1
|
Gall-Duncan T, Luo J, Jurkovic CM, Fischer LA, Fujita K, Deshmukh AL, Harding RJ, Tran S, Mehkary M, Li V, Leib DE, Chen R, Tanaka H, Mason AG, Lévesque D, Khan M, Razzaghi M, Prasolava T, Lanni S, Sato N, Caron MC, Panigrahi GB, Wang P, Lau R, Castel AL, Masson JY, Tippett L, Turner C, Spies M, La Spada AR, Campos EI, Curtis MA, Boisvert FM, Faull RLM, Davidson BL, Nakamori M, Okazawa H, Wold MS, Pearson CE. Antagonistic roles of canonical and Alternative-RPA in disease-associated tandem CAG repeat instability. Cell 2023; 186:4898-4919.e25. [PMID: 37827155 PMCID: PMC11209935 DOI: 10.1016/j.cell.2023.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 06/30/2023] [Accepted: 09/09/2023] [Indexed: 10/14/2023]
Abstract
Expansions of repeat DNA tracts cause >70 diseases, and ongoing expansions in brains exacerbate disease. During expansion mutations, single-stranded DNAs (ssDNAs) form slipped-DNAs. We find the ssDNA-binding complexes canonical replication protein A (RPA1, RPA2, and RPA3) and Alternative-RPA (RPA1, RPA3, and primate-specific RPA4) are upregulated in Huntington disease and spinocerebellar ataxia type 1 (SCA1) patient brains. Protein interactomes of RPA and Alt-RPA reveal unique and shared partners, including modifiers of CAG instability and disease presentation. RPA enhances in vitro melting, FAN1 excision, and repair of slipped-CAGs and protects against CAG expansions in human cells. RPA overexpression in SCA1 mouse brains ablates expansions, coincident with decreased ATXN1 aggregation, reduced brain DNA damage, improved neuron morphology, and rescued motor phenotypes. In contrast, Alt-RPA inhibits melting, FAN1 excision, and repair of slipped-CAGs and promotes CAG expansions. These findings suggest a functional interplay between the two RPAs where Alt-RPA may antagonistically offset RPA's suppression of disease-associated repeat expansions, which may extend to other DNA processes.
Collapse
Affiliation(s)
- Terence Gall-Duncan
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada; Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Jennifer Luo
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada; Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | | | - Laura A Fischer
- Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Kyota Fujita
- Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Amit L Deshmukh
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Rachel J Harding
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada; Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Stephanie Tran
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada; Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Mustafa Mehkary
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada; Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Vanessa Li
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada; Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - David E Leib
- Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19146, USA
| | - Ran Chen
- Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hikari Tanaka
- Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Amanda G Mason
- Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Dominique Lévesque
- Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Mahreen Khan
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada; Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Mortezaali Razzaghi
- Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Tanya Prasolava
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Stella Lanni
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Nozomu Sato
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Marie-Christine Caron
- CHU de Québec-Université Laval, Oncology Division, Molecular Biology, Medical Biochemistry, and Pathology, Laval University Cancer Research Center, Québec, QC, Canada
| | - Gagan B Panigrahi
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Peixiang Wang
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Rachel Lau
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | | | - Jean-Yves Masson
- CHU de Québec-Université Laval, Oncology Division, Molecular Biology, Medical Biochemistry, and Pathology, Laval University Cancer Research Center, Québec, QC, Canada
| | - Lynette Tippett
- School of Psychology, University of Auckland, Auckland, New Zealand; University Research Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Clinton Turner
- Anatomical Pathology, LabPlus, Auckland City Hospital, Auckland, New Zealand
| | - Maria Spies
- Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Albert R La Spada
- Pathology & Laboratory Medicine, Neurology, and Biological Chemistry, University of California, Irvine School of Medicine, Irvine, CA, USA; Neurobiology & Behavior, University of California, Irvine, Irvine, CA, USA; Center for Neurotherapeutics, University of California, Irvine, Irvine, CA 92697, USA
| | - Eric I Campos
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada; Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Maurice A Curtis
- University Research Centre for Brain Research, University of Auckland, Auckland, New Zealand; Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| | | | - Richard L M Faull
- University Research Centre for Brain Research, University of Auckland, Auckland, New Zealand; Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| | - Beverly L Davidson
- Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19146, USA
| | - Masayuki Nakamori
- Neurology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hitoshi Okazawa
- Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Marc S Wold
- Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Christopher E Pearson
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada; Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada.
| |
Collapse
|
2
|
Pond KW, de Renty C, Yagle MK, Ellis NA. Rescue of collapsed replication forks is dependent on NSMCE2 to prevent mitotic DNA damage. PLoS Genet 2019; 15:e1007942. [PMID: 30735491 PMCID: PMC6383951 DOI: 10.1371/journal.pgen.1007942] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 02/21/2019] [Accepted: 01/07/2019] [Indexed: 12/12/2022] Open
Abstract
NSMCE2 is an E3 SUMO ligase and a subunit of the SMC5/6 complex that associates with the replication fork and protects against genomic instability. Here, we study the fate of collapsed replication forks generated by prolonged hydroxyurea treatment in human NSMCE2-deficient cells. Double strand breaks accumulate during rescue by converging forks in normal cells but not in NSMCE2-deficient cells. Un-rescued forks persist into mitosis, leading to increased mitotic DNA damage. Excess RAD51 accumulates and persists at collapsed forks in NSMCE2-deficient cells, possibly due to lack of BLM recruitment to stalled forks. Despite failure of BLM to accumulate at stalled forks, NSMCE2-deficient cells exhibit lower levels of hydroxyurea-induced sister chromatid exchange. In cells deficient in both NSMCE2 and BLM, hydroxyurea-induced double strand breaks and sister chromatid exchange resembled levels found in NSCME2-deficient cells. We conclude that the rescue of collapsed forks by converging forks is dependent on NSMCE2. DNA damage encountered by the replication fork causes fork stalling and is a major source of mutations when not adequately repaired. Fork stalling can lead to fork collapse, that is, a state of the fork in which normal DNA synthesis cannot be resumed at the site of stalling. Collapsed forks must be rescued by replication forks initiated nearby, but little is known about the rescue mechanism by which an active fork merges with a collapsed fork. We used an inhibitor of DNA replication to generate collapsed replication forks and then studied genetic control of collapsed-fork rescue. We found that NSMCE2, which is a gene product that is known to regulate repair responses to replication stress, is required for cells to effectively rescue collapsed replication forks in order to complete DNA synthesis. DNA double strand breaks that are associated with normal collapsed-fork rescue do not accumulate in cells that are deficient for NSMCE2, suggesting that DNA breakage is part of the rescue and repair mechanism. Failure to rescue collapsed forks leads to DNA damage in mitosis and DNA damage in the following cell cycle. Our work highlights a unique role for NSMCE2 in rescue of collapsed replication forks.
Collapse
Affiliation(s)
- Kelvin W. Pond
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, United States of America
| | - Christelle de Renty
- University of Arizona Cancer Center, University of Arizona, Tucson, Arizona, United States of America
| | - Mary K. Yagle
- University of Arizona Cancer Center, University of Arizona, Tucson, Arizona, United States of America
| | - Nathan A. Ellis
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, United States of America
- University of Arizona Cancer Center, University of Arizona, Tucson, Arizona, United States of America
- * E-mail:
| |
Collapse
|
3
|
Kaushik Tiwari M, Adaku N, Peart N, Rogers FA. Triplex structures induce DNA double strand breaks via replication fork collapse in NER deficient cells. Nucleic Acids Res 2016; 44:7742-54. [PMID: 27298253 PMCID: PMC5027492 DOI: 10.1093/nar/gkw515] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 05/31/2016] [Indexed: 12/20/2022] Open
Abstract
Structural alterations in DNA can serve as natural impediments to replication fork stability and progression, resulting in DNA damage and genomic instability. Naturally occurring polypurine mirror repeat sequences in the human genome can create endogenous triplex structures evoking a robust DNA damage response. Failures to recognize or adequately process these genomic lesions can result in loss of genomic integrity. Nucleotide excision repair (NER) proteins have been found to play a prominent role in the recognition and repair of triplex structures. We demonstrate using triplex-forming oligonucleotides that chromosomal triplexes perturb DNA replication fork progression, eventually resulting in fork collapse and the induction of double strand breaks (DSBs). We find that cells deficient in the NER damage recognition proteins, XPA and XPC, accumulate more DSBs in response to chromosomal triplex formation than NER-proficient cells. Furthermore, we demonstrate that XPC-deficient cells are particularly prone to replication-associated DSBs in the presence of triplexes. In the absence of XPA or XPC, deleterious consequences of triplex-induced genomic instability may be averted by activating apoptosis via dual phosphorylation of the H2AX protein. Our results reveal that damage recognition by XPC and XPA is critical to maintaining replication fork integrity and preventing replication fork collapse in the presence of triplex structures.
Collapse
Affiliation(s)
- Meetu Kaushik Tiwari
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Nneoma Adaku
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Natoya Peart
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Faye A Rogers
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520, USA Yale Cancer Center, Yale School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
4
|
Mason JM, Dusad K, Wright WD, Grubb J, Budke B, Heyer WD, Connell PP, Weichselbaum RR, Bishop DK. RAD54 family translocases counter genotoxic effects of RAD51 in human tumor cells. Nucleic Acids Res 2015; 43:3180-96. [PMID: 25765654 PMCID: PMC4381078 DOI: 10.1093/nar/gkv175] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 02/20/2015] [Indexed: 12/14/2022] Open
Abstract
The RAD54 family DNA translocases have several biochemical activities. One activity, demonstrated previously for the budding yeast translocases, is ATPase-dependent disruption of RAD51-dsDNA binding. This activity is thought to promote dissociation of RAD51 from heteroduplex DNA following strand exchange during homologous recombination. In addition, previous experiments in budding yeast have shown that the same activity of Rad54 removes Rad51 from undamaged sites on chromosomes; mutants lacking Rad54 accumulate nonrepair-associated complexes that can block growth and lead to chromosome loss. Here, we show that human RAD54 also promotes the dissociation of RAD51 from dsDNA and not ssDNA. We also show that translocase depletion in tumor cell lines leads to the accumulation of RAD51 on chromosomes, forming complexes that are not associated with markers of DNA damage. We further show that combined depletion of RAD54L and RAD54B and/or artificial induction of RAD51 overexpression blocks replication and promotes chromosome segregation defects. These results support a model in which RAD54L and RAD54B counteract genome-destabilizing effects of direct binding of RAD51 to dsDNA in human tumor cells. Thus, in addition to having genome-stabilizing DNA repair activity, human RAD51 has genome-destabilizing activity when expressed at high levels, as is the case in many human tumors.
Collapse
Affiliation(s)
- Jennifer M Mason
- Department of Radiation and Cellular Oncology, University of Chicago, Cummings Life Science Center, Box 13, 920 East 58th St., Chicago, IL 60637, USA
| | - Kritika Dusad
- Department of Radiation and Cellular Oncology, University of Chicago, Cummings Life Science Center, Box 13, 920 East 58th St., Chicago, IL 60637, USA
| | - William Douglass Wright
- Department of Molecular and Cellular Biology, University of California, Davis, Davis CA 95616, USA
| | - Jennifer Grubb
- Department of Radiation and Cellular Oncology, University of Chicago, Cummings Life Science Center, Box 13, 920 East 58th St., Chicago, IL 60637, USA
| | - Brian Budke
- Department of Radiation and Cellular Oncology, University of Chicago, Cummings Life Science Center, Box 13, 920 East 58th St., Chicago, IL 60637, USA
| | - Wolf-Dietrich Heyer
- Department of Molecular and Cellular Biology, University of California, Davis, Davis CA 95616, USA Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Philip P Connell
- Department of Radiation and Cellular Oncology, University of Chicago, Cummings Life Science Center, Box 13, 920 East 58th St., Chicago, IL 60637, USA
| | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology, University of Chicago, Cummings Life Science Center, Box 13, 920 East 58th St., Chicago, IL 60637, USA
| | - Douglas K Bishop
- Department of Radiation and Cellular Oncology, University of Chicago, Cummings Life Science Center, Box 13, 920 East 58th St., Chicago, IL 60637, USA Department of Microbiology and Molecular Genetics, University of California, Davis, Davis CA 95616, USA
| |
Collapse
|
5
|
Murphy AK, Fitzgerald M, Ro T, Kim JH, Rabinowitsch AI, Chowdhury D, Schildkraut CL, Borowiec JA. Phosphorylated RPA recruits PALB2 to stalled DNA replication forks to facilitate fork recovery. J Cell Biol 2014; 206:493-507. [PMID: 25113031 PMCID: PMC4137056 DOI: 10.1083/jcb.201404111] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 07/07/2014] [Indexed: 11/29/2022] Open
Abstract
Phosphorylation of replication protein A (RPA) by Cdk2 and the checkpoint kinase ATR (ATM and Rad3 related) during replication fork stalling stabilizes the replisome, but how these modifications safeguard the fork is not understood. To address this question, we used single-molecule fiber analysis in cells expressing a phosphorylation-defective RPA2 subunit or lacking phosphatase activity toward RPA2. Deregulation of RPA phosphorylation reduced synthesis at forks both during replication stress and recovery from stress. The ability of phosphorylated RPA to stimulate fork recovery is mediated through the PALB2 tumor suppressor protein. RPA phosphorylation increased localization of PALB2 and BRCA2 to RPA-bound nuclear foci in cells experiencing replication stress. Phosphorylated RPA also stimulated recruitment of PALB2 to single-strand deoxyribonucleic acid (DNA) in a cell-free system. Expression of mutant RPA2 or loss of PALB2 expression led to significant DNA damage after replication stress, a defect accentuated by poly-ADP (adenosine diphosphate) ribose polymerase inhibitors. These data demonstrate that phosphorylated RPA recruits repair factors to stalled forks, thereby enhancing fork integrity during replication stress.
Collapse
Affiliation(s)
- Anar K Murphy
- Department of Biochemistry and Molecular Pharmacology, New York University Cancer Institute, New York University School of Medicine, New York, NY 10016
| | - Michael Fitzgerald
- Department of Biochemistry and Molecular Pharmacology, New York University Cancer Institute, New York University School of Medicine, New York, NY 10016
| | - Teresa Ro
- Department of Biochemistry and Molecular Pharmacology, New York University Cancer Institute, New York University School of Medicine, New York, NY 10016
| | - Jee Hyun Kim
- Department of Biochemistry and Molecular Pharmacology, New York University Cancer Institute, New York University School of Medicine, New York, NY 10016
| | - Ariana I Rabinowitsch
- Department of Biochemistry and Molecular Pharmacology, New York University Cancer Institute, New York University School of Medicine, New York, NY 10016
| | | | - Carl L Schildkraut
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - James A Borowiec
- Department of Biochemistry and Molecular Pharmacology, New York University Cancer Institute, New York University School of Medicine, New York, NY 10016
| |
Collapse
|
6
|
Cazzalini O, Sommatis S, Tillhon M, Dutto I, Bachi A, Rapp A, Nardo T, Scovassi AI, Necchi D, Cardoso MC, Stivala LA, Prosperi E. CBP and p300 acetylate PCNA to link its degradation with nucleotide excision repair synthesis. Nucleic Acids Res 2014; 42:8433-48. [PMID: 24939902 PMCID: PMC4117764 DOI: 10.1093/nar/gku533] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The proliferating cell nuclear antigen (PCNA) protein serves as a molecular platform recruiting and coordinating the activity of factors involved in multiple deoxyribonucleic acid (DNA) transactions. To avoid dangerous genome instability, it is necessary to prevent excessive retention of PCNA on chromatin. Although PCNA functions during DNA replication appear to be regulated by different post-translational modifications, the mechanism regulating PCNA removal and degradation after nucleotide excision repair (NER) is unknown. Here we report that CREB-binding protein (CBP), and less efficiently p300, acetylated PCNA at lysine (Lys) residues Lys13,14,77 and 80, to promote removal of chromatin-bound PCNA and its degradation during NER. Mutation of these residues resulted in impaired DNA replication and repair, enhanced the sensitivity to ultraviolet radiation, and prevented proteolytic degradation of PCNA after DNA damage. Depletion of both CBP and p300, or failure to load PCNA on DNA in NER deficient cells, prevented PCNA acetylation and degradation, while proteasome inhibition resulted in accumulation of acetylated PCNA. These results define a CBP and p300-dependent mechanism for PCNA acetylation after DNA damage, linking DNA repair synthesis with removal of chromatin-bound PCNA and its degradation, to ensure genome stability.
Collapse
Affiliation(s)
- Ornella Cazzalini
- Department of Molecular Medicine, University of Pavia, Pavia 27100, Italy
| | - Sabrina Sommatis
- Department of Molecular Medicine, University of Pavia, Pavia 27100, Italy
| | - Micol Tillhon
- Institute of Molecular Genetics, National Research Council (CNR), Pavia 27100, Italy
| | - Ilaria Dutto
- Institute of Molecular Genetics, National Research Council (CNR), Pavia 27100, Italy
| | - Angela Bachi
- IFOM-FIRC Institute of Molecular Oncology, Milan 20100, Italy
| | - Alexander Rapp
- Technische Universität Darmstadt, Darmstadt 64287, Germany
| | - Tiziana Nardo
- Institute of Molecular Genetics, National Research Council (CNR), Pavia 27100, Italy
| | - A Ivana Scovassi
- Institute of Molecular Genetics, National Research Council (CNR), Pavia 27100, Italy
| | - Daniela Necchi
- Department of Drug Sciences, University of Pavia, Pavia 27100, Italy
| | | | - Lucia A Stivala
- Department of Molecular Medicine, University of Pavia, Pavia 27100, Italy
| | - Ennio Prosperi
- Institute of Molecular Genetics, National Research Council (CNR), Pavia 27100, Italy
| |
Collapse
|
7
|
Bolderson E, Petermann E, Croft L, Suraweera A, Pandita RK, Pandita TK, Helleday T, Khanna KK, Richard DJ. Human single-stranded DNA binding protein 1 (hSSB1/NABP2) is required for the stability and repair of stalled replication forks. Nucleic Acids Res 2014; 42:6326-36. [PMID: 24753408 PMCID: PMC4041449 DOI: 10.1093/nar/gku276] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aberrant DNA replication is a primary cause of mutations that are associated with pathological disorders including cancer. During DNA metabolism, the primary causes of replication fork stalling include secondary DNA structures, highly transcribed regions and damaged DNA. The restart of stalled replication forks is critical for the timely progression of the cell cycle and ultimately for the maintenance of genomic stability. Our previous work has implicated the single-stranded DNA binding protein, hSSB1/NABP2, in the repair of DNA double-strand breaks via homologous recombination. Here, we demonstrate that hSSB1 relocates to hydroxyurea (HU)-damaged replication forks where it is required for ATR and Chk1 activation and recruitment of Mre11 and Rad51. Consequently, hSSB1-depleted cells fail to repair and restart stalled replication forks. hSSB1 deficiency causes accumulation of DNA strand breaks and results in chromosome aberrations observed in mitosis, ultimately resulting in hSSB1 being required for survival to HU and camptothecin. Overall, our findings demonstrate the importance of hSSB1 in maintaining and repairing DNA replication forks and for overall genomic stability.
Collapse
Affiliation(s)
- Emma Bolderson
- Genome Stability Laboratory, Cancer and Ageing Research Program, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Woolloongabba, Queensland, 4102, Australia
| | - Eva Petermann
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Laura Croft
- Genome Stability Laboratory, Cancer and Ageing Research Program, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Woolloongabba, Queensland, 4102, Australia
| | - Amila Suraweera
- Genome Stability Laboratory, Cancer and Ageing Research Program, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Woolloongabba, Queensland, 4102, Australia
| | - Raj K Pandita
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Tej K Pandita
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Thomas Helleday
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden
| | - Kum Kum Khanna
- Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Derek J Richard
- Genome Stability Laboratory, Cancer and Ageing Research Program, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Woolloongabba, Queensland, 4102, Australia
| |
Collapse
|
8
|
Genome instability at common fragile sites: searching for the cause of their instability. BIOMED RESEARCH INTERNATIONAL 2013; 2013:730714. [PMID: 24083238 PMCID: PMC3780545 DOI: 10.1155/2013/730714] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Accepted: 08/07/2013] [Indexed: 12/24/2022]
Abstract
Common fragile sites (CFS) are heritable nonrandomly distributed loci on human chromosomes that exhibit an increased frequency of chromosomal breakage under conditions of replication stress. They are considered the preferential targets for high genomic instability from the earliest stages of human cancer development, and increased chromosome instability at these loci has been observed following replication stress in a subset of human genetic diseases. Despite their biological and medical relevance, the molecular basis of CFS fragility in vivo has not been fully elucidated. At present, different models have been proposed to explain how instability at CFS arises and multiple factors seem to contribute to their instability. However, all these models involve DNA replication and suggest that replication fork stalling along CFS during DNA synthesis is a very frequent event. Consistent with this, the maintenance of CFS stability relies on the ATR-dependent checkpoint, together with a number of proteins promoting the recovery of stalled replication forks. In this review, we discuss mainly the possible causes that threaten the integrity of CFS in the light of new findings, paying particular attention to the role of the S-phase checkpoint.
Collapse
|
9
|
DNA mismatch repair proteins are required for efficient herpes simplex virus 1 replication. J Virol 2011; 85:12241-53. [PMID: 21957315 DOI: 10.1128/jvi.05487-11] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) is a double-stranded DNA virus that replicates in the nucleus of its human host cell and is known to interact with many cellular DNA repair proteins. In this study, we examined the role of cellular mismatch repair (MMR) proteins in the virus life cycle. Both MSH2 and MLH1 are required for efficient replication of HSV-1 in normal human cells and are localized to viral replication compartments. In addition, a previously reported interaction between MSH6 and ICP8 was confirmed by coimmunoprecipitation and extended to show that UL12 is also present in this complex. We also report for the first time that MLH1 associates with ND10 nuclear bodies and that like other ND10 proteins, MLH1 is recruited to the incoming genome. Knockdown of MLH1 inhibits immediate-early viral gene expression. MSH2, on the other hand, which is generally thought to play a role in mismatch repair at a step prior to that of MLH1, is not recruited to incoming genomes and appears to act at a later step in the viral life cycle. Silencing of MSH2 appears to inhibit early gene expression. Thus, both MLH1 and MSH2 are required but appear to participate in distinct events in the virus life cycle. The observation that MLH1 plays an earlier role in HSV-1 infection than does MSH2 is surprising and may indicate a novel function for MLH1 distinct from its known MSH2-dependent role in mismatch repair.
Collapse
|
10
|
Brocardo MG, Borowiec JA, Henderson BR. Adenomatous polyposis coli protein regulates the cellular response to DNA replication stress. Int J Biochem Cell Biol 2011; 43:1354-64. [PMID: 21664290 DOI: 10.1016/j.biocel.2011.05.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 05/12/2011] [Accepted: 05/24/2011] [Indexed: 10/18/2022]
Abstract
The adenomatous polyposis coli (APC) tumor suppressor traffics between nucleus and cytoplasm to perform distinct functions. Here we identify a specific role for APC in the DNA replication stress response. The silencing of APC caused an accumulation of asynchronous cells in early S phase and delayed S phase progression in cells released from hydroxyurea-mediated replication arrest. Immunoprecipitation assays revealed a selective binding of APC to replication protein A 32kDa subunit (RPA32), and the APC-RPA32 complex increased at chromatin after hydroxyurea treatment. Interestingly, APC knock-down prevented accumulation at chromatin of the stress-induced S33- and S29-phosphorylated forms of RPA32, and reduced the expression of ATR-phosphorylated forms of S317-phospho-Chk1 and γ-H2AX. Using RPA32-inducible cells we showed that reconstitution of RPA32 diminished the S-phase delay caused by loss of APC. In contrast to full-length APC, the truncated APC mutant protein expressed in SW480 colon cancer cells was impaired in its binding and regulation of RPA32, and failed to regulate cell cycle after replication stress. We propose that APC associates with RPA at stalled DNA replication forks and promotes the ATR-dependent phosphorylation of RPA32, Chk1 and γ-H2AX in response to DNA replication stress, thereby influencing the rate of re-entry into the cell cycle.
Collapse
Affiliation(s)
- Mariana G Brocardo
- Westmead Institute for Cancer Research, University of Sydney, Westmead Millennium Institute at Westmead Hospital, Westmead, New South Wales 2145, Australia.
| | | | | |
Collapse
|
11
|
Kuipers MA, Stasevich TJ, Sasaki T, Wilson KA, Hazelwood KL, McNally JG, Davidson MW, Gilbert DM. Highly stable loading of Mcm proteins onto chromatin in living cells requires replication to unload. ACTA ACUST UNITED AC 2011; 192:29-41. [PMID: 21220507 PMCID: PMC3019549 DOI: 10.1083/jcb.201007111] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Components of the minichromosome maintenance complex (Mcm2-7) remain indefinitely bound to chromatin during G1 phase and replication arrest. The heterohexameric minichromosome maintenance protein complex (Mcm2-7) functions as the eukaryotic helicase during DNA replication. Mcm2-7 loads onto chromatin during early G1 phase but is not converted into an active helicase until much later during S phase. Hence, inactive Mcm complexes are presumed to remain stably bound from early G1 through the completion of S phase. Here, we investigated Mcm protein dynamics in live mammalian cells. We demonstrate that Mcm proteins are irreversibly loaded onto chromatin cumulatively throughout G1 phase, showing no detectable exchange with a gradually diminishing soluble pool. Eviction of Mcm requires replication; during replication arrest, Mcm proteins remained bound indefinitely. Moreover, the density of immobile Mcms is reduced together with chromatin decondensation within sites of active replication, which provides an explanation for the lack of colocalization of Mcm with replication fork proteins. These results provide in vivo evidence for an exceptionally stable lockdown mechanism to retain all loaded Mcm proteins on chromatin throughout prolonged cell cycles.
Collapse
Affiliation(s)
- Marjorie A Kuipers
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Balasubramanian N, Bai P, Buchek G, Korza G, Weller SK. Physical interaction between the herpes simplex virus type 1 exonuclease, UL12, and the DNA double-strand break-sensing MRN complex. J Virol 2010; 84:12504-14. [PMID: 20943970 PMCID: PMC3004347 DOI: 10.1128/jvi.01506-10] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Accepted: 10/05/2010] [Indexed: 12/16/2022] Open
Abstract
The herpes simplex virus type 1 (HSV-1) alkaline nuclease, encoded by the UL12 gene, plays an important role in HSV-1 replication, as a UL12 null mutant displays a severe growth defect. The HSV-1 alkaline exonuclease UL12 interacts with the viral single-stranded DNA binding protein ICP8 and promotes strand exchange in vitro in conjunction with ICP8. We proposed that UL12 and ICP8 form a two-subunit recombinase reminiscent of the phage lambda Red α/β recombination system and that the viral and cellular recombinases contribute to viral genome replication through a homologous recombination-dependent DNA replication mechanism. To test this hypothesis, we identified cellular interaction partners of UL12 by using coimmunoprecipitation. We report for the first time a specific interaction between UL12 and components of the cellular MRN complex, an important factor in the ATM-mediated homologous recombination repair (HRR) pathway. This interaction is detected early during infection and does not require viral DNA or other viral or cellular proteins. The region of UL12 responsible for the interaction has been mapped to the first 125 residues, and coimmunoprecipitation can be abolished by deletion of residues 100 to 126. These observations support the hypothesis that cellular and viral recombination factors work together to promote efficient HSV-1 growth.
Collapse
Affiliation(s)
- Nandakumar Balasubramanian
- Department of Molecular, Microbial and Structural Biology and The Molecular Biology and Biochemistry Graduate Program, The University of Connecticut Health Center, Farmington, Connecticut 06030
| | - Ping Bai
- Department of Molecular, Microbial and Structural Biology and The Molecular Biology and Biochemistry Graduate Program, The University of Connecticut Health Center, Farmington, Connecticut 06030
| | - Gregory Buchek
- Department of Molecular, Microbial and Structural Biology and The Molecular Biology and Biochemistry Graduate Program, The University of Connecticut Health Center, Farmington, Connecticut 06030
| | - George Korza
- Department of Molecular, Microbial and Structural Biology and The Molecular Biology and Biochemistry Graduate Program, The University of Connecticut Health Center, Farmington, Connecticut 06030
| | - Sandra K. Weller
- Department of Molecular, Microbial and Structural Biology and The Molecular Biology and Biochemistry Graduate Program, The University of Connecticut Health Center, Farmington, Connecticut 06030
| |
Collapse
|
13
|
Dou H, Huang C, Singh M, Carpenter PB, Yeh ETH. Regulation of DNA repair through deSUMOylation and SUMOylation of replication protein A complex. Mol Cell 2010; 39:333-45. [PMID: 20705237 DOI: 10.1016/j.molcel.2010.07.021] [Citation(s) in RCA: 159] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2009] [Revised: 04/01/2010] [Accepted: 07/22/2010] [Indexed: 11/15/2022]
Abstract
The replication protein A complex (RPA) plays a crucial role in DNA replication and damage response. However, it is not known whether this complex is regulated by the SUMOylation pathway. Here, we show that the 70 kDa subunit of RPA (RPA70) associates with a Sentrin/SUMO-specific protease, SENP6, in the nucleus to maintain RPA70 in a hypoSUMOylated state during S phase. Campothecin (CPT), an inducer of replication stress, dissociates SENP6 from RPA70, allowing RPA70 to be modified by a small ubiquitin-like modifier 2/3 (SUMO-2/3). RPA70 SUMOylation facilitates recruitment of Rad51 to the DNA damage foci to initiate DNA repair through homologous recombination (HR). Cell lines that expressed a RPA70 mutant that cannot be SUMOylated are defective in HR and have a marked increase in sensitivity to CPT. These results demonstrate that SUMOylation status of RPA70 plays a critical role in the regulation of DNA repair through homologous recombination.
Collapse
Affiliation(s)
- Hong Dou
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, The University of Texas Houston Health Science Center, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
14
|
Richard DJ, Bolderson E, Khanna KK. Multiple human single-stranded DNA binding proteins function in genome maintenance: structural, biochemical and functional analysis. Crit Rev Biochem Mol Biol 2010; 44:98-116. [PMID: 19367476 DOI: 10.1080/10409230902849180] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
DNA exists predominantly in a duplex form that is preserved via specific base pairing. This base pairing affords a considerable degree of protection against chemical or physical damage and preserves coding potential. However, there are many situations, e.g. during DNA damage and programmed cellular processes such as DNA replication and transcription, in which the DNA duplex is separated into two single-stranded DNA (ssDNA) strands. This ssDNA is vulnerable to attack by nucleases, binding by inappropriate proteins and chemical attack. It is very important to control the generation of ssDNA and protect it when it forms, and for this reason all cellular organisms and many viruses encode a ssDNA binding protein (SSB). All known SSBs use an oligosaccharide/oligonucleotide binding (OB)-fold domain for DNA binding. SSBs have multiple roles in binding and sequestering ssDNA, detecting DNA damage, stimulating strand-exchange proteins and helicases, and mediation of protein-protein interactions. Recently two additional human SSBs have been identified that are more closely related to bacterial and archaeal SSBs. Prior to this it was believed that replication protein A, RPA, was the only human equivalent of bacterial SSB. RPA is thought to be required for most aspects of DNA metabolism including DNA replication, recombination and repair. This review will discuss in further detail the biological pathways in which human SSBs function.
Collapse
Affiliation(s)
- Derek J Richard
- Cancer and Cell Biology Division, The Queensland Institute of Medical Research, 300 Herston Road, Herston, QLD 4006, Australia
| | | | | |
Collapse
|
15
|
Velkova A, Carvalho MA, Johnson JO, Tavtigian SV, Monteiro AN. Identification of Filamin A as a BRCA1-interacting protein required for efficient DNA repair. Cell Cycle 2010; 9:1421-33. [PMID: 20305393 PMCID: PMC3040726 DOI: 10.4161/cc.9.7.11256] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The product of the breast and ovarian cancer susceptibility gene BRCA1 has been implicated in several aspects of the DNA damage response but its biochemical function in these processes has remained elusive. In order to probe BRCA1 function we conducted a yeast two-hybrid screening to identify interacting partners to a conserved motif (Motif 6) in the central region of BRCA1. Here we report the identification of the actin-binding protein Filamin A (FLNA) as BRCA1 partner and demonstrate that FLNA is required for efficient regulation of early stages of DNA repair processes. Cells lacking FLNA display a diminished BRCA1 IR-induced focus formation and a delayed kinetics of Rad51 focus formation. In addition, our data also demonstrate that FLNA is required to stabilize the interaction between components of the DNA-PK holoenzyme, DNA-PKcs and Ku86 in a BRCA1-independent fashion. Our data is consistent with a model in which absence of FLNA compromises homologous recombination and non-homologous end joining. Our findings have implications for the response to irradiation induced DNA damage.
Collapse
Affiliation(s)
- Aneliya Velkova
- Risk Assessment, Detection and Intervention Program, H. Lee Moffitt Cancer Center & Research Institute; Tampa, FL USA
- University of South Florida Cancer Biology PhD Program; Tampa, FL USA
| | - Marcelo A. Carvalho
- Risk Assessment, Detection and Intervention Program, H. Lee Moffitt Cancer Center & Research Institute; Tampa, FL USA
| | - Joseph O. Johnson
- Analytic Microscopy Core, H. Lee Moffitt Cancer Center & Research Institute; Tampa, FL USA
| | - Sean V. Tavtigian
- Department of Oncological Sciences; Huntsman Cancer Institute; University of Utah, Salt Lake City, UT USA
| | - Alvaro N.A. Monteiro
- Risk Assessment, Detection and Intervention Program, H. Lee Moffitt Cancer Center & Research Institute; Tampa, FL USA
| |
Collapse
|
16
|
Sakasai R, Teraoka H, Takagi M, Tibbetts RS. Transcription-dependent activation of ataxia telangiectasia mutated prevents DNA-dependent protein kinase-mediated cell death in response to topoisomerase I poison. J Biol Chem 2010; 285:15201-15208. [PMID: 20304914 DOI: 10.1074/jbc.m110.101808] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Camptothecin (CPT) is a topoisomerase I inhibitor, derivatives of which are being used for cancer chemotherapy. CPT-induced DNA double-strand breaks (DSBs) are considered a major cause of its tumoricidal activity, and it has been shown that CPT induces DNA damage signaling through the phosphatidylinositol 3-kinase-related kinases, including ATM (ataxia telangiectasia mutated), ATR (ATM and Rad3-related), and DNA-PK (DNA-dependent protein kinase). In addition, CPT causes DNA strand breaks mediated by transcription, although the downstream signaling events are less well characterized. In this study, we show that CPT-induced activation of ATM requires transcription. Mechanistically, transcription inhibition suppressed CPT-dependent activation of ATM and blocked recruitment of the DNA damage mediator p53-binding protein 1 (53BP1) to DNA damage sites, whereas ATM inhibition abrogated CPT-induced G(1)/S and S phase checkpoints. Functional inactivation of ATM resulted in DNA replication-dependent hyperactivation of DNA-PK in CPT-treated cells and dramatic CPT hypersensitivity. On the other hand, simultaneous inhibition of ATM and DNA-PK partially restored CPT resistance, suggesting that activation of DNA-PK is proapoptotic in the absence of ATM. Correspondingly, comet assay and cell cycle synchronization experiments suggested that transcription collapse occurring as the result of CPT treatment are converted to frank double-strand breaks when ATM-deficient cells bypass the G(1)/S checkpoint. Thus, ATM suppresses DNA-PK-dependent cell death in response to topoisomerase poisons, a finding with potential clinical implications.
Collapse
Affiliation(s)
- Ryo Sakasai
- Department of Pathological Biochemistry, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 101-0062, Japan.
| | - Hirobumi Teraoka
- Department of Pathological Biochemistry, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 101-0062, Japan
| | - Masatoshi Takagi
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Randal S Tibbetts
- Department of Pharmacology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706
| |
Collapse
|
17
|
Vassin VM, Anantha RW, Sokolova E, Kanner S, Borowiec JA. Human RPA phosphorylation by ATR stimulates DNA synthesis and prevents ssDNA accumulation during DNA-replication stress. J Cell Sci 2009; 122:4070-80. [PMID: 19843584 DOI: 10.1242/jcs.053702] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ATR is an essential kinase activated in response to DNA-replication stress, with a known target being the RPA2 subunit of human replication protein A (RPA). We find that S33-RPA2 phosphorylation by ATR occurs primarily in the late-S and G2 phases, probably at sites of residual stalled DNA-replication forks, with S33-P-RPA2 contained within nuclear repair centers. Although cells in which endogenous RPA2 was ;replaced' with an RPA2 protein with mutations T21A and S33A (T21A/S33A-RPA) had normal levels of DNA replication under non-stress conditions, the mutant cells were severely deficient in the amount of DNA synthesis occurring during replication stress. These cells also had abnormally high levels of chromatin-bound RPA, indicative of increased amounts of single-stranded DNA (ssDNA) and showed defective recovery from stress. Cells replaced with the mutant RPA2 also generated G1 cells with a broader DNA distribution and high levels of apoptosis following stress, compared with cells expressing wild-type RPA2. Surprisingly, cells expressing the wild-type RPA2 subunit had increased levels of stress-dependent DNA breaks. Our data demonstrate that RPA phosphorylation at the T21 and S33 sites facilitates adaptation of a DNA-replication fork to replication stress.
Collapse
Affiliation(s)
- Vitaly M Vassin
- Department of Biochemistry, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | |
Collapse
|
18
|
Virus-Induced Chaperone-Enriched (VICE) domains function as nuclear protein quality control centers during HSV-1 infection. PLoS Pathog 2009; 5:e1000619. [PMID: 19816571 PMCID: PMC2752995 DOI: 10.1371/journal.ppat.1000619] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Accepted: 09/14/2009] [Indexed: 12/11/2022] Open
Abstract
Virus-Induced Chaperone-Enriched (VICE) domains form adjacent to nuclear viral replication compartments (RC) during the early stages of HSV-1 infection. Between 2 and 3 hours post infection at a MOI of 10, host protein quality control machinery such as molecular chaperones (e.g. Hsc70), the 20S proteasome and ubiquitin are reorganized from a diffuse nuclear distribution pattern to sequestration in VICE domains. The observation that VICE domains contain putative misfolded proteins suggests that they may be similar to nuclear inclusion bodies that form under conditions in which the protein quality control machinery is overwhelmed by the presence of misfolded proteins. The detection of Hsc70 in VICE domains, but not in nuclear inclusion bodies, indicates that Hsc70 is specifically reorganized by HSV-1 infection. We hypothesize that HSV-1 infection induces the formation of nuclear protein quality control centers to remodel or degrade aberrant nuclear proteins that would otherwise interfere with productive infection. Detection of proteolytic activity in VICE domains suggests that substrates may be degraded by the 20S proteasome in VICE domains. FRAP analysis reveals that GFP-Hsc70 is dynamically associated with VICE domains, suggesting a role for Hsc70 in scanning the infected nucleus for misfolded proteins. During 42°C heat shock, Hsc70 is redistributed from VICE domains into RC perhaps to remodel viral replication and regulatory proteins that have become insoluble in these compartments. The experiments presented in this paper suggest that VICE domains are nuclear protein quality control centers that are modified by HSV-1 to promote productive infection. Protein quality control is a protective cellular mechanism by which damaged proteins are refolded or degraded so that they cannot interfere with essential cellular processes. In the event that protein quality control machinery cannot refold or degrade damaged proteins, sequestration of misfolded protein is an alternative protective mechanism for reducing the toxic effects of misfolded protein. Several neurological diseases result from the accumulation of toxic misfolded proteins that cannot be efficiently refolded or degraded. In neurons from patients afflicted with Huntington's disease, misfolded huntingtin protein is sequestered in large aggregates in the nucleus called inclusion bodies. Inclusion bodies also contain protein quality control machinery including molecular chaperones, the proteasome and ubiquitin. Here we report that analogous structures called Virus-Induced Chaperone-Enriched (VICE) domains form in the nucleus of cells infected with Herpes Simplex Virus type 1 (HSV-1). VICE domains contain misfolded protein, chaperones and protein degradation activity. VICE domain formation is efficient in infected cells taxed with high levels of viral protein production. We hypothesize that misfolded proteins that arise in HSV-1-infected cells are sequestered in VICE domains to promote remodeling of misfolded proteins.
Collapse
|
19
|
Jiang C, Komazin-Meredith G, Tian W, Coen DM, Hwang CBC. Mutations that increase DNA binding by the processivity factor of herpes simplex virus affect virus production and DNA replication fidelity. J Virol 2009; 83:7573-80. [PMID: 19474109 PMCID: PMC2708624 DOI: 10.1128/jvi.00193-09] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Accepted: 05/18/2009] [Indexed: 01/07/2023] Open
Abstract
The interactions of the herpes simplex virus processivity factor UL42 with the catalytic subunit of the viral polymerase (Pol) and DNA are critical for viral DNA replication. Previous studies, including one showing that substitution of glutamine residue 282 with arginine (Q282R) results in an increase of DNA binding in vitro, have indicated that the positively charged back surface of UL42 interacts with DNA. To investigate the biological consequences of increased DNA binding by UL42 mutations, we constructed two additional UL42 mutants, including one with a double substitution of alanine for aspartic acid residues (D270A/D271A) and a triple mutant with the D270A/D271A and Q282R substitutions. These UL42 mutants exhibited increased and prolonged DNA binding without an effect on binding to a peptide corresponding to the C terminus of Pol. Plasmids expressing any of the three UL42 mutants with an increased positive charge on the back surface of UL42 were qualitatively competent for complementation of growth and DNA replication of a UL42 null mutant on Vero cells. We then engineered viruses expressing these mutant proteins. The UL42 mutants were more resistant to detergent extraction than wild-type UL42, suggesting that they are more tightly associated with DNA in infected cells. All three UL42 mutants formed smaller plaques on Vero cells and replicated to reduced yields compared with results for a control virus expressing wild-type UL42. Moreover, mutants with double and triple mutations, which contain D270A/D271A mutations, exhibited increased mutation frequencies, and mutants containing the Q282R mutation exhibited elevated ratios of virion DNA copies per PFU. These results suggest that herpes simplex virus has evolved so that UL42 neither binds DNA too tightly nor too weakly to optimize virus production and replication fidelity.
Collapse
Affiliation(s)
- Changying Jiang
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | | | | | | | | |
Collapse
|
20
|
Deng X, Prakash A, Dhar K, Baia GS, Kolar C, Oakley GG, Borgstahl GEO. Human replication protein A-Rad52-single-stranded DNA complex: stoichiometry and evidence for strand transfer regulation by phosphorylation. Biochemistry 2009; 48:6633-43. [PMID: 19530647 PMCID: PMC2710861 DOI: 10.1021/bi900564k] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The eukaryotic single-stranded DNA-binding protein, replication protein A (RPA), is essential in DNA metabolism and is phosphorylated in response to DNA-damaging agents. Rad52 and RPA participate in the repair of double-stranded DNA breaks (DSBs). It is known that human RPA and Rad52 form a complex, but the molecular mass, stoichiometry, and exact role of this complex in DSB repair are unclear. In this study, absolute molecular masses of individual proteins and complexes were measured in solution using analytical size-exclusion chromatography coupled with multiangle light scattering, the protein species present in each purified fraction were verified via sodium dodecyl sulfate−polyacrylamide gel electrophoresis (SDS−PAGE)/Western analyses, and the presence of biotinylated ssDNA in the complexes was verified by chemiluminescence detection. Then, employing UV cross-linking, the protein partner holding the ssDNA was identified. These data show that phosphorylated RPA promoted formation of a complex with monomeric Rad52 and caused the transfer of ssDNA from RPA to Rad52. This suggests that RPA phosphorylation may regulate the first steps of DSB repair and is necessary for the mediator function of Rad52.
Collapse
Affiliation(s)
- Xiaoyi Deng
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 987696 Nebraska Medical Center, Omaha, Nebraska 68198-7696, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Homologous recombinational repair factors are recruited and loaded onto the viral DNA genome in Epstein-Barr virus replication compartments. J Virol 2009; 83:6641-51. [PMID: 19386720 DOI: 10.1128/jvi.00049-09] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Homologous recombination is an important biological process that facilitates genome rearrangement and repair of DNA double-strand breaks (DSBs). The induction of Epstein-Barr virus (EBV) lytic replication induces ataxia telangiectasia-mutated (ATM)-dependent DNA damage checkpoint signaling, leading to the clustering of phosphorylated ATM and Mre11/Rad50/Nbs1 (MRN) complexes to sites of viral genome synthesis in nuclei. Here we report that homologous recombinational repair (HRR) factors such as replication protein A (RPA), Rad51, and Rad52 as well as MRN complexes are recruited and loaded onto the newly synthesized viral genome in replication compartments. The 32-kDa subunit of RPA is extensively phosphorylated at sites in accordance with those with ATM. The hyperphosphorylation of RPA32 causes a change in RPA conformation, resulting in a switch from the catalysis of DNA replication to the participation in DNA repair. The levels of Rad51 and phosphorylated RPA were found to increase with the progression of viral productive replication, while that of Rad52 proved constant. Furthermore, biochemical fractionation revealed increases in levels of DNA-bound forms of these HRRs. Bromodeoxyuridine-labeled chromatin immunoprecipitation and PCR analyses confirmed the loading of RPA, Rad 51, Rad52, and Mre11 onto newly synthesized viral DNA, and terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling analysis demonstrated DSBs in the EBV replication compartments. HRR factors might be recruited to repair DSBs on the viral genome in viral replication compartments. RNA interference knockdown of RPA32 and Rad51 prevented viral DNA synthesis remarkably, suggesting that homologous recombination and/or repair of viral DNA genome might occur, coupled with DNA replication to facilitate viral genome synthesis.
Collapse
|
22
|
Yeh YH, Huang YF, Lin TY, Shieh SY. The cell cycle checkpoint kinase CHK2 mediates DNA damage-induced stabilization of TTK/hMps1. Oncogene 2009; 28:1366-78. [PMID: 19151762 DOI: 10.1038/onc.2008.477] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Cell cycle progression is monitored constantly to ensure faithful passage of genetic codes and genome stability. We have demonstrated previously that, upon DNA damage, TTK/hMps1 activates the checkpoint kinase CHK2 by phosphorylating CHK2 at Thr68. However, it remains to be determined whether and how TTK/hMps1 responds to DNA damage. In this report, we present evidence that TTK/hMps1 can be induced by DNA damage in normal human fibroblasts. Interestingly, the induction depends on CHK2 because CHK2-targeting small interfering RNA or a CHK2 inhibitor abolishes the increase. Such induction is mediated through phosphorylation of TTK/hMps1 at Thr288 by CHK2 and requires the CHK2 SQ/TQ cluster domain/forkhead-associated domain. In cells, TTK/hMps1 phosphorylation at Thr288 is induced by DNA damage and forms nuclear foci, which colocalize partially with gamma-H2AX. Reexpression of TTK/hMps1 T288A mutant in TTK/hMps1-knockdown cells causes a defect in G(2)/M arrest, suggesting that phosphorylation at this site participates in the proper checkpoint execution. Our study uncovered a regulatory loop between TTK/hMps1 and CHK2 whereby DNA damage-activated CHK2 may facilitate the stabilization of TTK/hMps1, therefore maintaining the checkpoint control.
Collapse
Affiliation(s)
- Y-H Yeh
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | | | | | | |
Collapse
|
23
|
Abstract
DNA replication takes place at discrete sites in the cell nucleus, named replication foci. The spatial arrangements of these foci change in the course of S phase in a temporally regulated and reproducible fashion forming five distinct and highly conserved replication patterns. The organization of nuclear replication sites can be studied by electron and light microscopy techniques. This chapter describes several procedures for detection of replication foci in mammalian nuclei via indirect immunofluorescence microscopy.
Collapse
|
24
|
Casteel DE, Zhuang S, Zeng Y, Perrino FW, Boss GR, Goulian M, Pilz RB. A DNA polymerase-{alpha}{middle dot}primase cofactor with homology to replication protein A-32 regulates DNA replication in mammalian cells. J Biol Chem 2008; 284:5807-18. [PMID: 19119139 DOI: 10.1074/jbc.m807593200] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
alpha-Accessory factor (AAF) stimulates the activity of DNA polymerase-alpha.primase, the only enzyme known to initiate DNA replication in eukaryotic cells ( Goulian, M., Heard, C. J., and Grimm, S. L. (1990) J. Biol. Chem. 265, 13221-13230 ). We purified the AAF heterodimer composed of 44- and 132-kDa subunits from cultured cells and identified full-length cDNA clones using amino acid sequences from internal peptides. AAF-132 demonstrated no homologies to known proteins; AAF-44, however, is evolutionarily related to the 32-kDa subunit of replication protein A (RPA-32) and contains an oligonucleotide/oligosaccharide-binding (OB) fold domain similar to the OB fold domains of RPA involved in single-stranded DNA binding. Epitope-tagged versions of AAF-44 and -132 formed a complex in intact cells, and purified recombinant AAF-44 bound to single-stranded DNA and stimulated DNA primase activity only in the presence of AAF-132. Mutations in conserved residues within the OB fold of AAF-44 reduced DNA binding activity of the AAF-44.AAF-132 complex. Immunofluorescence staining of AAF-44 and AAF-132 in S phase-enriched HeLa cells demonstrated punctate nuclear staining, and AAF co-localized with proliferating cell nuclear antigen, a marker for replication foci containing DNA polymerase-alpha.primase and RPA. Small interfering RNA-mediated depletion of AAF-44 in tumor cell lines inhibited [methyl-(3)H]thymidine uptake into DNA but did not affect cell viability. We conclude that AAF shares structural and functional similarities with RPA-32 and regulates DNA replication, consistent with its ability to increase polymerase-alpha.primase template affinity and stimulate both DNA primase and polymerase-alpha activities in vitro.
Collapse
Affiliation(s)
- Darren E Casteel
- Department of Medicine and Cancer Center of the University of California, San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Shi W, Ma Z, Willers H, Akhtar K, Scott SP, Zhang J, Powell S, Zhang J. Disassembly of MDC1 foci is controlled by ubiquitin-proteasome-dependent degradation. J Biol Chem 2008; 283:31608-16. [PMID: 18757370 DOI: 10.1074/jbc.m801082200] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The orderly recruitment, retention, and disassembly of DNA damage response proteins at sites of damaged DNA is a conserved process throughout eukaryotic evolution. The recruitment and retention of DNA repair factors in foci is mediated by a complex network of protein-protein interactions; however, the mechanisms of focus disassembly remain to be defined. Mediator of DNA damage checkpoint protein 1 (MDC1) is an early and key component of the genome surveillance network activated by DNA double-strand breaks (DSBs). Here, we investigated the disassembly of MDC1 foci. First, we show that ubiquitylation directs the MDC1 protein for proteasome-dependent degradation. Ubiquitylated MDC1 associates with chromatin before and after exposure of cells to ionizing radiation (IR). In addition, increased MDC1 ubiquitylation in the chromatin fraction is observed in response to IR, which is correlated with a reduction in total MDC1 protein levels. We demonstrate that blocking MDC1 degradation by proteasome inhibitors leads to a persistence of MDC1 foci. Consistent with this observation, chromatin immunoprecipitation experiments reveal increased MDC1 protein at site-specific DSBs. Interestingly, we show that the persistence of MDC1 foci is associated with an abrogated recruitment of the downstream factor BRCA1 in a manner that is RNF8 independent. Collectively, the evidence presented here supports a novel mechanism for the disassembly of MDC1 foci via ubiquitin-proteasome dependent degradation, which appears to be a key step for the efficient assembly of BRCA1 foci.
Collapse
Affiliation(s)
- Wei Shi
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Zhao F, Hou NB, Yang XL, He X, Liu Y, Zhang YH, Wei CW, Song T, Li L, Ma QJ, Zhong H. Ataxia telangiectasia-mutated-Rad3-related DNA damage checkpoint signaling pathway triggered by hepatitis B virus infection. World J Gastroenterol 2008; 14:6163-70. [PMID: 18985806 PMCID: PMC2761577 DOI: 10.3748/wjg.14.6163] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AIM: To explore whether acute cellular DNA damage response is induced upon hepatitis B virus (HBV) infection and the effects of the HBV infection.
METHODS: We incubated HL7702 hepatocytes with HBV-positive serum, mimicking a natural HBV infection process. We used immunoblotting to evaluate protein expression levels in HBV-infected cells or in non-infected cells; immunofluorescence to show ATR foci ands Chk1 phosphorylation foci formation; flow cytometry to analyze the cell cycle and apoptosis; ultraviolet (UV) radiation and ionizing radiation (IR)-treated cells to mimic DNA damage; and Trypan blue staining to count the viable cells.
RESULTS: We found that HBV infection induced an increased steady state of ATR protein and increased phosphorylation of multiple downstream targets including Chk1, p53 and H2AX. In contrast to ATR and its target, the phosphorylated form of ATM at Ser-1981 and its downstream substrate Chk2 phosphorylation at Thr-68 did not visibly increase upon infection. However, the level of Mre11 and p21 were reduced beginning at 0.5 h after HBV-positive serum addition. Also, HBV infection led to transient cell cycle arrest in the S and the G2 phases without accompanying increased apoptosis. Research on cell survival changes upon radiation following HBV infection showed that survival of UV-treated host cells was greatly increased by HBV infection, owing to the reduced apoptosis. Meanwhile, survival of IR-treated host cells was reduced by HBV infection.
CONCLUSION: HBV infection activates ATR DNA damage response to replication stress and abrogates the checkpoint signaling controlled by DNA damage response.
Collapse
|
27
|
RPA phosphorylation facilitates mitotic exit in response to mitotic DNA damage. Proc Natl Acad Sci U S A 2008; 105:12903-8. [PMID: 18723675 DOI: 10.1073/pnas.0803001105] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human replication protein A (RPA) becomes phosphorylated on the RPA2 subunit by cyclin B-Cdc2 during mitosis, although the functional role of this modification is unclear. We find that this modification stimulates RPA2 to become hyperphosphorylated in response to mitotic DNA damage caused by bleomycin treatment. Cells in which endogenous RPA2 was replaced by a mutant subunit lacking both Cdc2 sites had a significant defect in mitotic release into a 2N G(1) phase after exposure to bleomycin. An increased percentage of these mutant cells also was positive initially for cyclin B expression and BubR1 chromatin staining, indicative of an extended spindle assembly checkpoint. The mutant cells that experienced mitotic DNA damage also underwent apoptosis at higher levels than cells expressing the WT subunit. Even so, we did not find the mutation had any dramatic effects on the level of DNA repair in mitosis. Cells lacking ATM (a checkpoint factor and RPA2 kinase) also were severely defective in mitotic exit and were unable to support RPA hyperphosphorylation after mitotic DNA damage. Although checkpoint 1 effector kinase (Chk1) had a more complex role, inhibition of Chk1 activity with UCN-01 also reduced mitotic exit. Chk1 activation and mitotic RPA hyperphosphorylation were found to be independent events. Our results demonstrate that mitotic RPA hyperphosphorylation facilitates release of cells from a damaged mitosis into a 2N G(1) phase, thereby increasing cell viability.
Collapse
|
28
|
Haring SJ, Mason AC, Binz SK, Wold MS. Cellular functions of human RPA1. Multiple roles of domains in replication, repair, and checkpoints. J Biol Chem 2008; 283:19095-111. [PMID: 18469000 PMCID: PMC2441558 DOI: 10.1074/jbc.m800881200] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 05/05/2008] [Indexed: 11/06/2022] Open
Abstract
In eukaryotes, the single strand DNA (ssDNA)-binding protein, replication protein A (RPA), is essential for DNA replication, repair, and recombination. RPA is composed of the following three subunits: RPA1, RPA2, and RPA3. The RPA1 subunit contains four structurally related domains and is responsible for high affinity ssDNA binding. This study uses a depletion/replacement strategy in human cells to reveal the contributions of each domain to RPA cellular functions. Mutations that substantially decrease ssDNA binding activity do not necessarily disrupt cellular RPA function. Conversely, mutations that only slightly affect ssDNA binding can dramatically affect cellular function. The N terminus of RPA1 is not necessary for DNA replication in the cell; however, this region is important for the cellular response to DNA damage. Highly conserved aromatic residues in the high affinity ssDNA-binding domains are essential for DNA repair and cell cycle progression. Our findings suggest that as long as a threshold of RPA-ssDNA binding activity is met, DNA replication can occur and that an RPA activity separate from ssDNA binding is essential for function in DNA repair.
Collapse
Affiliation(s)
- Stuart J Haring
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | |
Collapse
|
29
|
Oligomerization of ICP4 and rearrangement of heat shock proteins may be important for herpes simplex virus type 1 prereplicative site formation. J Virol 2008; 82:6324-36. [PMID: 18434395 DOI: 10.1128/jvi.00455-08] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Herpes simplex virus type 1 (HSV-1) DNA replication occurs in replication compartments that form in the nucleus by an ordered process involving a series of protein scaffold intermediates. Following entry of viral genomes into the nucleus, nucleoprotein complexes containing ICP4 can be detected at a position adjacent to nuclear domain 10 (ND10)-like bodies. ND10s are then disrupted by the viral E3 ubiquitin ligase ICP0. We have previously reported that after the dissociation of ND10-like bodies, ICP8 could be observed in a diffuse staining pattern; however, using more sensitive staining methods, we now report that in addition to diffuse staining, ICP8 can be detected in tiny foci adjacent to ICP4 foci. ICP8 microfoci contain UL9 and components of the helicase-primase complex. HSV infection also results in the reorganization of the heat shock cognate protein 70 (Hsc70) and the 20S proteasome into virus-induced chaperone-enriched (VICE) domains. In this report we show that VICE domains are distinct but adjacent to the ICP4 nucleoprotein complexes and the ICP8 microfoci. In cells infected with an ICP4 mutant virus encoding a mutant protein that cannot oligomerize on DNA, ICP8 microfoci are not detected; however, VICE domains could still be formed. These results suggest that oligomerization of ICP4 on viral DNA may be essential for the formation of ICP8 microfoci but not for the reorganization of host cell chaperones into VICE domains.
Collapse
|
30
|
Lu J, Gilbert DM. Proliferation-dependent and cell cycle regulated transcription of mouse pericentric heterochromatin. ACTA ACUST UNITED AC 2007; 179:411-21. [PMID: 17984319 PMCID: PMC2064789 DOI: 10.1083/jcb.200706176] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pericentric heterochromatin transcription has been implicated in Schizosaccharomyces pombe heterochromatin assembly and maintenance. However, in mammalian systems, evidence for such transcription is inconsistent. We identify two populations of RNA polymerase II–dependent mouse γ satellite repeat sequence–derived transcripts from pericentric heterochromatin that accumulate at different times during the cell cycle. A small RNA species was synthesized exclusively during mitosis and rapidly eliminated during mitotic exit. A more abundant population of large, heterogeneous transcripts was induced late in G1 phase and their synthesis decreased during mid S phase, which is coincident with pericentric heterochromatin replication. In cells that lack the Suv39h1,2 methyltransferases responsible for H3K9 trimethylation, transcription occurs from more sites but is still cell cycle regulated. Transcription is not detected in quiescent cells and induction during G1 phase is sensitive to serum deprivation or the cyclin-dependent kinase inhibitor roscovatine. We demonstrate that mammalian pericentric heterochromatin transcription is linked to cellular proliferation. Our data also provide an explanation for inconsistencies in the detection of such transcripts in different systems.
Collapse
Affiliation(s)
- Junjie Lu
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | | |
Collapse
|
31
|
Olson E, Nievera CJ, Liu E, Lee AYL, Chen L, Wu X. The Mre11 complex mediates the S-phase checkpoint through an interaction with replication protein A. Mol Cell Biol 2007; 27:6053-67. [PMID: 17591703 PMCID: PMC1952149 DOI: 10.1128/mcb.00532-07] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2007] [Revised: 05/14/2007] [Accepted: 06/08/2007] [Indexed: 12/30/2022] Open
Abstract
The Mre11/Rad50/Nbs1 complex (MRN) plays an essential role in the S-phase checkpoint. Cells derived from patients with Nijmegen breakage syndrome and ataxia telangiectasia-like disorder undergo radioresistant DNA synthesis (RDS), failing to suppress DNA replication in response to ionizing radiation (IR). How MRN affects DNA replication to control the S-phase checkpoint, however, remains unclear. We demonstrate that MRN directly interacts with replication protein A (RPA) in unperturbed cells and that the interaction is regulated by cyclin-dependent kinases. We also show that this interaction is needed for MRN to correctly localize to replication centers. Abolishing the interaction of Mre11 with RPA leads to pronounced RDS without affecting phosphorylation of Nbs1 or SMC1 following IR. Moreover, MRN is recruited to sites at or adjacent to replication origins by RPA and acts there to inhibit new origin firing upon IR. These studies suggest a direct role of MRN at origin-proximal sites to control DNA replication initiation in response to DNA damage, thereby providing an important mechanism underlying the intra-S-phase checkpoint in mammalian cells.
Collapse
Affiliation(s)
- Erin Olson
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
32
|
Chen Y, Livingston CM, Carrington-Lawrence SD, Bai P, Weller SK. A mutation in the human herpes simplex virus type 1 UL52 zinc finger motif results in defective primase activity but can recruit viral polymerase and support viral replication efficiently. J Virol 2007; 81:8742-51. [PMID: 17553899 PMCID: PMC1951384 DOI: 10.1128/jvi.00174-07] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) encodes a heterotrimeric helicase/primase complex consisting of UL5, UL8, and UL52. UL5 contains conserved helicase motifs, while UL52 contains conserved primase motifs, including a zinc finger motif. Although HSV-1 and HSV-2 UL52s contain a leucine residue at position 986, most other herpesvirus primase homologues contain a phenylalanine at this position. We constructed an HSV-1 UL52 L986F mutation and found that it can complement a UL52 null virus more efficiently than the wild type (WT). We thus predicted that the UL5/8/52 complex containing the L986F mutation might possess increased primase activity; however, it exhibited only 25% of the WT level of primase activity. Interestingly, the mutant complex displayed elevated levels of DNA binding and single-stranded DNA-dependent ATPase and helicase activities. This result confirms a complex interdependence between the helicase and primase subunits. We previously showed that primase-defective mutants failed to recruit the polymerase catalytic subunit UL30 to prereplicative sites, suggesting that an active primase, or primer synthesis, is required for polymerase recruitment. Although L986F exhibits decreased primase activity, it can support efficient replication and recruit UL30 efficiently to replication compartments, indicating that a partially active primase is capable of recruiting polymerase. Extraction with detergents prior to fixation can extract nucleosolic proteins but not proteins bound to chromatin or the nuclear matrix. We showed that UL30 was extracted from replication compartments while UL42 remained bound, suggesting that UL30 may be tethered to the replication fork by protein-protein interactions.
Collapse
Affiliation(s)
- Yan Chen
- Department of Molecular, Microbial and Structural Biology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030, USA
| | | | | | | | | |
Collapse
|
33
|
Liu JS, Kuo SR, Melendy T. DNA damage-induced RPA focalization is independent of gamma-H2AX and RPA hyper-phosphorylation. J Cell Biochem 2007; 99:1452-62. [PMID: 16927366 DOI: 10.1002/jcb.21066] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Replication protein A (RPA) is the major eukaryotic single stranded DNA binding protein that plays a central role in DNA replication, repair and recombination. Like many DNA repair proteins RPA is heavily phosphorylated (specifically on its 32 kDa subunit) in response to DNA damage. Phosphorylation of many repair proteins has been shown to be important for their recruitment to DNA damage-induced intra-nuclear foci. Further, phosphorylation of H2AX (gamma-H2AX) has been shown to be important for either the recruitment or stable retention of DNA repair proteins to these intra-nuclear foci. We address here the relationship between DNA damage-induced hyper-phosphorylation of RPA and its intra-nuclear focalization, and whether gamma-H2AX is required for RPA's presence at these foci. Using GFP-conjugated RPA, we demonstrate the formation of extraction-resistant RPA foci induced by DNA damage or stalled replication forks. The strong DNA damage-induced RPA foci appear after phosphorylated histone H2AX and Chk1, but earlier than the appearance of hyper-phosphorylated RPA. We demonstrate that while the functions of phosphoinositol-3-kinase-related protein kinases are essential for DNA damage-induced H2AX phosphorylation and RPA hyper-phosphorylation, they are dispensable for the induction of extraction-resistant RPA and RPA foci. Furthermore, in mouse cells genetically devoid of H2AX, DNA damage-induced extraction-resistant RPA appears with the same kinetics as in normal mouse cells. These results demonstrate that neither RPA hyper-phosphorylation nor H2AX are required for the formation in RPA intra-nuclear foci in response to DNA damage/replicational stress and are consistent with a role for RPA as a DNA damage sensor involved in the initial recognition of damaged DNA or blocked replication forks.
Collapse
Affiliation(s)
- Jen-Sing Liu
- Department of Microbiology, University at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, New York 14214, USA
| | | | | |
Collapse
|
34
|
Jeon Y, Lee KY, Ko MJ, Lee YS, Kang S, Hwang DS. Human TopBP1 participates in cyclin E/CDK2 activation and preinitiation complex assembly during G1/S transition. J Biol Chem 2007; 282:14882-90. [PMID: 17293600 DOI: 10.1074/jbc.m609116200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Human TopBP1 with eight BRCA1 C terminus domains has been mainly reported to be involved in DNA damage response pathways. Here we show that TopBP1 is also required for G(1) to S progression in a normal cell cycle. TopBP1 deficiency inhibited cells from entering S phase by up-regulating p21 and p27, resulting in down-regulation of cyclin E/CDK2. Although co-depletion of p21 and p27 with TopBP1 restored the cyclin E/CDK2 kinase activity, however, cells remained arrested at the G(1)/S boundary, showing defective chromatin-loading of replication components. Based on these results, we suggest a dual role of TopBP1 necessary for the G(1)/S transition: one for activating cyclin E/CDK2 kinase and the other for loading replication components onto chromatin to initiate DNA synthesis.
Collapse
Affiliation(s)
- Yesu Jeon
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | | | |
Collapse
|
35
|
Olson E, Nievera CJ, Klimovich V, Fanning E, Wu X. RPA2 is a direct downstream target for ATR to regulate the S-phase checkpoint. J Biol Chem 2006; 281:39517-33. [PMID: 17035231 DOI: 10.1074/jbc.m605121200] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Upon DNA damage, replication is inhibited by the S-phase checkpoint. ATR (ataxia telangiectasia mutated- and Rad3-related) is specifically involved in the inhibition of replicon initiation when cells are treated with DNA damage-inducing agents that stall replication forks, but the mechanism by which it acts to prevent replication is not yet fully understood. We observed that RPA2 is phosphorylated on chromatin in an ATR-dependent manner when replication forks are stalled. Mutation of the ATR-dependent phosphorylation sites in RPA2 leads to a defect in the down-regulation of DNA synthesis following treatment with UV radiation, although ATR activation is not affected. Threonine 21 and serine 33, two residues among several phosphorylation sites in the amino terminus of RPA2, are specifically required for the UV-induced, ATR-mediated inhibition of DNA replication. RPA2 mutant alleles containing phospho-mimetic mutations at ATR-dependent phosphorylation sites have an impaired ability to associate with replication centers, indicating that ATR phosphorylation of RPA2 directly affects the replication function of RPA. Our studies suggest that in response to UV-induced DNA damage, ATR rapidly phosphorylates RPA2, disrupting its association with replication centers in the S-phase and contributing to the inhibition of DNA replication.
Collapse
Affiliation(s)
- Erin Olson
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La, Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
36
|
Wilkinson DE, Weller SK. Herpes simplex virus type I disrupts the ATR-dependent DNA-damage response during lytic infection. J Cell Sci 2006; 119:2695-703. [PMID: 16757521 PMCID: PMC4427570 DOI: 10.1242/jcs.02981] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Like other DNA viruses, herpes simplex virus type 1 (HSV-1) interacts with components of the cellular response to DNA damage. For example, HSV-1 sequesters endogenous, uninduced, hyperphosphorylated RPA (replication protein A) away from viral replication compartments. RPA is a ssDNA-binding protein that signals genotoxic stress through the ATR (ataxia telangiectasia-mutated and Rad3-related) pathway. The sequestration of endogenous hyperphosphorylated RPA away from replicating viral DNA suggests that HSV-1 prevents the normal ATR-signaling response. In this study we examine the spatial distribution of endogenous hyperphosphorylated RPA with respect to ATR, its recruitment factor, ATRIP, and the cellular dsDNA break marker, gammaH2AX, during HSV-1 infection. The accumulation of these repair factors at DNA lesions has previously been identified as an early event in signaling genotoxic stress. We show that HSV-1 infection disrupts the ATR pathway by a mechanism that prevents the recruitment of repair factors, spatially uncouples ATRIP from ATR and sequesters ATRIP and endogenous hyperphosphorylated RPA within virus-induced nuclear domains containing molecular chaperones and components of the ubiquitin proteasome. The HSV-1 immediate early protein ICP0 is sufficient to induce the redistribution of ATRIP. This is the first report that a virus can disrupt the usually tight colocalization of ATR and ATRIP.
Collapse
|
37
|
Abstract
Replication protein A (RPA) is a heterotrimeric, single-stranded DNA-binding protein. RPA is conserved in all eukaryotes and is essential for DNA replication, DNA repair, and recombination. RPA also plays a role in coordinating DNA metabolism and the cellular response to DNA damage. Assays have been established for many of these reactions. This chapter provides an overview of the methods used for analyzing RPA-DNA interactions, RPA-protein interactions, and functional activities of RPA. Methods are also discussed for visualizing RPA in the cell and analyzing the effects of RPA function on cell cycle progression in mammalian cells.
Collapse
Affiliation(s)
- Sara K Binz
- Department of Biochemistry, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, USA
| | | | | | | |
Collapse
|
38
|
Zhang J, Ma Z, Treszezamsky A, Powell SN. MDC1 interacts with Rad51 and facilitates homologous recombination. Nat Struct Mol Biol 2005; 12:902-9. [PMID: 16186822 DOI: 10.1038/nsmb991] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2005] [Accepted: 08/22/2005] [Indexed: 12/21/2022]
Abstract
Mediator of DNA damage checkpoint protein-1 (MDC1) is a recently identified nuclear protein that participates in DNA-damage sensing and signaling. Here we report that knockdown of MDC1 by RNA interference results in cellular hypersensitivity to the DNA cross-linking agent mitomycin C and ionizing radiation and in impaired homology-mediated repair of double-strand breaks in DNA. MDC1 forms a complex with Rad51 through a direct interaction with the forkhead-associated domain of MDC1, not the BRCA1 C-terminal domain. Depletion of MDC1 results in impaired formation of Rad51 ionizing radiation-induced foci, reduced amounts of nuclear and chromatin-bound Rad51, and a corresponding increase in Rad51 protein degradation. Together, our findings suggest that MDC1 functions in Rad51-mediated homologous recombination by retaining Rad51 in chromatin.
Collapse
Affiliation(s)
- Junran Zhang
- Department of Radiation Oncology, MGH Cancer Center, Massachusetts General Hospital and Harvard Medical School, 149 13th Street, Charlestown, Massachusetts 02129, USA
| | | | | | | |
Collapse
|
39
|
Wilkinson DE, Weller SK. Inhibition of the herpes simplex virus type 1 DNA polymerase induces hyperphosphorylation of replication protein A and its accumulation at S-phase-specific sites of DNA damage during infection. J Virol 2005; 79:7162-71. [PMID: 15890955 PMCID: PMC1112160 DOI: 10.1128/jvi.79.11.7162-7171.2005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The treatment of mammalian cells with genotoxic substances can trigger DNA damage responses that include the hyperphosphorylation of replication protein A (RPA), a protein that plays key roles in the recognition, signaling, and repair of damaged DNA. We have previously reported that in the presence of a viral polymerase inhibitor, herpes simplex virus type 1 (HSV-1) infection induces the hyperphosphorylation of RPA (D. E. Wilkinson and S. K. Weller, J. Virol. 78:4783-4796, 2004). We initiated the present study to further characterize this genotoxic response to HSV-1 infection. Here we report that infection in the presence of polymerase inhibitors triggers an S-phase-specific response to DNA damage, as demonstrated by induction of the hyperphosphorylation of RPA and its accumulation within viral foci specific to the S phase of the cell cycle. This DNA damage response occurred in the presence of viral polymerase inhibitors and required the HSV-1 polymerase holoenzyme as well as the viral single-stranded-DNA binding protein. Treatment with an inhibitor of the viral helicase-primase did not induce the hyperphosphorylation of RPA or its accumulation in infected cells. Taken together, these results suggest that the S-phase-specific DNA damage response to infection is dependent on the specific inhibition of the polymerase. Finally, RPA hyperphosphorylation was not induced during productive infection, indicating that active viral replication does not trigger this potentially detrimental stress response.
Collapse
Affiliation(s)
- Dianna E Wilkinson
- Department of Molecular, Microbial and Structural Biology, MC3205, University of Connecticut Health Center, 263 Farmington Ave., Farmington, CT 06030, USA
| | | |
Collapse
|
40
|
Kim K, Dimitrova DD, Carta KM, Saxena A, Daras M, Borowiec JA. Novel checkpoint response to genotoxic stress mediated by nucleolin-replication protein a complex formation. Mol Cell Biol 2005; 25:2463-74. [PMID: 15743838 PMCID: PMC1061594 DOI: 10.1128/mcb.25.6.2463-2474.2005] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2004] [Revised: 06/14/2004] [Accepted: 12/13/2004] [Indexed: 11/20/2022] Open
Abstract
Human replication protein A (RPA), the primary single-stranded DNA-binding protein, was previously found to be inhibited after heat shock by complex formation with nucleolin. Here we show that nucleolin-RPA complex formation is stimulated after genotoxic stresses such as treatment with camptothecin or exposure to ionizing radiation. Complex formation in vitro and in vivo requires a 63-residue glycine-arginine-rich (GAR) domain located at the extreme C terminus of nucleolin, with this domain sufficient to inhibit DNA replication in vitro. Fluorescence resonance energy transfer studies demonstrate that the nucleolin-RPA interaction after stress occurs both in the nucleoplasm and in the nucleolus. Expression of the GAR domain or a nucleolin mutant (TM) with a constitutive interaction with RPA is sufficient to inhibit entry into S phase. Increasing cellular RPA levels by overexpression of the RPA2 subunit minimizes the inhibitory effects of nucleolin GAR or TM expression on chromosomal DNA replication. The arrest is independent of p53 activation by ATM or ATR and does not involve heightened expression of p21. Our data reveal a novel cellular mechanism that represses genomic replication in response to genotoxic stress by inhibition of an essential DNA replication factor.
Collapse
Affiliation(s)
- Kyung Kim
- Department of Biochemistry, New York University School of Medicine, 550 First Ave., MSB-383, New York, NY 10016, USA
| | | | | | | | | | | |
Collapse
|
41
|
Binz SK, Sheehan AM, Wold MS. Replication Protein A phosphorylation and the cellular response to DNA damage. DNA Repair (Amst) 2004; 3:1015-24. [PMID: 15279788 DOI: 10.1016/j.dnarep.2004.03.028] [Citation(s) in RCA: 229] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Defects in cellular DNA metabolism have a direct role in many human disease processes. Impaired responses to DNA damage and basal DNA repair have been implicated as causal factors in diseases with DNA instability like cancer, Fragile X and Huntington's. Replication protein A (RPA) is essential for multiple processes in DNA metabolism including DNA replication, recombination and DNA repair pathways (including nucleotide excision, base excision and double-strand break repair). RPA is a single-stranded DNA-binding protein composed of subunits of 70-, 32- and 14-kDa. RPA binds ssDNA with high affinity and interacts specifically with multiple proteins. Cellular DNA damage causes the N-terminus of the 32-kDa subunit of human RPA to become hyper-phosphorylated. Current data indicates that hyper-phosphorylation causes a change in RPA conformation that down-regulates activity in DNA replication but does not affect DNA repair processes. This suggests that the role of RPA phosphorylation in the cellular response to DNA damage is to help regulate DNA metabolism and promote DNA repair.
Collapse
Affiliation(s)
- Sara K Binz
- Department of Biochemistry, University of Iowa Carver College of Medicine, 3107 MERF, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
42
|
Vassin VM, Wold MS, Borowiec JA. Replication protein A (RPA) phosphorylation prevents RPA association with replication centers. Mol Cell Biol 2004; 24:1930-43. [PMID: 14966274 PMCID: PMC350552 DOI: 10.1128/mcb.24.5.1930-1943.2004] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mammalian replication protein A (RPA) undergoes DNA damage-dependent phosphorylation at numerous sites on the N terminus of the RPA2 subunit. To understand the functional significance of RPA phosphorylation, we expressed RPA2 variants in which the phosphorylation sites were converted to aspartate (RPA2(D)) or alanine (RPA2(A)). Although RPA2(D) was incorporated into RPA heterotrimers and supported simian virus 40 DNA replication in vitro, the RPA2(D) mutant was selectively unable to associate with replication centers in vivo. In cells containing greatly reduced levels of endogenous RPA2, RPA2(D) again did not localize to replication sites, indicating that the defect in supporting chromosomal DNA replication is not due to competition with the wild-type protein. Use of phosphospecific antibodies demonstrated that endogenous hyperphosphorylated RPA behaves similarly to RPA2(D). In contrast, under DNA damage or replication stress conditions, RPA2(D), like RPA2(A) and wild-type RPA2, was competent to associate with DNA damage foci as determined by colocalization with gamma-H2AX. We conclude that RPA2 phosphorylation prevents RPA association with replication centers in vivo and potentially serves as a marker for sites of DNA damage.
Collapse
Affiliation(s)
- Vitaly M Vassin
- Department of Biochemistry and New York University Cancer Institute, New York University School of Medicine, New York, New York 10016, USA
| | | | | |
Collapse
|
43
|
Yoshihara T, Ishida M, Kinomura A, Katsura M, Tsuruga T, Tashiro S, Asahara T, Miyagawa K. XRCC3 deficiency results in a defect in recombination and increased endoreduplication in human cells. EMBO J 2004; 23:670-80. [PMID: 14749735 PMCID: PMC1271813 DOI: 10.1038/sj.emboj.7600087] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2003] [Accepted: 12/22/2003] [Indexed: 12/24/2022] Open
Abstract
XRCC3 was inactivated in human cells by gene targeting. Consistent with its role in homologous recombination, XRCC3(-/-) cells showed a two-fold sensitivity to DNA cross-linking agents, a mild reduction in sister chromatid exchange, impaired Rad51 focus formation and elevated chromosome aberrations. Furthermore, endoreduplication was increased five- seven-fold in the mutants. The T241M variant of XRCC3 has been associated with an increased cancer risk. Expression of the wild-type cDNA restored this phenotype, while expression of the variant restored the defective recombinational repair, but not the increased endoreduplication. RPA, a protein essential for homologous recombination and DNA replication, is associated with XRCC3 and Rad52. Overexpression of RPA promoted endoreduplication, which was partially complemented by overexpression of the wild-type XRCC3 protein, but not by overexpression of the variant protein. Overexpression of Rad52 prevented endoreduplication in RPA-overexpressing cells, in XRCC3(-/-) cells and in the variant-expressing cells, suggesting that deregulated RPA was responsible for the increased endoreduplication. These observations offer the first genetic evidence for the association between homologous recombination and replication initiation having a role in cancer susceptibility.
Collapse
Affiliation(s)
- Takashi Yoshihara
- Department of Human Genetics, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
- Department of Surgery, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | - Mari Ishida
- Department of Human Genetics, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Aiko Kinomura
- Department of Human Genetics, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Mari Katsura
- Department of Human Genetics, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Takanori Tsuruga
- Department of Human Genetics, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Satoshi Tashiro
- Department of Biochemistry, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | - Toshimasa Asahara
- Department of Surgery, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | - Kiyoshi Miyagawa
- Department of Human Genetics, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
- Department of Human Genetics, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan. Tel.: +81 82 257 5828; Fax: +81 82 256 7102; E-mail:
| |
Collapse
|
44
|
Binz SK, Lao Y, Lowry DF, Wold MS. The phosphorylation domain of the 32-kDa subunit of replication protein A (RPA) modulates RPA-DNA interactions. Evidence for an intersubunit interaction. J Biol Chem 2003; 278:35584-91. [PMID: 12819197 DOI: 10.1074/jbc.m305388200] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Replication protein A (RPA) is a heterotrimeric (subunits of 70, 32, and 14 kDa) single-stranded DNA-binding protein that is required for DNA replication, recombination, and repair. The 40-residue N-terminal domain of the 32-kDa subunit of RPA (RPA32) becomes phosphorylated during S-phase and after DNA damage. Recently it has been shown that phosphorylation or the addition of negative charges to this N-terminal phosphorylation domain modulates RPA-protein interactions and increases cell sensitivity to DNA damage. We found that addition of multiple negative charges to the N-terminal phosphorylation domain also caused a significant decrease in the ability of a mutant form of RPA to destabilize double-stranded (ds) DNA. Kinetic studies suggested that the addition of negative charges to the N-terminal phosphorylation domain caused defects in both complex formation (nucleation) and subsequent destabilization of dsDNA by RPA. We conclude that the N-terminal phosphorylation domain modulates RPA interactions with dsDNA. Similar changes in DNA interactions were observed with a mutant form of RPA in which the N-terminal domain of the 70-kDa subunit was deleted. This suggested a functional link between the N-terminal domains of the 70- and 32-kDa subunits of RPA. NMR experiments provided evidence for a direct interaction between the N-terminal domain of the 70-kDa subunit and the negatively charged N-terminal phosphorylation domain of RPA32. These findings suggest that phosphorylation causes a conformational change in the RPA complex that regulates RPA function.
Collapse
Affiliation(s)
- Sara K Binz
- Department of Biochemistry, University of Iowa College of Medicine, Iowa City, Iowa 52242-1109, USA
| | | | | | | |
Collapse
|
45
|
Ito S, Yanagi K. Epstein-Barr virus (EBV) nuclear antigen 1 colocalizes with cellular replication foci in the absence of EBV plasmids. J Virol 2003; 77:3824-31. [PMID: 12610157 PMCID: PMC149516 DOI: 10.1128/jvi.77.6.3824-3831.2003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2002] [Accepted: 12/03/2002] [Indexed: 11/20/2022] Open
Abstract
Epstein-Barr virus (EBV) EBNA-1 is the only EBV-encoded protein that is essential for the once-per-cell-cycle replication and maintenance of EBV plasmids in latently infected cells. EBNA-1 binds to the oriP region of latent EBV plasmids and cellular metaphase chromosomes. In the absence of oriP-containing plasmids, EBNA-1 was highly colocalized with cellular DNA replication foci that were identified by immunostaining S-phase cells for proliferating cell nuclear antigen and replication protein A (RP-A) in combination with DNA short pulse-labeling. For the association of EBNA-1 with the cellular replication focus areas, the EBNA-1 regions of amino acids (aa) 8 to 94 and/or aa 315 to 410, but not the RP-A-interacting carboxy-terminal region, were necessary. These results suggest a new aspect of latent virus-cell interactions.
Collapse
Affiliation(s)
- Sayuri Ito
- Herpesvirus Laboratory, Department of Virology I, National Institute of Infectious Diseases, Shinjuku, Tokyo 162-8640, Japan
| | | |
Collapse
|
46
|
Dimitrova DS, Berezney R. The spatio-temporal organization of DNA replication sites is identical in primary, immortalized and transformed mammalian cells. J Cell Sci 2002; 115:4037-51. [PMID: 12356909 DOI: 10.1242/jcs.00087] [Citation(s) in RCA: 183] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We investigated the organization of DNA replication sites in primary (young or presenescent), immortalized and transformed mammalian cells. Four different methods were used to visualize replication sites: in vivo pulse-labeling with 5-bromo-2'-deoxyuridine (BrdU), followed by either acid depurination, or incubation in nuclease cocktail to expose single-stranded BrdU-substituted DNA regions for immunolabeling; biotin-dUTP labeling of nascent DNA by run-on replication within intact nuclei and staining with fluorescent streptavidin; and, finally, immunolabeling of the replication fork proteins PCNA and RPA. All methods produced identical results, demonstrating no fundamental differences in the spatio-temporal organization of replication patterns between primary, immortal or transformed mammalian cells. In addition, we did not detect a spatial coincidence between the early firing replicons and nuclear lamin proteins, the retinoblastoma protein or the nucleolus in primary human and rodent cells. The retinoblastoma protein does not colocalize in vivo with members of the Mcm family of proteins (Mcm2, 3 and 7) at any point of the cell cycle and neither in the chromatin-bound nor in the soluble nucleoplasmic fraction. These results argue against a direct role for the retinoblastoma or nuclear lamin proteins in mammalian DNA synthesis under normal physiological conditions.
Collapse
Affiliation(s)
- Daniela S Dimitrova
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY 14260, USA
| | | |
Collapse
|
47
|
Jackson D, Dhar K, Wahl JK, Wold MS, Borgstahl GEO. Analysis of the human replication protein A:Rad52 complex: evidence for crosstalk between RPA32, RPA70, Rad52 and DNA. J Mol Biol 2002; 321:133-48. [PMID: 12139939 DOI: 10.1016/s0022-2836(02)00541-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The eukaryotic single-stranded DNA-binding protein, replication protein A (RPA), is essential for DNA replication, and plays important roles in DNA repair and DNA recombination. Rad52 and RPA, along with other members of the Rad52 epistasis group of genes, repair double-stranded DNA breaks (DSBs). Two repair pathways involve RPA and Rad52, homologous recombination and single-strand annealing. Two binding sites for Rad52 have been identified on RPA. They include the previously identified C-terminal domain (CTD) of RPA32 (residues 224-271) and the newly identified domain containing residues 169-326 of RPA70. A region on Rad52, which includes residues 218-303, binds RPA70 as well as RPA32. The N-terminal region of RPA32 does not appear to play a role in the formation of the RPA:Rad52 complex. It appears that the RPA32CTD can substitute for RPA70 in binding Rad52. Sequence homology between RPA32 and RPA70 was used to identify a putative Rad52-binding site on RPA70 that is located near DNA-binding domains A and B. Rad52 binding to RPA increases ssDNA affinity significantly. Mutations in DBD-D on RPA32 show that this domain is primarily responsible for the ssDNA binding enhancement. RPA binding to Rad52 inhibits the higher-order self-association of Rad52 rings. Implications for these results for the "hand-off" mechanism between protein-protein partners, including Rad51, in homologous recombination and single-strand annealing are discussed.
Collapse
Affiliation(s)
- Doba Jackson
- Department of Chemistry, University of Toledo, 2801 West Bancroft Street, OH 43606-3390, USA
| | | | | | | | | |
Collapse
|
48
|
Cattaruzza M, Schäfer K, Hecker M. Cytokine-induced down-regulation of zfm1/splicing factor-1 promotes smooth muscle cell proliferation. J Biol Chem 2002; 277:6582-9. [PMID: 11748220 DOI: 10.1074/jbc.m108283200] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
One hallmark of inflammation is the proliferation of bystander cells such as vascular smooth muscle cells (SMC), a process governed by growth factors and cytokines. Whereas cytokine induction of gene products promoting inflammation and proliferation is well characterized, little is known about the concomitant down-regulation of potentially counter-regulatory gene products in these cells. By employing the suppression subtractive hybridization-PCR technique, RNA isolated from rat aortic SMC treated with the cytokines interleukin-1 beta (IL-1 beta) and tumor necrosis factor alpha (TNF alpha) was subtracted from RNA of control cells. Eleven genes were identified, the expression of which fell by 44-77%. One, the transcriptional repressor splicing factor-1 or zfm1, was characterized further. Antisense oligonucleotide suppression of zfm1 protein synthesis mimicked the stimulatory effects of IL-1 beta and TNF alpha on SMC proliferation and expression of the chemokine MCP-1 and the vascular cell adhesion molecule-1. Moreover, in an in vivo mouse model of atherosclerosis, zfm1 abundance was decreased in proliferating arterial SMC. These findings suggest a role for zfm1 in controlling both proliferation and expression of pro-inflammatory gene products in SMC. Therefore, cytokine-induced down-regulation of zfm1 expression may contribute to the pathogenesis of hyperproliferative inflammatory diseases.
Collapse
Affiliation(s)
- Marco Cattaruzza
- Department of Cardiovascular Physiology, University of Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | | | | |
Collapse
|
49
|
VanderWaal RP, Griffith CL, Wright WD, Borrelli MJ, Roti JL. Delaying S-phase progression rescues cells from heat-induced S-phase hypertoxicity. J Cell Physiol 2001; 187:236-43. [PMID: 11268003 DOI: 10.1002/jcp.1073] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The mechanism by which a cell protects itself from the lethal effects of heat shock and other stress-inducing agents is the subject of much research. We have investigated the relationship between heat-induced damage to DNA replication machinery and the lethal effects of heat shock, in S-phase cells, which are more sensitive to heat shock than either G1 or G2. We found that maintaining cells in aphidicolin, which prevents the passage of cells through S-phase, can rescue S-phase HeLa cells from the lethal effects of heat shock. When S-phase, HeLa cells were held for 5-6 h in 3 microM aphidicolin the measured clonogenic survival was similar to that for exponentially growing cells. It is known, that heat shock induces denaturation or unfolding of proteins, rendering them less soluble and more likely to co-isolate with the nuclear matrix. Here, we show that enhanced binding of proteins involved in DNA replication (PCNA, RPA, and cyclin A), with the nuclear matrix, correlates with lethality of S-phase cells following heat shock under four different experimental conditions. Specifically, the amounts of RPA, PCNA, and cyclin A associated with the nuclear matrix when cells resumed progression through S-phase correlated with cell killing. Heat-induced enhanced binding of nuclear proteins involved with other aspects of DNA metabolism, (Mrell, PDI), do not show this correlation. These results support the hypothesis that heat-induced changes in the binding of proteins associated with DNA replication factories are the potentially lethal lesions, which become fixed to lethal lesions by S-phase progression but are repairable if S-phase progression is delayed.
Collapse
Affiliation(s)
- R P VanderWaal
- Washington University School of Medicine, Mallinckrodt Institute of Radiology, Radiation Oncology Center, Section of Cancer Biology, St. Louis, Missouri, USA
| | | | | | | | | |
Collapse
|
50
|
Izumi M, Vaughan OA, Hutchison CJ, Gilbert DM. Head and/or CaaX domain deletions of lamin proteins disrupt preformed lamin A and C but not lamin B structure in mammalian cells. Mol Biol Cell 2000; 11:4323-37. [PMID: 11102526 PMCID: PMC15075 DOI: 10.1091/mbc.11.12.4323] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2000] [Revised: 09/22/2000] [Accepted: 10/05/2000] [Indexed: 11/11/2022] Open
Abstract
The nuclear lamina is an important determinant of nuclear architecture. Mutations in A-type but not B-type lamins cause a range of human genetic disorders, including muscular dystrophy. Dominant mutations in nuclear lamin proteins have been shown to disrupt a preformed lamina structure in Xenopus egg extracts. Here, a series of deletion mutations in lamins A and B1 were evaluated for their ability to disrupt lamina structure in Chinese hamster ovary cells. Deletions of either the lamin A "head" domain or the C-terminal CaaX domain formed intranuclear aggregates and resulted in the disruption of endogenous lamins A/C but not lamins B1/B2. By contrast, "head-less" lamin B1 localized to the nuclear rim with no detectable effect on endogenous lamins, whereas lamin B1 CaaX domain deletions formed intranuclear aggregates, disrupting endogenous lamins A/C but not lamins B1/B2. Filter binding assays revealed that a head/CaaX domain lamin B1 mutant interacted much more strongly with lamins A/C than with lamins B1/B2. Regulated induction of this mutant in stable cell lines resulted in the rapid elimination of all detectable lamin A protein, whereas lamin C was trapped in a soluble form within the intranuclear aggregates. In contrast to results in Xenopus egg extracts, dominant negative lamin B1 (but not lamin A) mutants trapped replication proteins involved in both the initiation and elongation phases of replication but did not effect cellular growth rates or the assembly of active replication centers. We conclude that elimination of the CaaX domain in lamin B1 and elimination of either the CaaX or head domain in lamin A constitute dominant mutations that can disrupt A-type but not B-type lamins, highlighting important differences in the way that A- and B-type lamins are integrated into the lamina.
Collapse
Affiliation(s)
- M Izumi
- Biodesign Research Group, Institute of Physical and Chemical Research (RIKEN), Wako, Saitama, 351-0198, Japan
| | | | | | | |
Collapse
|