1
|
Ruiz D, Padmanabhan V, Sargis RM. Stress, Sex, and Sugar: Glucocorticoids and Sex-Steroid Crosstalk in the Sex-Specific Misprogramming of Metabolism. J Endocr Soc 2020; 4:bvaa087. [PMID: 32734132 PMCID: PMC7382384 DOI: 10.1210/jendso/bvaa087] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 06/26/2020] [Indexed: 12/11/2022] Open
Abstract
Early-life exposures to environmental insults can misprogram development and increase metabolic disease risk in a sex-dependent manner by mechanisms that remain poorly characterized. Modifiable factors of increasing public health relevance, such as diet, psychological stress, and endocrine-disrupting chemicals, can affect glucocorticoid receptor signaling during gestation and lead to sex-specific postnatal metabolic derangements. Evidence from humans and animal studies indicate that glucocorticoids crosstalk with sex steroids by several mechanisms in multiple tissues and can affect sex-steroid-dependent developmental processes. Nonetheless, glucocorticoid sex-steroid crosstalk has not been considered in the glucocorticoid-induced misprogramming of metabolism. Herein we review what is known about the mechanisms by which glucocorticoids crosstalk with estrogen, androgen, and progestogen action. We propose that glucocorticoid sex-steroid crosstalk is an understudied mechanism of action that requires consideration when examining the developmental misprogramming of metabolism, especially when assessing sex-specific outcomes.
Collapse
Affiliation(s)
- Daniel Ruiz
- Committee on Molecular Metabolism and Nutrition, University of Chicago, Chicago, Illinois
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| | | | - Robert M Sargis
- Division of Endocrinology, Diabetes, and Metabolism; Department of Medicine; University of Illinois at Chicago, Chicago, Illinois
- Chicago Center for Health and Environment, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
2
|
Copland JA, Sheffield-Moore M, Koldzic-Zivanovic N, Gentry S, Lamprou G, Tzortzatou-Stathopoulou F, Zoumpourlis V, Urban RJ, Vlahopoulos SA. Sex steroid receptors in skeletal differentiation and epithelial neoplasia: is tissue-specific intervention possible? Bioessays 2009; 31:629-41. [DOI: 10.1002/bies.200800138] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
3
|
Zhang S, Jonklaas J, Danielsen M. The glucocorticoid agonist activities of mifepristone (RU486) and progesterone are dependent on glucocorticoid receptor levels but not on EC50 values. Steroids 2007; 72:600-8. [PMID: 17509631 DOI: 10.1016/j.steroids.2007.03.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Revised: 03/10/2007] [Accepted: 03/27/2007] [Indexed: 11/28/2022]
Abstract
Mifepristone is an antagonist of the glucocorticoid receptor (GR) that also has significant agonist activity in some cell types. We examined the partial agonist activity of mifepristone in COS-7 cells transfected with increasing amounts of a glucocorticoid receptor expression vector pmGR. As pmGR levels increased, the response of the reporter, pMTVCAT to dexamethasone increased, consistent with increasing levels of receptor expression; the response to mifepristone also increased but at a higher rate, resulting in increasing mifepristone agonist and decreasing antagonist activity. In contrast, increasing pMTVCAT levels increased CAT activity induced by both dexamethasone and mifepristone, but did not change the relative agonist activity of mifepristone. We also examined the relationship between agonist activity and receptor level in a series of clones of the E8.2.A3 cell line expressing various levels of GR. Again, the relative agonist activity of mifepristone increased as GR increased. This increase was not due to changes in the dose response curves to these two ligands since their EC50 values were independent of receptor levels. These results indicate that the degree of glucocorticoid agonist activity exhibited by mifepristone is dependent on the concentration of GR in the cell. Similar results were obtained with another partial agonist of the GR, progesterone, whereas the complete antagonist ZK98.299 had no agonist activity under any condition. Taken together, these results suggest that the phenomenon of receptor concentration-dependence is a property of partial GR agonists in general.
Collapse
Affiliation(s)
- Shimin Zhang
- Division of Molecular Pathobiology, Department of Environmental and Infectious Disease Sciences, American Registry of Pathology, Armed Forces Institute of Pathology, Washington, DC 20306, USA.
| | | | | |
Collapse
|
4
|
Maffey AH, Ishibashi T, He C, Wang X, White AR, Hendy SC, Nelson CC, Rennie PS, Ausió J. Probasin promoter assembles into a strongly positioned nucleosome that permits androgen receptor binding. Mol Cell Endocrinol 2007; 268:10-9. [PMID: 17316977 DOI: 10.1016/j.mce.2007.01.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Revised: 12/06/2006] [Accepted: 01/03/2007] [Indexed: 10/23/2022]
Abstract
The promoter of the murine probasin (PB) gene exhibits strong androgen receptor (AR)-specific and tissue-specific regulation and is considered a promising candidate for gene therapy treatment of advanced prostate cancer. To characterize the determinants of chromatin specificity of the PB promoter with the AR we initially investigated the in vitro interactions of recombinant AR DNA binding domain (AR-DBD) with reconstituted nucleosomes incorporating the proximal PB promoter (nucleotides -268 to -76). We demonstrate that a DNA fragment of this promoter region exhibits strong nucleosome positioning. The phased DNA sequence protected by the histone octamer includes four androgen receptor response elements (AREs) which are arranged as two sets of class I and class II sites spaced approximately 90bp apart. Class I AREs form classical contacts with the AR, whereas class II AREs contain atypical binding sequences and have been shown to stabilize AR binding to adjacent class I sites, resulting in synergistic transcriptional activation and increased hormone sensitivity. We used DNase 1 footprinting and electrophoretic mobility shift assays (EMSA) to show that the AR-DBD binds to its cognate sequences independently of their nucleosomal organization. In addition, we show that the ability of the AR-DBD to interact with the nucleosomal PB promoter is not affected by histone acetylation. Thus the AR-DBD is able to bind to its cognate sequences within the PB promoter in a way that is indifferent to the presence or absence of histones and nucleosomal structure.
Collapse
Affiliation(s)
- Allison H Maffey
- Department of Biochemistry and Microbiology, University of Victoria, P.O. Box 3055, Petch Building, Victoria, BC, Canada V8W 3P6
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Stecová J, Mehnert W, Blaschke T, Kleuser B, Sivaramakrishnan R, Zouboulis CC, Seltmann H, Korting HC, Kramer KD, Schäfer-Korting M. Cyproterone Acetate Loading to Lipid Nanoparticles for Topical Acne Treatment: Particle Characterisation and Skin Uptake. Pharm Res 2007; 24:991-1000. [PMID: 17372681 DOI: 10.1007/s11095-006-9225-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Accepted: 12/22/2006] [Indexed: 10/23/2022]
Abstract
PURPOSE Topical cyproterone acetate (CPA) treatment of skin diseases should reduce side effects currently excluding the use in males and demanding contraceptive measures in females. To improve skin penetration of the poorly absorbed drug, we intended to identify the active moiety and to load it to particulate carrier systems. MATERIALS AND METHODS CPA metabolism in human fibroblasts, keratinocytes and a sebocyte cell line as well as androgen receptor affinity of native CPA and the hydrolysis product cyproterone were determined. CPA 0.05% loaded solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC), a nanoemulsion and micropheres were characterized for drug-particle interaction and CPA absorption using human skin ex-vivo. RESULTS Native CPA proved to be the active agent. Application of CPA attached to SLN increased skin penetration at least four-fold over the uptake from cream and nanoemulsion. Incorporation into the lipid matrix of NLC and microspheres resulted in a 2-3-fold increase in CPA absorption. Drug amounts within the dermis were low with all preparations. No difference was seen in the penetration into intact and stripped skin. CONCLUSION With particulate systems topical CPA treatment may be an additional therapeutic option for acne and other diseases of the pilosebaceous unit.
Collapse
Affiliation(s)
- Jana Stecová
- Institut für Pharmazie, Freie Universität Berlin, Königin-Luise-Strasse 2-4, D-14195, Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Ricciardelli C, Choong CS, Buchanan G, Vivekanandan S, Neufing P, Stahl J, Marshall VR, Horsfall DJ, Tilley WD. Androgen receptor levels in prostate cancer epithelial and peritumoral stromal cells identify non-organ confined disease. Prostate 2005; 63:19-28. [PMID: 15378523 DOI: 10.1002/pros.20154] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Although up to 30% of men who undergo radical prostatectomy for clinically organ-confined prostate cancer will relapse with disseminated disease, currently it is not possible to predict these patients. METHODS Androgen receptor (AR) immunoreactivity in stromal and epithelial compartments of tumor foci was evaluated by video image analysis in 53 radical prostatectomy specimens. Kaplan-Meier and Cox Regression analyses were used to determine whether AR immunostaining was related to rate and risk of relapse, respectively. RESULTS Ninety-eight percent (52/53) of the tumors contained AR positive malignant epithelial cells. Kaplan-Meier analysis indicated that patients with high AR levels (>64% AR positive nuclear area) in the malignant epithelial cells or low AR levels (<or=45% AR positive nuclear area) in the peritumoral stroma cells, were more likely to relapse earlier following radical prostatectomy. The shortest time to relapse and the highest relapse rate was for patients with both high AR in the malignant epithelial cells and low AR in the peritumoral stromal cells. CONCLUSIONS These findings suggest that AR is an important determinant of disease relapse in early stage prostate cancer, and that altered AR levels in the malignant epithelial cells or in the peritumoral stroma is indicative of non-organ confined prostate cancer.
Collapse
Affiliation(s)
- Carmela Ricciardelli
- Dame Roma Mitchell Cancer Research Laboratories, Hanson Institute, University of Adelaide, Adelaide, SA, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Shaffer PL, Jivan A, Dollins DE, Claessens F, Gewirth DT. Structural basis of androgen receptor binding to selective androgen response elements. Proc Natl Acad Sci U S A 2004; 101:4758-63. [PMID: 15037741 PMCID: PMC387321 DOI: 10.1073/pnas.0401123101] [Citation(s) in RCA: 270] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Steroid receptors bind as dimers to a degenerate set of response elements containing inverted repeats of a hexameric half-site separated by 3 bp of spacer (IR3). Naturally occurring selective androgen response elements have recently been identified that resemble direct repeats of the hexameric half-site (ADR3). The 3D crystal structure of the androgen receptor (AR) DNA-binding domain bound to a selective ADR3 reveals an unexpected head-to-head arrangement of the two protomers rather than the expected head-to-tail arrangement seen in nuclear receptors bound to response elements of similar geometry. Compared with the glucocorticoid receptor, the DNA-binding domain dimer interface of the AR has additional interactions that stabilize the AR dimer and increase the affinity for nonconsensus response elements. This increased interfacial stability compared with the other steroid receptors may account for the selective binding of AR to ADR3 response elements.
Collapse
Affiliation(s)
- Paul L Shaffer
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
8
|
Dong Y, Roberge JY, Wang Z, Wang X, Tamasi J, Dell V, Golla R, Corte JR, Liu Y, Fang T, Anthony MN, Schnur DM, Agler ML, Dickson JK, Lawrence RM, Prack MM, Seethala R, Feyen JHM. Characterization of a new class of selective nonsteroidal progesterone receptor agonists. Steroids 2004; 69:201-17. [PMID: 15072922 DOI: 10.1016/j.steroids.2003.12.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2003] [Revised: 11/21/2003] [Accepted: 12/04/2003] [Indexed: 11/28/2022]
Abstract
The identification of a new series of selective nonsteroidal progesterone receptor (PR) agonists is reported. Using a high-throughput screening assay based on the measurement of transactivation of a mouse mammary tumor virus promoter-driven luciferase reporter (MMTV-Luc) in human breast cancer T47D cells, a benzimidazole-2-thione analog was identified. Compound 1 showed an apparent EC50 of 53 nM and efficacy of 93% with respect to progesterone. It binds to PR with high affinity (Ki nM), but had no or very low affinity for other steroid hormone receptors. Structure-activity relationship studies of a series of benzimidazole-2-thione analogs revealed critical positions for high PR binding affinity and transactivation potency as well as receptor selectivity, as exemplified by 25. Compound 25 binds to human PR with high affinity (Ki nM) and had at least > 1000-fold selectivity for PR versus other steroid receptors. Molecular modeling studies suggested that these agonists overlap favorably with progesterone in the ligand-binding domain of PR. In T47D cells, compound 25 acted as a full agonist in the MMTV-Luc reporter assay, as well as in the induction of endogenous alkaline phosphatase activity with apparent EC50 values of 4 and 9 nM, respectively. In the immature rat model, compound 25 provided a significant suppression of estrogen-induced endometrium hypertrophy as measured by luminal epithelial height. In contrast, compound 25 was inactive in the luteinizing hormone release assay in young ovariectomized rats. These benzimidazole-2-thione analogs constitute a new series of nonsteroidal PR agonists with an excellent steroid receptor selectivity profile. The differential activities observed in the in vivo progestogenic assays in rat models suggest that these analogs can act as selective PR modulators.
Collapse
Affiliation(s)
- Yu Dong
- Department of Metabolic and Cardiovascular Drug Discovery, Bristol-Myers Squibb Company, Pennington, NJ 08543, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Haelens A, Verrijdt G, Callewaert L, Christiaens V, Schauwaers K, Peeters B, Rombauts W, Claessens F. DNA recognition by the androgen receptor: evidence for an alternative DNA-dependent dimerization, and an active role of sequences flanking the response element on transactivation. Biochem J 2003; 369:141-51. [PMID: 12350223 PMCID: PMC1223063 DOI: 10.1042/bj20020912] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2002] [Revised: 08/23/2002] [Accepted: 09/26/2002] [Indexed: 12/17/2022]
Abstract
The androgen receptor has a subset of target DNA sequences, which are not recognized by any other steroid receptors. The androgen selectivity of these sequences was proposed to be the consequence of the ability of the androgen receptor to dimerize on direct repeats of 5'-TGTTCT-3'-like sequences. This is in contrast with the classical non-selective elements consisting of inverted repeats of the 5'-TGTTCT-3' elements separated by three nucleotides and which are recognized by other steroid receptors in addition to the androgen receptor. We demonstrate that while the DNA-binding domain of the oestrogen receptor is unable to dimerize on direct repeats, dimeric binding can be rescued by replacing the second Zn finger and part of the hinge region by the corresponding fragment of the androgen receptor, but not the glucocorticoid receptor. In this study, we investigate the androgen receptor binding to all natural androgen-selective response elements described so far. We show that a 12-amino acid C-terminal extension of the DNA-binding domain is required for high-affinity binding of the androgen receptor to all these elements. For one androgen-specific low-affinity binding site, the flanking sequences do not contribute to the in vitro affinity of the androgen receptor DNA-binding domain. Surprisingly, however, they control the transcriptional activity of the androgen receptor in transient transfection experiments. In conclusion, we give evidence that the alternative DNA-dependent dimerization of the androgen receptor on direct repeats is a general mechanism for androgen specificity in which the second Zn finger and hinge region are involved. In addition, the sequences flanking an androgen-response element can control the activity of the androgen receptor.
Collapse
Affiliation(s)
- Annemie Haelens
- Division of Biochemistry, Faculty of Medicine, Campus Gasthuisberg, University of Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Martinez ED, Danielsen M. Loss of androgen receptor transcriptional activity at the G(1)/S transition. J Biol Chem 2002; 277:29719-29. [PMID: 12055183 DOI: 10.1074/jbc.m112134200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Androgens are essential for the differentiation, growth, and maintenance of male-specific organs. The effects of androgens in cells are mediated by the androgen receptor (AR), a member of the nuclear receptor superfamily of transcription factors. Recently, transient transfection studies have shown that overexpression of cell cycle regulatory proteins affects the transcriptional activity of the AR. In this report, we characterize the transcriptional activity of endogenous AR through the cell cycle. We demonstrate that in G0, AR enhances transcription from an integrated steroid-responsive mouse mammary tumor virus promoter and also from an integrated androgen-specific probasin promoter. This activity is strongly reduced or abolished at the G(1)/S boundary. In S phase, the receptor regains activity, indicating that there is a transient regulatory event that inactivates the AR at the G(1)/S transition. This regulation is specific for the AR, since the related glucocorticoid receptor is transcriptionally active at the G(1)/S boundary. Not all of the effects of androgens are blocked, however, since androgens retain the ability to increase AR protein levels. The transcriptional inactivity of the AR at the G(1)/S junction coincides with a decrease in AR protein level, although activity can be partly rescued without an increase in receptor. Inhibition of histone deacetylases brings about this partial restoration of AR activity at the G(1)/S boundary, demonstrating the involvement of acetylation pathways in the cell cycle regulation of AR transcriptional activity. Finally, a model is proposed that explains the inactivity of the AR at the G(1)/S transition by integrating receptor levels, the action of cell cycle regulators, and the contribution of histone acetyltransferase-containing coactivators.
Collapse
Affiliation(s)
- Elisabeth D Martinez
- Department of Biochemistry and Molecular Biology, Georgetown University School of Medicine, Washington, D. C. 20007, USA
| | | |
Collapse
|
11
|
Deroo BJ, Archer TK. Differential activation of the IkappaBalpha and mouse mammary tumor virus promoters by progesterone and glucocorticoid receptors. J Steroid Biochem Mol Biol 2002; 81:309-17. [PMID: 12361720 DOI: 10.1016/s0960-0760(02)00072-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The glucocorticoid and progesterone receptors (GR and PR) are structurally homologous and bind a common hormone response element (HRE). The mechanisms by which receptors activate specific promoters when multiple steroids are present in a cell is a critical question in endocrinology. To investigate how co-existing steroid receptors regulate gene transcription, we have compared two hormone-responsive promoters in T47D/A1-2 human breast cancer cells expressing both the GR and PR. The promoters chosen were those for the mouse mammary tumor virus (MMTV) and the gene for IkappaBalpha, the inhibitor of the ubiquitous transcription factor, nuclear factor kappa B (NFkappaB). Several differences between glucocorticoid and progestin activation of the IkappaBalpha and MMTV promoters were revealed. Both steroids activated the endogenous IkappaBalpha promoter, while only glucocorticoids activated a stably integrated MMTV promoter. In combination, progestins enhanced glucocorticoid activation of IkappaBalpha, but antagonized glucocorticoid activation of MMTV. These differences in steroid receptor competition were further demonstrated when levels of the PR were reduced by prolonged treatment with progestin. Under these conditions, the PR no longer competes effectively with the GR for activation of the MMTV promoter. However, on the IkappaBalpha promoter, the GR and PR still activate the promoter in a cooperative fashion. Another difference between the two promoters is their chromatin structure. In this cell line, the MMTV promoter chromatin is "closed" and insensitive to restriction enzyme cleavage, while the IkappaBalpha promoter is "open." Using PR antagonists, we demonstrate that at least one cofactor complex, the BRG-1 chromatin remodeling complex, differentially contributes to activation of both promoters.
Collapse
MESH Headings
- Animals
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Chloramphenicol O-Acetyltransferase/metabolism
- Chromatin/genetics
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Dexamethasone/pharmacology
- Estrenes/pharmacology
- Furans/pharmacology
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- I-kappa B Proteins
- Mammary Tumor Virus, Mouse/genetics
- Mammary Tumor Virus, Mouse/metabolism
- Mice
- NF-KappaB Inhibitor alpha
- NF-kappa B/antagonists & inhibitors
- NF-kappa B/genetics
- Plasmids/genetics
- Polymerase Chain Reaction
- Progestins/pharmacology
- RNA, Viral/metabolism
- Receptors, Glucocorticoid/antagonists & inhibitors
- Receptors, Glucocorticoid/metabolism
- Receptors, Progesterone/antagonists & inhibitors
- Receptors, Progesterone/metabolism
- Regulatory Sequences, Nucleic Acid
- Transcriptional Activation
- Transfection
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Bonnie J Deroo
- Chromatin and Gene Expression Section, National Institute of Environmental Health Sciences, National Institutes of Health, 111 Alexander Drive, MD 27709, USA
| | | |
Collapse
|
12
|
Bledsoe RK, Montana VG, Stanley TB, Delves CJ, Apolito CJ, McKee DD, Consler TG, Parks DJ, Stewart EL, Willson TM, Lambert MH, Moore JT, Pearce KH, Xu HE. Crystal structure of the glucocorticoid receptor ligand binding domain reveals a novel mode of receptor dimerization and coactivator recognition. Cell 2002; 110:93-105. [PMID: 12151000 DOI: 10.1016/s0092-8674(02)00817-6] [Citation(s) in RCA: 603] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Transcriptional regulation by the glucocorticoid receptor (GR) is mediated by hormone binding, receptor dimerization, and coactivator recruitment. Here, we report the crystal structure of the human GR ligand binding domain (LBD) bound to dexamethasone and a coactivator motif derived from the transcriptional intermediary factor 2. Despite structural similarity to other steroid receptors, the GR LBD adopts a surprising dimer configuration involving formation of an intermolecular beta sheet. Functional studies demonstrate that the novel dimer interface is important for GR-mediated activation. The structure also reveals an additional charge clamp that determines the binding selectivity of a coactivator and a distinct ligand binding pocket that explains its selectivity for endogenous steroid hormones. These results establish a framework for understanding the roles of protein-hormone and protein-protein interactions in GR signaling pathways.
Collapse
Affiliation(s)
- Randy K Bledsoe
- Gene Expression and Protein Biochemistry, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Barbulescu K, Geserick C, Schüttke I, Schleuning WD, Haendler B. New androgen response elements in the murine pem promoter mediate selective transactivation. Mol Endocrinol 2001; 15:1803-16. [PMID: 11579212 DOI: 10.1210/mend.15.10.0708] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The Pem homeobox transcription factor is expressed under androgen control in the testis and epididymis. It is also transcribed in the ovary, muscle, and placenta. The mouse Pem gene promoter was cloned and sequenced. It was analyzed in transactivation tests using CV-1 and PC-3 cells expressing the AR and found to be strongly stimulated by androgens. EMSAs and mutational analysis of the Pem promoter allowed the identification of two functional androgen response elements named ARE-1 and ARE-2. They both differed from the consensus semipalindromic steroid response element and exhibited characteristics of direct repeats of the TGTTCT half-site. Unlike the steroid response element, both Pem androgen response elements were selectively responsive to androgen stimulation. Specific mutations in the left half-site of Pem ARE-1 and ARE-2, but not of the steroid response element, were still compatible with AR binding in the EMSA. In addition, Pem ARE-1, but not ARE-2 or the steroid response element, showed some flexibility with regard to spacing between half-sites. These results strongly suggest that the AR interacts differently with direct repeats than with inverted repeats, potentially leading to cis element-driven selective properties. Thus, the existence of several classes of DNA response elements might be an essential feature of differential androgen regulation.
Collapse
Affiliation(s)
- K Barbulescu
- Research Laboratories of Schering AG, D-13342 Berlin, Germany
| | | | | | | | | |
Collapse
|
14
|
List HJ, Reiter R, Singh B, Wellstein A, Riegel AT. Expression of the nuclear coactivator AIB1 in normal and malignant breast tissue. Breast Cancer Res Treat 2001; 68:21-8. [PMID: 11678305 DOI: 10.1023/a:1017910924390] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The gene of the nuclear receptor coactivator AIB1 (amplified in breast cancer 1) is amplified in breast cancer cell lines as well as in breast tumor tissues. AIB1 mRNA is often highly expressed (>60%) in primary breast tumors and it has been shown that AIB1 enhances estrogen and progesterone dependent transcription in vitro. Therefore, it has been postulated that AIB1 contributes to the development of breast cancer. However, to date, it has not been shown that AIB1 amplification and overexpression correlates with elevated protein levels in breast cancer tissues. In this study we analyzed protein levels of AIB1 in normal and breast tumor tissues by immunohistochemistry. We compared 41 human breast tumor tissues with 24 normal breast tissue samples and found that AIB1 stained in the nuclei of approximately 46% of the tumors and 30% of the normal tissues. Overall, AIB1 protein levels were significantly higher in tumor tissue than in normal tissue and the highest levels of nuclear staining were found exclusively in breast tumor tissues in 9.8% of the cases. These data suggest that increased AIB1 mRNA expression does not always translate into elevated protein levels and that AIB1 most likely will be relevant to the etiology of a subset of about 10% of breast carcinomas.
Collapse
MESH Headings
- Adult
- Aged
- Blotting, Northern
- Breast/cytology
- Breast/metabolism
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/metabolism
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Lobular/genetics
- Carcinoma, Lobular/metabolism
- Carcinoma, Lobular/pathology
- Case-Control Studies
- Cell Line
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Immunohistochemistry
- In Situ Hybridization
- Middle Aged
- Neoplasms, Hormone-Dependent/genetics
- Neoplasms, Hormone-Dependent/metabolism
- Neoplasms, Hormone-Dependent/pathology
- Nuclear Receptor Coactivator 3
- RNA, Messenger/metabolism
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- H J List
- Department of Oncology, Vincent T. Lombardi Cancer Center, Georgetown University, Washington, DC 20007, USA
| | | | | | | | | |
Collapse
|
15
|
Whitacre DC, Karnas KJ, Miesfeld RL. Analysis of glucocorticoid and androgen receptor gene fusions delineates domains required for transcriptional specificity. Endocrine 2001; 15:111-8. [PMID: 11572317 DOI: 10.1385/endo:15:1:111] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Androgen receptor (AR) and glucocorticoid receptor (GR) influence distinct physiologic responses in steroid-responsive cells despite their shared ability to selectively bind in vitro to the same canonical DNA sequence (TGTTCT). While the DNA-binding domains (DBDs) of these receptors are highly conserved, the amino N-terminal domain (NTD) and hormone-binding domain (HBD) are evolutionarily divergent. To determine the relative contribution of these functional domains to steroid-specific effects in vivo, we constructed a panel of AR/GR gene fusions by interchanging the NTD, DBD, and HBD regions of each receptor and measured transcriptional regulatory activities in transfected kidney and prostate cell lines. We found that GR was approximately 10-fold more active than AR when tested with the mouse mammary tumor virus promoter, and that this difference in activity was primarily owing to sequence divergence in the NTDs. We also tested transcriptional activation of the androgen-dependent rat probasin promoter, and in this case, AR was at least twofold more active than GR. Analysis of the chimeric receptors revealed that this difference mapped to the DBD region of the two receptors. Transcriptional repression functions of the wild-type and chimeric receptors were measured using an activator protein 1 (AP-1) transrepression assay and identified the GR HBD as a more potent transrepressor of AP-1 transcriptional activation than the AR HBD. Taken together, our analyses reveal that evolutionary sequence divergence between AR and GR functional domains results in unique promoter-specific activities within biologic systems in which both AR and GR are normally expressed.
Collapse
MESH Headings
- Amino Acid Sequence
- Androgen-Binding Protein/genetics
- Animals
- Binding Sites
- DNA/metabolism
- Humans
- Male
- Mammary Tumor Virus, Mouse/genetics
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Peptide Fragments/chemistry
- Peptide Fragments/genetics
- Promoter Regions, Genetic
- Prostate/chemistry
- Rats
- Receptors, Androgen/chemistry
- Receptors, Androgen/genetics
- Receptors, Androgen/physiology
- Receptors, Glucocorticoid/chemistry
- Receptors, Glucocorticoid/genetics
- Receptors, Glucocorticoid/physiology
- Recombinant Fusion Proteins
- Structure-Activity Relationship
- Transcription Factor AP-1/metabolism
- Transcription, Genetic
- Transfection
Collapse
Affiliation(s)
- D C Whitacre
- Department of Molecular and Cellular Biology, University of Arizona, Tucson 85721, USA
| | | | | |
Collapse
|
16
|
Reid KJ, Hendy SC, Saito J, Sorensen P, Nelson CC. Two classes of androgen receptor elements mediate cooperativity through allosteric interactions. J Biol Chem 2001; 276:2943-52. [PMID: 11056175 DOI: 10.1074/jbc.m009170200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Genes uniquely regulated by the androgen receptor (AR) typically contain multiple androgen response elements (AREs) that in isolation are of low DNA binding affinity and transcriptional activity. However, specific combinations of AREs in their native promoter context result in highly cooperative DNA binding by AR and high levels of transcriptional activation. We demonstrate that the natural androgen-regulated promoters of prostate specific antigen and probasin contain two classes of AREs dictated by their primary nucleotide sequence that function to mediate cooperativity. Class I AR-binding sites display conventional guanine contacts. Class II AR-binding sites have distinctive atypical sequence features and, upon binding to AR, the DNA structure is dramatically altered through allosteric interactions with the receptor. Class II sites stabilize AR binding to adjacent class I sites and result in synergistic transcriptional activity and increased hormone sensitivity. We have determined that the specific nucleotide variation within the AR binding sites dictate differential functions to the receptor. We have identified the role of individual nucleotides within class II sites and predicted consensus sequences for class I and II sites. Our data suggest that this may be a universal mechanism by which AR achieved unique regulation of target genes through complex allosteric interactions dictated by primary binding sequences.
Collapse
Affiliation(s)
- K J Reid
- Prostate Centre at Vancouver General Hospital, Vancouver, British Columbia V6H 3Z6, Canada
| | | | | | | | | |
Collapse
|
17
|
List HJ, Smith CL, Martinez E, Harris VK, Danielsen M, Riegel AT. Effects of antiandrogens on chromatin remodeling and transcription of the integrated mouse mammary tumor virus promoter. Exp Cell Res 2000; 260:160-5. [PMID: 11010820 DOI: 10.1006/excr.2000.5018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Inhibition of the ligand-activated androgen receptor (AR) by antiandrogens plays an important role in the treatment of various hyperandrogenic disorders including prostate cancer. However, the molecular mechanisms of antiandrogen activity in vivo remain unclear. In this study we analyzed the effects of cyproterone acetate (CPA), flutamide (F), and hydroxyflutamide (OHF) on transcriptional activation and chromatin remodeling of the genomically integrated mouse mammary tumor virus (MMTV) promoter. This promoter has provided an excellent model system to study the impact of steroid hormones on transcriptional activation in the context of a defined chromatin structure. The MMTV hormone response element is positioned on a phased nucleosome, which becomes remodeled in response to steroids. We utilized this model system in mouse L-cell fibroblasts that contain a stably integrated MMTV promoter. In these cells, dihydrotestosterone (DHT) induced a large increase of AR protein levels that correlated with transcriptional activation and chromatin remodeling of the MMTV promoter. Coadministration of DHT and CPA or DHT and OHF in these cells inhibited the increase of AR levels, which resulted in a strong blockage of transcriptional activation and chromatin remodeling of the MMTV promoter. In contrast, F had no significant influence on these activities. We conclude that a major portion of the antiandrogenic effects of CPA and OHF in vivo are mediated by the reduction of AR levels.
Collapse
Affiliation(s)
- H J List
- Departments of Oncology, Georgetown University, Washington, D.C 20007, USA
| | | | | | | | | | | |
Collapse
|
18
|
List HJ, Smith CL, Rodriguez O, Danielsen M, Riegel AT. Inhibition of histone deacetylation augments dihydrotestosterone induction of androgen receptor levels: an explanation for trichostatin A effects on androgen-induced chromatin remodeling and transcription of the mouse mammary tumor virus promoter. Exp Cell Res 1999; 252:471-8. [PMID: 10527637 DOI: 10.1006/excr.1999.4638] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The integrated mouse mammary tumor virus (MMTV) promoter has provided an excellent model system with which to study the impact of steroid hormones on transcriptional activation in the context of a defined chromatin structure. The hormone response element (HRE) of this promoter is positioned on a phased nucleosome which becomes remodeled in response to steroids. One possible mechanism of chromatin remodeling by steroid receptors could involve recruitment of coactivators which alter the histone acetylation status of the HRE nucleosome. To examine how the androgen receptor (AR) influences transcription and chromatin remodeling and to assess whether changes in histone acetylation are involved in these effects, we determined whether the specific histone deacetylase inhibitor trichostatin A (TSA) influenced basal- and androgen-mediated transcriptional activation of the integrated MMTV promoter in the mouse L-cell fibroblast cell line 29+. These cells harbor the MMTV promoter integrated in the genome and express only one steroid hormone receptor subtype, i.e., the AR. Surprisingly, we found that treatment of the cells with TSA alone had virtually no effect on transcription and chromatin remodeling of the MMTV promoter nor on AR levels. However, pretreatment with TSA augmented the DHT effects on all three parameters. These results suggest that histone acetylation changes at the MMTV B nucleosome per se are not alone sufficient to induce chromatin remodeling and subsequent induction of MMTV transcription. Rather, the histone deacetylase inhibitor TSA exerts a portion of its effect on MMTV chromatin remodeling and transcriptional activation indirectly through increases in AR levels.
Collapse
Affiliation(s)
- H J List
- Vincent T. Lombardi Cancer Center, Georgetown University, Washington, DC, 20007, USA
| | | | | | | | | |
Collapse
|