1
|
Xiang L, Lou J, Zhao J, Geng Y, Zhang J, Wu Y, Zhao Y, Tao Z, Li Y, Qi J, Chen J, Yang L, Zhou K. Underlying Mechanism of Lysosomal Membrane Permeabilization in CNS Injury: A Literature Review. Mol Neurobiol 2025; 62:626-642. [PMID: 38888836 DOI: 10.1007/s12035-024-04290-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024]
Abstract
Lysosomes play a crucial role in various intracellular pathways as their final destination. Various stressors, whether mild or severe, can induce lysosomal membrane permeabilization (LMP), resulting in the release of lysosomal enzymes into the cytoplasm. LMP not only plays a pivotal role in various cellular events but also significantly contributes to programmed cell death (PCD). Previous research has demonstrated the participation of LMP in central nervous system (CNS) injuries, including traumatic brain injury (TBI), spinal cord injury (SCI), subarachnoid hemorrhage (SAH), and hypoxic-ischemic encephalopathy (HIE). However, the mechanisms underlying LMP in CNS injuries are poorly understood. The occurrence of LMP leads to the activation of inflammatory pathways, increased levels of oxidative stress, and PCD. Herein, we present a comprehensive overview of the latest findings regarding LMP and highlight its functions in cellular events and PCDs (lysosome-dependent cell death, apoptosis, pyroptosis, ferroptosis, and autophagy). In addition, we consolidate the most recent insights into LMP in CNS injury by summarizing and exploring the latest advances. We also review potential therapeutic strategies that aim to preserve LMP or inhibit the release of enzymes from lysosomes to alleviate the consequences of LMP in CNS injury. A better understanding of the role that LMP plays in CNS injury may facilitate the development of strategic treatment options for CNS injury.
Collapse
Affiliation(s)
- Linyi Xiang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Junsheng Lou
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jiayi Zhao
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Yibo Geng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Jiacheng Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Yuzhe Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Yinuo Zhao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310000, China
| | - Zhichao Tao
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Yao Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Jianjun Qi
- Department of Clinical Laboratory, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001, China.
| | - Jiaoxiang Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China.
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China.
| | - Liangliang Yang
- School of Pharmaceutical Sciences, Wenzhou Medical University, WenzhouZhejiang, 325035, China.
| | - Kailiang Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China.
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
2
|
Caldeira IDS, Giovanini G, Adorno LF, Fernandes D, Ramos CR, Cruz-Visalaya SR, Pacheco-Otalora LF, Siqueira FRD, Nunes VA, Belizário JE, Garay-Malpartida HM. Antiapoptotic and Prometastatic Roles of Cytokine FAM3B in Triple-Negative Breast Cancer. Clin Breast Cancer 2024; 24:e633-e644.e2. [PMID: 38997857 DOI: 10.1016/j.clbc.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 05/28/2024] [Accepted: 06/13/2024] [Indexed: 07/14/2024]
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer. FAM3B, a secreted protein, has been extensively studied in various types of tumors. However, its function in breast cancer remains poorly understood. METHODS We analyzed FAM3B expression data from breast cancer patients available at TCGA database and overall survival was analyzed by using the Kaplan-Meier plotter. MDA-MB-231 TNBC tumor cell line and hormone-responsive MCF-7 cell lines were transfected to overexpress FAM3B. We assessed cell death, tumorigenicity, and invasiveness in vitro through MTT analysis, flow cytometry assays, anchorage-independent tumor growth, and wound healing assays, respectively. We performed in vivo evaluation by tumor xenograft in nude mice. RESULTS In silico analysis revealed that FAM3B expression was lower in all breast tumors. However, TNBC patients with high FAM3B expression had a poor prognosis. FAM3B overexpression protected MDA-MB-231 cells from cell death, with increased expression of Bcl-2 and Bcl-xL, and reduced caspase-3 activity. MDA-MB-231 cells overexpressing FAM3B also exhibited increased tumorigenicity and migration rates in vitro, displaying increased tumor growth and reduced survival rates in xenotransplanted nude mice. This phenotype is accompanied by the upregulation of EMT-related genes Slug, Snail, TGFBR2, vimentin, N-cadherin, MMP-2, MMP-9, and MMP-14. However, these effects were not observed in the MCF-7 cells overexpressing FAM3B. CONCLUSION FAM3B overexpression contributes to tumor growth, promotion of metastasis, and, consequently, leads to a poor prognosis in the most aggressive forms of breast cancer. Future clinical research is necessary to validate FAM3B as both a diagnostic and a therapeutic strategy for TNBC.
Collapse
Affiliation(s)
- Izabela Daniel Sardinha Caldeira
- Multidisciplinary Research Center, School of Arts, Sciences and Humanities, University of São Paulo, CEP 03828000, Sao Paulo, Brazil
| | - Guilherme Giovanini
- Center for Translational Research in Oncology (LIM24), Instituto do Câncer do Estado de São Paulo (ICESP), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, CEP 01246-000, Sao Paulo, Brazil
| | - Lissandra Ferreira Adorno
- Multidisciplinary Research Center, School of Arts, Sciences and Humanities, University of São Paulo, CEP 03828000, Sao Paulo, Brazil
| | - Debora Fernandes
- Multidisciplinary Research Center, School of Arts, Sciences and Humanities, University of São Paulo, CEP 03828000, Sao Paulo, Brazil
| | - Celso Romero Ramos
- Laboratório de Esquistossomose Experimental. Instituto Oswaldo Cruz - FIOCRUZ, Rio de Janeiro, CEP 21040-360, Rio de Janerio, Brasil
| | | | | | - Flavia Ramos de Siqueira
- Multidisciplinary Research Center, School of Arts, Sciences and Humanities, University of São Paulo, CEP 03828000, Sao Paulo, Brazil
| | - Viviane Abreu Nunes
- Multidisciplinary Research Center, School of Arts, Sciences and Humanities, University of São Paulo, CEP 03828000, Sao Paulo, Brazil
| | - José Ernesto Belizário
- Multidisciplinary Research Center, School of Arts, Sciences and Humanities, University of São Paulo, CEP 03828000, Sao Paulo, Brazil
| | - Humberto Miguel Garay-Malpartida
- Multidisciplinary Research Center, School of Arts, Sciences and Humanities, University of São Paulo, CEP 03828000, Sao Paulo, Brazil.
| |
Collapse
|
3
|
Üremiş MM, Türköz Y, Üremiş N. Investigation of apoptotic effects of Cucurbitacin D, I, and E mediated by Bax/Bcl-xL, caspase-3/9, and oxidative stress modulators in HepG2 cell line. Drug Dev Res 2024; 85:e22174. [PMID: 38494997 DOI: 10.1002/ddr.22174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/22/2024] [Accepted: 03/04/2024] [Indexed: 03/19/2024]
Abstract
Cucurbitacins, natural compounds highly abundant in the Cucurbitaceae plant family, are characterized by their anticancer, anti-inflammatory, and hepatoprotective properties. These compounds have potential as therapeutic agents in the treatment of liver cancer. This study investigated the association of cucurbitacin D, I, and E (CuD, CuI, and CuE) with the caspase cascade, Bcl-2 family, and oxidative stress modulators in the HepG2 cell line. We evaluated the antiproliferative effects of CuD, CuI, and CuE using the MTT assay. We analyzed Annexin V/PI double staining, cell cycle, mitochondrial membrane potential, and wound healing assays at different doses of the three compounds. To examine the modulation of the caspase cascade, we determined the protein and gene expression levels of Bax, Bcl-xL, caspase-3, and caspase-9. We evaluated the total antioxidant status (TAS), total oxidant status (TOS), superoxide dismutase (SOD), glutathione (GSH), Total, and Native Thiol levels to measure cellular redox status. CuD, CuI, and CuE suppressed the proliferation of HepG2 cells in a dose-dependent manner. The cucurbitacins induced apoptosis by increasing caspase-3, caspase-9, and Bax activity, inhibiting Bcl-xL activation, causing loss of ΔΨm, and suppressing cell migration. Furthermore, cucurbitacins modulated oxidative stress by increasing TOS levels and decreasing SOD, GSH, TAS, and total and native Thiol levels. Our findings suggest that CuD, CuI, and CuE exert apoptotic effects on the hepatocellular carcinoma cell line by regulating Bax/Bcl-xL, caspase-3/9 signaling, and causing intracellular ROS increase in HepG2 cells.
Collapse
Affiliation(s)
- Muhammed Mehdi Üremiş
- Department of Medical Biochemistry, Medical Faculty, Inonu University, Malatya, Turkey
| | - Yusuf Türköz
- Department of Medical Biochemistry, Medical Faculty, Inonu University, Malatya, Turkey
| | - Nuray Üremiş
- Department of Medical Biochemistry, Medical Faculty, Inonu University, Malatya, Turkey
| |
Collapse
|
4
|
Mukherjee S, Dhar R, Jonnalagadda S, Gorai S, Nag S, Kar R, Mukerjee N, Mukherjee D, Vatsa R, Arikketh D, Krishnan A, Gundamaraju R, Jha SK, Alexiou A, Papadakis M. Exosomal miRNAs and breast cancer: a complex theranostics interlink with clinical significance. Biomarkers 2023; 28:502-518. [PMID: 37352015 DOI: 10.1080/1354750x.2023.2229537] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/17/2023] [Indexed: 06/25/2023]
Abstract
Breast cancer (BC) remains the most challenging global health crisis of the current decade, impacting a large population of females annually. In the field of cancer research, the discovery of extracellular vesicles (EVs), specifically exosomes (a subpopulation of EVs), has marked a significant milestone. In general, exosomes are released from all active cells but tumour cell-derived exosomes (TDXs) have a great impact (TDXs miRNAs, proteins, lipid molecules) on cancer development and progression. TDXs regulate multiple events in breast cancer such as tumour microenvironment remodelling, immune cell suppression, angiogenesis, metastasis (EMT-epithelial mesenchymal transition, organ-specific metastasis), and therapeutic resistance. In BC, early detection is the most challenging event, exosome-based BC screening solved the problem. Exosome-based BC treatment is a sign of the transforming era of liquid biopsy, it is also a promising therapeutic tool for breast cancer. Exosome research goes to closer precision oncology via a single exosome profiling approach. Our hope is that this review will serve as motivation for researchers to explore the field of exosomes and develop an efficient, and affordable theranostics approach for breast cancer.
Collapse
Affiliation(s)
- Sayantanee Mukherjee
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Rajib Dhar
- Department of Genetic Engineering, Cancer and Stem Cell Biology Laboratory, SRM Institute of Science and Technology, Kattankulathur, India
| | | | - Sukhamoy Gorai
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Sagnik Nag
- Department of Biotechnology, School of Biosciences & Technology, Vellore Institute of Technology (VIT), Vellore, India
| | - Rishav Kar
- Department of Medical Biotechnology, Ramakrishna Mission Vivekananda Educational and Research Institute, Belur Math,India
| | - Nobendu Mukerjee
- Department of Microbiology, West Bengal State University, Kolkata, India
- Department of Health Sciences, Novel Global Community Educational Foundation, Australia
| | | | - Rishabh Vatsa
- Department of Microbiology, Vels Institute of Science, Technology and Advanced Studies, Chennai, India
| | - Devi Arikketh
- Department of Genetic Engineering, Cancer and Stem Cell Biology Laboratory, SRM Institute of Science and Technology, Kattankulathur, India
| | - Anand Krishnan
- Department of Chemical Pathology, School of Pathology, University of the Free State, Bloemfontein, South Africa
| | - Rohit Gundamaraju
- ER Stress and Mucosal Immunology Laboratory, School of Health Sciences, University of Tasmania, Launceston, Australia
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India
- Department of Biotechnology, School of Applied and Life Sciences (SALS), Uttaranchal University, Dehradun, India
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, Australia
- AFNP Med, Wien, Austria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Wuppertal, Germany
| |
Collapse
|
5
|
Wang F, Dezfouli AB, Khosravi M, Sievert W, Stangl S, Schwab M, Wu Z, Steiger K, Ma H, Multhoff G. Cannabidiol-induced crosstalk of apoptosis and macroautophagy in colorectal cancer cells involves p53 and Hsp70. Cell Death Discov 2023; 9:286. [PMID: 37542074 PMCID: PMC10403543 DOI: 10.1038/s41420-023-01578-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 07/12/2023] [Accepted: 07/25/2023] [Indexed: 08/06/2023] Open
Abstract
Although it has been established that cannabidiol (CBD), the major non-psychoactive constituent of cannabis, exerts antitumoral activities, the exact mechanism(s) via which tumor cells are killed by CBD are not well understood. This study provides new insights into the potential mechanisms of CBD-induced mutual antagonism of apoptosis and macroautophagy using wild type (HCT116 p53wt, LS174T p53wt), knockout (HCT116 p53-/-) and mutant (SW480 p53mut) human colorectal cancer cells (CRC). CBD causes a more pronounced loss in the viability of p53wt cells than p53-/- and p53mut cells, and a 5-week treatment with CBD reduced the volume of HCT116 p53wt xenografts in mice, but had no effect on the volume of HCT116 p53-/- tumors. Mechanistically, we demonstrate that CBD only significantly elevates ROS production in cells harboring wild-type p53 (HCT116, LS174T) and that this is associated with an accumulation of PARP1. CBD-induced elevated ROS levels trigger G0/G1 cell cycle arrest, a reduction in CDK2, a p53-dependent caspase-8/9/3 activation and macroautophagy in p53wt cells. The ROS-induced macroautophagy which promotes the activation of keap1/Nrf2 pathway might be positively regulated by p53wt, since inhibition of p53 by pifithrin-α further attenuates autophagy after CBD treatment. Interestingly, an inhibition of heat shock protein 70 (Hsp70) expression significantly enhances caspase-3 mediated programmed cell death in p53wt cells, whereas autophagy-which is associated with a nuclear translocation of Nrf2-was blocked. Taken together, our results demonstrate an intricate interplay between apoptosis and macroautophagy in CBD-treated colorectal cancer cells, which is regulated by the complex interactions of p53wt and Hsp70.
Collapse
Affiliation(s)
- Fei Wang
- Radiation Immuno-Oncology Project Group, TranslaTUM-Central Institute for Translational Cancer Research, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| | - Ali Bashiri Dezfouli
- Radiation Immuno-Oncology Project Group, TranslaTUM-Central Institute for Translational Cancer Research, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Mohammad Khosravi
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Wolfgang Sievert
- Radiation Immuno-Oncology Project Group, TranslaTUM-Central Institute for Translational Cancer Research, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Stefan Stangl
- Radiation Immuno-Oncology Project Group, TranslaTUM-Central Institute for Translational Cancer Research, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Melissa Schwab
- Radiation Immuno-Oncology Project Group, TranslaTUM-Central Institute for Translational Cancer Research, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Zhiyuan Wu
- Radiation Immuno-Oncology Project Group, TranslaTUM-Central Institute for Translational Cancer Research, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Katja Steiger
- Institute for General Pathology and Pathological Anatomy, Technische Universität München, Munich, Germany
| | - Hu Ma
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Gabriele Multhoff
- Radiation Immuno-Oncology Project Group, TranslaTUM-Central Institute for Translational Cancer Research, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| |
Collapse
|
6
|
Tian H, Ding M, Guo Y, Zhu Z, Yu Y, Tian Y, Li K, Sun G, Jiang R, Han R, Yan F, Kang X. Effect of HSPA8 gene on the proliferation, apoptosis and immune function of HD11 cells. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 142:104666. [PMID: 36764422 DOI: 10.1016/j.dci.2023.104666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/30/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
HSPA8 (Heat shock 70 kDa protein 8) is a molecular chaperone involved in a variety of cellular processes. This gene may affect the proliferation, apoptosis and immune function of chicken macrophages, but the specific mechanism remains unclear. The purpose of this study was to explore the effect of the HSPA8 gene on the proliferation, apoptosis and immune function of chicken macrophages. In this study, a chicken HSPA8 overexpression plasmid, interference fragment and corresponding controls were transfected into HD11 cells, and then the expression of the HSPA8 gene, cell proliferation, cell cycle, apoptosis rate and immune function of each group were detected. The results showed that transfection of the HSPA8 overexpression plasmid significantly upregulated the level of HSPA8 expression in HD11 cells compared with the control; significantly promoted the proliferation of HD11 cells and the expression of PCNA, CCND1 and CCNB3; decreased the number of cells in the G1 phase and increased the number of cells in the S phase; decreased the rate of apoptosis and upregulated the expression of Bcl-2; and promoted the expression of the LPS-induced cytokines IL-1β, IL-6 and TNF-α. Transfection of the HSPA8 interference fragment significantly downregulated the level of HSPA8 expression in HD11 cells; significantly inhibited the proliferation of HD11 cells and the expression of PCNA, CCND1 and CDK1; increased the number of cells in the G1 phase and decreased the number of cells in the S phase; increased the rate of apoptosis, downregulated the expression of Bcl-2 and upregulated the expression levels of Fas and FasL; and inhibited the expression of the LPS-induced cytokines IL-1β and NF-κB. The results suggested that HSPA8 promotes the proliferation of and inhibits the apoptosis of HD11 cells and has a proinflammatory effect.
Collapse
Affiliation(s)
- Huihui Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Mengxia Ding
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yujie Guo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Zhaoyan Zhu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yange Yu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China
| | - Kui Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Guirong Sun
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China
| | - Ruirui Jiang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China
| | - Ruili Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China
| | - Fengbin Yan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China.
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China
| |
Collapse
|
7
|
Barrientos K, Arango JP, Moncada MS, Placido J, Patiño J, Macías SL, Maldonado C, Torijano S, Bustamante S, Londoño ME, Jaramillo M. Carbon dot-based biosensors for the detection of communicable and non -communicable diseases. Talanta 2022; 251:123791. [DOI: 10.1016/j.talanta.2022.123791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 10/16/2022]
|
8
|
Tian H, Ding M, Guo Y, Zhu Z, Yu Y, Tian Y, Li K, Sun G, Jiang R, Han R, Yan F, Kang X. WITHDRAWN: Effect of HSPA8 on the proliferation, apoptosis and immune function of chicken macrophages. Int J Biochem Cell Biol 2022:106186. [PMID: 35217190 DOI: 10.1016/j.biocel.2022.106186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 02/21/2022] [Indexed: 11/19/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal
Collapse
Affiliation(s)
- Huihui Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Mengxia Ding
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Yujie Guo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Zhaoyan Zhu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Yange Yu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Kui Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Guirong Sun
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Ruirui Jiang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Ruili Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Fengbin Yan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China.
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China.
| |
Collapse
|
9
|
Butera G, Manfredi M, Fiore A, Brandi J, Pacchiana R, De Giorgis V, Barberis E, Vanella V, Galasso M, Scupoli MT, Marengo E, Cecconi D, Donadelli M. Tumor Suppressor Role of Wild-Type P53-Dependent Secretome and Its Proteomic Identification in PDAC. Biomolecules 2022; 12:305. [PMID: 35204804 PMCID: PMC8869417 DOI: 10.3390/biom12020305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/03/2022] [Accepted: 02/09/2022] [Indexed: 12/10/2022] Open
Abstract
The study of the cancer secretome is gaining even more importance in cancers such as pancreatic ductal adenocarcinoma (PDAC), whose lack of recognizable symptoms and early detection assays make this type of cancer highly lethal. The wild-type p53 protein, frequently mutated in PDAC, prevents tumorigenesis by regulating a plethora of signaling pathways. The importance of the p53 tumor suppressive activity is not only primarily involved within cells to limit tumor cell proliferation but also in the extracellular space. Thus, loss of p53 has a profound impact on the secretome composition of cancer cells and marks the transition to invasiveness. Here, we demonstrate the tumor suppressive role of wild-type p53 on cancer cell secretome, showing the anti-proliferative, apoptotic and chemosensitivity effects of wild-type p53 driven conditioned medium. By using high-resolution SWATH-MS technology, we characterized the secretomes of p53-deficient and p53-expressing PDAC cells. We found a great number of secreted proteins that have known roles in cancer-related processes, 30 of which showed enhanced and 17 reduced secretion in response to p53 silencing. These results are important to advance our understanding on the link between wt-p53 and cancer microenvironment. In conclusion, this approach may detect a secreted signature specifically driven by wild-type p53 in PDAC.
Collapse
Affiliation(s)
- Giovanna Butera
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, 37134 Verona, Italy; (G.B.); (A.F.); (R.P.); (M.G.); (M.T.S.)
| | - Marcello Manfredi
- Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (M.M.); (V.D.G.); (E.B.); (V.V.)
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, 28100 Novara, Italy;
- ISALIT, Spin-off at the University of Piemonte Orientale, 28100 Novara, Italy
| | - Alessandra Fiore
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, 37134 Verona, Italy; (G.B.); (A.F.); (R.P.); (M.G.); (M.T.S.)
| | - Jessica Brandi
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (J.B.); (D.C.)
| | - Raffaella Pacchiana
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, 37134 Verona, Italy; (G.B.); (A.F.); (R.P.); (M.G.); (M.T.S.)
| | - Veronica De Giorgis
- Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (M.M.); (V.D.G.); (E.B.); (V.V.)
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, 28100 Novara, Italy;
| | - Elettra Barberis
- Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (M.M.); (V.D.G.); (E.B.); (V.V.)
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, 28100 Novara, Italy;
- ISALIT, Spin-off at the University of Piemonte Orientale, 28100 Novara, Italy
| | - Virginia Vanella
- Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (M.M.); (V.D.G.); (E.B.); (V.V.)
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, 28100 Novara, Italy;
| | - Marilisa Galasso
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, 37134 Verona, Italy; (G.B.); (A.F.); (R.P.); (M.G.); (M.T.S.)
- Department of Medicine, Section of Hematology, University of Verona, 37134 Verona, Italy
| | - Maria Teresa Scupoli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, 37134 Verona, Italy; (G.B.); (A.F.); (R.P.); (M.G.); (M.T.S.)
- Research Center LURM, Interdepartmental Laboratory of Medical Research, University of Verona, 37134 Verona, Italy
| | - Emilio Marengo
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, 28100 Novara, Italy;
- ISALIT, Spin-off at the University of Piemonte Orientale, 28100 Novara, Italy
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, 28100 Novara, Italy
| | - Daniela Cecconi
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (J.B.); (D.C.)
| | - Massimo Donadelli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, 37134 Verona, Italy; (G.B.); (A.F.); (R.P.); (M.G.); (M.T.S.)
| |
Collapse
|
10
|
Kurop MK, Huyen CM, Kelly JH, Blagg BSJ. The heat shock response and small molecule regulators. Eur J Med Chem 2021; 226:113846. [PMID: 34563965 PMCID: PMC8608735 DOI: 10.1016/j.ejmech.2021.113846] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/07/2021] [Accepted: 09/07/2021] [Indexed: 01/09/2023]
Abstract
The heat shock response (HSR) is a highly conserved cellular pathway that is responsible for stress relief and the refolding of denatured proteins [1]. When a host cell is exposed to conditions such as heat shock, ischemia, or toxic substances, heat shock factor-1 (HSF-1), a transcription factor, activates the genes that encode for the heat shock proteins (Hsps), which are a family of proteins that work alongside other chaperones to relieve stress and refold proteins that have been denatured (Burdon, 1986) [2]. Along with the refolding of denatured proteins, Hsps facilitate the removal of misfolded proteins by escorting them to degradation pathways, thereby preventing the accumulation of misfolded proteins [3]. Research has indicated that many pathological conditions, such as diabetes, cancer, neuropathy, cardiovascular disease, and aging have a negative impact on HSR function and are commonly associated with misfolded protein aggregation [4,5]. Studies indicate an interplay between mitochondrial homeostasis and HSF-1 levels can impact stress resistance, proteostasis, and malignant cell growth, which further support the role of Hsps in pathological and metabolic functions [6]. On the other hand, Hsp activation by specific small molecules can induce the heat shock response, which can afford neuroprotection and other benefits [7]. This review will focus on the modulation of Hsps and the HSR as therapeutic options to treat these conditions.
Collapse
Affiliation(s)
- Margaret K Kurop
- Warren Center for Drug Discovery, Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Cormac M Huyen
- Warren Center for Drug Discovery, Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - John H Kelly
- Warren Center for Drug Discovery, Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Brian S J Blagg
- Warren Center for Drug Discovery, Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA.
| |
Collapse
|
11
|
Schwab M, Thunborg K, Azimzadeh O, von Toerne C, Werner C, Shevtsov M, Di Genio T, Zdralevic M, Pouyssegur J, Renner K, Kreutz M, Multhoff G. Targeting Cancer Metabolism Breaks Radioresistance by Impairing the Stress Response. Cancers (Basel) 2021; 13:3762. [PMID: 34359663 PMCID: PMC8345170 DOI: 10.3390/cancers13153762] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 11/21/2022] Open
Abstract
The heightened energetic demand increases lactate dehydrogenase (LDH) activity, the corresponding oncometabolite lactate, expression of heat shock proteins (HSPs) and thereby promotes therapy resistance in many malignant tumor cell types. Therefore, we assessed the coregulation of LDH and the heat shock response with respect to radiation resistance in different tumor cells (B16F10 murine melanoma and LS174T human colorectal adenocarcinoma). The inhibition of LDH activity by oxamate or GNE-140, glucose deprivation and LDHA/B double knockout (LDH-/-) in B16F10 and LS174T cells significantly diminish tumor growth; ROS production and the cytosolic expression of different HSPs, including Hsp90, Hsp70 and Hsp27 concomitant with a reduction of heat shock factor 1 (HSF1)/pHSF1. An altered lipid metabolism mediated by a LDHA/B double knockout results in a decreased presence of the Hsp70-anchoring glycosphingolipid Gb3 on the cell surface of tumor cells, which, in turn, reduces the membrane Hsp70 density and increases the extracellular Hsp70 levels. Vice versa, elevated extracellular lactate/pyruvate concentrations increase the membrane Hsp70 expression in wildtype tumor cells. Functionally, an inhibition of LDH causes a generalized reduction of cytosolic and membrane-bound HSPs in tumor cells and significantly increases the radiosensitivity, which is associated with a G2/M arrest. We demonstrate that targeting of the lactate/pyruvate metabolism breaks the radioresistance by impairing the stress response.
Collapse
Affiliation(s)
- Melissa Schwab
- Radiation Immuno-Oncology Group, Center for Translational Cancer Research (TranslaTUM), School of Medicine, Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany; (M.S.); (K.T.); (C.W.); (M.S.); (T.D.G.)
| | - Katharina Thunborg
- Radiation Immuno-Oncology Group, Center for Translational Cancer Research (TranslaTUM), School of Medicine, Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany; (M.S.); (K.T.); (C.W.); (M.S.); (T.D.G.)
| | - Omid Azimzadeh
- German Research Center for Environmental Health, Institute of Radiation Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany;
- Section Radiation Biology, Federal Office for Radiation Protection (BfS), 85764 Neuherberg, Germany
| | - Christine von Toerne
- Research Unit Protein Science, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany;
| | - Caroline Werner
- Radiation Immuno-Oncology Group, Center for Translational Cancer Research (TranslaTUM), School of Medicine, Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany; (M.S.); (K.T.); (C.W.); (M.S.); (T.D.G.)
| | - Maxim Shevtsov
- Radiation Immuno-Oncology Group, Center for Translational Cancer Research (TranslaTUM), School of Medicine, Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany; (M.S.); (K.T.); (C.W.); (M.S.); (T.D.G.)
- Institute of Cytology, Institute of Russian Academy of Sciences (RAS), 194064 St. Petersburg, Russia
- Department of Biotechnology, Pavlov First Saint Petersburg State Medical University, 197022 St. Petersburg, Russia
| | - Tommaso Di Genio
- Radiation Immuno-Oncology Group, Center for Translational Cancer Research (TranslaTUM), School of Medicine, Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany; (M.S.); (K.T.); (C.W.); (M.S.); (T.D.G.)
| | - Masa Zdralevic
- Faculty of Medicine, University of Montenegro, Kruševac, 81000 Podgorica, Montenegro;
| | - Jacques Pouyssegur
- Institute for Research on Cancer and Aging, University Côte d’Azur, CNRS, INSERM, Centre Antoine Lacassagne, 06107 Nice, France;
- Department of Medical Biology, Centre Scientifique de Monaco (CSM), 98000 Monaco, Monaco
| | - Kathrin Renner
- Department of Internal Medicine III, University of Regensburg, 93053 Regensburg, Germany; (K.R.); (M.K.)
- Center for Interventional Immunology, Department of Internal Medicine III, University of Regensburg (RCI), 93053 Regensburg, Germany
| | - Marina Kreutz
- Department of Internal Medicine III, University of Regensburg, 93053 Regensburg, Germany; (K.R.); (M.K.)
| | - Gabriele Multhoff
- Radiation Immuno-Oncology Group, Center for Translational Cancer Research (TranslaTUM), School of Medicine, Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany; (M.S.); (K.T.); (C.W.); (M.S.); (T.D.G.)
- Department of Radiation Oncology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany
| |
Collapse
|
12
|
Hsp70 in Liquid Biopsies-A Tumor-Specific Biomarker for Detection and Response Monitoring in Cancer. Cancers (Basel) 2021; 13:cancers13153706. [PMID: 34359606 PMCID: PMC8345117 DOI: 10.3390/cancers13153706] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/16/2021] [Accepted: 07/21/2021] [Indexed: 12/21/2022] Open
Abstract
In contrast to normal cells, tumor cells of multiple entities overexpress the Heat shock protein 70 (Hsp70) not only in the cytosol, but also present it on their plasma membrane in a tumor-specific manner. Furthermore, membrane Hsp70-positive tumor cells actively release Hsp70 in small extracellular vesicles with biophysical characteristics of exosomes. Due to conformational changes of Hsp70 in a lipid environment, most commercially available antibodies fail to detect membrane-bound and vesicular Hsp70. To fill this gap and to assess the role of vesicular Hsp70 in circulation as a potential tumor biomarker, we established the novel complete (comp)Hsp70 sandwich ELISA, using two monoclonal antibodies (mAbs), that is able to recognize both free and lipid-associated Hsp70 on the cell surface of viable tumor cells and on small extracellular vesicles. The epitopes of the mAbs cmHsp70.1 (aa 451-461) and cmHsp70.2 (aa 614-623) that are conserved among different species reside in the substrate-binding domain of Hsp70 with measured affinities of 0.42 nM and 0.44 nM, respectively. Validation of the compHsp70 ELISA revealed a high intra- and inter-assay precision, linearity in a concentration range of 1.56 to 25 ng/mL, high recovery rates of spiked liposomal Hsp70 (>84%), comparable values between human serum and plasma samples and no interference by food intake or age of the donors. Hsp70 concentrations in the circulation of patients with glioblastoma, squamous cell or adeno non-small cell lung carcinoma (NSCLC) at diagnosis were significantly higher than those of healthy donors. Hsp70 concentrations dropped concomitantly with a decrease in viable tumor mass upon irradiation of patients with approximately 20 Gy (range 18-22.5 Gy) and after completion of radiotherapy (60-70 Gy). In summary, the compHsp70 ELISA presented herein provides a sensitive and reliable tool for measuring free and vesicular Hsp70 in liquid biopsies of tumor patients, levels of which can be used as a tumor-specific biomarker, for risk assessment (i.e., differentiation of grade III vs. IV adeno NSCLC) and monitoring of therapeutic outcomes.
Collapse
|
13
|
Hano K, Hatano K, Saigo C, Kito Y, Shibata T, Takeuchi T. Combination of Clptm1L and TMEM207 Expression as a Robust Prognostic Marker in Oral Squamous Cell Carcinoma. FRONTIERS IN ORAL HEALTH 2021; 2:638213. [PMID: 35047994 PMCID: PMC8757898 DOI: 10.3389/froh.2021.638213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 03/04/2021] [Indexed: 11/13/2022] Open
Abstract
Overexpression of Cleft Lip and Palate Transmembrane 1-Like (Clptm1L) confers cancer cell survival through the endoplasmic reticulum (ER) stress survival signaling pathway, while TMEM207 impairs the tumor suppressor function of WW domain containing oxidoreductase (WWOX), which sensitizes cancer cells to ER stress-induced apoptosis. In the present study, we examined whether these two ER stress-related proteins, Clptm1L and TMEM207, could be prognostic markers in oral squamous cell carcinoma (OSCC). Immunohistochemical staining using specific antibodies to Clptm1L or TMEM207 revealed that 31 of 89 tissue specimens exhibited concomitant expression of Clptm1L and TMEM207 at the cancer invasion front. A Kaplan–Meier plot of the patient survival curve followed by a log-rank test revealed that the coexpression of Clptm1L and TMEM207 was significantly associated with poor outcome in patients with OSCC (P = 0.00252). Coexpression of Clptm1L and TMEM207 was closely related to lymph node metastasis (P=0.000574). Both univariate and multivariate analyses demonstrated that coexpression of Clptm1L and TMEM207 predicted the poor prognosis of the patients with OSCC. The present study indicated that the double positive Clptm1L and TMEM207 immunoreactivity was closely related to lymph node metastasis with prognostic value in patients with OSCC.
Collapse
Affiliation(s)
- Kimika Hano
- Department of Oral and Maxillofacial Surgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kiichi Hatano
- Department of Oral and Maxillofacial Surgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Chiemi Saigo
- Department of Pathology and Translational Research, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yusuke Kito
- Department of Pathology and Translational Research, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Toshiyuki Shibata
- Department of Oral and Maxillofacial Surgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Tamotsu Takeuchi
- Department of Pathology and Translational Research, Gifu University Graduate School of Medicine, Gifu, Japan
- *Correspondence: Tamotsu Takeuchi
| |
Collapse
|
14
|
Gorbunova OL, Shirshev SV. Role of Kisspeptin in Regulation of Reproductive and Immune Reactions. BIOCHEMISTRY (MOSCOW) 2021; 85:839-853. [PMID: 33045946 DOI: 10.1134/s0006297920080015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The work is focused on physiological role of the hormone kisspeptin produced by neurons of the hypothalamus anterior zone, which is a key regulator of reproduction processes. Role of the hormone in transmission of information on metabolic activity and induction of the secretion of gonadotropin-releasing hormone (GnRH) by the hypothalamus that determines gestation processes involving fertilization, placentation, fetal development, and child birth is considered. The literature data on molecular mechanisms and effects of kisspeptin on reproductive system including puberty initiation are summarized and analyzed. In addition, attention is paid to hormone-mediated changes in the cardiovascular system in pregnant women. For the first time, the review examines the effect of kisspeptin on functional activity of immune system cells presenting molecular mechanisms of the hormone signal transduction on the level of lymphoid cells that lead to the immune tolerance induction. In conclusion, a conceptual model is presented that determines the role of kisspeptin as an integrator of reproductive and immune functions during pregnancy.
Collapse
Affiliation(s)
- O L Gorbunova
- Perm Federal Research Center, Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences, Perm, 614081, Russia.
| | - S V Shirshev
- Perm Federal Research Center, Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences, Perm, 614081, Russia
| |
Collapse
|
15
|
Shehata AM, Saadeldin IM, Tukur HA, Habashy WS. Modulation of Heat-Shock Proteins Mediates Chicken Cell Survival against Thermal Stress. Animals (Basel) 2020; 10:E2407. [PMID: 33339245 PMCID: PMC7766623 DOI: 10.3390/ani10122407] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 12/14/2022] Open
Abstract
Heat stress is one of the most challenging environmental stresses affecting domestic animal production, particularly commercial poultry, subsequently causing severe yearly economic losses. Heat stress, a major source of oxidative stress, stimulates mitochondrial oxidative stress and cell dysfunction, leading to cell damage and apoptosis. Cell survival under stress conditions needs urgent response mechanisms and the consequent effective reinitiation of cell functions following stress mitigation. Exposure of cells to heat-stress conditions induces molecules that are ready for mediating cell death and survival signals, and for supporting the cell's tolerance and/or recovery from damage. Heat-shock proteins (HSPs) confer cell protection against heat stress via different mechanisms, including developing thermotolerance, modulating apoptotic and antiapoptotic signaling pathways, and regulating cellular redox conditions. These functions mainly depend on the capacity of HSPs to work as molecular chaperones and to inhibit the aggregation of non-native and misfolded proteins. This review sheds light on the key factors in heat-shock responses for protection against cell damage induced by heat stress in chicken.
Collapse
Affiliation(s)
- Abdelrazeq M. Shehata
- Department of Animal Production, Faculty of Agriculture, Al-Azhar University, Cairo 11651, Egypt;
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Islam M. Saadeldin
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Hammed A. Tukur
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Walid S. Habashy
- Department of Animal and Poultry Production, Damanhour University, Damanhour 22511, Egypt;
| |
Collapse
|
16
|
Khan AA, Patel K, Patil S, Babu N, Mangalaparthi KK, Solanki HS, Nanjappa V, Kumari A, Manoharan M, Karunakaran C, Murugan S, Nair B, Kumar RV, Biswas M, Sidransky D, Gupta R, Gupta R, Khanna-Gupta A, Kumar P, Chatterjee A, Gowda H. Multi-Omics Analysis to Characterize Cigarette Smoke Induced Molecular Alterations in Esophageal Cells. Front Oncol 2020; 10:1666. [PMID: 33251127 PMCID: PMC7675040 DOI: 10.3389/fonc.2020.01666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 07/28/2020] [Indexed: 12/29/2022] Open
Abstract
Though smoking remains one of the established risk factors of esophageal squamous cell carcinoma, there is limited data on molecular alterations associated with cigarette smoke exposure in esophageal cells. To investigate molecular alterations associated with chronic exposure to cigarette smoke, non-neoplastic human esophageal epithelial cells were treated with cigarette smoke condensate (CSC) for up to 8 months. Chronic treatment with CSC increased cell proliferation and invasive ability of non-neoplastic esophageal cells. Whole exome sequence analysis of CSC treated cells revealed several mutations and copy number variations. This included loss of high mobility group nucleosomal binding domain 2 (HMGN2) and a missense variant in mediator complex subunit 1 (MED1). Both these genes play an important role in DNA repair. Global proteomic and phosphoproteomic profiling of CSC treated cells lead to the identification of 38 differentially expressed and 171 differentially phosphorylated proteins. Bioinformatics analysis of differentially expressed proteins and phosphoproteins revealed that most of these proteins are associated with DNA damage response pathway. Proteomics data revealed decreased expression of HMGN2 and hypophosphorylation of MED1. Exogenous expression of HMGN2 and MED1 lead to decreased proliferative and invasive ability of smoke exposed cells. Immunohistochemical labeling of HMGN2 in primary ESCC tumor tissue sections (from smokers) showed no detectable expression while strong to moderate staining of HMGN2 was observed in normal esophageal tissues. Our data suggests that cigarette smoke perturbs expression of proteins associated with DNA damage response pathways which might play a vital role in development of ESCC.
Collapse
Affiliation(s)
- Aafaque Ahmad Khan
- Institute of Bioinformatics, International Technology Park, Bangalore, India.,Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Krishna Patel
- Institute of Bioinformatics, International Technology Park, Bangalore, India.,Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, India
| | - Shankargouda Patil
- Division of Oral Pathology, Department of Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, Jazan University, Jazan, Saudi Arabia.,Department of Medical Biotechnologies, School of Dental Medicine, University of Siena, Siena, Italy
| | - Niraj Babu
- Institute of Bioinformatics, International Technology Park, Bangalore, India.,Manipal Academy of Higher Education, Manipal, India
| | - Kiran K Mangalaparthi
- Institute of Bioinformatics, International Technology Park, Bangalore, India.,Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, India
| | | | | | | | | | | | | | - Bipin Nair
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, India
| | - Rekha V Kumar
- Department of Pathology, Kidwai Memorial Institute of Oncology, Bangalore, India
| | - Manjusha Biswas
- Department of Molecular Pathology, Mitra Biotech, Bangalore, India
| | - David Sidransky
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Ravi Gupta
- Medgenome Labs Pvt. Ltd., Bangalore, India
| | | | | | - Prashant Kumar
- Institute of Bioinformatics, International Technology Park, Bangalore, India.,Manipal Academy of Higher Education, Manipal, India
| | - Aditi Chatterjee
- Institute of Bioinformatics, International Technology Park, Bangalore, India.,Manipal Academy of Higher Education, Manipal, India
| | - Harsha Gowda
- Institute of Bioinformatics, International Technology Park, Bangalore, India.,Manipal Academy of Higher Education, Manipal, India.,Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| |
Collapse
|
17
|
A Review on Notch Signaling and Colorectal Cancer. Cells 2020; 9:cells9061549. [PMID: 32630477 PMCID: PMC7349609 DOI: 10.3390/cells9061549] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) has one of the highest mortality rates despite the advancement of treatment options. Aggressive CRC remains difficult to treat owing to the activation of oncogenic signaling pathways such as the Notch signaling pathway. The role of Notch receptors varies according to the difference in their structures; in particular, aberrant activation of Notch1 has been attributed to the severity of CRC. Notch1 activation in CRC is inhibited by small molecule inhibitors that target γ-secretase, an enzyme responsible for the third and last cleavage step of Notch receptors. γ-Secretase also produces the intracellular domain that finally carries out cellular functions by activating downstream effectors. However, most inhibitors block γ-secretase non-selectively and cause severe toxicity. Plant-source-derived small molecules, monoclonal antibodies, biological molecules (such as SiRNAs), and compounds targeting the Notch1 receptor itself or the downstream molecules such as HES1 are some of the options that are in advanced stages of clinical trials. The Negative Regulatory Region (NRR), which plays a central role in the transduction of Notch1 signaling in the event of ligand-dependent and ligand-independent Notch1 processing is also being targeted specifically by monoclonal antibodies (mAbs) to prevent aberrant Notch1 activation. In this review, we discuss the role of Notch1 in CRC, particularly its metastatic phenotype, and how mutations in Notch1, specifically in its NRR region, contribute to the aberrant activation of Notch1 signaling, which, in turn, contributes to CRC pathogenesis. We also discuss prevailing and emerging therapies that target the Notch1 receptor and the NRR region, and we highlight the potential of these therapies in abrogating Notch signaling and, thus, CRC development and progression.
Collapse
|
18
|
Milani A, Basirnejad M, Bolhassani A. Heat-shock proteins in diagnosis and treatment: an overview of different biochemical and immunological functions. Immunotherapy 2020; 11:215-239. [PMID: 30730280 DOI: 10.2217/imt-2018-0105] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Heat-shock proteins (HSPs) have been involved in different functions including chaperone activity, protein folding, apoptosis, autophagy and immunity. The HSP families have powerful effects on the stimulation of innate immune responses through Toll-like receptors and scavenger receptors. Moreover, HSP-mediated phagocytosis directly enhances the processing and presentation of internalized antigens via the endocytic pathway in adaptive immune system. These properties of HSPs have been used for development of prophylactic and therapeutic vaccines against infectious and noninfectious diseases. Several studies also demonstrated the relationship between HSPs and drug resistance as well as their use as a novel biomarker for detecting tumors in patients. The present review describes different roles of HSPs in biology and medicine especially biochemical and immunological aspects.
Collapse
Affiliation(s)
- Alireza Milani
- Department of Hepatitis & AIDS, Pasteur Institute of Iran, Tehran, Iran.,Iranian Comprehensive Hemophilia Care Center, Tehran, Iran
| | | | - Azam Bolhassani
- Department of Hepatitis & AIDS, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
19
|
Abstract
Being originally discovered as cellular recycling bins, lysosomes are today recognized as versatile signaling organelles that control a wide range of cellular functions that are essential not only for the well-being of normal cells but also for malignant transformation and cancer progression. In addition to their core functions in waste disposal and recycling of macromolecules and energy, lysosomes serve as an indispensable support system for malignant phenotype by promoting cell growth, cytoprotective autophagy, drug resistance, pH homeostasis, invasion, metastasis, and genomic integrity. On the other hand, malignant transformation reduces the stability of lysosomal membranes rendering cancer cells sensitive to lysosome-dependent cell death. Notably, many clinically approved cationic amphiphilic drugs widely used for the treatment of other diseases accumulate in lysosomes, interfere with their cancer-promoting and cancer-supporting functions and destabilize their membranes thereby opening intriguing possibilities for cancer therapy. Here, we review the emerging evidence that supports the supplementation of current cancer therapies with lysosome-targeting cationic amphiphilic drugs.
Collapse
|
20
|
Datta KK, Patil S, Patel K, Babu N, Raja R, Nanjappa V, Mangalaparthi KK, Dhaka B, Rajagopalan P, Deolankar SC, Kannan R, Kumar P, Prasad TSK, Mathur PP, Kumari A, Manoharan M, Coral K, Murugan S, Sidransky D, Gupta R, Gupta R, Khanna-Gupta A, Chatterjee A, Gowda H. Chronic Exposure to Chewing Tobacco Induces Metabolic Reprogramming and Cancer Stem Cell-Like Properties in Esophageal Epithelial Cells. Cells 2019; 8:cells8090949. [PMID: 31438645 PMCID: PMC6770059 DOI: 10.3390/cells8090949] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/10/2019] [Accepted: 08/17/2019] [Indexed: 12/14/2022] Open
Abstract
Tobacco in its smoke and smokeless form are major risk factors for esophageal squamous cell carcinoma (ESCC). However, molecular alterations associated with smokeless tobacco exposure are poorly understood. In the Indian subcontinent, tobacco is predominantly consumed in chewing form. An understanding of molecular alterations associated with chewing tobacco exposure is vital for identifying molecular markers and potential targets. We developed an in vitro cellular model by exposing non-transformed esophageal epithelial cells to chewing tobacco over an eight-month period. Chronic exposure to chewing tobacco led to increase in cell proliferation, invasive ability and anchorage independent growth, indicating cell transformation. Molecular alterations associated with chewing tobacco exposure were characterized by carrying out exome sequencing and quantitative proteomic profiling of parental cells and chewing tobacco exposed cells. Quantitative proteomic analysis revealed increased expression of cancer stem cell markers in tobacco treated cells. In addition, tobacco exposed cells showed the Oxidative Phosphorylation (OXPHOS) phenotype with decreased expression of enzymes associated with glycolytic pathway and increased expression of a large number of mitochondrial proteins involved in electron transport chain as well as enzymes of the tricarboxylic acid (TCA) cycle. Electron micrographs revealed increase in number and size of mitochondria. Based on these observations, we propose that chronic exposure of esophageal epithelial cells to tobacco leads to cancer stem cell-like phenotype. These cells show the characteristic OXPHOS phenotype, which can be potentially targeted as a therapeutic strategy.
Collapse
Affiliation(s)
- Keshava K Datta
- Institute of Bioinformatics, International Tech Park, Bangalore 560066, India
| | - Shankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia
- Department of Medical Biotechnologies, School of Dental Medicine, University of Siena, 53100 Siena, Italy
| | - Krishna Patel
- Institute of Bioinformatics, International Tech Park, Bangalore 560066, India
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, India
| | - Niraj Babu
- Institute of Bioinformatics, International Tech Park, Bangalore 560066, India
- Manipal Academy of Higher Education (MAHE), Madhav Nagar, Manipal 576104, India
| | - Remya Raja
- Institute of Bioinformatics, International Tech Park, Bangalore 560066, India
| | | | - Kiran Kumar Mangalaparthi
- Institute of Bioinformatics, International Tech Park, Bangalore 560066, India
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, India
| | - Bharti Dhaka
- Institute of Bioinformatics, International Tech Park, Bangalore 560066, India
| | | | - Sayali Chandrashekhar Deolankar
- Center for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore 575018, India
- National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bangalore 560029, India
| | - Ramakrishnan Kannan
- National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bangalore 560029, India
| | - Prashant Kumar
- Institute of Bioinformatics, International Tech Park, Bangalore 560066, India
| | - T S Keshava Prasad
- Center for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Premendu P Mathur
- School of Biotechnology, KIIT (Deemed to be University), Bhubaneswar 751024, India
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Pondicherry 605014, India
| | | | | | | | | | - David Sidransky
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Ravi Gupta
- Medgenome Labs Pvt. Ltd., Bangalore 560099, India
| | - Rohit Gupta
- Medgenome Labs Pvt. Ltd., Bangalore 560099, India
| | | | - Aditi Chatterjee
- Institute of Bioinformatics, International Tech Park, Bangalore 560066, India.
- Manipal Academy of Higher Education (MAHE), Madhav Nagar, Manipal 576104, India.
| | - Harsha Gowda
- Institute of Bioinformatics, International Tech Park, Bangalore 560066, India.
- Manipal Academy of Higher Education (MAHE), Madhav Nagar, Manipal 576104, India.
| |
Collapse
|
21
|
Garbuz DG, Zatsepina OG, Evgen’ev MB. The Major Human Stress Protein Hsp70 as a Factor of Protein Homeostasis and a Cytokine-Like Regulator. Mol Biol 2019. [DOI: 10.1134/s0026893319020055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Yebra-Pimentel ES, Gebert M, Jansen HJ, Jong-Raadsen SA, Dirks RPH. Deep transcriptome analysis of the heat shock response in an Atlantic sturgeon (Acipenser oxyrinchus) cell line. FISH & SHELLFISH IMMUNOLOGY 2019; 88:508-517. [PMID: 30862517 DOI: 10.1016/j.fsi.2019.03.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/28/2019] [Accepted: 03/08/2019] [Indexed: 06/09/2023]
Abstract
Despite efforts to restore Atlantic sturgeon in European rivers, aquaculture techniques result in animals with high post-release mortality due to, among other reasons, their low tolerance to increasing water temperature. Marker genes to monitor heat stress are needed in order to identify heat-resistant fish. Therefore, an Atlantic sturgeon cell line was exposed to different heat shock protocols (30 °C and 35 °C) and differences in gene expression were investigated. In total 3020 contigs (∼1.5%) were differentially expressed. As the core of the upregulated contigs corresponded to heat shock proteins (HSP), the heat shock factor (HSF) and the HSP gene families were annotated in Atlantic sturgeon and mapped via Illumina RNA sequencing to identify heat-inducible family members. Up to 6 hsf and 76 hsp genes were identified in the Atlantic sturgeon transcriptome resources, 16 of which were significantly responsive to the applied heat shock. The previously studied hspa1 (hsp70) gene was only significantly upregulated at the highest heat shock (35 °C), while a set of 5 genes (hspc1, hsph3a, hspb1b, hspb11a, and hspb11b) was upregulated at all conditions. Although the hspc1 (hsp90a) gene was previously used as heat shock-marker in sturgeons, we found that hspb11a is the most heat-inducible gene, with up to 3296-fold higher expression in the treated cells, constituting the candidate gene markers for in vivo trials.
Collapse
Affiliation(s)
- Elena Santidrián Yebra-Pimentel
- ZF-screens B.V., 2333CH, Leiden, the Netherlands; Department of Basic Sciences and Aquatic Medicine, Norwegian University of Life Sciences, 0454, Oslo, Norway.
| | - Marina Gebert
- Working Group Aquatic Cell Technology and Aquaculture, Fraunhofer Research Institution for Marine Biotechnology and Cell Technology, 23562, Lübeck, Germany
| | | | | | | |
Collapse
|
23
|
Kasioumi P, Vrazeli P, Vezyraki P, Zerikiotis S, Katsouras C, Damalas A, Angelidis C. Hsp70 (HSP70A1A) downregulation enhances the metastatic ability of cancer cells. Int J Oncol 2018; 54:821-832. [PMID: 30569142 PMCID: PMC6365026 DOI: 10.3892/ijo.2018.4666] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 11/16/2018] [Indexed: 02/07/2023] Open
Abstract
Heat shock protein 70 (Hsp70; also known as HSP70A1A) is one of the most induced proteins in cancer cells; however, its role in cancer has not yet been fully elucidated. In the present study, we proposed a hypothetical model in which the silencing of Hsp70 enhanced the metastatic properties of the HeLa, A549 and MCF7 cancer cell lines. We consider that the inability of cells to form cadherin-catenin complexes in the absence of Hsp70 stimulates their detachment from neighboring cells, which is the first step of anoikis and metastasis. Under these conditions, an epithelial-to-mesenchymal transition (EMT) pathway is activated that causes cancer cells to acquire a mesenchymal phenotype, which is known to possess a higher ability for migration. Therefore, we herein provide evidence of the dual role of Hsp70 which, according to international literature, first establishes a cancerous environment and then, as suggested by our team, regulates the steps of the metastatic process, including EMT and migration. Finally, the trigger for the anti-metastatic properties that are acquired by cancer cells in the absence of Hsp70 appears to be the destruction of the Hsp70-dependent heterocomplexes of E-cadherin/catenins, which function like an anchor between neighboring cells.
Collapse
Affiliation(s)
- Panagiota Kasioumi
- Department of General Biology, Michaelideion Cardiac Centre, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Paraskevi Vrazeli
- Department of General Biology, Michaelideion Cardiac Centre, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Patra Vezyraki
- Department of Physiology, Michaelideion Cardiac Centre, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Stelios Zerikiotis
- Department of Physiology, Michaelideion Cardiac Centre, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Christos Katsouras
- Department of Cardiology, Michaelideion Cardiac Centre, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Alexander Damalas
- Biotechnology and Nanomedicine Laboratory, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Charalampos Angelidis
- Department of General Biology, Michaelideion Cardiac Centre, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
24
|
Liang HH, Huang CY, Chou CW, Makondi PT, Huang MT, Wei PL, Chang YJ. Heat shock protein 27 influences the anti-cancer effect of curcumin in colon cancer cells through ROS production and autophagy activation. Life Sci 2018; 209:43-51. [PMID: 30056019 DOI: 10.1016/j.lfs.2018.07.047] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 07/21/2018] [Accepted: 07/24/2018] [Indexed: 01/14/2023]
Abstract
The problem of therapeutic resistance and chemotherapeutic efficacy is tricky and critical in the management of colorectal cancer (CRC). Curcumin is a promising anti-cancer agent. Heat shock protein 27 (HSP27) is correlated with CRC progression and is said to affect CRC response to different therapies. However, the role of HSP27 on the therapeutic efficacy of curcumin remains unknown. HSP27 was silenced using small hairpin RNA (shRNA) technique. The cytotoxic and apoptotic effects of curcumin were assessed by sulforhodamine B (SRB) colorimetric assay, flow cytometric cell cycle analysis, and annexin V/propidium iodide (PI) double-labeling assays. Total reactive oxygen species (ROS)/superoxide and autophagy detection were performed, and the levels of apoptosis-related proteins were examined by Western blotting. It was found that the silencing of HSP27 (HSP27-KD) resulted in increased treatment resistance to curcumin in CRC cells. In addition, cell cycle analysis showed that the curcumin treatment caused cell cycle arrest at the G2/M phase in the control group, and apoptosis was reduced in the HSP27-KD group. Curcumin treatment also resulted in a decrease in anti-apoptotic proteins, p-Akt, Akt, Bcl-2 and p-Bad, and increase in pro-apoptotic proteins Bad and c-PARP levels in the control cells but not in the HSP27-KD cells. This was also followed by low reactive oxygen/nitrogen species (ROS/RNS), superoxide and autophagy induction levels in the HSP27-KD cells as compared to the control cells. Therefore, as silencing of HSP27 increases curcumin resistance by reducing apoptosis and reactive oxidative stress production, HSP27 is a potential selective target for curcumin treatment in CRC.
Collapse
Affiliation(s)
- Hung-Hua Liang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Chien-Yu Huang
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan.
| | - Ching-Wen Chou
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Precious Takondwa Makondi
- International PhD Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ming-Te Huang
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan.
| | - Po-Li Wei
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Colorectal Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Cancer Research Center and Translational Laboratory, Department of Medical Research, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan; Division of Colorectal Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan.
| | - Yu-Jia Chang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
25
|
Role of MAPKs in HSP70's Protection against Heat Stress-Induced Injury in Rat Small Intestine. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1571406. [PMID: 30112361 PMCID: PMC6077665 DOI: 10.1155/2018/1571406] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 06/18/2018] [Accepted: 06/27/2018] [Indexed: 02/06/2023]
Abstract
Aim To evaluate the role of heat shock protein 70 (HSP70) on the MAPK pathway activation with quercetin treatment and its protection against small intestine impairments of heat stressed rats. Methods Forty-eight male Sprague-Dawley rats aged 6 weeks were randomized to three groups (n=16/group), namely, control (CON), heat stress (HS), and heat stress + quercetin (HQ). The experiment lasted for 14 days with daily 50 min of heat stress treatment (43°C) for the HS and HQ groups. Rats of HQ group were intragastrically given 0.5 ml quercetin solution (50 mg/kg body weight) before the heat stress treatment. Half of the animals were sacrificed on day 7 and the rest on day 14 for tissue sampling. Intestinal morphology, small intestine morphology and permeability, protein expression of HSP70, phosphorylation of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (MAPK), and caspase-3 activity were examined. Results Heat stress caused morphological damage to the small intestine and increased intestinal permeability. HSP70 expression and MAPK activity in the small intestine were increased by heat stress. Inhibition of HSP70 by quercetin did not change intestinal permeability compared with the HS group but aggravated intestinal injury and affected the activation of MAPKs and caspase-3. Conclusions HSP70 may modulate stress-activated signaling and acts in a protective manner via MAPK signaling. Affecting HSP70 protective mechanisms could be useful for protection against heat stress-induced injury in rat small intestine.
Collapse
|
26
|
Low-dose ionizing radiation exposure represses the cell cycle and protein synthesis pathways in in vitro human primary keratinocytes and U937 cell lines. PLoS One 2018; 13:e0199117. [PMID: 29912936 PMCID: PMC6005503 DOI: 10.1371/journal.pone.0199117] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 06/03/2018] [Indexed: 01/21/2023] Open
Abstract
The effects of the high-dose ionizing radiation used in radiotherapy have been thoroughly demonstrated in vitro and in vivo. However, the effects of low-dose ionizing radiation (LDIR) such as computed tomography-guided biopsies and X-ray fluoroscopy on skin cells remain controversial. This study investigated the molecular effects of LDIR on the human primary keratinocytes (HPKs) and U937 cells, monocytes-like cell lines. These cells were exposed to 0.1 Gray (Gy) X-ray as LDIR. The modulation of transcription was assessed using a cDNA array, and the protein expression after LDIR exposure was investigated using isobaric tags for relative and absolute quantification (iTRAQ) proteomic analysis at 24 hours. These effects were confirmed by immunoblotting analysis. The direct effects of LDIR on the U937 cells and HPKs and the bystander effects of irradiated HPKs on U937 cells were also investigated. LDIR downregulated c-Myc in both U937 cells and HPKs, and upregulated the p21WAF1/CIP1 protein expression in U937 cells along with the activation of TGFβ and protein phosphatase 2A (PP2A). In HPKs, LDIR downregulated the mTOR signaling with repression of S6 and 4EBP1 activation. Similar changes were observed as bystander effects of LDIR. Our findings suggest that LDIR inhibits protein synthesis and induces the cytokines activation associated with inflammation via direct and bystander effects, which might recapitulate the effects of LDIR in inflammated skin structures.
Collapse
|
27
|
Inao T, Iida Y, Moritani T, Okimoto T, Tanino R, Kotani H, Harada M. Bcl-2 inhibition sensitizes triple-negative human breast cancer cells to doxorubicin. Oncotarget 2018; 9:25545-25556. [PMID: 29876007 PMCID: PMC5986635 DOI: 10.18632/oncotarget.25370] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 04/24/2018] [Indexed: 02/07/2023] Open
Abstract
Breast cancers can be divided into several types. Because triple-negative breast cancer (TNBC) is the most refractory to current anti-cancer therapies, efficient treatment has been urgently required. Members of the Bcl-2 family play pro- and anti-apoptotic roles in mitochondria-mediated apoptosis. Some Bcl-2 family members are expressed in breast cancer and influence the response to anti-cancer therapies. In this study, we investigated whether Bcl-2 inhibition could sensitize TNBC cells to the genotoxic drug doxorubicin (DR). Treatment with a combination of the Bcl-2 inhibitor ABT-199 and DR synergistically decreased the viability of the TNBC cell lines MDA-MB-231 and BT-549. In an apoptosis assay, the combination treatment resulted in only a marginal effect in BT-549 cells, whereas drastic apoptosis was induced in MDA-MB-231 cells treated with both ABT-199 and DR. Both caspase-8 and -9 were involved in the combination treatment-induced apoptosis. Short interfering RNA-mediated knockdown of Bcl-2 increased the sensitivity of both cell lines to DR. The combination treatment also significantly decreased the colony-forming ability of the TNBC cell lines. In a xenograft mouse model, oral administration of ABT-199 augmented the DR-induced antitumor effect on subcutaneously established MDA-MB-231 cells. These results indicate that the combination of DR with Bcl-2 inhibitors, including ABT-199, may be a promising treatment modality for TNBC patients.
Collapse
Affiliation(s)
- Touko Inao
- Department of Immunology, Shimane University Faculty of Medicine, Shimane, Japan.,Department of Breast Surgery, Takasago City Hospital, Hyogo, Japan
| | - Yuichi Iida
- Department of Immunology, Shimane University Faculty of Medicine, Shimane, Japan
| | - Tamami Moritani
- Department of Immunology, Shimane University Faculty of Medicine, Shimane, Japan
| | - Tamio Okimoto
- Division of Medical Oncology & Respiratory Medicine, Department of Internal Medicine, Shimane University Faculty of Medicine, Shimane, Japan
| | - Ryosuke Tanino
- Division of Medical Oncology & Respiratory Medicine, Department of Internal Medicine, Shimane University Faculty of Medicine, Shimane, Japan
| | - Hitoshi Kotani
- Department of Immunology, Shimane University Faculty of Medicine, Shimane, Japan
| | - Mamoru Harada
- Department of Immunology, Shimane University Faculty of Medicine, Shimane, Japan
| |
Collapse
|
28
|
Huang YH, Lin KH, Yu JS, Wu TJ, Lee WC, Chao CCK, Pan TL, Yeh CT. Targeting HSP60 by subcutaneous injections of jetPEI/HSP60-shRNA destabilizes cytoplasmic survivin and inhibits hepatocellular carcinoma growth. Mol Carcinog 2018; 57:1087-1101. [PMID: 29672920 DOI: 10.1002/mc.22827] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 03/28/2018] [Accepted: 04/17/2018] [Indexed: 01/14/2023]
Abstract
Heat shock protein 60 (HSP60) overexpresses in various types of cancer, but its expression levels and functions in hepatocellular carcinoma (HCC) are still in dispute. We aim to clarify this issue and examine whether HSP60 could be a therapeutic target for HCC. We found drastically enhanced cell apoptosis and suppressed cell proliferation in two HCC cell lines with HSP60-silencing, and also indicated survivin was involved in this regulatory process in vitro and in vivo. However, HSP60-silencing in normal human hepatocytes only resulted in a minimal reduction of cell proliferation but without effects on cell apoptosis. We also showed HSP60 interacted with cytosolic but not mitochondrial survivin by immunoprecipitation assay. A rigorous method was used to standardize quantification from immunoblot assay to obtain more precise expression levels of HSP60 and survivin. The expression of HSP60 and survivin positively correlated in both cancerous and non-cancerous liver tissues (P < 0.001) after analyzing 145 surgically removed HCC tissues. A total of 56.6% of HCC patients overexpressed HSP60 in cancerous tissues, and 40.0% under-expressed HSP60. Higher expression of HSP60 and survivin in non-cancerous tissues both correlated with shorter overall survival (P = 0.029 and P < 0.001, respectively). Finally, we evaluated the therapeutic potential of HSP60 using extraneous delivery of jetPEI/shHSP60 complexes. The treatment results showed significant reduction of tumor weight by 44.3% (P < 0.05), accompanied by under-expression of survivin. These studies suggested that HSP60 not only served as a prognostic marker but also served as a novel therapeutic target for HCC.
Collapse
Affiliation(s)
- Ya-Hui Huang
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Kwang-Huei Lin
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan.,Department of Biochemistry, College of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Jau-Song Yu
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan.,Department of Biochemistry, College of Medicine, Chang-Gung University, Taoyuan, Taiwan.,Molecular Medicine Research Center, Chang-Gung University, Taoyuan, Taiwan
| | - Ting-Jung Wu
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan.,Division of Liver and Transplantation Surgery, Department of General Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Wei-Chen Lee
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan.,Division of Liver and Transplantation Surgery, Department of General Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chuck C-K Chao
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan.,Department of Biochemistry, College of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Tai-Long Pan
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan.,School of Traditional Chinese Medicine, Chang-Gung University, Taoyuan, Taiwan.,Research Center of Industry of Human Ecology, Chang-Gung University of Science and Technology, Taoyuan, Taiwan
| | - Chau-Ting Yeh
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan.,Department of Biochemistry, College of Medicine, Chang-Gung University, Taoyuan, Taiwan.,Molecular Medicine Research Center, Chang-Gung University, Taoyuan, Taiwan
| |
Collapse
|
29
|
Cancer cell responses to Hsp70 inhibitor JG-98: Comparison with Hsp90 inhibitors and finding synergistic drug combinations. Sci Rep 2018; 8:3010. [PMID: 29445088 PMCID: PMC5813176 DOI: 10.1038/s41598-017-14900-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 10/18/2017] [Indexed: 12/31/2022] Open
Abstract
Hsp70 is a promising anti-cancer target. Our JG-98 series of Hsp70 inhibitors show anti-cancer activities affecting both cancer cells and tumor-associated macrophages. They disrupt Hsp70 interaction with a co-chaperone Bag3 and affect signaling pathways important for cancer development. Due to a prior report that depletion of Hsp70 causes similar responses as depletion of Hsp90, interest to Hsp70 inhibitors as drug prototypes is hampered by potential similarity of their effects to effects of Hsp90 inhibitors. Here, using the Connectivity Map platform we demonstrate that physiological effects of JG-98 are dissimilar from effects of Hsp90 inhibitors, thus justifying development of these compounds. Using gene expression and ActivSignal IPAD platform, we identified pathways modulated by JG-98. Some of these pathways were affected by JG-98 in Bag3-dependent (e.g. ERK) and some in Bag3-independent manner (e.g. Akt or c-myc), indicating multiple effects of Hsp70 inhibition. Further, we identified genes that modulate cellular responses to JG-98, developed approaches to predict potent combinations of JG-98 with known drugs, and demonstrated that inhibitors of proteasome, RNApol, Akt and RTK synergize with JG-98. Overall, here we established unique effects of novel Hsp70 inhibitors on cancer cell physiology, and predicted potential drug combinations for pre-clinical development.
Collapse
|
30
|
Friedrich L, Kornberger P, Mendler CT, Multhoff G, Schwaiger M, Skerra A. Selection of an Anticalin® against the membrane form of Hsp70 via bacterial surface display and its theranostic application in tumour models. Biol Chem 2017; 399:235-252. [DOI: 10.1515/hsz-2017-0207] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/23/2017] [Indexed: 01/08/2023]
Abstract
Abstract
We describe the selection of Anticalins against a common tumour surface antigen, human Hsp70, using functional display on live Escherichia coli cells as fusion with a truncated EspP autotransporter. While found intracellularly in normal cells, Hsp70 is frequently exposed in a membrane-bound state on the surface of tumour cells and, even more pronounced, in metastases or after radiochemotherapy. Employing a recombinant Hsp70 fragment comprising residues 383-548 as the target, Anticalins were selected from a naïve bacterial library. The Anticalin with the highest affinity (K
D=13 nm), as determined towards recombinant full-length Hsp70 by real-time surface plasmon resonance analysis, was improved to K
D=510 pm by doped random mutagenesis and another cycle of E. coli surface display, followed by rational combination of mutations. This Anticalin, which recognises a linear peptide epitope located in the interdomain linker of Hsp70, was demonstrated to specifically bind Hsp70 in its membrane-associated form in immunofluorescence microscopy and via flow cytometry using the FaDu cell line, which is positive for surface Hsp70. The radiolabelled and PASylated Anticalin revealed specific tumour accumulation in xenograft mice using positron emission tomography (PET) imaging. Furthermore, after enzymatic coupling to the protein toxin gelonin, the Anticalin showed potent cytotoxicity on FaDu cells in vitro.
Collapse
Affiliation(s)
- Lars Friedrich
- Munich Center for Integrated Protein Science, CIPS-M, and Lehrstuhl für Biologische Chemie , Technische Universität München , D-85354 Freising (Weihenstephan) , Germany
| | - Petra Kornberger
- Munich Center for Integrated Protein Science, CIPS-M, and Lehrstuhl für Biologische Chemie , Technische Universität München , D-85354 Freising (Weihenstephan) , Germany
| | - Claudia T. Mendler
- Munich Center for Integrated Protein Science, CIPS-M, and Lehrstuhl für Biologische Chemie , Technische Universität München , D-85354 Freising (Weihenstephan) , Germany
| | - Gabriele Multhoff
- Department of Radiation Oncology , Klinikum rechts der Isar, Technische Universität München , D-81675 München , Germany
| | - Markus Schwaiger
- Department of Nuclear Medicine, Klinikum rechts der Isar , Technische Universität München , D-81675 München , Germany
| | - Arne Skerra
- Munich Center for Integrated Protein Science, CIPS-M, and Lehrstuhl für Biologische Chemie , Technische Universität München , D-85354 Freising (Weihenstephan) , Germany
| |
Collapse
|
31
|
Kim SH, Kang JG, Kim CS, Ihm SH, Choi MG, Yoo HJ, Lee SJ. The dipeptidyl peptidase-IV inhibitor gemigliptin alone or in combination with NVP-AUY922 has a cytotoxic activity in thyroid carcinoma cells. Tumour Biol 2017; 39:1010428317722068. [DOI: 10.1177/1010428317722068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Si Hyoung Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Jun Goo Kang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Chul Sik Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Sung-Hee Ihm
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Moon Gi Choi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Hyung Joon Yoo
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Seong Jin Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| |
Collapse
|
32
|
Subhasitanont P, Chokchaichamnankit D, Chiablaem K, Keeratichamroen S, Ngiwsara L, Paricharttanakul NM, Lirdprapamongkol K, Weeraphan C, Svasti J, Srisomsap C. Apigenin inhibits growth and induces apoptosis in human cholangiocarcinoma cells. Oncol Lett 2017; 14:4361-4371. [PMID: 28943950 DOI: 10.3892/ol.2017.6705] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 02/01/2017] [Indexed: 12/13/2022] Open
Abstract
A promising nutraceutical, apigenin, was recently revealed to exhibit biological activity in inhibiting several types of cancer. The effects of apigenin on the growth inhibition and apoptosis of the cholangiocarcinoma HuCCA-1 cell line were investigated. Protein alterations subsequent to apigenin treatment were studied using a proteomic approach. The values of 20, 50 and 90% inhibition of cell growth (IC20, IC50 and IC90) were determined by MTT cell viability assay. Apoptotic cell death was detected using two different methods, a flow cytometric analysis (Muse Cell Analyzer) and DNA fragmentation assay. A number of conditions including attached and detached cells were selected to perform two-dimensional gel electrophoresis (2-DE) to study the alterations in the expression levels of treated and untreated proteins and identified by liquid chromatography (LC)/tandem mass spectrometry (MS/MS). The IC20, IC50 and IC90 values of apigenin after 48 h treatment in HuCCA-1 cells were 25, 75 and 200 µM, respectively, indicating the cytotoxicity of this compound. Apigenin induced cell death in HuCCA-1 cells via apoptosis as detected by flow cytometric analysis and exhibited, as confirmed with DNA fragmentation, characteristics of apoptotic cells. A total of 67 proteins with altered expression were identified from the 2-DE analysis and LC/MS/MS. The cleavage of proteins involved in cytoskeletal, cytokeratin 8, 18 and 19, and high expression of S100-A6 and S100-A11 suggested that apoptosis was induced by apigenin via the caspase-dependent pathway. Notably, two proteins, heterogeneous nuclear ribonucleoprotein H and A2/B1, disappeared completely subsequent to treatment, suggesting the role of apigenin in inducing cell death. The present study indicated that apigenin demonstrates an induction of growth inhibition and apoptosis in cholangiocarcinoma cells and the apoptosis pathway was confirmed by proteomic analysis.
Collapse
Affiliation(s)
| | | | - Khajeelak Chiablaem
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | | | - Lukana Ngiwsara
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | | | | | - Churat Weeraphan
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Jisnuson Svasti
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok 10210, Thailand.,Applied Biological Sciences Program, Chulabhorn Graduate Institute, Bangkok 10210, Thailand
| | - Chantragan Srisomsap
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok 10210, Thailand
| |
Collapse
|
33
|
Mazzei L, Cuello-Carrión FD, Docherty N, Manucha W. Heat shock protein 70/nitric oxide effect on stretched tubular epithelial cells linked to WT-1 cytoprotection during neonatal obstructive nephropathy. Int Urol Nephrol 2017; 49:1875-1892. [PMID: 28711961 DOI: 10.1007/s11255-017-1658-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 07/10/2017] [Indexed: 11/29/2022]
Abstract
BACKGROUND Mechanical stress is a key pathogenic driver of apoptosis in the tubular epithelium in obstructive nephropathy. Heat shock protein 70 (Hsp70) and Wilms' tumor (WT-1) have been proposed to represent linked downstream effectors of the cytoprotective properties of NO. In the present study, we sought to evaluate whether the cytoprotective effects of L-arginine in neonatal obstructive nephropathy may be associated with NO-dependent increases in WT-1 and Hsp70 expression. METHODS Neonatal Wistar-Kyoto rats were submitted to complete unilateral ureteral obstruction (UUO) and treated thereafter with vehicle, L-NAME or L-arginine by daily gavage for 14 days to block or augment NO levels, respectively. Normal rat kidney epithelial cells by NRK-52E were exposed to mechanical stress in vitro in the presence or absence of L-NAME, L-arginine, sodium nitroprusside (SNP), L-arginine + SNP or L-arginine/L-NAME. Induction of apoptosis and the mRNA expression of WT-1 and Hsp70 genes were assessed. RESULTS WT-1 and Hsp70 genes expression decreased in the presence of L-NAME and following UUO coincident with increased tubular apoptosis. L-arginine treatment increased NO levels, reduced apoptosis and restored expression levels of WT-1 and Hsp70 to control levels. L-arginine treatment in vitro reduced basal apoptotic rates and prevented apoptosis in response to mechanical strain, an effect enhanced by SNP co-incubation. L-NAME increased apoptosis and prevented the anti-apoptotic action of L-arginine. CONCLUSIONS L-arginine treatment in experimental neonatal UUO reduces apoptosis coincident with restoration of WT-1 and Hsp70 expression levels and directly inhibits mechanical strain-induced apoptosis in an NO-dependent manner in vitro. This potentially implicates an NO-Hsp70-WT-1 axis in the cytoprotective effects of L-arginine.
Collapse
Affiliation(s)
- Luciana Mazzei
- Laboratorio de Farmacología Experimental Básica y Traslacional. IMBECU-CONICET (National Council of Scientific and Technical Research of Argentina), Buenos Aires, Argentina.,Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Fernando Darío Cuello-Carrión
- Laboratorio de Farmacología Experimental Básica y Traslacional. IMBECU-CONICET (National Council of Scientific and Technical Research of Argentina), Buenos Aires, Argentina
| | - Neil Docherty
- Conway Institute of Biomolecular and Biomedical Research, School of Medicine, University College Dublin, Dublin, Ireland
| | - Walter Manucha
- Laboratorio de Farmacología Experimental Básica y Traslacional. IMBECU-CONICET (National Council of Scientific and Technical Research of Argentina), Buenos Aires, Argentina. .,Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina. .,Pharmacology Area, Pathology Department, Medical Sciences College, National University of Cuyo, Mendoza, CP5500, Argentina.
| |
Collapse
|
34
|
Ge H, Du J, Xu J, Meng X, Tian J, Yang J, Liang H. SUMOylation of HSP27 by small ubiquitin-like modifier 2/3 promotes proliferation and invasion of hepatocellular carcinoma cells. Cancer Biol Ther 2017; 18:552-559. [PMID: 28665748 DOI: 10.1080/15384047.2017.1345382] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Primary hepatocellular carcinoma (PHC) is a major health problem worldwide and is one of the 10 most commonly diagnosed cancers in China. Heat shock protein 27 (HSP27) were found to be overexpressed in a wide range of malignancies including PHC, however, post-translational modification of HSP27 still needs exploration in PHC. Recently, SUMOylation, an important post-translational modification associating with the development of many kinds of cancers has been intensively studied. In the current study, mRNA and protein level of HSP27 in archived tumor samples representing various pathological characteristics of PHC were examined, and modification of HSP27 by SUMO2/3 was investigated. HSP27 were expressed abundantly in patients' tumor tissues, and found to be associated with pathological progression. Besides, HSP27 was also elevated significantly in liver cancer cell lines Huh7 and HepG2 compared with human hepatocyte cells L02. Furthermore, knockdown of HSP27 was found to be associated with the decreased proliferation and invasion ability in Huh7 and HepG2 cells. Immunofluorescence assay showed that HSP27 and SUMO2/3 were co-localized in the subcellular, and co-immunoprecipitation verified the interaction between HSP27 and SUMO2/3. Overexpression of SUMO2/3 upregulated the HSP27 protein level and promotes Huh7 and HepG2 cell proliferation and invasion, and vice versa when the SUMO2/3 was knockdown. Taken together, increased protein level of HSP27 through SUMO2/3-mediated SUMOylation plays crucial roles in the progression of PHC, and this finding may shed light on developing potential therapeutic targets for PHC.
Collapse
Affiliation(s)
- Haize Ge
- a Department of Clinical Laboratory, the Third Central Hospital of Tianjin.,b Tianjin Key Laboratory of Artificial Cell.,c Artificial Cell Engineering Technology Research Center of Public Health Ministry , Tianjin , China
| | - Juan Du
- b Tianjin Key Laboratory of Artificial Cell.,c Artificial Cell Engineering Technology Research Center of Public Health Ministry , Tianjin , China.,e Department of Emergency, the Third Central Hospital of Tianjin , Tianjin , China
| | - Jingman Xu
- f Heart Institute, Medical Experimental Research Center , North China University of Science and Technology , Tangshan , Hebei , China
| | - Xiangliang Meng
- a Department of Clinical Laboratory, the Third Central Hospital of Tianjin.,b Tianjin Key Laboratory of Artificial Cell.,c Artificial Cell Engineering Technology Research Center of Public Health Ministry , Tianjin , China
| | - Jinchuan Tian
- a Department of Clinical Laboratory, the Third Central Hospital of Tianjin.,b Tianjin Key Laboratory of Artificial Cell.,c Artificial Cell Engineering Technology Research Center of Public Health Ministry , Tianjin , China
| | - Jie Yang
- a Department of Clinical Laboratory, the Third Central Hospital of Tianjin.,b Tianjin Key Laboratory of Artificial Cell.,c Artificial Cell Engineering Technology Research Center of Public Health Ministry , Tianjin , China
| | - Huimin Liang
- d School of Nursing , Tianjin Medical University , Tianjin , China
| |
Collapse
|
35
|
Liu XX, Ye H, Wang P, Li LX, Zhang Y, Zhang JY. Proteomic-based identification of HSP70 as a tumor-associated antigen in ovarian cancer. Oncol Rep 2017; 37:2771-2778. [PMID: 28339059 DOI: 10.3892/or.2017.5525] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 11/21/2016] [Indexed: 11/06/2022] Open
|
36
|
Apigenin potentiates TRAIL therapy of non-small cell lung cancer via upregulating DR4/DR5 expression in a p53-dependent manner. Sci Rep 2016; 6:35468. [PMID: 27752089 PMCID: PMC5067669 DOI: 10.1038/srep35468] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 09/30/2016] [Indexed: 01/06/2023] Open
Abstract
Apigenin (APG) is an edible plant-derived flavonoid that shows modest antitumor activities in vitro and in vivo. APG treatment results in cell growth arrest and apoptosis in various types of tumors by modulating several signaling pathways. In the present study, we evaluated interactions between APG and TRAIL in non-small cell lung cancer (NSCLC) cells. We observed a synergistic effect between APG and TRAIL on apoptosis of NSCLC cells. A549 cells and H1299 cells were resistant to TRAIL treatment alone. The presence of APG sensitized NSCLC cells to TRAIL-induced apoptosis by upregulating the levels of death receptor 4 (DR4) and death receptor 5 (DR5) in a p53-dependent manner. Consistently, the pro-apoptotic proteins Bad and Bax were upregulated, while the anti-apoptotic proteins Bcl-xl and Bcl-2 were downregulated. Meanwhile, APG suppressed NF-κB, AKT and ERK activation. Treatment with specific small-molecule inhibitors of these pathways enhanced TRAIL-induced cell death, mirroring the effect of APG. Furthermore, using a mouse xenograft model, we demonstrated that the combined treatment completely suppressed tumor growth as compared with APG or TRAIL treatment alone. Our results demonstrate a novel strategy to enhance TRAIL-induced antitumor activity in NSCLC cells by APG via inhibition of the NF-κB, AKT and ERK prosurvival regulators.
Collapse
|
37
|
Ye H, Huang H, Cao F, Chen M, Zheng X, Zhan R. HSPB1 Enhances SIRT2-Mediated G6PD Activation and Promotes Glioma Cell Proliferation. PLoS One 2016; 11:e0164285. [PMID: 27711253 PMCID: PMC5053603 DOI: 10.1371/journal.pone.0164285] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 09/22/2016] [Indexed: 11/18/2022] Open
Abstract
Heat shock proteins belong to a conserved protein family and are involved in multiple cellular processes. Heat shock protein 27 (Hsp27), also known as heat HSPB1, participates in cellular responses to not only heat shock, but also oxidative or chemical stresses. However, the contribution of HSPB1 to anti-oxidative response remains unclear. Here, we show that HSPB1 activates G6PD in response to oxidative stress or DNA damage. HSPB1 enhances the binding between G6PD and SIRT2, leading to deacetylation and activation of G6PD. Besides, HSPB1 activates G6PD to sustain cellular NADPH and pentose production in glioma cells. High expression of HSPB1 correlates with poor survivalrate of glioma patients. Together, our study uncovers the molecular mechanism by which HSPB1 activates G6PD to protect cells from oxidative and DNA damage stress.
Collapse
Affiliation(s)
- Hongxing Ye
- Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| | - Hongguang Huang
- Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| | - Fei Cao
- Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| | - Mantao Chen
- Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| | - Xiujue Zheng
- Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
- * E-mail: (RZ); (XZ)
| | - Renya Zhan
- Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
- * E-mail: (RZ); (XZ)
| |
Collapse
|
38
|
Bcl-xL inhibition by molecular-targeting drugs sensitizes human pancreatic cancer cells to TRAIL. Oncotarget 2016; 6:41902-15. [PMID: 26506422 PMCID: PMC4747197 DOI: 10.18632/oncotarget.5881] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 10/06/2015] [Indexed: 12/27/2022] Open
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) induces apoptosis in various types of cancer cells without damaging normal cells. However, in terms of pancreatic cancer, not all cancer cells are sensitive to TRAIL. In this study, we examined a panel of human pancreatic cancer cell lines for TRAIL sensitivity and investigated the effects of Bcl-2 family inhibitors on their response to TRAIL. Both ABT-263 and ABT-737 inhibited the function of Bcl-2, Bcl-xL, and Bcl-w. Of the nine pancreatic cancer cell lines tested, six showed no or low sensitivity to TRAIL, which correlated with protein expression of Bcl-xL. ABT-263 significantly sensitized four cell lines (AsPC-1, Panc-1, CFPAC-1, and Panc10.05) to TRAIL, with reduced cell viability and increased apoptosis. Knockdown of Bcl-xL, but not Bcl-2, by siRNA transfection increased the sensitivity of AsPC-1 and Panc-1 cells to TRAIL. ABT-263 treatment had no effect on protein expression of Bcl-2, Bcl-xL, or c-FLIPs. In Panc-1 cells, ABT-263 increased the surface expression of death receptor (DR) 5; the NF-κB pathway, but not endoplasmic reticulum stress, participated in the increase. In xenograft mouse models, the combination of TRAIL and ATB-737 suppressed the in vivo tumor growth of AsPC-1 and Panc-1 cells. These results indicate that Bcl-xL is responsible for TRAIL resistance in human pancreatic cancer cells, and that Bcl-2 family inhibitors could represent promising reagents to sensitize human pancreatic cancers in DR-targeting therapy.
Collapse
|
39
|
Bednarek A, Sawadro M, Babczyńska A. Modulation of the response to stress factors of Xerolycosa nemoralis (Lycosidae) spiders living in contaminated environments. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 131:1-6. [PMID: 27162128 DOI: 10.1016/j.ecoenv.2016.04.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 04/20/2016] [Accepted: 04/23/2016] [Indexed: 06/05/2023]
Abstract
The rapid development of industry has caused widespread pollution in the environment, which has a negative impact on living organisms. Spiders belong to the group of animals that can exist in these anthropogenically changed areas. This is probably due to the development of tolerance mechanisms in these organisms. The impact of long-term pollution on the development of the pre-adaptation to various stress factors in spiders is unknown. In this paper, we show that living in polluted areas affects the modulation of the response to other stress factors through changes in the Hsp70 level. We observed a positive reaction to heat shock in all of the experimental groups, which was expressed by an increase in Hsp70 synthesis compared to the control. The analysis of the protein level, which was a manifestation of the pre-adaptation, was dependent on the degree of pollution on the study sites, the sexes and the type of bioassay that was performed. Our results demonstrate the reaction of spiders living in contaminated areas to the presence of additional stressors. We anticipate our results will be another voice in the discussion on the use of Hsp70 as a stress biomarker in environmental biomonitoring.
Collapse
Affiliation(s)
- Agata Bednarek
- Department of Animal Physiology and Ecotoxicology, University of Silesia, Bankowa 9, PL40007 Katowice, Poland.
| | - Marta Sawadro
- Department of Animal Physiology and Ecotoxicology, University of Silesia, Bankowa 9, PL40007 Katowice, Poland
| | - Agnieszka Babczyńska
- Department of Animal Physiology and Ecotoxicology, University of Silesia, Bankowa 9, PL40007 Katowice, Poland
| |
Collapse
|
40
|
Lee D, Kim IY, Saha S, Choi KS. Paraptosis in the anti-cancer arsenal of natural products. Pharmacol Ther 2016; 162:120-33. [DOI: 10.1016/j.pharmthera.2016.01.003] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
41
|
King TA, Ghazaleh RA, Juhn SK, Adams GL, Ondrey FG. Induction of Heat Shock Protein 70 Inhibits NF-kappa-B in Squamous Cell Carcinoma. Otolaryngol Head Neck Surg 2016; 133:70-9. [PMID: 16025056 DOI: 10.1016/j.otohns.2004.04.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE: To determine the relationship between heat shock proteins (HSPs) and the proinflammatory, anti-apoptosis mediator NF-kappa-B in squamous cell carcinoma.STUDY DESIGN AND SETTING: CA-9-22 cells were exposed to heat stress to induce the production of HSPs. Immunoblot and reporter gene experiments determined the inducibility of HSP production and the activation of cytokine-induced NF-kappa-B. Immunoblot experiments determined the presence of the inhibitor- k-B-α (I kBα).RESULTS: CA-9-22 cells can be induced by heat stress to produce HSPs at 100-fold above baseline levels. The induction of HSPs prevents the activation and nuclear translocation of NF-kappa-B despite stimulation with IL-1β and TNF-α.CONCLUSIONS: Constitutive activation of NF-kappa-B is prevented by HSP induction through an increase in I kBα synthesis.SIGNIFICANCE: The induction of HSP70 alters the inflammatory milieu associated with squamous cell carcinoma progression through the inhibition of NF-kappa-B and may ultimately promote apoptosis in head and neck carcinoma.
Collapse
Affiliation(s)
- Timothy A King
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Minnesota, Minneapolis 55455, USA
| | | | | | | | | |
Collapse
|
42
|
Kumar S, Stokes J, Singh UP, Scissum Gunn K, Acharya A, Manne U, Mishra M. Targeting Hsp70: A possible therapy for cancer. Cancer Lett 2016; 374:156-166. [PMID: 26898980 PMCID: PMC5553548 DOI: 10.1016/j.canlet.2016.01.056] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 01/28/2016] [Accepted: 01/31/2016] [Indexed: 01/13/2023]
Abstract
In all organisms, heat-shock proteins (HSPs) provide an ancient defense system. These proteins act as molecular chaperones by assisting proper folding and refolding of misfolded proteins and aid in the elimination of old and damaged cells. HSPs include Hsp100, Hsp90, Hsp70, Hsp40, and small HSPs. Through its substrate-binding domains, Hsp70 interacts with wide spectrum of molecules, ranging from unfolded to natively folded and aggregated proteins, and provides cytoprotective role against various cellular stresses. Under pathophysiological conditions, the high expression of Hsp70 allows cells to survive with lethal injuries. Increased Hsp70, by interacting at several points on apoptotic signaling pathways, leads to inhibition of apoptosis. Elevated expression of Hsp70 in cancer cells may be responsible for tumorigenesis and for tumor progression by providing resistance to chemotherapy. In contrast, inhibition or knockdown of Hsp70 reduces the size of tumors and can cause their complete regression. Moreover, extracellular Hsp70 acts as an immunogen that participates in cross presentation of MHC-I molecules. The goals of this review are to examine the roles of Hsp70 in cancer and to present strategies targeting Hsp70 in the development of cancer therapeutics.
Collapse
Affiliation(s)
- Sanjay Kumar
- Cancer Biology Research and Training Program, Department of Biological Sciences, Alabama State University, AL 36101, USA
| | - James Stokes
- Cancer Biology Research and Training Program, Department of Biological Sciences, Alabama State University, AL 36101, USA
| | - Udai P Singh
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| | - Karyn Scissum Gunn
- Cancer Biology Research and Training Program, Department of Biological Sciences, Alabama State University, AL 36101, USA
| | - Arbind Acharya
- Centre of Advance Study in Zoology, Faculty of Science, Banaras Hindu University, Varanasi 221 005, India
| | - Upender Manne
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Manoj Mishra
- Cancer Biology Research and Training Program, Department of Biological Sciences, Alabama State University, AL 36101, USA.
| |
Collapse
|
43
|
Li H, Wang Y, Zhang L, Lu H, Zhou Z, Wei L, Yang P. Facile synthesis of novel magnetic silica nanoparticles functionalized with layer-by-layer detonation nanodiamonds for secretome study. Analyst 2015; 140:7886-7895. [PMID: 26468487 DOI: 10.1039/c5an01432h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Novel magnetic silica nanoparticles functionalized with layer-by-layer detonation nanodiamonds (dNDs) were prepared by coating single submicron-size magnetite particles with silica and subsequently modified with dNDs. The resulting layer-by-layer dND functionalized magnetic silica microspheres (Fe3O4@SiO2@[dND]n) exhibit a well-defined magnetite-core-silica-shell structure and possess a high content of magnetite, which endow them with high dispersibility and excellent magnetic responsibility. Meanwhile, dNDs are known for their high affinity and biocompatibility towards peptides or proteins. Thus, a novel convenient, fast and efficient pretreatment approach of low-abundance peptides or proteins was successfully established with Fe3O4@SiO2@[dND]n microspheres. The signal intensity of low-abundance peptides was improved by at least two to three orders of magnitude in mass spectrometry analysis. The novel microsphere also showed good tolerance to salt. Even with a high concentration of salt, peptides or proteins could be isolated effectively from samples. Therefore, the convenient and efficient enrichment process of this novel layer-by-layer dND-functionalized microsphere makes it a promising candidate for isolation of protein in a large volume of culture supernatant for secretome analysis. In the application of Fe3O4@SiO2@[dND]n in the secretome of hepatoma cells, 1473 proteins were identified and covered a broad range of pI and molecular weight, including 377 low molecular weight proteins.
Collapse
Affiliation(s)
- Hong Li
- Department of Chemistry & Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| | | | | | | | | | | | | |
Collapse
|
44
|
Mazzei L, Docherty NG, Manucha W. Mediators and mechanisms of heat shock protein 70 based cytoprotection in obstructive nephropathy. Cell Stress Chaperones 2015; 20:893-906. [PMID: 26228633 PMCID: PMC4595437 DOI: 10.1007/s12192-015-0622-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 06/24/2015] [Accepted: 07/09/2015] [Indexed: 12/19/2022] Open
Abstract
Urinary heat shock protein 70 (Hsp70) is rapidly increased in patients with clinical acute kidney injury, indicating that it constitutes a component of the endogenous stress response to renal injury. Moreover, experimental models have demonstrated that Hsp70 activation is associated with the cytoprotective actions of several drugs following obstruction, including nitric oxide (NO) donors, geranylgeranylacetone, vitamin D, and rosuvastatin. Discrete and synergistic effects of the biological activities of Hsp70 may explain its cytoprotective role in obstructive nephropathy. Basic studies point to a combination of effects including inhibition of apoptosis and inflammation, repair of damaged proteins, prevention of unfolded protein aggregation, targeting of damaged protein for degradation, and cytoskeletal stabilization as primary effectors of Hsp70 action. This review summarizes our understanding of how the biological actions of Hsp70 may affect renal cytoprotection in the context of obstructive injury. The potential of Hsp70 to be of central importance to the mechanism of action of various drugs that modify the genesis of experimental obstructive nephropathy is considered.
Collapse
Affiliation(s)
- Luciana Mazzei
- Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina.
- IMBECU-CONICET (National Council of Scientific and Technical Research of Argentina), Buenos Aires, Argentina.
| | - Neil G Docherty
- Conway Institute of Biomolecular and Biomedical Research, School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Walter Manucha
- Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
- IMBECU-CONICET (National Council of Scientific and Technical Research of Argentina), Buenos Aires, Argentina
| |
Collapse
|
45
|
Yu Q, Ding J. Precision cancer medicine: where to target? Acta Pharmacol Sin 2015; 36:1161-2. [PMID: 26388154 DOI: 10.1038/aps.2015.93] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 09/14/2015] [Indexed: 12/26/2022] Open
|
46
|
Nanjappa V, Renuse S, Sathe GJ, Raja R, Syed N, Radhakrishnan A, Subbannayya T, Patil A, Marimuthu A, Sahasrabuddhe NA, Guerrero-Preston R, Somani BL, Nair B, Kundu GC, Prasad TK, Califano JA, Gowda H, Sidransky D, Pandey A, Chatterjee A. Chronic exposure to chewing tobacco selects for overexpression of stearoyl-CoA desaturase in normal oral keratinocytes. Cancer Biol Ther 2015; 16:1593-603. [PMID: 26391970 PMCID: PMC4846103 DOI: 10.1080/15384047.2015.1078022] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 06/24/2015] [Accepted: 07/26/2015] [Indexed: 01/10/2023] Open
Abstract
Chewing tobacco is a common practice in certain socio-economic sections of southern Asia, particularly in the Indian subcontinent and has been well associated with head and neck squamous cell carcinoma. The molecular mechanisms of chewing tobacco which leads to malignancy remains unclear. In large majority of studies, short-term exposure to tobacco has been evaluated. From a biological perspective, however, long-term (chronic) exposure to tobacco mimics the pathogenesis of oral cancer more closely. We developed a cell line model to investigate the chronic effects of chewing tobacco. Chronic exposure to tobacco resulted in higher cellular proliferation and invasive ability of the normal oral keratinocytes (OKF6/TERT1). We carried out quantitative proteomic analysis of OKF6/TERT1 cells chronically treated with chewing tobacco compared to the untreated cells. We identified a total of 3,636 proteins among which expression of 408 proteins were found to be significantly altered. Among the overexpressed proteins, stearoyl-CoA desaturase (SCD) was found to be 2.6-fold overexpressed in the tobacco treated cells. Silencing/inhibition of SCD using its specific siRNA or inhibitor led to a decrease in cellular proliferation, invasion and colony forming ability of not only the tobacco treated cells but also in a panel of head and neck cancer cell lines. These findings suggest that chronic exposure to chewing tobacco induced carcinogenesis in non-malignant oral epithelial cells and SCD plays an essential role in this process. The current study provides evidence that SCD can act as a potential therapeutic target in head and neck squamous cell carcinoma, especially in patients who are users of tobacco.
Collapse
Affiliation(s)
- Vishalakshi Nanjappa
- Institute of Bioinformatics; International Technology Park; Bangalore, India
- Amrita School of Biotechnology; Amrita University; Kollam, India
| | - Santosh Renuse
- Institute of Bioinformatics; International Technology Park; Bangalore, India
- Amrita School of Biotechnology; Amrita University; Kollam, India
| | - Gajanan J Sathe
- Institute of Bioinformatics; International Technology Park; Bangalore, India
- Manipal University; Madhav Nagar; Manipal, India
| | - Remya Raja
- Institute of Bioinformatics; International Technology Park; Bangalore, India
| | - Nazia Syed
- Institute of Bioinformatics; International Technology Park; Bangalore, India
- Department of Biochemistry and Molecular Biology; Pondicherry University; Puducherry, India
| | - Aneesha Radhakrishnan
- Institute of Bioinformatics; International Technology Park; Bangalore, India
- Department of Biochemistry and Molecular Biology; Pondicherry University; Puducherry, India
| | - Tejaswini Subbannayya
- Institute of Bioinformatics; International Technology Park; Bangalore, India
- Amrita School of Biotechnology; Amrita University; Kollam, India
| | - Arun Patil
- Institute of Bioinformatics; International Technology Park; Bangalore, India
- School of Biotechnology; KIIT University; Bhubaneswar, India
| | | | | | - Rafael Guerrero-Preston
- Department of Otolaryngology-Head and Neck Surgery; Johns Hopkins University School of Medicine; Baltimore, MD USA
| | - Babu L Somani
- Institute of Bioinformatics; International Technology Park; Bangalore, India
| | - Bipin Nair
- Amrita School of Biotechnology; Amrita University; Kollam, India
| | - Gopal C Kundu
- National Center for Cell Science (NCCS); NCCS Complex; Pune, India
| | - T Keshava Prasad
- Institute of Bioinformatics; International Technology Park; Bangalore, India
- Amrita School of Biotechnology; Amrita University; Kollam, India
- YU-IOB Center for Systems Biology and Molecular Medicine; Yenepoya University; Mangalore, India
| | - Joseph A Califano
- Department of Otolaryngology-Head and Neck Surgery; Johns Hopkins University School of Medicine; Baltimore, MD USA
- Milton J. Dance Head and Neck Center; Greater Baltimore Medical Center; Baltimore, MD USA
| | - Harsha Gowda
- Institute of Bioinformatics; International Technology Park; Bangalore, India
- YU-IOB Center for Systems Biology and Molecular Medicine; Yenepoya University; Mangalore, India
| | - David Sidransky
- Department of Otolaryngology-Head and Neck Surgery; Johns Hopkins University School of Medicine; Baltimore, MD USA
| | - Akhilesh Pandey
- McKusick-Nathans Institute of Genetic Medicine; Johns Hopkins University School of Medicine; Baltimore, MD USA
- Department of Biological Chemistry; Johns Hopkins University School of Medicine; Baltimore, MD USA
- Department of Pathology; Johns Hopkins University School of Medicine; Baltimore, MD USA
| | - Aditi Chatterjee
- Institute of Bioinformatics; International Technology Park; Bangalore, India
- YU-IOB Center for Systems Biology and Molecular Medicine; Yenepoya University; Mangalore, India
| |
Collapse
|
47
|
Ma J, Zhang Z, Zhang Z, Huang J, Qin Y, Li X, Liu H, Yang K, Wu G. Magnetic nanoparticle clusters radiosensitise human nasopharyngeal and lung cancer cells after alternating magnetic field treatment. Int J Hyperthermia 2015; 31:800-12. [PMID: 26382714 DOI: 10.3109/02656736.2015.1063168] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
PURPOSE Heat generated by magnetic nanoparticle clusters (MNCs) in an alternating magnetic field (AMF) can be used for hyperthermia cancer treatment. Here, we have synthesised polyacrylic acid-coated MNCs according to previous report, with the ability to increase particle stability in suspension. Radiosensitisation effects of the MNCs under an AMF were investigated in vitro and in vivo. MATERIALS AND METHODS MTT assay, flow cytometry, clone formation assay, Western blotting, and a γ-H2AX experiment were used to explore the biocompatibility and radiosensitisation effect of the MNCs and their putative radiosensitisation mechanism. An NCI-H460 mouse xenograft model was used to investigate the anti-tumour effect under an AMF in vivo. RESULTS The temperature of MNC fluids at different concentrations (200 μg/mL to 2 mg/mL) increased rapidly. The MNCs were endocytosed by the cells and were found to be biocompatible. Hsp70 and caspase-3 were found to be up-regulated upon MNCs under an AMF, radiation, and combination of both treatments. MNCs under an AMF efficiently radiosensitised both CNE-2 cells and NCI-H460 cells. Finally, the tumour inhibition rate after treatment with MNCs under an AMF and radiation was significantly higher than that after either treatment alone. The mechanism of radiosensitisation putatively involves inhibition of DNA repair and induction of apoptosis. CONCLUSIONS The MNC fluids under an AMF enhanced the radiosensitivity of tumour cells both in vitro and in vivo.
Collapse
Affiliation(s)
- Jia Ma
- a Cancer Centre, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , Hubei , China and
| | - Zhiping Zhang
- b Tongji School of Pharmacy, Huazhong University of Science and Technology , Wuhan , Hubei , China
| | - Zhanjie Zhang
- a Cancer Centre, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , Hubei , China and
| | - Jing Huang
- a Cancer Centre, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , Hubei , China and
| | - You Qin
- a Cancer Centre, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , Hubei , China and
| | - Xu Li
- a Cancer Centre, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , Hubei , China and
| | - Hongli Liu
- a Cancer Centre, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , Hubei , China and
| | - Kunyu Yang
- a Cancer Centre, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , Hubei , China and
| | - Gang Wu
- a Cancer Centre, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , Hubei , China and
| |
Collapse
|
48
|
Abstract
Glioblastomas are devastating central nervous system tumors with abysmal prognoses. These tumors are often difficult to resect surgically, are highly invasive and proliferative, and are resistant to virtually all therapeutic attempts, making them universally lethal diseases. One key enabling feature of their tumor biology is the engagement of the unfolded protein response (UPR), a stress response originating in the endoplasmic reticulum (ER) designed to handle the pathologies of aggregating malfolded proteins in that organelle. Glioblastomas and other tumors have co-opted this stress response to allow their continued uncontrolled growth by enhanced protein production (maintained by chaperone-assisted protein folding) and lipid biosynthesis driven downstream of the UPR. These features can account for the extensive extracellular remodeling/invasiveness/angiogenesis and proliferative capacity, and ultimately result in tumor phenotypes of chemo- and radio-resistance. The UPR in general, and its chaperoning capacity in particular, are thus putative high-value targets for treatment intervention. Such therapeutic strategies, and potential problems with them, will be discussed and analyzed.
Collapse
|
49
|
Tamaki H, Harashima N, Hiraki M, Arichi N, Nishimura N, Shiina H, Naora K, Harada M. Bcl-2 family inhibition sensitizes human prostate cancer cells to docetaxel and promotes unexpected apoptosis under caspase-9 inhibition. Oncotarget 2015; 5:11399-412. [PMID: 25333266 PMCID: PMC4294332 DOI: 10.18632/oncotarget.2550] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Accepted: 09/30/2014] [Indexed: 12/19/2022] Open
Abstract
Docetaxel (DTX) is a useful chemotherapeutic drug for the treatment of hormone-refractory prostate cancer. However, emergence of DTX resistance has been a therapeutic hurdle. In this study, we investigated the effect of combining DTX with Bcl-2 family inhibitors using human prostate cancer cell lines (PC3, LNCaP, and DU145 cells). PC3 cells were less sensitive to DTX than were the other two cell lines. In contrast to ABT-199, which inhibits Bcl-2 and Bcl-w, both ABT-263 and ABT-737, which inhibit Bcl-2, Bcl-xL, and Bcl-w, significantly augmented the antitumor effect of DTX on PC3 cells. ABT-263 also enhanced the antitumor effect of DTX on a DTX-resistant PC3 variant cell line. The antitumor effect of ABT-263 was due mainly to its inhibitory effect on Bcl-xL. In a xenograft mouse model, DTX and ABT-737 combination therapy significantly inhibited PC3 tumor growth. Interestingly, although ABT-263 activated caspase-9 in PC3 cells, inhibition of caspase-9 unexpectedly promoted ABT-263-induced apoptosis in a caspase- 8-dependent manner. This augmented apoptosis was also observed in LNCaP cells. These findings indicate that Bcl-xL inhibition can sensitize DTX-resistant prostate cancer cells to DTX, and they reveal a unique apoptotic pathway in which antagonism of Bcl-2 family members in caspase-9-inhibited prostate cancer cells triggers caspase-8-dependent apoptosis.
Collapse
Affiliation(s)
- Hiroki Tamaki
- Department of Immunology, Shimane University Faculty of Medicine, Shimane, Japan. Department of Pharmacy, Shimane University Hospital, Shimane, Japan
| | - Nanae Harashima
- Department of Immunology, Shimane University Faculty of Medicine, Shimane, Japan
| | - Miho Hiraki
- Department of Urology, Shimane University Faculty of Medicine, Shimane, Japan
| | - Naoko Arichi
- Department of Urology, Shimane University Faculty of Medicine, Shimane, Japan
| | | | - Hiroaki Shiina
- Department of Urology, Shimane University Faculty of Medicine, Shimane, Japan
| | - Kohji Naora
- Department of Pharmacy, Shimane University Hospital, Shimane, Japan
| | - Mamoru Harada
- Department of Immunology, Shimane University Faculty of Medicine, Shimane, Japan
| |
Collapse
|
50
|
Murakami N, Kühnel A, Schmid TE, Ilicic K, Stangl S, Braun IS, Gehrmann M, Molls M, Itami J, Multhoff G. Role of membrane Hsp70 in radiation sensitivity of tumor cells. Radiat Oncol 2015. [PMID: 26197988 PMCID: PMC4511458 DOI: 10.1186/s13014-015-0461-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The major stress-inducible heat shock protein 70 (Hsp70) is frequently overexpressed in the cytosol and integrated in the plasma membrane of tumor cells via lipid anchorage. Following stress such as non-lethal irradiation Hsp70 synthesis is up-regulated. Intracellular located Hsp70 is known to exert cytoprotective properties, however, less is known about membrane (m)Hsp70. Herein, we investigate the role of mHsp70 in the sensitivity towards irradiation in tumor sublines that differ in their cytosolic and/or mHsp70 levels. METHODS The isogenic human colon carcinoma sublines CX(+) with stable high and CX(-) with stable low expression of mHsp70 were generated by fluorescence activated cell sorting, the mouse mammary carcinoma sublines 4 T1 (4 T1 ctrl) and Hsp70 knock-down (4 T1 Hsp70 KD) were produced using the CRISPR/Cas9 system, and the Hsp70 down-regulation in human lung carcinoma sublines H1339 ctrl/H1339 HSF-1 KD and EPLC-272H ctrl/EPLC-272H HSF-1 KD was achieved by small interfering (si)RNA against Heat shock factor 1 (HSF-1). Cytosolic and mHsp70 was quantified by Western blot analysis/ELISA and flow cytometry; double strand breaks (DSBs) and apoptosis were measured by flow cytometry using antibodies against γH2AX and real-time PCR (RT-PCR) using primers and antibodies directed against apoptosis related genes; and radiation sensitivity was determined using clonogenic cell surviving assays. RESULTS CX(+)/CX(-) tumor cells exhibited similar cytosolic but differed significantly in their mHsp70 levels, 4 T1 ctrl/4 T1 Hsp70 KD cells showed significant differences in their cytosolic and mHsp70 levels and H1339 ctrl/H1339 HSF-1 KD and EPLC-272H ctrl/EPLC-272H HSF-1 KD lung carcinoma cell sublines had similar mHsp70 but significantly different cytosolic Hsp70 levels. γH2AX was significantly up-regulated in irradiated CX(-) and 4 T1 Hsp70 KD with low basal mHsp70 levels, but not in their mHsp70 high expressing counterparts, irrespectively of their cytosolic Hsp70 content. After irradiation γH2AX, Caspase 3/7 and Annexin V were up-regulated in the lung carcinoma sublines, but no significant differences were observed in H1339 ctrl/H1339 HSF-1 KD, and EPLC-272H ctrl/EPLC-272H HSF-1 KD that exhibit identical mHsp70 but different cytosolic Hsp70 levels. Clonogenic cell survival was significantly lower in CX(-) and 4 T1 Hsp70 KD cells with low mHsp70 expression, than in CX+ and 4 T1 ctrl cells, whereas no difference in clonogenic cell survival was observed in H1339 ctrl/H1339 HSF-1 KD and EPLC-272H ctrl/ EPLC-272H HSF-1 KD sublines with identical mHsp70 but different cytosolic Hsp70 levels. CONCLUSION In summary, our results indicate that mHsp70 has an impact on radiation resistance.
Collapse
Affiliation(s)
- Naoya Murakami
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,Department of Radiation Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Annett Kühnel
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Thomas E Schmid
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Katarina Ilicic
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Stefan Stangl
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Isabella S Braun
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Mathias Gehrmann
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Michael Molls
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Jun Itami
- Department of Radiation Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Gabriele Multhoff
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany. .,Clinical Cooperation Group - Innate Immunity in Tumor Biology, Institute of Biomedical Imaging (IBMI), Helmholtz Zentrum München, Munich, Germany.
| |
Collapse
|