1
|
Abstract
Amphibians have been widely used to study developmental biology due to the fact that embryo development takes place independently of the maternal organism and that observations and experimental approaches are easy. Some amphibians like Xenopus became model organisms in this field. In the first part of this article, the differentiation of the gonads in amphibians and the mechanisms governing this process are reviewed. In the second part, the state of the art about sex reversal, which can be induced by steroid hormones in general and by temperature in some species, is presented. Also information about pollutants found in the environment that could interfere with the development of the amphibian reproductive apparatus or with their reproductive physiology is given. Such compounds could play a part in the amphibian decline, since in the wild, many amphibians are endangered species.
Collapse
Affiliation(s)
- Stéphane Flament
- Université de Lorraine, CRAN, UMR 7039, and CNRS, CRAN, UMR 7039, Vandœuvre-lès-Nancy, France
| |
Collapse
|
2
|
Huang TL, Pian JP, Pan BT. Oncogenic Ras suppresses Cdk1 in a complex manner during the incubation of activated Xenopus egg extracts. Arch Biochem Biophys 2013; 532:61-72. [PMID: 23376039 DOI: 10.1016/j.abb.2013.01.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 01/12/2013] [Accepted: 01/18/2013] [Indexed: 12/30/2022]
Abstract
The activity of Cdk1 is the driving force for entry into M-phase during the cell cycle. Activation of Cdk1 requires synthesis and accumulation of cyclin B, binding of cyclin B to Cdk1, and removal of the inhibitory tyr-15-Cdk1 phosphorylation. It was previously shown that oncogenic Ras suppresses Cdk1 activation during the incubation of activated Xenopus egg extracts. However, how oncogenic Ras suppresses Cdk1 remained unclear. Using the histone H1 kinase assay to follow Cdk1 activity and Western blot analysis to assess levels of both cyclin B2 and phosphorylated-tyr-15-Cdk1, how oncogenic Ras suppresses Cdk1 is studied. The results indicate that oncogenic Ras suppresses Cdk1 via induction of persistent phosphorylation of tyr-15-Cdk1. Interestingly, the results reveal that, compared with cyclin B2 in control activated egg extracts, which increased, peaked and then declined during the incubation, oncogenic Ras induced continuous accumulation of cyclin B2. The results also indicate that oncogenic Ras induces continuous accumulation of cyclin B2 primarily through stabilization of cyclin B2, which is mediated by constitutive activation of the Raf-Mek-Erk-p90(rsk) pathway. Taken together, these results indicate that oncogenic Ras suppresses Cdk1 in a complex manner: It induces continuous accumulation of cyclin B2, but also causes persistent inhibitory phosphorylation of tyr-15-Cdk1.
Collapse
Affiliation(s)
- Tun-Lan Huang
- Graduate Center for Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | | | | |
Collapse
|
3
|
Jeseta M, Marin M, Tichovska H, Melicharova P, Cailliau-Maggio K, Martoriati A, Lescuyer-Rousseau A, Beaujois R, Petr J, Sedmikova M, Bodart JF. Nitric oxide-donor SNAP induces Xenopus eggs activation. PLoS One 2012; 7:e41509. [PMID: 22911804 PMCID: PMC3402422 DOI: 10.1371/journal.pone.0041509] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 06/22/2012] [Indexed: 12/11/2022] Open
Abstract
Nitric oxide (NO) is identified as a signaling molecule involved in many cellular or physiological functions including meiotic maturation and parthenogenetic activation of mammalian oocytes. We observed that nitric oxide donor SNAP was potent to induce parthenogenetic activation in Xenopus eggs. NO-scavenger CPTIO impaired the effects of SNAP, providing evidence for the effects of the latter to be specific upon NO release. In Xenopus eggs, SNAP treatment induced pigment rearrangement, pronucleus formation and exocytosis of cortical granules. At a biochemical level, SNAP exposure lead to MAPK and Rsk inactivation within 30 minutes whereas MPF remained active, in contrast to calcium ionophore control where MPF activity dropped rapidly. MAPK inactivation could be correlated to pronuclear envelope reformation observed. In SNAP-treated eggs, a strong increase in intracellular calcium level was observed. NO effects were impaired in calcium-free or calcium limited medium, suggesting that that parthenogenetic activation of Xenopus oocytes with a NO donor was mainly calcium-dependent.
Collapse
Affiliation(s)
- Michal Jeseta
- Veterinary Research Institute, Department of Genetics and Reproduction, Brno, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Brahmaraju M, Bhagya KP, Titus S, Sebastian A, Devi AN, Laloraya M, Kumar PG. AIRE1A might be involved in cyclin B2 degradation in testicular lysates. Biochem Cell Biol 2011; 89:411-22. [PMID: 21819345 DOI: 10.1139/o11-029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The autoimmune regulator gene Aire shows predominant expression in thymus and other immunologically relevant tissues, and is assigned the major function of programming autoreactive T-cell deletion. However, the expression of this gene in tissues outside the immune system raises a question about its possible function beyond the T-cell deletion dogma. We detected Aire in mouse testis, and the expression of AIRE protein was remarkably high in postmeiotic germ cells. Sequencing results indicate that testis expressed Aire variant 1a. AIRE could be detected in spermatozoa, with heavy localization on the principal acrosomal domains. Mouse oocytes stained negatively for AIRE before fertilization, but stained positively for AIRE 30 min after fertilization. In the zygote, the levels of AIRE correlated negatively with cyclin B2 levels. Goat testicular lysates spiked with recombinant human AIRE exhibited augmented cyclin B2 degradation in the presence of protease inhibitors, which was inhibited by MG-132, indicating the operation of proteasomal pathways. Thus, this study identifies a correlation between the presence of AIRE and proteasomal breakdown of cyclin B2, which leads us to speculate that cyclin B2 could be a target of AIRE's E3-ubiquitin ligase activity.
Collapse
Affiliation(s)
- M Brahmaraju
- Division of Molecular Reproduction, Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Poojappura, Trivandrum, Kerala, India
| | | | | | | | | | | | | |
Collapse
|
5
|
Russo C, Beaujois R, Bodart JF, Blossey R. Kicked by Mos and tuned by MPF-the initiation of the MAPK cascade in Xenopus oocytes. HFSP JOURNAL 2009; 3:428-40. [PMID: 20514133 DOI: 10.2976/1.3265771] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Accepted: 09/24/2009] [Indexed: 11/19/2022]
Abstract
The mitogen-activated protein kinase (MAPK) cascade is a paradigmatic signaling cascade, which plays a crucial role in many aspects of cellular events. The main initiator of the cascade in Xenopus oocytes is the oncoprotein Mos. After activation of the cascade, Mos activity is stabilized by MAPK via a feedback loop. Mos concentration levels are, however, not controlled by MAPK alone. In this paper we show, by imposing either a sustained or a peaked activity of M-phase promoting factor (MPF) (Cdc2-cyclin B), how the latter regulates the dynamics of Mos. Our experiments are supported by a detailed kinetic model for the Mos-MPF-MAPK network, which takes into account the three different phosphorylation states of Mos and, as a consequence, allows us to determine the time evolution of Mos under control of MPF. Our work opens a path toward a more complete and biologically realistic quantitative understanding of the dynamic interdependence of Mos and MPF in Xenopus oocytes.
Collapse
|
6
|
Dehennaut V, Lefebvre T, Leroy Y, Vilain JP, Michalski JC, Bodart JF. Survey of O-GlcNAc level variations in Xenopus laevis from oogenesis to early development. Glycoconj J 2008; 26:301-11. [PMID: 18633701 DOI: 10.1007/s10719-008-9166-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Revised: 06/13/2008] [Accepted: 06/20/2008] [Indexed: 02/03/2023]
Abstract
Little is known about the impact of O-linked-N-acetylglucosaminylation (O-GlcNAc) in gametes production and developmental processes. Here we investigated changes in O-GlcNAc, UDP-GlcNAc and O-GlcNAc transferase (OGT) levels in Xenopus laevis from oogenesis to embryo hatching. We showed that in comparison to stage VI, stages I-V oocytes expressed higher levels of O-GlcNAc correlating changes in OGT expression, but not in UDP-GlcNAc pools. Upon progesterone stimulation, an O-GlcNAc level burst occurred during meiotic resumption long before MPF and Mos-Erk2 pathways activations. Finally, we observed high levels of O-GlcNAc, UDP-GlcNAc and OGT during segmentation that decreased concomitantly at the onset of gastrulation. Nevertheless, no correlation between the glycosylation, the nucleotide-sugar and the glycosyltransferase was observed after neurulation. Our results show that O-GlcNAc is regulated throughout oogenesis and development within a complex pattern and suggest that dysfunctions in the dynamics of this glycosylation could lead to developmental abnormalities.
Collapse
Affiliation(s)
- Vanessa Dehennaut
- UMR-CNRS 8576, Unité de Glycobiologie Structurale et Fonctionnelle, IFR 147, USTL, 59655, Villeneuve d'Ascq, France
| | | | | | | | | | | |
Collapse
|
7
|
Naruse K, Quan YS, Kim BC, Lee JH, Park CS, Jin DI. Brief exposure to cycloheximide prior to electrical activation improves in vitro blastocyst development of porcine parthenogenetic and reconstructed embryos. Theriogenology 2007; 68:709-16. [PMID: 17604096 DOI: 10.1016/j.theriogenology.2007.05.065] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Accepted: 05/31/2007] [Indexed: 11/21/2022]
Abstract
To investigate the effects of cycloheximide exposure before electrical activation of in vitro-matured porcine oocytes on the subsequent development of parthenogenetic embryos, cumulus-free mature oocytes were exposed to NCSU-23 medium containing cycloheximide (10 microg/mL) for 0, 5, 10, 20, 30 and 60 min, activated by electrical pulse treatment (1.5 kV/cm, 100 micros) and then cultured in PZM-3 for 7 days. To evaluate the effects of cycloheximide on the activation of nuclear transfer embryos, reconstructed embryos were electrically activated by two DC pulses (1.2 kV/cm, 30 micros) before or after exposure to cycloheximide. The reconstructed embryos were allocated into four groups: electrical pulse treatment alone (Ele); exposure to cycloheximide for 10 min followed by electrical activation (CHX+Ele); electrical activation followed by exposure to cycloheximide for 6h (Ele+CHX); exposure to cycloheximide for 10 min, followed by electrical activation and a further exposure to cycloheximide for 6h (CHX+Ele+CHX). The activated reconstructed embryos were cultured in PZM-3 for 6 days. Oocytes treated with 10 min exposure to cycloheximide followed by electrical activation had a significantly higher percentage of blastocyst formation compared to control oocytes and oocytes exposed for > or =30 min. In the reconstructed embryos, the blastocyst development rates of embryos exposed to cycloheximide (CHX+Ele, Ele+CHX and CHX+Ele+CHX) were significantly higher than those of the control group (Ele). Among the cycloheximide-treated groups, the CHX+Ele group had increased development rate and total blastocyst cell number, though these values were not significantly different from those observed in the other cycloheximide-treated groups. To evaluate the quality of NT embryos treated with cycloheximide, apoptosis in blastocysts was analyzed by TUNEL assay. The 10 min exposure to cycloheximide prior to electrical activation significantly reduced cell death compared with longer exposure to cycloheximide after electrical fusion. In conclusion, brief exposure to cycloheximide prior to electrical activation may increase the subsequent blastocyst development rates in porcine parthenogenetic and reconstructed embryos.
Collapse
Affiliation(s)
- K Naruse
- Division of Animal Science and Resources, Research Center for Transgenic and Cloned Pigs, Chungnam National University, Daejeon City, South Korea
| | | | | | | | | | | |
Collapse
|
8
|
Bodart JFL, Baert FY, Sellier C, Duesbery NS, Flament S, Vilain JP. Differential roles of p39Mos-Xp42Mpk1 cascade proteins on Raf1 phosphorylation and spindle morphogenesis in Xenopus oocytes. Dev Biol 2005; 283:373-83. [PMID: 15913594 DOI: 10.1016/j.ydbio.2005.04.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2004] [Revised: 04/12/2005] [Accepted: 04/15/2005] [Indexed: 10/25/2022]
Abstract
Fully-grown G2-arrested Xenopus oocytes resume meiosis upon hormonal stimulation. Resumption of meiosis is characterized by germinal vesicle breakdown, chromosome condensation, and organization of a bipolar spindle. These cytological events are accompanied by activation of MPF and the p39(Mos)-MEK1-Xp42(Mpk1)-p90(Rsk) pathways. The latter cascade is activated upon p39(Mos) accumulation. Using U0126, a MEK1 inhibitor, and p39(Mos) antisense morpholino and phosphorothioate oligonucleotides, we have investigated the role of the members of the p39(Mos)-MEK1-Xp42(Mpk1)-p90(Rsk) in spindle morphogenesis. First, we have observed at a molecular level that prevention of p39(Mos) accumulation always led to MEK1 phosphorylation defects, even when meiosis was stimulated through the insulin Ras-dependent pathway. Moreover, we have observed that Raf1 phosphorylation that occurs during meiosis resumption was dependent upon the activity of MEK1 or Xp42(Mpk1) but not p90(Rsk). Second, inhibition of either p39(Mos) accumulation or MEK1 inhibition led to the formation of a cytoplasmic aster-like structure that was associated with condensed chromosomes. Spindle morphogenesis rescue experiments using constitutively active Rsk and purified murine Mos protein suggested that p39(Mos) or p90(Rsk) alone failed to promote meiotic spindle organization. Our results indicate that activation of the p39(Mos)-MEK1-Xp42(Mpk1)-p90(Rsk) pathway is required for bipolar organization of the meiotic spindle at the cortex.
Collapse
Affiliation(s)
- J-F L Bodart
- Laboratoire de Biologie du Développement, UPRES EA 1033, Université des Sciences et Technologies de Lille, SN3, Villeneuve d'Ascq, France.
| | | | | | | | | | | |
Collapse
|
9
|
Lefebvre T, Baert F, Bodart JF, Flament S, Michalski JC, Vilain JP. Modulation of O-GlcNAc glycosylation during Xenopus oocyte maturation. J Cell Biochem 2005; 93:999-1010. [PMID: 15389870 DOI: 10.1002/jcb.20242] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
O-linked N-acetylglucosamine (O-GlcNAc) glycosylation is a post-translational modification, which is believed antagonises phosphorylation. We have studied the O-GlcNAc level during Xenopus oocyte meiotic resumption, taking advantage of the high synchrony of this model which is dependent upon a burst of phosphorylation. Stimulation of immature stage VI oocytes using progesterone was followed by a 4.51 +/- 0.32 fold increase in the GlcNAc content, concomitantly to an increase in phosphorylation, notably on two cytoplasmic proteins of 66 and 97 kDa. The increase of O-GlcNAc for the 97 kDa protein, which we identified as beta-catenin was partly related to its accumulation during maturation, as was demonstrated by the use of the protein synthesis inhibitor--cycloheximide. Microinjection of free GlcNAc, which inhibits O-glycosylated proteins-lectins interactions, delayed the progesterone-induced maturation without affecting the O-GlcNAc content. Our results suggest that O-GlcNAc glycosylation could regulate protein-protein interactions required for the cell cycle kinetic.
Collapse
Affiliation(s)
- Tony Lefebvre
- Unité Mixte de Recherches 8576 du CNRS, Glycobiologie Structurale et Fonctionnelle, IFR 118, USTL, Bâtiment C9, 59655 Villeneuve d'Ascq, France.
| | | | | | | | | | | |
Collapse
|
10
|
Baert F, Bodart JF, Bocquet-Muchembled B, Lescuyer-Rousseau A, Vilain JP. Xp42(Mpk1) activation is not required for germinal vesicle breakdown but for Raf complete phosphorylation in insulin-stimulated Xenopus oocytes. J Biol Chem 2003; 278:49714-20. [PMID: 14507918 DOI: 10.1074/jbc.m308067200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fully grown G2-arrested Xenopus oocytes resume meiosis in vitro upon exposure to hormonal stimulation. Progesterone triggers oocyte meiosis resumption through a Ras-independent pathway that involves a p39Mos-dependent activation of the mitogen-activated protein (MAP) kinases. Insulin also triggers meiosis resumption through a tyrosine kinase receptor that activates a Ras-dependent pathway leading to the MAP kinases activation. Antisense phosphorothioate oligonucleotides were used to prevent p39Mos accumulation and Erk-like Xp42(Mpk1) activation during insulin-induced Xenopus oocytes maturation. In contrast to previous works, prevention of p39Mos-induced activation of Xp42(Mpk1) in insulin-treated oocytes did not inhibit but delayed meiotic resumption, like in progesterone-stimulated oocytes. Activations of Xp42(Mpk1), the unique Erk of the oocyte, and of its downstream target p90Rsk, were impaired and phosphorylation of the MAPKK kinase Raf was partially inhibited. Similarly, oocytes treated with the MEK inhibitor U0126, stimulated by insulin exhibited delayed germinal vesicle breakdown, absence of Xp42(Mpk1) activation, and partial phosphorylation of Raf. To summarize, whereas p39Mos-induced activation of MEK/MAPK pathway is dispensable for insulin-induced germinal vesicle breakdown, Xp42(Mpk1) activation induced by insulin is dependent upon p39Mos synthesis. Raf complete phosphorylation appears to require the MEK/MAPK pathway activation both in progesterone and insulin-stimulated oocytes.
Collapse
Affiliation(s)
- Frédéric Baert
- Laboratoire de Biologie du Développement UPRES-EA1033, Bâtiment SN3, IFR118, Université des Sciences et Technologies de Lille, 59655 Villeneuve d'Ascq, France
| | | | | | | | | |
Collapse
|
11
|
Delobel P, Flament S, Hamdane M, Mailliot C, Sambo AV, Bégard S, Sergeant N, Delacourte A, Vilain JP, Buée L. Abnormal Tau phosphorylation of the Alzheimer-type also occurs during mitosis. J Neurochem 2002; 83:412-20. [PMID: 12423251 DOI: 10.1046/j.1471-4159.2002.01143.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Alzheimer's disease, neurofibrillary degeneration results from the aggregation of abnormally phosphorylated Tau proteins into filaments and it may be related to the reactivation of mitotic mechanisms. In order to investigate the link between Tau phosphorylation and mitosis, Xenopus laevis oocytes in which most of the M-phase regulators have been discovered were used as a cell model. The human Tau isoform htau412 (2+3-10+) was microinjected into prophase I oocytes that were then stimulated by progesterone that activate cyclin-dependent kinase pathways. Hyperphosphorylation of the Tau isoform, which is characterized by a decrease of its electrophoretic mobility and its labelling by a number of phosphorylation-dependent antibodies, was observed at the time of germinal vesicle breakdown. Surprisingly, Tau immunoreactivity, considered as typical of Alzheimer's pathology (AT100 and phospho-Ser422), was observed in meiosis II. Because meiosis II is considered as a mitosis-like phase, we investigated if our observation was also relevant to a neurone-like model. Abnormal Tau phosphorylation was detected in mitotic human neuroblastoma SY5Y cells overexpressing Tau. Regarding AT100-immunoreactivity and phospho-Ser422, we suggest that phosphatase 2A inhibition and a phosphorylation combination of mitotic kinases may lead to this Alzheimer-type phosphorylation. Our results not only demonstrate the involvement of mitotic kinases in Alzheimer-type Tau phosphorylation but also indicate that Xenopus oocyte could be a useful model to identify the kinases involved in this process.
Collapse
Affiliation(s)
- Patrice Delobel
- INSERM U422, Institut de Médecine Prédictive et Recherche Thérapeutique, Lille, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Bodart JFL, Gutierrez DV, Nebreda AR, Buckner BD, Resau JR, Duesbery NS. Characterization of MPF and MAPK activities during meiotic maturation of Xenopus tropicalis oocytes. Dev Biol 2002; 245:348-61. [PMID: 11977986 DOI: 10.1006/dbio.2002.0647] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Resumption of meiosis in oocytes of Xenopus tropicalis required translation but not transcription, and was marked by the appearance of a white spot and a dark ring, coincident with entry into metaphase I and the onset of anaphase I, respectively. Cyclin B(2)/p34(cdc2) activity increased prior to the first meiotic division, declined at the onset of anaphase I, and subsequently increased again. The capacity of egg cytoplasm to induce germinal vesicle breakdown (GVBD) was inhibited by cycloheximide, despite the fact that these oocytes contained cyclin B(2)/p34(cdc2) complexes. However, cycloheximide-treated oocytes underwent GVBD following injection of constitutively active mitogen-activated protein kinase (MAPK) kinase 2 (MEK2), p33(Ringo), or Delta 90 cyclin B. MAPK activity increased just prior to the first meiotic division and remained stable thereafter. Although injection of constitutively active MEK2 induced GVBD, treatment with the MEK inhibitors U0126 or anthrax lethal factor delayed GVBD and prevented spindle formation. Interestingly, the ability of egg cytoplasm to induce GVBD was unaffected by the inhibition of MEK activity. Our results indicate that the synthesis of a novel or short-lived protein(s) which acts in a MEK-independent fashion is required in order for egg cytoplasm to induce GVBD in X. tropicalis oocytes.
Collapse
Affiliation(s)
- Jean-Francois L Bodart
- Van Andel Research Institute, Laboratory of Developmental Cell Biology, Special Program in Analytical, Cellular, and Molecular Microscopy, 333 Bostwick NE, Grand Rapids, Michigan 49503, USA
| | | | | | | | | | | |
Collapse
|
13
|
Li Z, Jiang Q, Rezaei Sabet M, Zhang Y, Ritchie TC, Engelhardt JF. Conditions for in vitro maturation and artificial activation of ferret oocytes. Biol Reprod 2002; 66:1380-6. [PMID: 11967201 DOI: 10.1095/biolreprod66.5.1380] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The ferret represents an attractive species for animal modeling of lung diseases because of the similarity between ferret and human lung biology and its relatively small size and short gestation time. In an effort to establish experimental protocols necessary for cloning ferrets, optimized conditions for in vitro maturation and artificial activation of ferret oocytes were examined. Cumulus-oocyte complexes were harvested from ovaries of superovulated ferrets, and in vitro maturation was evaluated in three different culture media: medium 1 (TCM-199 + 10% FBS), medium 2 (TCM-199 + 10% FBS with eCG [10 IU/ml] and hCG [5 IU/ml]), or medium 3 (TCM-199 + 10% FBS with eCG, hCG, and 17beta-estradiol [2 microg/ml]). After 24 h of maturation in vitro, the maturation rate of oocytes cultured in medium 2 (70%, n = 79) was significantly greater (P < 0.01) than those of oocytes cultured in the other two media (27%-36%, n = 67-73). At 48 h, similar maturation rates (56%-69%, n = 76-87) were observed for all three types of media. For activation experiments, oocytes cultured in medium 2 were stimulated with electrical and chemical stimuli either individually or in combination. Treatment with cycloheximide and 6-dimethylaminopurine (6-DMAP) following electrical stimulation resulted in 43% (n = 58) of the oocytes developing to the blastocyst stage. Such an activation rate represented a significant improvement over those obtainable under other tested conditions, including individual treatment with electrical pulses (10%, n = 41), cycloheximide (3%, n = 58), or 6-DMAP (5%, n = 59). Blastocysts derived from in vitro activation appeared to be normal morphologically and were composed of an appropriate number of both inner cell mass (mean +/- SEM, 10.3 +/- 1.1; n = 11) and trophectoderm (60.8 +/- 2.9, n = 11) cells. These results have begun to elucidate parameters important for animal modeling and cloning with ferrets.
Collapse
Affiliation(s)
- Ziyi Li
- Department of Anatomy & Cell Biology, College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | |
Collapse
|
14
|
Bodart JF, Flament S, Vilain JP. Metaphase arrest in amphibian oocytes: interaction between CSF and MPF sets the equilibrium. Mol Reprod Dev 2002; 61:570-4. [PMID: 11891929 DOI: 10.1002/mrd.10112] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Jean-François Bodart
- Laboratoire de Biologie du Développement, Régulation Ionique et Moléculaire du Cycle Cellulaire, UPRES EA 1033, Université de Lille 1, Villeneuve d'Ascq, France.
| | | | | |
Collapse
|
15
|
Delobel P, Flament S, Hamdane M, Jakes R, Rousseau A, Delacourte A, Vilain JP, Goedert M, Buée L. Functional characterization of FTDP-17 tau gene mutations through their effects on Xenopus oocyte maturation. J Biol Chem 2002; 277:9199-205. [PMID: 11756436 DOI: 10.1074/jbc.m107716200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
tau gene mutations cause frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17). Here we have used Xenopus oocyte maturation as an indicator of microtubule function. We show that wild-type four-repeat Tau protein inhibits maturation in a concentration-dependent manner, whereas three-repeat Tau has no effect. Of the seven four-repeat Tau proteins with FTDP-17 mutations tested, five (G272V, DeltaK280, P301L, P301S, and V337M) failed to interfere significantly with oocyte maturation, demonstrating a greatly reduced ability to interact with microtubules. One mutant protein (R406W) almost behaved like wild-type Tau, and one (S305N) inhibited maturation more strongly than wild-type Tau. With the exception of R406W, wild-type Tau and all the mutants studied were similarly phosphorylated during the Xenopus oocyte maturation, and this was independent of their effects on this process. Data obtained with R406W and S305N may be related to charge changes (phosphorylation and basic amino acids). Our results demonstrate variable effects of FTDP-17 mutations on microtubules in an intact cell situation. Those findings establish Xenopus oocyte maturation as a system allowing the study of the functional effects of tau gene mutations in a quantitative manner.
Collapse
Affiliation(s)
- Patrice Delobel
- INSERM U422, Institut de Médecine Prédictive et Recherche Thérapeutique, 59045 Lille, France
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Bodart JF, Rodeau JL, Vilain JP, Flament S. c-Mos proteolysis is independent of the CA(2+) rise induced by 6-DMAP in Xenopus oocytes. Exp Cell Res 2001; 266:187-92. [PMID: 11339837 DOI: 10.1006/excr.2001.5213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In Xenopus oocytes, metaphase II arrest is due to a cytostatic factor (CSF) that involves c-Mos, maintaining a high MPF (cdk1/cyclin B) activity in the cell. At fertilization, a rise in intracellular calcium triggers the proteolysis of both cyclin B and c-Mos. The kinase inhibitor 6-dimethylaminopurine (6-DMAP) is also able to release matured Xenopus oocytes from metaphase II block. This is characterized by c-Mos proteolysis without degradation of cyclin B. We hypothesized that 6-DMAP induced an increase in intracellular calcium. Using the calcium-sensitive fluorescent dye Fura-2, we observed a systematic increase in intracellular calcium following 6-DMAP application. In matured oocytes previously microinjected with the calcium chelator BAPTA, no calcium changes occurred after 6-DMAP addition; however, c-Mos was still proteolysed. In oocytes at the GVBD stage, c-Mos proteolysis occurred in response to 6-DMAP but not to calcium ionophore treatment. We suggest that c-Mos proteolysis is rather controlled by a phosphorylation-dependent process.
Collapse
Affiliation(s)
- J F Bodart
- Laboratoire de Biologie du Développement, Régulation Ionique et Moléculaire du Cycle Cellulairw, UPRES EA 1033, Université de Lille 1, SN3, F-59655 Villeneuve d'Ascq cedex, France
| | | | | | | |
Collapse
|
17
|
Frank-Vaillant M, Haccard O, Ozon R, Jessus C. Interplay between Cdc2 kinase and the c-Mos/MAPK pathway between metaphase I and metaphase II in Xenopus oocytes. Dev Biol 2001; 231:279-88. [PMID: 11180968 DOI: 10.1006/dbio.2000.0142] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Xenopus oocytes arrested in prophase I resume meiotic division in response to progesterone and arrest at metaphase II. Entry into meiosis I depends on the activation of Cdc2 kinase [M-phase promoting factor (MPF)]. To better understand the role of Cdc2, MPF activity was specifically inhibited by injection of the CDK inhibitor, Cip1. When Cip1 is injected at germinal vesicle breakdown (GVBD) time, Cdc25 and Plx1 are both dephosphorylated and Cdc2 is rephosphorylated on tyrosine. The autoamplification loop characterizing MPF is therefore not only required for MPF generation before GVBD, but also for its stability during the GVBD period. The ubiquitin ligase anaphase-promoting complex/cyclosome (APC/C), responsible for cyclin degradation, is also under the control of Cdc2; therefore, Cdc2 activity itself induces its own inactivation through cyclin degradation, allowing the exit from the first meiotic division. In contrast, cyclin accumulation, responsible for Cdc2 activity increase allowing entry into metaphase II, is independent of Cdc2. The c-Mos/mitogen-activated protein kinase (MAPK) pathway remains active when Cdc2 activity is inhibited at GVBD time. This pathway could be responsible for the sustained cyclin neosynthesis. In contrast, during the metaphase II block, the c-Mos/MAPK pathway depends on Cdc2. Therefore, the metaphase II block depends on a dynamic interplay between MPF and CSF, the c-Mos/MAPK pathway stabilizing cyclin B, whereas in turn, MPF prevents c-Mos degradation.
Collapse
Affiliation(s)
- M Frank-Vaillant
- Laboratoire de Physiologie de la Reproduction, INRA/ESA-CNRS 7080, Université Pierre et Marie Curie, boîte 13, Paris Cedex 05, 75252, France
| | | | | | | |
Collapse
|
18
|
Abstract
While animal eggs await fertilization, their cell cycle needs to be halted. The molecule responsible for this arrest--the cytostatic factor--was first described in 1971. But its identity was not revealed until 1989, and even now questions remain about this elusive factor.
Collapse
Affiliation(s)
- Y Masui
- Department of Zoology, University of Toronto, 25 Harbord Street, Toronto, Ontario, Canada M5S 3G5.
| |
Collapse
|