1
|
Liu W, Cui Y, Wei J, Sun J, Zheng L, Xie J. Gap junction-mediated cell-to-cell communication in oral development and oral diseases: a concise review of research progress. Int J Oral Sci 2020; 12:17. [PMID: 32532966 PMCID: PMC7293327 DOI: 10.1038/s41368-020-0086-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/30/2020] [Accepted: 05/19/2020] [Indexed: 02/05/2023] Open
Abstract
Homoeostasis depends on the close connection and intimate molecular exchange between extracellular, intracellular and intercellular networks. Intercellular communication is largely mediated by gap junctions (GJs), a type of specialized membrane contact composed of variable number of channels that enable direct communication between cells by allowing small molecules to pass directly into the cytoplasm of neighbouring cells. Although considerable evidence indicates that gap junctions contribute to the functions of many organs, such as the bone, intestine, kidney, heart, brain and nerve, less is known about their role in oral development and disease. In this review, the current progress in understanding the background of connexins and the functions of gap junctions in oral development and diseases is discussed. The homoeostasis of tooth and periodontal tissues, normal tooth and maxillofacial development, saliva secretion and the integrity of the oral mucosa depend on the proper function of gap junctions. Knowledge of this pattern of cell-cell communication is required for a better understanding of oral diseases. With the ever-increasing understanding of connexins in oral diseases, therapeutic strategies could be developed to target these membrane channels in various oral diseases and maxillofacial dysplasia.
Collapse
Affiliation(s)
- Wenjing Liu
- State Key Laboratory of Oral Diseases & National Clinical Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yujia Cui
- State Key Laboratory of Oral Diseases & National Clinical Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jieya Wei
- State Key Laboratory of Oral Diseases & National Clinical Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jianxun Sun
- State Key Laboratory of Oral Diseases & National Clinical Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Liwei Zheng
- State Key Laboratory of Oral Diseases & National Clinical Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases & National Clinical Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
2
|
Kosovic I, Filipovic N, Benzon B, Vukojevic K, Saraga M, Glavina Durdov M, Bocina I, Saraga-Babic M. Spatio-temporal patterning of different connexins in developing and postnatal human kidneys and in nephrotic syndrome of the Finnish type (CNF). Sci Rep 2020; 10:8756. [PMID: 32471989 PMCID: PMC7260365 DOI: 10.1038/s41598-020-65777-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/06/2020] [Indexed: 02/07/2023] Open
Abstract
Connexins (Cxs) are membrane-spanning proteins which enable flow of information important for kidney homeostasis. Changes in their spatiotemporal patterning characterize blood vessel abnormalities and chronic kidney diseases (CKD). We analysed spatiotemporal expression of Cx37, Cx40, Cx43 and Cx45 in nephron and glomerular cells of developing, postnatal kidneys, and nephrotic syndrome of the Finnish type (CNF) by using immunohistochemistry, statistical methods and electron microscopy. During kidney development, strong Cx45 expression in proximal tubules and decreasing expression in glomeruli was observed. In developing distal nephron, Cx37 and Cx40 showed moderate-to-strong expression, while weak Cx43 expression gradually increased. Cx45/Cx40 co-localized in mesangial and granular cells. Cx43 /Cx45 co-localized in podocytes, mesangial and parietal epithelial cells, and with podocyte markers (synaptopodin, nephrin). Different Cxs co-expressed with endothelial (CD31) and VSMC (α -SMA) markers in vascular walls. Peak signalling of Cx37, Cx43 and Cx40 accompanied kidney nephrogenesis, while strongest Cx45 signalling paralleled nephron maturation. Spatiotemporal Cxs patterning indicate participation of Cx45 in differentiation of proximal tubules, and Cx43, Cx37 and Cx40 in distal tubules differentiation. CNF characterized disorganized Cx45 expression in proximal tubules, increased Cx43 expression in distal tubules and overall elevation of Cx40 and Cx37, while Cx40 co-localized with increased number of interstitial myofibroblasts.
Collapse
Affiliation(s)
- Ivona Kosovic
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, Split, Croatia
| | - Natalija Filipovic
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, Split, Croatia
| | - Benjamin Benzon
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, Split, Croatia
| | - Katarina Vukojevic
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, Split, Croatia.,Department of Histology and Embryology, School of Medicine, University of Mostar, Mostar, Bosnia and Herzegovina
| | - Marijan Saraga
- Department of Paediatrics, University Hospital in Split, School of Medicine, University of Split, Split, Croatia
| | - Merica Glavina Durdov
- Department of Pathology, University Hospital in Split, School of Medicine, University of Split, Split, Croatia
| | - Ivana Bocina
- Department of Biology, Faculty of Science, University of Split, Split, Croatia
| | - Mirna Saraga-Babic
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, Split, Croatia.
| |
Collapse
|
3
|
Gago-Fuentes R, Bechberger JF, Varela-Eirin M, Varela-Vazquez A, Acea B, Fonseca E, Naus CC, Mayan MD. The C-terminal domain of connexin43 modulates cartilage structure via chondrocyte phenotypic changes. Oncotarget 2018; 7:73055-73067. [PMID: 27682878 PMCID: PMC5341963 DOI: 10.18632/oncotarget.12197] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 09/16/2016] [Indexed: 12/13/2022] Open
Abstract
Chondrocytes in cartilage and bone cells population express connexin43 (Cx43) and gap junction intercellular communication (GJIC) is essential to synchronize cells for coordinated electrical, mechanical, metabolic and chemical communication in both tissues. Reduced Cx43 connectivity decreases chondrocyte differentiation and defective Cx43 causes skeletal defects. The carboxy terminal domain (CTD) of Cx43 is located in the cytoplasmic side and is key for protein functions. Here we demonstrated that chondrocytes from the CTD-deficient mice, K258stop/Cx43KO and K258stop/K258stop, have reduced GJIC, increased rates of proliferation and reduced expression of collagen type II and proteoglycans. We observed that CTD-truncated mice were significantly smaller in size. Together these results demonstrated that the deletion of the CTD negatively impacts cartilage structure and normal chondrocyte phenotype. These findings suggest that the proteolytic cleavage of the CTD under pathological conditions, such as under the activation of metalloproteinases during tissue injury or inflammation, may account for the deleterious effects of Cx43 in cartilage and bone disorders such as osteoarthritis.
Collapse
Affiliation(s)
- Raquel Gago-Fuentes
- CellCOM-SB Research Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), CH-Universitario A Coruña (XXIAC), University of A Coruña, Servizo Galego de Saúde (SERGAS), Xubias de Arriba, 84 15006 A Coruña, Spain
| | - John F Bechberger
- Department of Cellular and Physiological Sciences, The Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada, V6T 1Z3
| | - Marta Varela-Eirin
- CellCOM-SB Research Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), CH-Universitario A Coruña (XXIAC), University of A Coruña, Servizo Galego de Saúde (SERGAS), Xubias de Arriba, 84 15006 A Coruña, Spain
| | - Adrian Varela-Vazquez
- CellCOM-SB Research Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), CH-Universitario A Coruña (XXIAC), University of A Coruña, Servizo Galego de Saúde (SERGAS), Xubias de Arriba, 84 15006 A Coruña, Spain
| | - Benigno Acea
- CellCOM-SB Research Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), CH-Universitario A Coruña (XXIAC), University of A Coruña, Servizo Galego de Saúde (SERGAS), Xubias de Arriba, 84 15006 A Coruña, Spain
| | - Eduardo Fonseca
- CellCOM-SB Research Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), CH-Universitario A Coruña (XXIAC), University of A Coruña, Servizo Galego de Saúde (SERGAS), Xubias de Arriba, 84 15006 A Coruña, Spain
| | - Christian C Naus
- Department of Cellular and Physiological Sciences, The Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada, V6T 1Z3
| | - Maria D Mayan
- CellCOM-SB Research Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), CH-Universitario A Coruña (XXIAC), University of A Coruña, Servizo Galego de Saúde (SERGAS), Xubias de Arriba, 84 15006 A Coruña, Spain
| |
Collapse
|
4
|
Morioka T, Okada S, Nameta M, Kamal F, Yanakieva-Georgieva NT, Yao J, Sato A, Piao H, Oite T. Glomerular expression of connexin 40 and connexin 43 in rat experimental glomerulonephritis. Clin Exp Nephrol 2013; 17:191-204. [PMID: 22945766 DOI: 10.1007/s10157-012-0687-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 08/10/2012] [Indexed: 10/27/2022]
Abstract
BACKGROUND Gap junctional intercellular communication is thought to play an important role in the maintenance of cell differentiation and homeostasis. Gap junctions connect glomerular mesangial cells to each other. In this study, we examined the glomerular expression of connexins (Cxs) 40 and 43 at both the protein and transcript levels in anti-Thy1.1 glomerulonephritis (GN). METHODS Anti-Thy1.1 GN was induced by intravenous injection of anti-Thy1.1 monoclonal antibody 1-22-3. Cx protein expression was examined by immunofluorescence, immunoelectron microscopy, and Western blotting. Changes in mRNA levels were detected by real-time reverse transcriptase-polymerase chain reaction. RESULTS Cx40 was detected in mesangial cells in normal rat glomeruli; its expression was reduced on days 3 and 7 and recovered to normal on day 14 following GN induction. Cx43 was detected in mesangial cells and podocytes in normal rat glomeruli, and its expression did not change during the disease course of GN. Expression of Cx40 and Cx43 was also detected in extraglomerular mesangial cells; this expression did not change during the disease course. Opposing patterns of expression between Cx40 and smooth muscle actin (SMA) were observed with double-immunofluorescence labeling. SMA is a differentiation marker of mesangial cells; it is often expressed during proliferation but not under physiological conditions. CONCLUSION These results suggest that Cx40 expression in mesangial cells is related to mesangial cell regeneration. Thus, Cx expression regulation could be a therapeutic target for glomerular diseases.
Collapse
Affiliation(s)
- Tetsuo Morioka
- Department of Cellular Physiology, Institute of Nephrology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Häkkinen L, Larjava H, Koivisto L. Granulation tissue formation and remodeling. ACTA ACUST UNITED AC 2012. [DOI: 10.1111/etp.12008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Johnstone SR, Kroncke BM, Straub AC, Best AK, Dunn CA, Mitchell LA, Peskova Y, Nakamoto RK, Koval M, Lo CW, Lampe PD, Columbus L, Isakson BE. MAPK phosphorylation of connexin 43 promotes binding of cyclin E and smooth muscle cell proliferation. Circ Res 2012; 111:201-11. [PMID: 22652908 DOI: 10.1161/circresaha.112.272302] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
RATIONALE Dedifferentiation of vascular smooth muscle cells (VSMC) leading to a proliferative cell phenotype significantly contributes to the development of atherosclerosis. Mitogen-activated protein kinase (MAPK) phosphorylation of proteins including connexin 43 (Cx43) has been associated with VSMC proliferation in atherosclerosis. OBJECTIVE To investigate whether MAPK phosphorylation of Cx43 is directly involved in VSMC proliferation. METHODS AND RESULTS We show in vivo that MAPK-phosphorylated Cx43 forms complexes with the cell cycle control proteins cyclin E and cyclin-dependent kinase 2 (CDK2) in carotids of apolipoprotein-E receptor null (ApoE(-/-)) mice and in C57Bl/6 mice treated with platelet-derived growth factor-BB (PDGF). We tested the involvement of Cx43 MAPK phosphorylation in vitro using constructs for full-length Cx43 (Cx43) or the Cx43 C-terminus (Cx43(CT)) and produced null phosphorylation Ser>Ala (Cx43(MK4A)/Cx43(CTMK4A)) and phospho-mimetic Ser>Asp (Cx43(MK4D)/Cx43(CTMK4D)) mutations. Coimmunoprecipitation studies in primary VSMC isolated from Cx43 wild-type (Cx43(+/+)) and Cx43 null (Cx43(-/-)) mice and analytic size exclusion studies of purified proteins identify that interactions between cyclin E and Cx43 requires Cx43 MAPK phosphorylation. We further demonstrate that Cx43 MAPK phosphorylation is required for PDGF-mediated VSMC proliferation. Finally, using a novel knock-in mouse containing Cx43-MK4A mutation, we show in vivo that interactions between Cx43 and cyclin E are lost and VSMC proliferation does not occur after treatment of carotids with PDGF and that neointima formation is significantly reduced in carotids after injury. CONCLUSIONS We identify MAPK-phosphorylated Cx43 as a novel interacting partner of cyclin E in VSMC and show that this interaction is critical for VSMC proliferation. This novel interaction may be important in the development of atherosclerotic lesions.
Collapse
Affiliation(s)
- Scott R Johnstone
- Robert M. Berne Cardiovascular Research Center, Charlottesville, VA 22908, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Li K, Yao J, Sawada N, Kitamura M, Andersson KE, Takeda M. β-Catenin signaling contributes to platelet derived growth factor elicited bladder smooth muscle cell contraction through up-regulation of Cx43 expression. J Urol 2012; 188:307-15. [PMID: 22608743 DOI: 10.1016/j.juro.2012.02.2556] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2011] [Indexed: 12/11/2022]
Abstract
PURPOSE Increased gap junctions contribute to bladder overactivity but the factors and mechanisms involved in gap junction regulation in the bladder are not well established. We examined whether and how platelet derived growth factor regulates connexin43 in bladder smooth muscle cells. MATERIALS AND METHODS Cultured rat bladder smooth muscle cells were treated with growth factors with or without agents that interfere with phosphatidylinositol 3-kinase, mitogen activated protein kinase and β-catenin signaling pathways. Connexin43 expression was examined by Western and Northern blot, and immunochemistry. Functional gap junctions were evaluated by scrape-loading dye transfer assay. Bladder smooth muscle cell contraction was measured by collagen gel contraction. RESULTS 1) Platelet derived growth factor induced phosphatidylinositol 3-kinase and mitogen activated protein kinase dependent accumulation of nuclear β-catenin. This was followed by increased connexin43 expression. 2) Down-regulation of β-catenin by specific siRNA abolished the connexin43 increasing effect of platelet derived growth factor while β-catenin stimulation due to glycogen synthase kinase inhibition mimicked that effect. 3) Basic fibroblast growth factor and epidermal growth factor also induced connexin43 expression. Their effects were potentiated by platelet derived growth factor. 4) Gap junction inhibition attenuated the bladder smooth muscle cell contraction induced by platelet derived growth factor. Consistently fibroblasts from connexin43 knockout (Cx43-/-) mice showed a much weaker contractile response to platelet derived growth factor than cells from connexin43-wild (Cx43+/+) litter mates. CONCLUSIONS Platelet derived growth factor induces connexin43 expression and bladder smooth muscle cell contraction by activating β-catenin signaling. As a convergence point for many signal pathways, β-catenin may be targeted to treat bladder overactivity.
Collapse
MESH Headings
- Animals
- Blotting, Northern
- Blotting, Western
- Cells, Cultured
- Connexin 43/biosynthesis
- Connexin 43/genetics
- Disease Models, Animal
- Female
- Immunohistochemistry
- Mice
- Mice, Inbred C57BL
- Muscle, Smooth/metabolism
- Muscle, Smooth/pathology
- Platelet-Derived Growth Factor/metabolism
- RNA/genetics
- Rats
- Rats, Sprague-Dawley
- Signal Transduction
- Up-Regulation/genetics
- Urinary Bladder, Overactive/genetics
- Urinary Bladder, Overactive/metabolism
- Urinary Bladder, Overactive/pathology
- beta Catenin/metabolism
Collapse
Affiliation(s)
- Kai Li
- Department of Molecular Signaling, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| | | | | | | | | | | |
Collapse
|
8
|
Schalper KA, Riquelme MA, Brañes MC, Martínez AD, Vega JL, Berthoud VM, Bennett MVL, Sáez JC. Modulation of gap junction channels and hemichannels by growth factors. MOLECULAR BIOSYSTEMS 2012; 8:685-98. [PMID: 22218428 DOI: 10.1039/c1mb05294b] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Gap junction hemichannels and cell-cell channels have roles in coordinating numerous cellular processes, due to their permeability to extra and intracellular signaling molecules. Another mechanism of cellular coordination is provided by a vast array of growth factors that interact with relatively selective cell membrane receptors. These receptors can affect cellular transduction pathways, including alteration of intracellular concentration of free Ca(2+) and free radicals and activation of protein kinases or phosphatases. Connexin and pannexin based channels constitute recently described targets of growth factor signal transduction pathways, but little is known regarding the effects of growth factor signaling on pannexin based channels. The effects of growth factors on these two channel types seem to depend on the cell type, cell stage and connexin and pannexin isoform expressed. The functional state of hemichannels and gap junction channels are affected in opposite directions by FGF-1 via protein kinase-dependent mechanisms. These changes are largely explained by channels insertion in or withdrawal from the cell membrane, but changes in open probability might also occur due to changes in phosphorylation and redox state of channel subunits. The functional consequence of variation in cell-cell communication via these membrane channels is implicated in disease as well as normal cellular responses.
Collapse
Affiliation(s)
- Kurt A Schalper
- Clínica Alemana de Santiago, Universidad del Desarrollo, Santiago, Chile
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Johnstone SR, Ross J, Rizzo MJ, Straub AC, Lampe PD, Leitinger N, Isakson BE. Oxidized phospholipid species promote in vivo differential cx43 phosphorylation and vascular smooth muscle cell proliferation. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:916-24. [PMID: 19608875 DOI: 10.2353/ajpath.2009.090160] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Regulation of both the expression and function of connexins in the vascular wall is important during atherosclerosis. Progression of the disease state is marked by vascular smooth muscle cell (VSMC) proliferation, which coincides with the reduced expression levels of connexin 43 (Cx43). However, nothing is currently known about the factors that regulate post-translational modifications of Cx43 in atherogenesis, which could be of particular importance, due to the association between site-specific Cx43 phosphorylation and cellular proliferation. We compared the effects of direct carotid applications of two oxidized phospholipid derivatives, 1-palmitoyl-2-oxovaleroyl-sn-glycero-3-phosphorylcholine (POVPC) and 1-palmitoyl-2-glutaroyl-sn-glycero-3-phosphorylcholine (PGPC), on Cx43 expression and phosphorylation, and on cell proliferation. Since both POVPC and PGPC have been shown to act through different intracellular pathways, we hypothesized that each oxidized phospholipid species could induce differential Cx43 phosphorylation events in the cytoplasmically located carboxyl-terminal region of the protein, which could potentially enhance cell proliferation. Application of POVPC caused a reduction in VSMC Cx43 levels, enhanced its phosphorylation at serine (pS) 279/282, and increased VSMC proliferation both in vivo and in vitro. Treatment with PGPC enhanced VSMC pS368 levels with no associated change in proliferation. These oxidized phospholipid-induced Cx43 post-translational changes in VSMCs were consistent with those identified in ApoE(-/-) mice. Taken together, these results demonstrate that post-translational phosphorylation of Cx43 could be a key factor in the pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- Scott R Johnstone
- University of Virginia School of Medicine, PO Box 801394 Charlottesville VA 29908, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Yao J, Zhu Y, Morioka T, Oite T, Kitamura M. Pathophysiological roles of gap junction in glomerular mesangial cells. J Membr Biol 2007; 217:123-30. [PMID: 17623230 DOI: 10.1007/s00232-007-9023-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Accepted: 04/04/2007] [Indexed: 12/13/2022]
Abstract
Glomerular mesangial cells (MCs) are specialized vascular smooth muscle cells that play a critical role in the control of glomerular hemodynamics. One of the intriguing features of MCs is their extraordinary abundance in gap junctions (GJs). It has long been speculated that GJs may bridge MCs together and provide the mesangium with the characteristics of a functional syncytium. Accumulating scientific evidence supports this idea. GJs are reported to be critically involved in important physiological processes like tubuloglomerular feedback and glomerular filtration. In addition, GJs are implicated in the control of many cellular processes of MCs, including growth, differentiation and survival. This article summarizes the current knowledge on the roles of GJs in glomerular pathophysiology.
Collapse
Affiliation(s)
- Jian Yao
- Department of Molecular Signaling, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Tamaho, Yamanashi, Japan.
| | | | | | | | | |
Collapse
|
11
|
Dang X, Jeyaraman M, Kardami E. Regulation of Connexin-43-Mediated Growth Inhibition by a Phosphorylatable Amino-Acid is Independent of Gap Junction-Forming Ability. Mol Cell Biochem 2006; 289:201-7. [PMID: 16718370 DOI: 10.1007/s11010-006-9162-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2006] [Accepted: 02/17/2006] [Indexed: 11/30/2022]
Abstract
The ability of the gap junction phosphoprotein connexin-43 (Cx43) to inhibit DNA synthesis in primary cardiomyocytes is regulated by serine (S) 262, a protein kinase C phosphorylation site that also affects metabolic coupling. We have now examined if the S262-regulated growth suppression is operating in transformed cells and if so whether it depends on gap junction channel forming ability. Serine 262 became phosphorylated in response to protein kinase C stimulation in HEK293 cells transiently expressing either Cx43 or the non-channel-forming carboxy-terminal tail of Cx43 (Cx43CT). Expression of either wild type Cx43 or Cx43CT inhibited DNA synthesis, as did their mutated versions simulating lack of phosphorylation by carrying an S262-to-alanine substitution. The ability to inhibit DNA synthesis was eliminated when expressing mutated versions of either Cx43 or Cx43CT simulating constitutive phosphorylation by carrying an S262-to-aspartate substitution. We conclude that S262 phosphorylation cancels growth inhibition by Cx43 independently of channel-forming ability.
Collapse
Affiliation(s)
- Xitong Dang
- Department of Human Anatomy and Cell Sciences and Physiology, University of Manitoba, Winnipeg, R2H 2A6, Canada
| | | | | |
Collapse
|
12
|
Yao J, Kitamura M, Zhu Y, Meng Y, Kasai A, Hiramatsu N, Morioka T, Takeda M, Oite T. Synergistic effects of PDGF-BB and cAMP-elevating agents on expression of connexin43 in mesangial cells. Am J Physiol Renal Physiol 2005; 290:F1083-93. [PMID: 16263806 DOI: 10.1152/ajprenal.00134.2005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The gap junction plays an important role in the regulation of cell growth, migration, and differentiation. Platelet-derived growth factor (PDGF) is reported to be a potent inhibitor of gap junctional intercellular communication (GJIC). Short-term exposure of cells to PDGF causes rapid and transient disruption of GJIC without altering connexin43 (Cx43) protein level. In this study, we investigated long-term effects of PDGF-BB on Cx43 expression in mesangial cells (MCs). Exposure of MCs to PDGF-BB affected neither the Cx43 protein level nor GJIC. However, in the presence of cAMP-elevating agents, PDGF-BB dramatically increased the expression of Cx43, which was accompanied by obviously augmented membrane distribution of Cx43 and functional GJIC. The increased expression of Cx43 was closely correlated with reduction in alpha-actin, a dedifferentiation marker of MCs. The effect of PDGF on Cx43 was largely prevented by inhibitors of phosphatidylinositol 3'-kinase or mitogen-activated protein kinase, but not by inhibition of protein kinase C. Exposure of MCs to PDGF-BB caused elevation in intracellular cAMP, and it was abolished by indomethacin, a cyclooxygenase inhibitor. However, indomethacin did not affect the synergistic effect. In addition, PDGF-BB also did not affect the degradation of Cx43. With the use of MCs transfected with a Cx43 promoter-luciferase vector, cooperative activation of Cx43 promoter by PDGF and cAMP was found. Together, our data reveal, for the first time, unexpected synergy between PDGF-BB and cAMP-elevating agents in the induction of Cx43 and MC differentiation. Regulation of GJIC could be an important mechanism via which PDGF modulates MC phenotypes.
Collapse
Affiliation(s)
- Jian Yao
- Dept. of Molecular Signaling, Interdisciplinary Graduate School of Medicine and Engineering, Univ. of Yamanashi, Tamaho, Yamanashi 409-3898, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Maass K, Ghanem A, Kim JS, Saathoff M, Urschel S, Kirfel G, Grümmer R, Kretz M, Lewalter T, Tiemann K, Winterhager E, Herzog V, Willecke K. Defective epidermal barrier in neonatal mice lacking the C-terminal region of connexin43. Mol Biol Cell 2004; 15:4597-608. [PMID: 15282340 PMCID: PMC519152 DOI: 10.1091/mbc.e04-04-0324] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
More than 97% of mice in which the C-terminal region of connexin43 (Cx43) was removed (designated as Cx43K258stop) die shortly after birth due to a defect of the epidermal barrier. The abnormal expression of Cx43K258stop protein in the uppermost layers of the epidermis seems to perturb terminal differentiation of keratinocytes. In contrast to Cx43-deficient mice, neonatal Cx43K258stop hearts show no lethal obstruction of the right ventricular outflow tract, but signs of dilatation. Electrocardiographies of neonatal hearts reveal repolarization abnormalities in 20% of homozygous Cx43K258stop animals. The very rare adult Cx43K258stop mice show a compensation of the epidermal barrier defect but persisting impairment of cardiac function in echocardiography. Female Cx43K258stop mice are infertile due to impaired folliculogenesis. Our results indicate that the C-terminally truncated Cx43K258stop mice lack essential functions of Cx43, although the truncated Cx43 protein can form open gap junctional channels.
Collapse
Affiliation(s)
- Karen Maass
- Institut für Genetik, Universitat Bonn, D-53117 Bonn, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Asklund T, Appelskog IB, Ammerpohl O, Ekström TJ, Almqvist PM. Histone deacetylase inhibitor 4-phenylbutyrate modulates glial fibrillary acidic protein and connexin 43 expression, and enhances gap-junction communication, in human glioblastoma cells. Eur J Cancer 2004; 40:1073-81. [PMID: 15093585 DOI: 10.1016/j.ejca.2003.11.034] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2003] [Accepted: 11/17/2003] [Indexed: 11/21/2022]
Abstract
Human glioblastoma cell cultures were established and the expression of glial fibrillary acidic protein (GFAP) and the gap-junction protein connexin 43 (Cx43) was confirmed by Western blot. Following treatment with 4-phenylbutyrate (4-PB), increased concentrations of non-phosphorylated GFAP were seen, while phosphorylated isoforms remained intact. Immunocytochemical staining of glioblastoma cells revealed an intracellular redistribution of GFAP. In addition to cytoplasmic immunostaining, GFAP immunoreactivity was also associated with the nucleus and/or the nuclear membrane. Phosphorylated and non-phosphorylated Cx43 proteins were increased 2- to 5-fold following 4-PB treatment, and were redistributed to areas of the cell surface, participating in cell-to-cell contacts. In addition, functional gap-junction coupling was amplified, as indicated by increased fluorescent dye transfer, and elevated levels of Cx43 protein were detected in parallel with enhanced gap-junction communication. Induced cell differentiation, with improved functional coupling of tumour cells, may be of importance for therapeutic strategies involving intercellular transport of low molecular-weight compounds.
Collapse
Affiliation(s)
- T Asklund
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
15
|
Faucheux N, Zahm JM, Bonnet N, Legeay G, Nagel MD. Gap junction communication between cells aggregated on a cellulose-coated polystyrene: influence of connexin 43 phosphorylation. Biomaterials 2004; 25:2501-6. [PMID: 14751734 DOI: 10.1016/j.biomaterials.2003.09.036] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The appropriate functioning of tissues and organ systems depends on intercellular communication such as gap junctions formed by connexin (Cx) protein channels between adjacent cells. We have previously shown that Swiss 3T3 cells aggregated on hydrophilic cellulose substratum Cuprophan (CU) establish short linear gap junctions composed of Cx 43 in cell surface plaques. This phenomenon seems to depend on the high intracellular cyclic AMP (cAMP) concentration triggered by attachment of the cells to CU. We have now used a cellulose-coated polystyrene inducing the same cell behaviour to analyse the gap junction communication between aggregated cells. The transfer of the dye Lucifer Yellow (LY) between cells showed that cells aggregated on cellulose substratum rapidly (within 90 min) establish functional gap junctions. Inhibitors of cAMP protein kinase (PKI) or protein kinase C (GF109203X) both inhibited the diffusion of LY between neighbouring cells. Western blot analysis showed that this change in permeability was correlated with a decrease in Cx 43 phosphorylation. Thus, cellulose substrata seem to induce cell-cell communication through Cx 43 phosphorylation modulated by PKA and PKC. To understand the mechanisms by which a substratum regulates gap junctional communication is critically important for the emerging fields of tissue engineering and biohybrid devices.
Collapse
Affiliation(s)
- N Faucheux
- Domaine Biomatériaux-Biocompatibilité, Université de Technologie de Compiègne, UMR CNRS 6600, BP20529, Compiègne Cédex 60205, France
| | | | | | | | | |
Collapse
|
16
|
Saez JC, Berthoud VM, Branes MC, Martinez AD, Beyer EC. Plasma membrane channels formed by connexins: their regulation and functions. Physiol Rev 2003; 83:1359-400. [PMID: 14506308 DOI: 10.1152/physrev.00007.2003] [Citation(s) in RCA: 876] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Members of the connexin gene family are integral membrane proteins that form hexamers called connexons. Most cells express two or more connexins. Open connexons found at the nonjunctional plasma membrane connect the cell interior with the extracellular milieu. They have been implicated in physiological functions including paracrine intercellular signaling and in induction of cell death under pathological conditions. Gap junction channels are formed by docking of two connexons and are found at cell-cell appositions. Gap junction channels are responsible for direct intercellular transfer of ions and small molecules including propagation of inositol trisphosphate-dependent calcium waves. They are involved in coordinating the electrical and metabolic responses of heterogeneous cells. New approaches have expanded our knowledge of channel structure and connexin biochemistry (e.g., protein trafficking/assembly, phosphorylation, and interactions with other connexins or other proteins). The physiological role of gap junctions in several tissues has been elucidated by the discovery of mutant connexins associated with genetic diseases and by the generation of mice with targeted ablation of specific connexin genes. The observed phenotypes range from specific tissue dysfunction to embryonic lethality.
Collapse
Affiliation(s)
- Juan C Saez
- Departamento de Ciencias Fisiológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile.
| | | | | | | | | |
Collapse
|
17
|
Yogo K, Ogawa T, Akiyama M, Ishida N, Takeya T. Identification and functional analysis of novel phosphorylation sites in Cx43 in rat primary granulosa cells. FEBS Lett 2002; 531:132-6. [PMID: 12417300 DOI: 10.1016/s0014-5793(02)03441-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The gap junctional intercellular communication mediated by Cx43 plays indispensable roles in both germ line development and postnatal folliculogenesis. In this study, we focused on the effect of follicle-stimulating hormone (FSH) on the Cx43 protein in rat primary granulosa cells and found that FSH stimulation elevated the phosphorylation in addition to the protein level of Cx43. Serine residues in the carboxyl-terminal region were exclusively phosphorylated in this system and we identified Ser365, Ser368, Ser369 and Ser373 as major phosphorylation sites by FSH stimulation. A Cx43 variant containing mutations at all these serine residues was found to severely reduce dye transfer activity when assayed in HeLa cells. The present study revealed a novel regulatory mechanism of Cx43-mediated gap junctional intercellular communication through phosphorylation in the carboxyl-terminus.
Collapse
Affiliation(s)
- Keiichiro Yogo
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan
| | | | | | | | | |
Collapse
|
18
|
Faucheux N, Dufresne M, Nagel MD. Organization of cyclic AMP-dependent connexin 43 in Swiss 3T3 cells attached to a cellulose substratum. Biomaterials 2002; 23:413-21. [PMID: 11761161 DOI: 10.1016/s0142-9612(01)00120-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We have previously shown that the adenylyl cyclase, which produces cyclic AMP (cAMP) in Swiss 3T3 cells, is activated by their attachment to a cellulose substratum (Cuprophan, CU). This substratum adsorbs vitronectin poorly, prevents cell spreading and causes them to aggregate. By contrast, cells spread out on polystyrene and contain low concentrations of cAMP. We have found that Connexin 43 (Cx 43) gap junction plaques are involved in this cell aggregation. MDL 12330 A, a specific inhibitor of adenylyl cyclase, prevented cell aggregation on CU and abolished Cx 43 channel clustering. But forskolin, a direct activator of adenylyl cyclase, and SBr cAMP, a cell-permeable analogue of cAMP, caused Cx 43 channel clustering in cells attached to polystyrene. Hence, Cx 43 channel clustering is regulated by cAMP in Swiss 3T3 cells. In addition, neither brefeldin A nor monensin (inhibitors of transit through the endoplasmic reticulum and Golgi apparatus), abolished Cx 43 channel clustering in cells aggregated on CU. Thus, the Cx 43 that form clusters in cells attached to CU are not dependent upon the trafficking of Cx 43 from intracellular storage sites, but are probably reorganised from the plasma membrane.
Collapse
Affiliation(s)
- N Faucheux
- Domaine Biomatériaux-Biocompatibilité, UMR CNRS 6600, Umiversité de Technologie de Compiègne, France
| | | | | |
Collapse
|
19
|
TenBroek EM, Lampe PD, Solan JL, Reynhout JK, Johnson RG. Ser364 of connexin43 and the upregulation of gap junction assembly by cAMP. J Cell Biol 2001; 155:1307-18. [PMID: 11756479 PMCID: PMC2199346 DOI: 10.1083/jcb.200102017] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The assembly of gap junctions (GJs) is a process coordinated by growth factors, kinases, and other signaling molecules. GJ assembly can be enhanced via the elevation of cAMP and subsequent stimulation of connexon trafficking to the plasma membrane. To study the positive regulation of GJ assembly, fibroblasts derived from connexin (Cx)43 knockout (KO) and wild-type (WT) mice were transfected with WT Cx43 (WTCx43) or mutant Cx43. GJ assembly between untransfected WT fibroblasts or stably transfected WTCx43/KO fibroblasts was increased two- to fivefold by 8Br-cAMP, and this increase could be blocked by inhibition of cAMP-dependent protein kinase (PKA) or truncation of the Cx43 COOH terminus (CT). Although serine 364 (S364) of the Cx43 CT was determined to be a major site of phosphorylation, the molar ratio of Cx43 phosphorylation was not increased by 8Br-cAMP. Importantly, GJ assembly between either S364ECx43/KO or S364ECx43/WT fibroblasts was stimulated by 8Br-cAMP, but that between S364ACx43/KO or S364PCx43/KO fibroblasts was not stimulated, indicating that phosphorylation or a negative charge at S364 is required for enhancement of GJ assembly by cAMP. Furthermore, GJ assembly between S364ACx43/WT fibroblasts could be stimulated by 8Br-cAMP, but could not be between S364PCx43/WT fibroblasts. Thus, S364PCx43 interferes with enhanced GJ assembly when coexpressed with WTCx43.
Collapse
Affiliation(s)
- E M TenBroek
- Department of Genetics, Cell Biology, and Development, University of Minnesota, St. Paul, MN 55108, USA.
| | | | | | | | | |
Collapse
|
20
|
Moorby C, Patel M. Dual functions for connexins: Cx43 regulates growth independently of gap junction formation. Exp Cell Res 2001; 271:238-48. [PMID: 11716536 DOI: 10.1006/excr.2001.5357] [Citation(s) in RCA: 170] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Connexins, the family of proteins that form vertebrate gap junctions, have key roles during development and in the adult. Previously, the physiological actions of connexins have been ascribed solely to formation of gap junction channels and thought to be mediated by the transfer of small molecules between neighboring cells. In conflict with this hypothesis here we demonstrate that Cx43 can affect cell growth independently of gap junction formation. This conclusion is based on four findings: (1) There is a lack of correlation between the action of Cx43 mutants Cx43-S255A, Cx43-S279A, and Cx43-S282A on growth and cell coupling in 3T3 A31 fibroblasts. (2) Blockade of gap junction formation, by either heptan-1-ol treatment or culturing cells at low density, had no effect on the ability of the Cx43 mutants to control growth. (3) Wildtype Cx43 inhibited growth of Neuro2a cells under conditions where gap junctions were unable to form. (4) The CT domain of Cx43, which lacks intrinsic gap junction activity, is as effective as the wildtype molecule in suppressing the growth of Neuro2a cells. These observations demonstrate that Cx43 has dual functions: first, its well-accepted role in forming a gap junction channel and, second, a direct action of the connexin protein on growth that is mediated via the cytoplasmic carboxyl domain.
Collapse
Affiliation(s)
- C Moorby
- Centre for Mechanisms of Human Toxicity, University of Leicester, Hodgkin Building, Leicester, LE1 9HN, United Kingdom.
| | | |
Collapse
|
21
|
|
22
|
Hossain MZ, Boynton AL. Regulation of Cx43 Gap Junctions: The Gatekeeper and the Password. Sci Signal 2000. [DOI: 10.1126/scisignal.542000pe1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
23
|
Hossain MZ, Boynton AL. Regulation of Cx43 gap junctions: the gatekeeper and the password. SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2000; 2000:pe1. [PMID: 11752614 DOI: 10.1126/stke.2000.54.pe1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Gap junctions are regulatable pores that connect the cytoplasms of neighboring cells. Hossain and Boynton focus on connexin 43 gap junctions and their regulation by changing the phosphorylation status of the COOH-terminal domain of connexin 43 or by altering protein-protein interactions in this region. The COOH-terminal domain of connexin 43 appears to be a key player in regulating gap junctional communication (GJC) because many divergent signals in many different cell types modify this domain to inhibit GJC.
Collapse
Affiliation(s)
- M Z Hossain
- Molecular Medicine, Northwest Hospital, Seattle, WA, USA.
| | | |
Collapse
|
24
|
Moorby CD. A connexin 43 mutant lacking the carboxyl cytoplasmic domain inhibits both growth and motility of mouse 3T3 fibroblasts. Mol Carcinog 2000. [DOI: 10.1002/(sici)1098-2744(200005)28:1<23::aid-mc4>3.0.co;2-j] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|