform in this process and localized it to a unique, surface membrane site, with an outward-facing channel-forming domain. Such a surface RyR might function either directly or indirectly in the process of extracellular [Ca2+] sensing and in turn be modulated by cyclic adenosine diphosphate ribose (cADPr) produced by the ADP-ribosyl cyclase, CD38. The review finishes by speculating about possible detailed models for these transduction events and their possible interactions with other systemic mechanisms involved in Ca2+ homeostasis as well as the possible role of the RyR-based signaling mechanisms in longer-term cell regulatory processes.
Collapse
Affiliation(s)
- Mone Zaidi
- Mount Sinai Bone Program, Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | |
Collapse
|
10
|
Verroust PJ, Birn H, Nielsen R, Kozyraki R, Christensen EI. The tandem endocytic receptors megalin and cubilin are important proteins in renal pathology. Kidney Int 2002; 62:745-56. [PMID: 12164855 DOI: 10.1046/j.1523-1755.2002.00501.x] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The molecular mechanisms controlling proximal tubule reabsorption of proteins have been much elucidated in recent years. Megalin and cubilin constitute two important endocytic receptor proteins involved in this process. Although structurally very different the two receptor proteins interact to mediate the reabsorption of a large number of filtered proteins, including carrier proteins important for transport and cellular uptake of several vitamins, lipids and other nutrients. Dysfunction of either protein results in tubular proteinuria and is associated with specific changes in vitamin metabolism due to the defective proximal tubular reabsorption of carrier proteins. Additional focus on the two receptors is attracted by the possible pathogenic role of excessive tubular protein uptake during conditions of increased filtration of proteins, and by recent findings implicating members of the low density lipoprotein-receptor family, which includes megalin, in the transduction of signals by association with cytoplasmic proteins.
Collapse
Affiliation(s)
- Pierre J Verroust
- Institut National de la Santé et de la Recherche Médicale U538, Centre Hôpitale Universitaire, St. Antoine, Paris, France
| | | | | | | | | |
Collapse
|
11
|
Christensen EI, Birn H. Megalin and cubilin: multifunctional endocytic receptors. Nat Rev Mol Cell Biol 2002; 3:256-66. [PMID: 11994745 DOI: 10.1038/nrm778] [Citation(s) in RCA: 584] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The ability to take up substances from the surrounding environment not only provides cells with vital nutrients, but also enables the selective transport of substances from one compartment to another. Megalin and cubilin are two structurally different endocytic receptors that interact to serve such functions. Evidence has accumulated in recent years to indicate that these receptors have important functions in both normal physiology and pathology.
Collapse
Affiliation(s)
- Erik Ilsø Christensen
- Department of Cell Biology, University of Aarhus, University Park, Building 234, DK-8000 Aarhus C, ;
| | | |
Collapse
|
12
|
Moestrup SK, Verroust PJ. Megalin- and cubilin-mediated endocytosis of protein-bound vitamins, lipids, and hormones in polarized epithelia. Annu Rev Nutr 2001; 21:407-28. [PMID: 11375443 DOI: 10.1146/annurev.nutr.21.1.407] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Polarized epithelia have several functional and morphological similarities, including a high capacity for uptake of various substances present in the fluids facing the apical epithelial surfaces. Studies during the past decade have shown that receptor-mediated endocytosis, rather than nonspecific pinocytosis, accounts for the apical epithelial uptake of many carrier-bound nutrients and hormones. The two interacting receptors of distinct evolutionary origin, megalin and cubilin, are main receptors in this process. Both receptors are apically expressed in polarized epithelia, in which they function as biological affinity matrices for overlapping repertoires of ligands. The ability to bind multiple ligands is accounted for by a high number of replicated low-density lipoprotein receptor type-A repeats in megalin and CUB (complement C1r/C1s, Uegf, and bone morphogenic protein-1) domains in cubilin. Here we summarize and discuss the structural, genetic, and functional aspects of megalin and cubilin, with emphasis on their function as receptors for uptake of protein-associated vitamins, lipids, and hormones.
Collapse
Affiliation(s)
- S K Moestrup
- Department of Medical Biochemistry, University of Aarhus, 8000 Arhus C, Denmark.
| | | |
Collapse
|
13
|
Välimäki S, Farnebo F, Forsberg L, Larsson C, Farnebo LO. Heterogeneous expression of receptor mRNAs in parathyroid glands of secondary hyperparathyroidism. Kidney Int 2001; 60:1666-75. [PMID: 11703583 DOI: 10.1046/j.1523-1755.2001.00986.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Secondary hyperparathyroidism (HPT) is characterized by inappropriate control of parathyroid hormone (PTH) secretion and asymmetric hyperplasia of the parathyroid glands. Receptors for calcium and vitamin D are involved in the control of secretion, as well as parathyroid cell proliferation. Defective receptor mechanisms therefore may play a role in the pathogenensis of secondary HPT. Previous studies have shown that the expression of calcium receptor (CaR), calcium-sensing receptor (CAS) and vitamin D receptor (VDR) protein, and mRNA is decreased in hyperplastic parathyroid glands of secondary HPT when compared with normal parathyroid glands. METHODS Thirty-six hyperplastic glands from 18 patients with secondary hyperparathyroidism were analyzed with in situ hybridization in order to investigate the expression of CaR, CAS, VDR, and PTH mRNAs in the same specimens. In nine nodular parathyroid glands, it was possible to make a comparison between the expression of these mRNAs in nodular and internodular areas. RESULTS The level of CaR was in the same order of magnitude in the hyperplastic glands and in the biopsies of normal parathyroid, whereas the levels of CAS, VDR and PTH were clearly reduced in the hyperplastic glands. There was a positive correlation between the expression of CaR and CAS (P = 0.02). Otherwise, no correlations between CaR, CAS, VDR, and PTH mRNAs were found. The expression of all four genes was highly variable as well between different glands as within individual glands. CONCLUSION The expression of mRNAs for receptors of importance in the control of PTH secretion and parathyroid cell proliferation is heterogeneously decreased in parathyroid glands of secondary HPT. The expression pattern corroborates earlier studies in which it has been assumed that each nodule in secondary HPT is of monoclonal origin, but that the monoclonal origin of each nodule is independent.
Collapse
Affiliation(s)
- S Välimäki
- Department of Molecular Medicine, Endocrine Tumor Unit, CMM L8:01, Karolinska Hospital, S-171 76 Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
14
|
Christensen EI, Birn H. Megalin and cubilin: synergistic endocytic receptors in renal proximal tubule. Am J Physiol Renal Physiol 2001; 280:F562-73. [PMID: 11249847 DOI: 10.1152/ajprenal.2001.280.4.f562] [Citation(s) in RCA: 243] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The multiligand, endocytic receptors megalin and cubilin are colocalized in the renal proximal tubule. They are heavily expressed in the apical endocytic apparatus. Megalin is a 600-kDa transmembrane protein belonging to the low-density lipoprotein-receptor family. The cytoplasmic tail contains three NPXY motifs that mediate the clustering in coated pits and are possibly involved in signaling functions. Cubilin, also known as the intestinal intrinsic factor-cobalamin receptor, is a 460-kDa receptor with no transmembrane domain and no known signal for endocytosis. Because the two receptors bind each other with high affinity and colocalize in several tissues, it is highly conceivable that megalin mediates internalization of cubilin and its ligands. Both receptors are important for normal tubular reabsorption of proteins, including albumin. Among the proteins normally filtered in the glomeruli, cubilin has been shown to bind albumin, immunoglobulin light chains, and apolipoprotein A-I. The variety of filtered ligands identified for megalin include vitamin-binding proteins, hormones, enzymes, apolipoprotein H, albumin, and beta(2)- and alpha(1)-microglobulin. Loss of these proteins and vitamins in the urine of megalin-deficient mice illustrates the physiological importance of this receptor.
Collapse
Affiliation(s)
- E I Christensen
- Department of Cell Biology, Institute of Anatomy, University of Aarhus, DK-8000 Aarhus C, Denmark.
| | | |
Collapse
|
15
|
Abstract
The cloning of a G protein-coupled extracellular Ca(2+) (Ca(o)(2+))-sensing receptor (CaR) has elucidated the molecular basis for many of the previously recognized effects of Ca(o)(2+) on tissues that maintain systemic Ca(o)(2+) homeostasis, especially parathyroid chief cells and several cells in the kidney. The availability of the cloned CaR enabled the development of DNA and antibody probes for identifying the CaR's mRNA and protein, respectively, within these and other tissues. It also permitted the identification of human diseases resulting from inactivating or activating mutations of the CaR gene and the subsequent generation of mice with targeted disruption of the CaR gene. The characteristic alterations in parathyroid and renal function in these patients and in the mice with "knockout" of the CaR gene have provided valuable information on the CaR's physiological roles in these tissues participating in mineral ion homeostasis. Nevertheless, relatively little is known about how the CaR regulates other tissues involved in systemic Ca(o)(2+) homeostasis, particularly bone and intestine. Moreover, there is evidence that additional Ca(o)(2+) sensors may exist in bone cells that mediate some or even all of the known effects of Ca(o)(2+) on these cells. Even more remains to be learned about the CaR's function in the rapidly growing list of cells that express it but are uninvolved in systemic Ca(o)(2+) metabolism. Available data suggest that the receptor serves numerous roles outside of systemic mineral ion homeostasis, ranging from the regulation of hormonal secretion and the activities of various ion channels to the longer term control of gene expression, programmed cell death (apoptosis), and cellular proliferation. In some cases, the CaR on these "nonhomeostatic" cells responds to local changes in Ca(o)(2+) taking place within compartments of the extracellular fluid (ECF) that communicate with the outside environment (e.g., the gastrointestinal tract). In others, localized changes in Ca(o)(2+) within the ECF can originate from several mechanisms, including fluxes of calcium ions into or out of cellular or extracellular stores or across epithelium that absorb or secrete Ca(2+). In any event, the CaR and other receptors/sensors for Ca(o)(2+) and probably for other extracellular ions represent versatile regulators of numerous cellular functions and may serve as important therapeutic targets.
Collapse
Affiliation(s)
- E M Brown
- Endocrine-Hypertension Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
16
|
Diaz R, Fuleihan GE, Brown EM. Parathyroid Hormone and Polyhormones: Production and Export. Compr Physiol 2000. [DOI: 10.1002/cphy.cp070316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
17
|
Sarti M, Farquhar MG, Orlando RA. The receptor-associated protein (RAP) interacts with several resident proteins of the endoplasmic reticulum including a glycoprotein related to actin. Exp Cell Res 2000; 260:199-207. [PMID: 11035914 DOI: 10.1006/excr.2000.4993] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The receptor-associated protein (RAP) is a chaperone found primarily in the endoplasmic reticulum (ER) that plays a necessary role in the folding and exocytic trafficking of members of the LDL receptor gene family including megalin and the LDL receptor-related protein (LRP). Recently, RAP has been shown to interact with a growing number of proteins including several that are unrelated to the LDL receptor family as well as new members of this rapidly expanding family. Based on these observations, we have applied chemical crosslinking procedures to identify additional novel RAP-interacting proteins, and thereby better characterize the scope of RAP's ER-related function. In this study, we have identified eight proteins with molecular weights of 32, 35, 46, 55, 70, 95, 170, and 200 kDa that interact with endogenous RAP. These proteins were found to associate with RAP in multiple cell types from different species, suggesting that their expression and interactions with RAP are ubiquitous. Results of pulse-chase experiments show that most of the proteins remain sensitive to endoglycosidase-H digestion, and also remain stably associated with RAP over an extended period, suggesting that they are ER resident proteins. All of the RAP-associated proteins appear to be largely soluble as they partition into the aqueous phase following TX-114 detergent extraction. Sequence analysis and immunoblotting of the 46-kDa RAP-associated glycoprotein (gp46) shows that it is structurally and immunologically related to actin. If gp46 is also functionally related to actin as an intracellular structural protein, it may represent a novel component of the putative ER matrix.
Collapse
Affiliation(s)
- M Sarti
- Departments of Pathology and Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, 92093-0651, USA
| | | | | |
Collapse
|
18
|
Affiliation(s)
- R Mihai
- Department of Surgery, Bristol Royal Infirmary, UK
| | | |
Collapse
|
19
|
Morelle W, Haslam SM, Ziak M, Roth J, Morris HR, Dell A. Characterization of the N-linked oligosaccharides of megalin (gp330) from rat kidney. Glycobiology 2000; 10:295-304. [PMID: 10704528 DOI: 10.1093/glycob/10.3.295] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Megalin (gp 330) is a large cell surface receptor expressed on the apical surfaces of epithelial tissues, that mediates the binding and internalization of a number of structurally and functionally distinct ligands. In this paper we report the first detailed structural characterization of megalin-derived oligosaccharides. Using strategies based on mass spectrometric analysis, we have defined the structures of the N-glycans of megalin. The results reveal that megalin glycoprotein is heterogeneously glycosylated. The major N-glycans identified belong to the following two classes: high mannose structures and complex type structures, with complex structures being more abundant than high mannose structures. The major nonreducing epitopes in the complex-type glycans are: GlcNAc, Galbeta1-4GlcNAc (LacNAc), NeuAcalpha2-6Galbeta1-4GlcNAc (sialylated LacNAc), GalNAcbeta1-4[NeuAcalpha2-3]Galbeta1-4GlcNAc (Sd(a)) and Galalpha1-3Galbeta1-4GlcNAc. Most complex structures are characterized by the presence of (alpha1,6)-core fucosylation and the presence of a bisecting GlcNAc residue.
Collapse
Affiliation(s)
- W Morelle
- Department of Biochemistry, Imperial College, London, SW7 2AY, UK
| | | | | | | | | | | |
Collapse
|
20
|
Pauls TL, Portis F, Macrì E, Belser B, Heitz P, Doglioni C, Celio MR. Parvalbumin is expressed in normal and pathological human parathyroid glands. J Histochem Cytochem 2000; 48:105-11. [PMID: 10653591 DOI: 10.1177/002215540004800111] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The parathyroid glands are of major importance in calcium homeostasis. Small changes in the plasma calcium (Ca2+) concentration induce rapid changes in parathyroid hormone (PTH) secretion to maintain the extracellular Ca2+ levels within the physiological range. Extracellular Ca2+ concentration is continuously measured by a G-protein-coupled Ca2+-sensing receptor, which influences the expression and secretion of PTH. The mechanism of signal transduction from receptor sensing to PTH secretion is not well understood, but changes in PTH secretion are tightly linked to changes in the cytosolic Ca2+ concentration. Using immunohistochemistry and Western blot analysis, we detected the EF Ca2+ binding protein parvalbumin (PV) in normal and in hyperplastic and adenomatous human parathyroid glands. The strongest PV signal was present in chief cells and water clear cells, whereas in oxyphilic cells only a weak signal was observed. Immunohistochemistry and in situ hybridization of the PTH indicated a co-localization of PV and PTH in the same cell types. Because changes in the cytosolic Ca2+ concentration are believed to influence the process of PTH secretion, a possible role of PV as a modulator of this Ca2+ signaling is envisaged.
Collapse
Affiliation(s)
- T L Pauls
- Institute of Histology and General Embryology, University of Fribourg, Switzerland
| | | | | | | | | | | | | |
Collapse
|
21
|
Yamaguchi T, Chattopadhyay N, Brown EM. G protein-coupled extracellular Ca2+ (Ca2+o)-sensing receptor (CaR): roles in cell signaling and control of diverse cellular functions. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 1999; 47:209-53. [PMID: 10582088 DOI: 10.1016/s1054-3589(08)60113-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- T Yamaguchi
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | | | | |
Collapse
|
22
|
Barmina OY, Walling HW, Fiacco GJ, Freije JM, López-Otín C, Jeffrey JJ, Partridge NC. Collagenase-3 binds to a specific receptor and requires the low density lipoprotein receptor-related protein for internalization. J Biol Chem 1999; 274:30087-93. [PMID: 10514495 DOI: 10.1074/jbc.274.42.30087] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously identified a specific receptor for collagenase-3 that mediates the binding, internalization, and degradation of this ligand in UMR 106-01 rat osteoblastic osteosarcoma cells. In the present study, we show that collagenase-3 binding is calcium-dependent and occurs in a variety of cell types, including osteoblastic and fibroblastic cells. We also present evidence supporting a two-step mechanism of collagenase-3 binding and internalization involving both a specific collagenase-3 receptor and the low density lipoprotein receptor-related protein. Ligand blot analysis shows that (125)I-collagenase-3 binds specifically to two proteins ( approximately 170 kDa and approximately 600 kDa) present in UMR 106-01 cells. Western blotting identified the 600-kDa protein as the low density lipoprotein receptor-related protein. Our data suggest that the 170-kDa protein is a specific collagenase-3 receptor. Low density lipoprotein receptor-related protein-null mouse embryo fibroblasts bind but fail to internalize collagenase-3, whereas UMR 106-01 and wild-type mouse embryo fibroblasts bind and internalize collagenase-3. Internalization, but not binding, is inhibited by the 39-kDa receptor-associated protein. We conclude that the internalization of collagenase-3 requires the participation of the low density lipoprotein receptor-related protein and propose a model in which the cell surface interaction of this ligand requires a sequential contribution from two receptors, with the collagenase-3 receptor acting as a high affinity primary binding site and the low density lipoprotein receptor-related protein mediating internalization.
Collapse
Affiliation(s)
- O Y Barmina
- Department of Pharmacological Science, St. Louis University School of Medicine, St. Louis, Missouri 63104, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Christensen EI, Willnow TE. Essential role of megalin in renal proximal tubule for vitamin homeostasis. J Am Soc Nephrol 1999; 10:2224-36. [PMID: 10505701 DOI: 10.1681/asn.v10102224] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Affiliation(s)
- E I Christensen
- Department of Cell Biology, Institute of Anatomy, University of Aarhus, Denmark.
| | | |
Collapse
|
24
|
Zaidi M, Moonga BS, Adebanjo OA. Novel mechanisms of calcium handling by the osteoclast: A review-hypothesis. PROCEEDINGS OF THE ASSOCIATION OF AMERICAN PHYSICIANS 1999; 111:319-27. [PMID: 10417740 DOI: 10.1046/j.1525-1381.1999.99233.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The osteoclast is a cell that is unique in its ability to resorb bone and, in doing so, becomes exposed to unusually high millimolar Ca2+ concentrations. It is generally accepted that, during resorption, osteoclasts can "sense" changes in their ambient Ca2+ concentration. This triggers a sharp cytosolic Ca2+ increase through both Ca2+ release and Ca2+ influx. The change in cytosolic Ca2+ is transduced finally into inhibition of bone resorption. It has been shown that a type 2 ryanodine receptor isoform, expressed uniquely in the plasma membrane, functions as a Ca2+ influx channel and possibly as a Ca2+ sensor. Ryanodine receptors are ordinarily Ca2+ release channels that have a microsomal membrane location in a wide variety of eukaryotic cells, including the osteoclasts. However, only recently has it become obvious that ryanodine receptors are also expressed in osteoclast nuclear membranes, at which site they probably gate nucleoplasmic Ca2+ influx. Nucleoplasmic Ca2+ in turn regulates key nuclear processes, including gene expression and apoptosis. Here, we review the potential mechanisms underlying the recognition, movement, and effects of Ca2+ in the osteoclast. We will also speculate on the general biological significance of the unique processes used by the osteoclast to handle high Ca2+ loads during bone resorption.
Collapse
Affiliation(s)
- M Zaidi
- Center for Skeletal Aging and Osteoporosis, Geriatric Medicine and Extended Care Service, Philadelphia VA Medical Center, PA 19104, USA
| | | | | |
Collapse
|
25
|
Zaidi M, Adebanjo OA, Moonga BS, Sun L, Huang CL. Emerging insights into the role of calcium ions in osteoclast regulation. J Bone Miner Res 1999; 14:669-74. [PMID: 10320514 DOI: 10.1359/jbmr.1999.14.5.669] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Osteoclasts are exposed to unusually high, millimolar, Ca2+ concentrations and can "sense" changes in their ambient Ca2+ concentration during resorption. This results in a sharp cystolic Ca2+ increase through both Ca2+ release and Ca2+ influx. The rise in cystolic Ca2+ is transduced finally into an inhibition of bone resorption. We have shown that a type 2 ryanodine receptor isoform, expressed uniquely in the osteoblast plasma membrane, functions as a Ca2+ influx channel, and possibly as a Ca2+ sensor. Ryanodine receptors are ordinarily microsomal membrane Ca2+ release channels. They have only recently been shown to be expressed a other sites, including nuclear membranes. At the latter site, ryanodine receptors gate nucleoplasmic Ca2+ influx. Nucleoplasmic Ca2+, in turn, regulates key nuclear processes, including gene expression and apoptosis. Here, we review potential mechanisms underlying the recognition, movement, and actions of Ca2+ in the osteoclast.
Collapse
Affiliation(s)
- M Zaidi
- Center for Skeletal Aging and Osteoporosis, Geriatric Medicine and Extended Care Service, VA Medical Center, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
26
|
Huang S, Maher VM, McCormick J. Involvement of intermediary metabolites in the pathway of extracellular Ca2+-induced mitogen-activated protein kinase activation in human fibroblasts. Cell Signal 1999; 11:263-74. [PMID: 10372804 DOI: 10.1016/s0898-6568(98)00051-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Human fibroblasts in culture will grow in serum-free medium containing serum replacement factors, but without protein growth factors, as long as the Ca2+ level is 1.0-2.0 mM. When the Ca2+ is reduced to 0.1 mM, the cells stop cycling, but they can be reinduced to cycle by raising the Ca2+ level to 1.0 mM Ca2+ or to higher concentrations that result in activation of mitogen-activated protein kinase (MAPK). We now report that exposure of human fibroblasts to extracellular Ca2+ increased the level of inositol (1,4,5)-trisphosphate in the cytoplasm and caused a transient rise in the concentration of intracellular free Ca2+. Ca2+-induced MAPK activation was partly abolished by treatment of the cells with pertussis toxin. It was also decreased by treatment of cells with thapsigargin, which depletes intracellular Ca2+ stores; with phorbol 12-myristyl 13-acetate (PMA), which down-regulates protein kinase C (PKC); with the calmodulin antagonists N-(6-aminohexyl)-5-chloro-1-naphthalenesulphonamide HCl (W-7), and calmidazolium (24571); as well as with lanthanum, a Ca2+ channel inhibitor. Ca2+ stimulation did not result in phosphorylation of the c-raf-1 protein. Our results suggest that extracellular Ca2+ stimulates MAPK activation through a pathway(s) involving a pertussis toxin-sensitive G protein, phospholipase C, intracellular free Ca2+, calmodulin, and PKC.
Collapse
Affiliation(s)
- S Huang
- Department of Microbiology, The Cancer Center, Michigan State University, East Lansing 48824-1302, USA
| | | | | |
Collapse
|
27
|
Brown EM, Vassilev PM, Quinn S, Hebert SC. G-protein-coupled, extracellular Ca(2+)-sensing receptor: a versatile regulator of diverse cellular functions. VITAMINS AND HORMONES 1999; 55:1-71. [PMID: 9949679 DOI: 10.1016/s0083-6729(08)60933-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- E M Brown
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
28
|
Adebanjo OA, Igietseme J, Huang CL, Zaidi M. The effect of extracellularly applied divalent cations on cytosolic Ca2+ in murine leydig cells: evidence for a Ca2+-sensing receptor. J Physiol 1998; 513 ( Pt 2):399-410. [PMID: 9806991 PMCID: PMC2231298 DOI: 10.1111/j.1469-7793.1998.399bb.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
1. The effect of extracellularly applied divalent cations upon cytosolic Ca2+ levels ([Ca2+]) was investigated in fura-2-loaded mouse Leydig (TM3) cells. 2. The extracellular application of Ca2+ (2.5-15 mM) or Ni2+ (0.5-5 mM) elicited concentration-dependent elevations in cytosolic [Ca2+] that were followed by decays to baseline levels. Extracellular Mg2+ (0.8-15 mM) failed to influence cytosolic [Ca2+]. 3. Conditioning applications of Ca2+ (2.5-10 mM), Mg2+ (2.5-15 mM) or Ni2+ (0.5-5 mM) all attenuated the cytosolic Ca2+ response to a subsequent test application of 5 mM [Ni2+]. 4. The amplitude of Ni2+-induced cytosolic Ca2+ signals remained constant in low-Ca2+ solutions. Such findings suggest a participation of Ca2+ release from intracellular stores. In parallel, depletion of Ca2+ stores by either ionomycin (5 microM, in low-Ca2+ solutions) or thapsigargin (4 microM) abolished or attenuated Ni2+-induced Ca2+ transients. 5. Ionomycin (5 microM) elevated cytosolic [Ca2+] in Ca2+-free solutions even after prior Ni2+ application, indicating the presence of Ni2+-insensitive stores. 6. Caffeine (250 and 500 microM) elevated cytosolic [Ca2+] and attenuated Ni2+-induced Ca2+ release. Furthermore, TM3 cells stained intensely with a specific anti-ryanodine receptor antiserum, Ab34. These findings suggest that Ca2+ release is regulated by ryanodine receptors. 7. Both membrane depolarization and hyperpolarization, brought about by changes in extracellular [K+] ([K+]e) in the presence of valinomycin (5 microM), altered the waveform of the Ni2+-induced cytosolic Ca2+ signal. Hyperpolarization, in addition, diminished the response magnitude. Such voltage-induced response modulation localizes the regulatory events to the Leydig cell plasma membrane. 8. We propose the existence of a cell surface divalent cation (Ca2+) receptor in Leydig cells, the activation of which triggers Ca2+ fluxes through ryanodine receptors.
Collapse
Affiliation(s)
- O A Adebanjo
- Center for Skeletal Aging and Osteoporosis, Veterans Affairs Medical Center and Medical College of Pennsylvania-Hahnemann School of Medicine, Allegheny University of the Health Sciences and University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
29
|
Farnebo F, Höög A, Sandelin K, Larsson C, Farnebo LO. Decreased expression of calcium-sensing receptor messenger ribonucleic acids in parathyroid adenomas. Surgery 1998; 124:1094-8; discussion 1098-9. [PMID: 9854589 DOI: 10.1067/msy.1998.91828] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND The set point for parathyroid hormone (PTH) secretion is increased in patients with primary hyperparathyroidism, possibly because of receptor defect(s). A decreased expression of calcium receptor (CaR) messenger ribonucleic acid (mRNA) and protein and a decreased expression of the putative calcium-sensing CAS (gp330/megalin) protein have been demonstrated in parathyroid adenomas. METHODS Expression of CAS mRNA was studied in matched pairs of adenomas and adenoma-associated biopsy specimens from normal parathyroid glands from 15 patients with sporadic primary hyperparathyroidism. Cryostat sections were hybridized with an oligonucleotide complementary to CAS mRNA, rinsed, air dried, and exposed to x-ray film for semiquantification of radioactivity. RESULTS Expression of CAS mRNA in the adenomas was lowered significantly to 25% (median; range 9% to 80%) of that of the corresponding biopsy specimens of normal parathyroid glands. No correlation was seen between CAS mRNA in the adenoma and preoperative serum calcium levels, PTH level, or weight of the adenoma. The levels of CAS mRNA were significantly lower than those observed previously for CaR mRNA. There was no significant correlation between the levels of CAS and CaR mRNA. CONCLUSIONS Lowered levels of receptors sensing extracellular calcium (CaR and CAS) probably contribute to the increased set point for PTH secretion in primary hyperparathyroidism.
Collapse
Affiliation(s)
- F Farnebo
- Department of Molecular Medicine, Karolinska Hospital, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
30
|
Major histocompatibility complex class II expression and parathyroid autoantibodies in primary hyperparathyroidism. Surgery 1998. [DOI: 10.1016/s0039-6060(98)70096-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
Knutson A, Hellman P, Akerström G, Westin G. Characterization of the human Megalin/LRP-2 promoter in vitro and in primary parathyroid cells. DNA Cell Biol 1998; 17:551-60. [PMID: 9655248 DOI: 10.1089/dna.1998.17.551] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The gp330/Megalin/LRP-2 protein belongs to the low-density lipoprotein receptor gene family and is believed to function as an endocytic receptor for the uptake of lipoproteins and many other ligands. Other functions of this protein may include a role in calcium sensing in the parathyroid glands and other tissues. In order to study the transcriptional regulation of the human LRP-2 gene, a clone containing the 5'-flanking region was isolated from a genomic DNA library, and a transient transfection protocol for primary bovine parathyroid cells was established. RNA mapping techniques located the transcriptional start site 136 bp upstream of the initiation codon. Transient expression in several cell types, including primary parathyroid cells, and in vitro transcription in HeLa cell nuclear extracts showed that sequences between -120 and -35 were important for activated transcription. This region contains consensus binding sites (GC boxes) for transcription factor Sp1. Mutation of the GC boxes abolished binding of Sp1 in vitro and resulted in reduced transcription in vitro and in transfected cells. Furthermore, Sp1 stimulated transcription when tethered to the LRP-2 core promoter through a heterologous DNA-binding domain. Through site-directed mutagenesis, we identified a novel atypical TATA element with the sequence TAGAAAA. Intriguingly, this sequence motif was shown previously not to mediate transcription in a systematic mutational analysis of the TATA motif. Possible roles of this novel TATA element in the regulation of transcription initiation are discussed. The isolation and characterization of the LRP-2 promoter and the 5'-flanking region and the establishment of a transient expression assay in primary parathyroid cells will facilitate studies on the regulatory mechanisms of the LRP-2 gene and of other genes expressed in the parathyroid glands.
Collapse
Affiliation(s)
- A Knutson
- Department of Surgery, Uppsala University Hospital, Sweden
| | | | | | | |
Collapse
|
32
|
Hory B, Roussanne MC, Drüeke TB, Bourdeau A. The calcium receptor in health and disease. EXPERIMENTAL NEPHROLOGY 1998; 6:171-9. [PMID: 9639031 DOI: 10.1159/000020520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The recent cloning of a G-protein-coupled, extracellular calcium [(Ca2+)e]-sensing receptor (CaRG) from the parathyroid, kidney and brain of several species has clarified the molecular mechanisms underlying Ca2+-sensing by parathyroid and other cell types. It has long been suspected that such a receptor existed on parathyroid cells, coupled to intracellular second messengers through guanine nucleotide regulatory (G) protein which is able to recognize and respond to (Ca2+)e. Recently, functional screening of a cDNA library constructed from bovine parathyroid mRNA led to the isolation of a 5.3-kb clone expressing maximal Ca2+-stimulated Cl- currents in oocytes. This 5.3-kb cDNA encodes a protein of 1,085 amino acids with three principal predicted structural domains. The CaRG protein is present in chief parathyroid cells, in C cells of the thyroid, in the cortical thick ascending limb (TAL) and collecting duct of the kidney, and in discrete brain areas. CaRG may play several physiological roles. It is a central element in the control of both parathyroid and calcitonin secretion by (Ca2+)e. Moreover, functional evidence for its participation in the regulation of renal Ca2+ reabsorption in TAL and water reabsorption in the collecting duct has been obtained. Mutations of the CaRG gene are responsible for hereditary and familial parathyroid disorders, and a decrease in CaRG expression has been documented in primary and secondary uremic hyperparathyroidism. The expression of CaRG in several additional organs and tissues allows speculation on the potential involvement in other pathologies.
Collapse
|
33
|
Brown EM, Pollak M, Hebert SC. The extracellular calcium-sensing receptor: its role in health and disease. Annu Rev Med 1998; 49:15-29. [PMID: 9509247 DOI: 10.1146/annurev.med.49.1.15] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The recent cloning of an extracellular calcium (Ca2+o)-sensing receptor (CaR) from parathyroid, kidney and other cell types has clarified the mechanisms through which Ca2+o exerts its direct actions on various cells and tissues. In the parathyroid, the CaR mediates the inhibitory effects of Ca2+o on parathyroid hormone (PTH) secretion and likely on expression of the PTH gene and parathyroid cellular proliferation. In the kidney, the receptor mediates direct inhibition of the reabsorption of divalent cations in the cortical thick ascending limb, and it likely underlies the inhibitory actions of hypercalcemia on the urinary-concentrating mechanism in the medullary thick ascending limb and inner medullary collecting duct. The identification of inherited diseases of Ca2+o-sensing that arise from mutations in the CaR gene has proven, by genetic means, the central role of the CaR in mineral ion homeostasis and the importance of the receptor in regulating the parathyroid and kidney. An allosteric CaR agonist ("calcimimetic") is currently being tested for the treatment of primary hyperparathyroidism, and CaR-based therapeutics will likely be applicable to other disorders in which CaRs are under- or overactive. Thus the discovery of the CaR and its associated diseases has documented that Ca2+o plays an essential role as an extracellular first messenger, in addition to serving its better recognized role as an intracellular second messenger.
Collapse
Affiliation(s)
- E M Brown
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.
| | | | | |
Collapse
|
34
|
Christensen EI, Birn H, Verroust P, Moestrup SK. Membrane receptors for endocytosis in the renal proximal tubule. INTERNATIONAL REVIEW OF CYTOLOGY 1998; 180:237-84. [PMID: 9496636 DOI: 10.1016/s0074-7696(08)61772-6] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The renal proximal tubule exhibits a very extensive apical endocytic apparatus consisting of an elaborate network of coated pits and small coated and noncoated endosomes. In addition, the cells contain a large number of late endosomes/prelysosomes, lysosomes, and so-called dense apical tubules involved in receptor recycling from the endosomes to the apical plasma membrane. This endocytic apparatus is involved in the reabsorption of molecules filtered in the glomeruli. The process is very effective as demonstrated by the fact that although several grams of protein are filtered daily in the human glomeruli, human urine is virtually devoid of proteins under physiological conditions. Several key receptors appear to be involved in this function, which serves not only to conserve protein as such for the organism but also to reabsorb vital substances such as different vitamins in complex with their binding proteins. Recent research has established megalin, a 600-kDa protein belonging to the LDL receptor family, as probably the most important receptor in this process in the proximal tubule mediating endocytosis of a large variety of ligands and therefore classifying it as a scavenger receptor. More specific receptors like the folate receptor, IGF-II/Man-6-P receptor, and gp280/IFR, identical to the intrinsic factor receptor, are also functioning in the apical endocytic pathway of renal proximal tubules. A better understanding of these receptors will give us new insight into these very important processes for the organism.
Collapse
|
35
|
Christensen EI, Birn H, Verroust P, Moestrup SK. Megalin-mediated endocytosis in renal proximal tubule. Ren Fail 1998; 20:191-9. [PMID: 9574443 DOI: 10.3109/08860229809045102] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Megalin, a 600 kDa membrane protein belonging to the IDL receptor family is highly expressed in the endocytic pathway of renal proximal tubules. In addition, this receptor is found in several other epithelia facing transcellular fluids but is also expressed in the parathyroid glands. Recent studies have established this protein as probably the most important receptor for endocytosis of macromolecules filtered in the renal glomeruli. The ligands reported to bind to megalin consist of a variety of different substances including albumin, vitamin-carrier complexes, proteinases and proteinase-inhibitor complexes, lipoprotein particles, receptor associated protein (RAP), different drugs and calcium.
Collapse
|
36
|
Liu W, Yu WR, Carling T, Juhlin C, Rastad J, Ridefelt P, Akerström G, Hellman P. Regulation of gp330/megalin expression by vitamins A and D. Eur J Clin Invest 1998; 28:100-7. [PMID: 9541123 DOI: 10.1046/j.1365-2362.1998.00253.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND A membrane-bound 550-kD Ca2+-binding glycoprotein belonging to the low-density lipoprotein (LDL) receptor superfamily has recently been identified as a putative calcium-sensing molecule. This molecule, known as gp330/megalin, is among several tissues present in the proximal tubule, parathyroid and placental cytotrophoblasts, in which a Ca2+-sensing function has been demonstrated. METHODS Regulation of mRNA and protein expression of gp330/megalin were studied in a recently established cell line derived from rat kidney proximal tubule cells (IRPTCs), in human JEG-3 cells and in the mouse embryonal carcinoma cell line F9. RESULTS In IRPTCs, quantification of mRNA and protein expression demonstrated two- to five-fold increases after addition of 10(-6) mol L(-1) all-trans-retinoic acid, 9-cis-retinoic acid or 1,25-dihydroxyvitamin D3, alone or in combination. Similarly, an increase in gp330/megalin mRNA expression was seen in JEG-3 cells cultured with vitamin D and retinoids, as well as when F9 cells were differentiated by incubation with retinoic acid and cAMP. The IRPTCs were immortalized by viral infection with the SV40 genome preceded by a temperature-sensitive promoter. Thus, by culture of the cells at 41 degrees C, SV40 genome transcription is inhibited and the IRPTC phenotype is reversed towards non-infected proximal tubule cells. At 41 degrees C, gp330/megalin mRNA expression was significantly increased compared with cells incubated at 34 degrees C. CONCLUSION The results indicate a correlation between exposure to retinoic acid or vitamin D or induction of cell differentiation (by retinoic acid/cAMP in F9 cells or inhibition of SV40 transcription in IRPTCs) and an increase in gp330/megalin protein and mRNA expression.
Collapse
Affiliation(s)
- W Liu
- University Hospital, Uppsala, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
37
|
|
38
|
Abstract
Protein folding that is coupled to disulphide bond formation has many experimental advantages. In particular, the kinetic roles and importance of all the disulphide intermediates can be determined, usually unambiguously. This contrasts with other types of protein folding, where the roles of any intermediates detected are usually not established. Nevertheless, there is considerable confusion in the literature about even the best-characterized disulphide folding pathways. This article attempts to set the record straight.
Collapse
|
39
|
Butters RR, Chattopadhyay N, Nielsen P, Smith CP, Mithal A, Kifor O, Bai M, Quinn S, Goldsmith P, Hurwitz S, Krapcho K, Busby J, Brown EM. Cloning and characterization of a calcium-sensing receptor from the hypercalcemic New Zealand white rabbit reveals unaltered responsiveness to extracellular calcium. J Bone Miner Res 1997; 12:568-79. [PMID: 9101368 DOI: 10.1359/jbmr.1997.12.4.568] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The extracellular Ca2+ (Ca(0)2+)-sensing receptor (CaR) recently cloned from mammalian parathyroid, kidney, brain, and thyroid plays a central role in maintaining near constancy of Ca(0)2+. We previously showed that the hypercalcemia normally present in New Zealand white rabbits is associated with an elevated set point for Ca(02+)-regulated PTH release (the level of Ca(0)2+ half-maximally inhibiting hormonal secretion). This observation suggested an alteration in the Ca(02+)-sensing mechanism in the rabbit parathyroid, a possibility we have now pursued by isolating and characterizing the rabbit homolog of the CaR. The cloned rabbit kidney CaR (RabCaR) shares a high degree of overall homology (> 90% amino acid identity) with the bovine, human, and rat CaRs, although it differs slightly in several regions of the extracellular domain potentially involved in binding ligands. By Northern analysis and/or immunohistochemistry, a similar or identical receptor is also expressed in parathyroid, thyroid C cells, small and large intestine, and in the thick ascending limb and collecting ducts of the kidney. When expressed transiently in HEK293 cells and assayed functionally through CaR agonist-evoked increases in Ca(i)2+, the rabbit CaR shows apparent affinities for Ca(0)2+, Mg(0)2+, and Gd(0)3+ that are indistinguishable from those observed in studies carried out concomitantly using the human CaR. Therefore, at least as assessed by its ability to increase Ca(i)2+ when expressed in HEK293 cells, the intrinsic functional properties of the rabbit CaR cannot explain the hypercalcemia observed in vivo in the New Zealand white rabbit.
Collapse
Affiliation(s)
- R R Butters
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Orlando RA, Exner M, Czekay RP, Yamazaki H, Saito A, Ullrich R, Kerjaschki D, Farquhar MG. Identification of the second cluster of ligand-binding repeats in megalin as a site for receptor-ligand interactions. Proc Natl Acad Sci U S A 1997; 94:2368-73. [PMID: 9122201 PMCID: PMC20094 DOI: 10.1073/pnas.94.6.2368] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/1996] [Accepted: 12/30/1996] [Indexed: 02/04/2023] Open
Abstract
Megalin is a large cell surface receptor that mediates the binding and internalization of a number of structurally and functionally distinct ligands from the lipoprotein and protease:protease inhibitor families. To begin to address how megalin is able to bind ligands with unique structurally properties, we have mapped a binding site for apolipoprotein E (apoE)-beta very low density lipoprotein (beta VLDL), lipoprotein lipase, aprotinin, lactoferrin, and the receptor-associated protein (RAP) within the primary sequence of the receptor. RAP is known to inhibit the binding of all ligands to megalin. We identified a ligand-binding site on megalin by raising mAb against purified megalin, selected for a mAb whose binding to megalin is inhibited by RAP, and mapped the epitope for this mAb. mAb AC10 inhibited the binding of apoE-beta VLDL, lipoprotein lipase, aprotinin, and lactoferrin to megalin in a concentration-dependent manner. When cDNA fragments encoding the four cysteine-rich ligand-binding repeats in megalin were expressed in a baculovirus system and immunoblotted with AC10, it recognized only the second cluster of ligand-binding repeats. The location of the epitope recognized by mAb AC10 within this domain was pinpointed to amino acids 1111-1210. From these studies we conclude that the binding of apoE-beta VLDL, lactoferrin, aprotinin, lipoprotein lipase, and RAP to megalin is either competitively or sterically inhibited by mAb AC10 suggesting that these ligands bind to the same or closely overlapping sites within the second cluster of ligand-binding repeats.
Collapse
Affiliation(s)
- R A Orlando
- Department of Pathology, University of California, San Diego, La Jolla 92093-0651, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
During recent decades, primary hyperparathyroidism (pHPT) has appeared as one of the more common endocrine disorders. Previously, the disease was the obvious cause of severe, symptomatic bone disease, recurrent renal stones, and sometimes devastating muscular weakness. The condition often progressed rapidly and ultimately ended in renal insufficiency. Today, pHPT is frequently recognized in patients with less obvious symptoms and markedly slower disease progression. However, if thoroughly examined, many of these patients will also present typical symptoms and complications of the disease. Surgery in pHPT has also developed as a highly efficient procedure with low failure rate and few complications. Further, successful operation is likely to decrease the risk of developing long-term disturbances of calcium metabolism and recently recognized cardiovascular complications of the disease. However, in a group of generally elderly patients with especially mild hypercalcemia and no obvious symptoms, disease progression may be slow, and it is possible that some of these patients can be followed safely without surgery. These patients also constitute a majority of cases detected in population surveys. Pathophysiological studies of pHPT have revealed more or less disturbed secretory regulation as a characteristic feature of pathological parathyroid glands, and this accounts principally for the patients' hypercalcemia. This abnormality has been related to decreased expression or capacity of parathyroid cell surface receptors executing a crucial calcium-sensing function. Recent progress has also led to the identification of causes of a growth regulatory disturbance in pathological parathyroid glands. Exploration of molecular mechanisms behind these abnormalities are likely to further unveil disease characteristics and help explain differences in clinical symptoms and disease progression among the patients with pHPT.
Collapse
Affiliation(s)
- G Akerström
- Department of Surgery, University Hospital, Uppsala, Sweden
| |
Collapse
|
42
|
Quarles LD, Hartle JE, Siddhanti SR, Guo R, Hinson TK. A distinct cation-sensing mechanism in MC3T3-E1 osteoblasts functionally related to the calcium receptor. J Bone Miner Res 1997; 12:393-402. [PMID: 9076582 DOI: 10.1359/jbmr.1997.12.3.393] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The presence of a cation-sensing mechanism in osteoblasts is suggested by the ability of specific cations to stimulate osteoblastic proliferation in culture and to induce de novo bone formation in some experimental models. Our study examines whether extracellular cations stimulate osteoblasts through the recently identified G protein-coupled calcium receptor (CaR). We found that CaR agonists, calcium (Ca2+), gadolinium (Gd3+), aluminum (Al3+), and neomycin, stimulated DNA synthesis in murine-derived MC3T3-E1 preosteoblasts, whereas magnesium (Mg2+), nickel (Ni2+), cadmium (Cd2+), and zinc (Zn2+) had no effect. With the exception of Mg2+, the cation specificities and apparent affinities were similar to that reported for CaR. CaR agonists also stimulated DNA synthesis in C3HT10(1/2) fibroblasts, but not in mesangial PVG, CHO, hepatic HTC, COS-7 cells, or malignant transformed ROS17/2.8 and UMR-106 osteoblasts. In addition, similar to other growth factors, CaR agonists activated transcription of a serum response element luciferase reporter construct (SRE-Luc) stably transfected into MC3T3-E1 osteoblasts, but had no effect on SRE-Luc transfected into CHO and COS-7 cells. We were unable to detect CaR expression by Northern analysis using a mouse CaR-specific probe or to amplify CaR mRNA by reverse transcribed polymerase chain reaction in MC3T3-E1 osteoblasts. These findings suggest that an extra-cellular cation-sensing mechanism is present in murine-derived osteoblasts that is functionally similar to but molecularly distinct from CaR.
Collapse
Affiliation(s)
- L D Quarles
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | | | | | | | | |
Collapse
|
43
|
Lundgren S, Carling T, Hjälm G, Juhlin C, Rastad J, Pihlgren U, Rask L, Akerström G, Hellman P. Tissue distribution of human gp330/megalin, a putative Ca(2+)-sensing protein. J Histochem Cytochem 1997; 45:383-92. [PMID: 9071320 DOI: 10.1177/002215549704500306] [Citation(s) in RCA: 151] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We used riboprobes and monoclonal antibodies to characterize tissue distribution of the human 550-kD homologue to gp330/megalin, primarily identified in the rat kidney. Human gp330/megalin mRNA and protein are readily identified in human parathyroid cells, placental cytotrophoblasts, kidney proximal tubule cells, and epididymal epithelial cells. The immunoreactivity is found on the surface of the cells and is heterogeneously downregulated in parathyroid hyperplasia and adenomas. Cells of the proximal kidney tubule and epididymis express the protein on their luminal aspect. Moreover, the protein is expressed in Type II pneumocytes, mammary epithelial and thyroid follicular cells, and the ciliary body of the eye. Sequence analysis of cDNA fragments, obtained by RT-PCR, revealed identical nucleotide sequences in parathyroid, kidney, placenta, epididymis, and lung. Immunohistochemistry for parathyroid hormone-related protein (PTHrP) revealed partial co-expression with human gp330/megalin in parathyroid, placenta, and mammary gland. The findings substantiate human gp330/megalin expression in a variety of human tissues expected to possess calcium-sensing functions. It may constitute a protein of utmost importance to adult and fetal calcium homeostasis, although other important functions may also be coupled to this exceptionally large protein with highly restricted tissue distribution.
Collapse
Affiliation(s)
- S Lundgren
- Department of Cell Research, Swedish University of Agricultural Science, Uppsala, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Tominaga Y, Tanaka Y, Sato K, Nagasaka T, Takagi H. Histopathology, pathophysiology, and indications for surgical treatment of renal hyperparathyroidism. SEMINARS IN SURGICAL ONCOLOGY 1997; 13:78-86. [PMID: 9088063 DOI: 10.1002/(sici)1098-2388(199703/04)13:2<78::aid-ssu3>3.0.co;2-z] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Morphological changes in the parathyroid glands evidently occur early during renal failure. Histopathological investigations have suggested that parathyroid cells initially increase diffusely with a normal lobular structure (diffuse hyperplasia). The parathyroid glands then become hyperplastic with some nodules (nodular hyperplasia). Cells in nodules grow monoclonally and proliferate aggressively, possibly induced by some kind of genetic abnormality. Pathophysiologically, in cells consisting of hyperplastic nodules, suppression of parathyroid hormone (PTH) secretion under the influence of excess extracellular calcium is more deranged, possibly due to a reduction of calcium-sensing receptors. Vitamin D receptor density decreases more severely in these cells, possibly causing abnormal PTH synthesis, PTH secretion, and even parathyroid cell proliferation. According to histopathological and pathophysiological findings, patients with nodular hyperplasia during renal hyperparathyroidism may be refractory to medical treatments, including calcitriol pulse therapy, and parathyroidectomy will become necessary. There is a relationship between the pattern of parathyroid hyperplasia and glandular weight in which glands weighing more than 500 mg may be pathognomonic of nodular hyperplasia. Glandular volume, estimated by ultrasonography, is one of several important criteria indicating parathyroidectomy. In order to prevent a recurrence of hyperparathyroidism, all nodular hyperplastic tissue should be extirpated.
Collapse
Affiliation(s)
- Y Tominaga
- Department of Transplant Surgery, Nagoya Second Red Cross Hospital, Japan
| | | | | | | | | |
Collapse
|
45
|
Bornefalk E, Ljunghall S, Lindh E, Bengtson O, Johansson AG, Ljunggren O. Regulation of interleukin-6 secretion from mononuclear blood cells by extracellular calcium. J Bone Miner Res 1997; 12:228-33. [PMID: 9041054 DOI: 10.1359/jbmr.1997.12.2.228] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Interleukin-6 (IL-6) is known to enhance osteoclast recruitment, and thereby bone resorption. Thus, IL-6 has been proposed to mediate hypercalcemia in multiple myeloma and the enhanced osteoclastic activity seen in postmenopausal osteoporosis. We recently reported that the calcium concentration in plasma affects IL-6 secretion from mononuclear blood cells. To investigate the underlying mechanism, we have studied the effect of calcium on IL-6 formation in mononuclear blood cells ex vivo and in vitro. Thirteen healthy volunteers were given 1 g of calcium orally after overnight fasting. Plasma levels of ionized calcium (pCa2+) and serum levels of parathyroid hormone (sPTH) were measured after 2 and 4 h, with all subjects still fasting. After 2 h, pCa2+ was increased and sPTH decreased in all 13 persons. IL-6 secretion ex vivo from mononuclear blood cells drawn 4 h after calcium intake was increased 185% as compared with IL-6 secretion from cells drawn just before calcium intake. In control experiments without calcium intake, there was no alteration in pCa2+ and no effect on IL-6 secretion from mononuclear blood cells. In vitro studies revealed that stimulation of isolated mononuclear blood cells with physiological concentrations of calcium dose-dependently increased IL-6 secretion with an estimated EC50 at 1.2 mM Ca2+. No effect on the IL-6 secretion was seen following treatment of the isolated mononuclear blood cells with PTH or calcitonin. These observations demonstrate that the plasma calcium concentration affects IL-6 secretion from mononuclear blood cells. The in vitro data indicate the involvement of a direct calcium sensing mechanism. These findings might have implications in hypercalcemia and should also be borne in mind when considering the role of cytokines in osteoporosis.
Collapse
Affiliation(s)
- E Bornefalk
- Department of Internal Medicine, University Hospital, Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
46
|
Gogusev J, Duchambon P, Hory B, Giovannini M, Goureau Y, Sarfati E, Drüeke TB. Depressed expression of calcium receptor in parathyroid gland tissue of patients with hyperparathyroidism. Kidney Int 1997; 51:328-36. [PMID: 8995751 DOI: 10.1038/ki.1997.41] [Citation(s) in RCA: 306] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The factors involved in abnormal parathyroid cell secretory function and growth in patients with primary (I degree) and secondary (II degree) hyperparathyroidism are still incompletely understood. We compared the expression of the calcium-sensing receptor (CaR) at the gene message and the protein level in parathyroid tissue obtained from patients with I degree non-uremic or II degree uremic hyperparathyroidism with that in normal parathyroid tissue, using in situ hybridization and immunohistochemistry techniques. The expression of the CaR mRNA and protein was reduced in most cases of I degree adenoma and II degree hyperplasia, compared with strong expression normal parathyroid tissue. In II degree hyperparathyroidism, expression of both receptor mRNA message and protein was often particularly depressed in nodular areas, compared with adjacent non-nodular hyperplasia. Decreased Ca-R expression in adenomatous and hyperplastic parathyroid glands would be compatible with a less efficient control of PTH synthesis and secretion by plasma calcium than in normal parathyroid tissue.
Collapse
Affiliation(s)
- J Gogusev
- INSERM Unité 90, Hôpital Necker, Paris, France
| | | | | | | | | | | | | |
Collapse
|
47
|
Hellman P, Karlsson-Parra A, Klareskog L, Ridefelt P, Bjerneroth G, Rastad J, Akerström G, Juhlin C. Expression and function of a CD4-like molecule in parathyroid tissue. Surgery 1996; 120:985-92. [PMID: 8957484 DOI: 10.1016/s0039-6060(96)80044-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Parathyroid tissue expresses the T-lymphocyte antigens CD3 and CD4, and parathyroid CD3 has earlier been proposed to interact in the regulation of parathyroid hormone (PTH) release. METHODS Anti-Leu3a, a monoclonal antibody recognizing CD4, was used to stain parathyroid tissue immunohistochemically, to influence PTH secretion from enzymatically dispersed parathyroid cells, and to immunoprecipitate parathyroid CD4. Northern blot and polymerase chain reaction were used to clarify the similarity between parathyroid and lymphocytic CD4. Serum PTH level was measured with an immunoradiometric assay in healthy control subjects and individuals with human immunodeficiency virus type 1. RESULTS The parenchyma of normal and abnormal parathyroid tissue displayed strikingly variable CD4 expression. Immunoprecipitation showed a 56 kd molecule, and Northern blot and polymerase chain reaction confirmed the similarity with lymphocyte CD4. Anti-Leu3a inhibited preferentially low calcium-stimulated secretion of PTH from dispersed parathyroid cells, without discernible influences on the cytoplasmic calcium concentration of these cells. Individuals with human immunodeficiency virus type 1 displayed significantly lower serum PTH levels than healthy control subjects. CONCLUSIONS The results suggest that the human parathyroid chief cell expresses a CD4 moiety, which seems to interact in the PTH release in vitro and in vivo and which seems to use another second messenger system than the structurally similar T-cell equivalent.
Collapse
Affiliation(s)
- P Hellman
- Department of Surgery, University Hospital, Uppsala, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Hebert SC. Extracellular calcium-sensing receptor: implications for calcium and magnesium handling in the kidney. Kidney Int 1996; 50:2129-39. [PMID: 8943500 DOI: 10.1038/ki.1996.539] [Citation(s) in RCA: 168] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- S C Hebert
- Brigham & Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
49
|
|
50
|
|