1
|
Sasaki S, Takahashi R, Luo Y, Chujo K, Sera T, Kudo S. Spatiotemporal distribution of PKCα, Cdc42, and Rac1 before directed cell migration. Biochem Biophys Res Commun 2021; 584:26-31. [PMID: 34753065 DOI: 10.1016/j.bbrc.2021.10.080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/30/2021] [Accepted: 10/31/2021] [Indexed: 11/19/2022]
Abstract
Cdc42 is a key factor in directed cell migration and accumulates at the leading edge of migrating cells. However, what kind of proteins control Cdc42 and when is unclear. After mechanical wounding, protein kinase C α (PKCα), a conventional PKC isozyme, begins to accumulate at the edges of cells adjacent to the wounded cells (WCs). In this study, we hypothesized that PKCα may be implicated in directed cell migration at an early stage before Cdc42 controls the migration. We focused on the spatiotemporal distribution of PKCα, Cdc42, and Rac1 before cell migration. After wounding, at the edges of cells adjacent to the WCs, PKCα accumulation, Cdc42 accumulation, Rac1 accumulation, and filopodia formation occurred in that order. The PKCα inhibitor suppressed Cdc42 accumulation at the cell edges. These results suggest that inhibition of PKCα activity inhibits cell migration. In addition, it is not Cdc42 but PKCα that may decide the direction of cell migration.
Collapse
Affiliation(s)
- Saori Sasaki
- Department of Mechanical Engineering, Faculty of Engineering, Kyushu University, Fukuoka, Japan
| | - Ryu Takahashi
- Department of Mechanical Engineering, Graduate School of Engineering, Kyushu University, Fukuoka, Japan
| | - Yangfeng Luo
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan
| | - Kengo Chujo
- Department of Mechanical Engineering, Graduate School of Engineering, Kyushu University, Fukuoka, Japan
| | - Toshihiro Sera
- Department of Mechanical Engineering, Faculty of Engineering, Kyushu University, Fukuoka, Japan
| | - Susumu Kudo
- Department of Mechanical Engineering, Faculty of Engineering, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
2
|
Zhao X, Chen Y, Tan M, Zhao L, Zhai Y, Sun Y, Gong Y, Feng X, Du J, Fan Y. Extracellular Matrix Stiffness Regulates DNA Methylation by PKCα-Dependent Nuclear Transport of DNMT3L. Adv Healthc Mater 2021; 10:e2100821. [PMID: 34174172 DOI: 10.1002/adhm.202100821] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/31/2021] [Indexed: 01/02/2023]
Abstract
Extracellular matrix (ECM) stiffness has profound effects on the regulation of cell functions. DNA methylation is an important epigenetic modification governing gene expression. However, the effects of ECM stiffness on DNA methylation remain elusive. Here, it is reported that DNA methylation is sensitive to ECM stiffness, with a global hypermethylation under stiff ECM condition in mouse embryonic stem cells (mESCs) and embryonic fibroblasts compared with soft ECM. Stiff ECM enhances DNA methylation of both promoters and gene bodies, especially the 5' promoter regions of pluripotent genes. The enhanced DNA methylation is functionally required for the loss of pluripotent gene expression in mESCs grown on stiff ECM. Further experiments reveal that the nuclear transport of DNA methyltransferase 3-like (DNMT3L) is promoted by stiff ECM in a protein kinase C α (PKCα)-dependent manner and DNMT3L can be binding to Nanog promoter regions during cell-ECM interactions. These findings unveil DNA methylation as a novel target for the mechanical sensing mechanism of ECM stiffness, which provides a conserved mechanism for gene expression regulation during cell-ECM interactions.
Collapse
Affiliation(s)
- Xin‐Bin Zhao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering School of Biological Science and Medical Engineering Beihang University Beijing 100083 China
| | - Yun‐Ping Chen
- Institute of Biomechanics and Medical Engineering Department of Engineering Mechanics Tsinghua University Beijing 100084 China
| | - Min Tan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering School of Biological Science and Medical Engineering Beihang University Beijing 100083 China
| | - Lan Zhao
- Institute of Biomechanics and Medical Engineering Department of Engineering Mechanics Tsinghua University Beijing 100084 China
| | - Yuan‐Yuan Zhai
- School of Materials Science and Engineering Beijing Institute of Fashion Technology Beijing 100029 China
| | - Yan‐Ling Sun
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering School of Biological Science and Medical Engineering Beihang University Beijing 100083 China
| | - Yan Gong
- School of Materials Science and Engineering Beijing Institute of Fashion Technology Beijing 100029 China
| | - Xi‐Qiao Feng
- Institute of Biomechanics and Medical Engineering Department of Engineering Mechanics Tsinghua University Beijing 100084 China
| | - Jing Du
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering School of Biological Science and Medical Engineering Beihang University Beijing 100083 China
| | - Yu‐Bo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering School of Biological Science and Medical Engineering Beihang University Beijing 100083 China
| |
Collapse
|
3
|
Kobayakawa T, Takano H, Ishii T, Tsuji K, Ohashi N, Nomura W, Furuta T, Tamamura H. Synthesis of hydrophilic caged DAG-lactones for chemical biology applications. Org Biomol Chem 2020; 18:4217-4223. [PMID: 32432608 DOI: 10.1039/d0ob00807a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The 6-bromo-7-hydroxy-coumarin-4-ylmethyl (Bhc) group has been used widely in cage chemistry because of its high molar absorptivity and photolytic efficiency. One of the drawbacks of coumarins however is their low aqueous solubility. Aqueous solubility is important in the behavior of caged compounds because hydrophobic caged compounds might be aggregated in physiological conditions and consequently the photocleavage would be impaired. The 8-azacoumarin-4-ylmethyl derivatives with bromine (8-aza-Bhc) or iodine (8-aza-Ihc), which were previously developed in this laboratory, have aqueous solubilities that are higher than those of related coumarins. Here, to improve the hydrophilicity and management of caged diacylglycerol lactones (DAG-lactones), 8-aza-Bhc and 8-aza-Ihc were introduced into the DAG-lactone structure. The synthesized caged compounds showed high hydrophilicity compared with the parent Bhc-caged DAG-lactone, and the 8-aza-Ihc-caged DAG-lactone (2) showed excellent photolytic efficiency, which allows rapid release of the DAG-lactone (1) by brief photoirradiation. The 8-aza-7-hydroxy-6-iodo-coumarin-4-ylmethyl group might be useful for caging of bioactive compounds, especially hydrophobic compounds.
Collapse
Affiliation(s)
- Takuya Kobayakawa
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Hikaru Takano
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Takahiro Ishii
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Kohei Tsuji
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Nami Ohashi
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Wataru Nomura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Toshiaki Furuta
- Department of Biomolecular Science, Faculty of Science, Toho University, Funabashi 274-8510, Japan
| | - Hirokazu Tamamura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| |
Collapse
|
4
|
PKCα integrates spatiotemporally distinct Ca 2+ and autocrine BDNF signaling to facilitate synaptic plasticity. Nat Neurosci 2018; 21:1027-1037. [PMID: 30013171 PMCID: PMC6100743 DOI: 10.1038/s41593-018-0184-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 05/29/2018] [Indexed: 11/24/2022]
Abstract
The Protein Kinase C (PKC) enzymes have long been established as critical for synaptic plasticity. However, it is unknown whether Ca2+-dependent PKC isozymes are activated in dendritic spines during plasticity, and if so, how this synaptic activity is encoded by PKC. Here, using newly-developed, isozyme-specific sensors, we demonstrate that classic isozymes are activated to varying degrees and with unique kinetics. PKCα is activated robustly and rapidly in stimulated spines and is the only isozyme required for structural plasticity. This specificity, depends on a PDZ-binding domain present only in PKCα. The activation of PKCα during plasticity requires both NMDAR Ca2+-flux and autocrine BDNF-TrkB signaling, two pathways that differ vastly in their spatiotemporal scales of signaling. Our results suggest that by integrating these signals, PKCα combines a measure of recent, nearby synaptic plasticity with local synaptic input, enabling complex cellular computations such as heterosynaptic facilitation of plasticity necessary for efficient hippocampal-dependent learning.
Collapse
|
5
|
Arai M, Sera T, Hasegawa T, Kudo S. Spatial and temporal translocation of PKCα in single endothelial cell in response to mechanical stimulus. Exp Cell Res 2018; 367:205-215. [DOI: 10.1016/j.yexcr.2018.03.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 03/28/2018] [Accepted: 03/29/2018] [Indexed: 12/14/2022]
|
6
|
Singh RK, Kumar S, Gautam PK, Tomar MS, Verma PK, Singh SP, Kumar S, Acharya A. Protein kinase C-α and the regulation of diverse cell responses. Biomol Concepts 2018; 8:143-153. [PMID: 28841566 DOI: 10.1515/bmc-2017-0005] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 07/18/2017] [Indexed: 11/15/2022] Open
Abstract
Protein kinase C (PKC) comprises a family of lipid-sensitive enzymes that have been involved in a broad range of cellular functions. PKC-α is a member of classical PKC with ubiquitous expression and different cellular localization. This unique PKC isoform is activated by various signals which evoke lipid hydrolysis, after activation it interacts with various adapter proteins and is localized to specific cellular compartments where it is devised to work. The universal expression and activation by various stimuli make it a perfect player in uncountable cellular functions including differentiation, proliferation, apoptosis, cellular transformation, motility, adhesion and so on. However, these functions are not intrinsic properties of PKC-α, but depend on cell types and conditions. The activities of PKC-α are managed by the various pharmacological activators/inhibitors and antisense oligonucleotides. The aim of this review is to elaborate the structural feature, and provide an insight into the mechanism of PKC-α activation and regulation of its key biological functions in different cellular compartments to develop an effective pharmacological approach to regulate the PKC-α signal array.
Collapse
|
7
|
Arai M, Shimada T, Kora C, Nakashima K, Sera T, Kudo S. Biphasic and directed translocation of protein kinase Cα inside cultured endothelial cells before migration. Biochem Biophys Rep 2017; 12:91-97. [PMID: 28955796 PMCID: PMC5613218 DOI: 10.1016/j.bbrep.2017.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/03/2017] [Accepted: 08/10/2017] [Indexed: 11/28/2022] Open
Abstract
Mechanical wounding of an endothelial monolayer induces an immediate Ca2+ wave. Several hours later, the denuded area is covered by endothelial cells (ECs) that migrate to the wound. This migration process is closely related to protein kinase Cα (PKCα), a Ca2+-dependent protein that translocates from the cytosol to the cell membrane. Because the cells adjacent to the wounded area are the first to migrate into the wound, we investigated whether a mechanical wound immediately induces PKCα translocation in adjacent cells. We monitored Ca2+ dynamics and PKCα translocation simultaneously using fluorescent microscopy. For this simultaneous observation, we used Fura-2–acetoxymethyl ester to visualize Ca2+ and constructed a green fluorescent protein-tagged fusion protein to visualize PKCα. Mechanical wounding of the endothelial monolayer induced an immediate Ca2+ wave in cells adjacent to the wounded cells before their migration. Almost concurrently, PKCα in the neighboring cells translocated to the cell membrane, then accumulated at the periphery near the wounded cell. This report is the first description of this biphasic and directed translocation of PKCα in cells before cell migration. Our results may provide new insights into the directed migration of ECs. We wounded a single endothelial cell (EC) and investigated the distribution of protein kinase Cα (PKCα) in adjacent ECs. Initially, PKCα translocates to the cell membrane. Thereafter, PKCα accumulates at the cell periphery adjacent to the wounded cell.
Collapse
Affiliation(s)
- Masataka Arai
- Department of Mechanical Engineering, Graduate school of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Tomoya Shimada
- Division of Mechanical Engineering, Graduate School of Engineering and Science, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo 135-8548, Japan
| | - Chihiro Kora
- Department of Mechanical Engineering, Graduate school of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kazuhiro Nakashima
- Department of Mechanical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Toshihiro Sera
- Department of Mechanical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Susumu Kudo
- Department of Mechanical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
8
|
Mie M, Naoki T, Kobatake E. Development of a Split SNAP-CLIP Double Labeling System for Tracking Proteins Following Dissociation from Protein–Protein Complexes in Living Cells. Anal Chem 2016; 88:8166-71. [DOI: 10.1021/acs.analchem.6b01906] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Masayasu Mie
- Department of Life Science
and Technology, School of Life Science and Technology, Tokyo Institute of Technology. 4259 Nagatsuta, Midori-ku,
Yokohama 226-8502, Japan
| | - Tatsuhiko Naoki
- Department of Life Science
and Technology, School of Life Science and Technology, Tokyo Institute of Technology. 4259 Nagatsuta, Midori-ku,
Yokohama 226-8502, Japan
| | - Eiry Kobatake
- Department of Life Science
and Technology, School of Life Science and Technology, Tokyo Institute of Technology. 4259 Nagatsuta, Midori-ku,
Yokohama 226-8502, Japan
| |
Collapse
|
9
|
Lim PS, Sutton CR, Rao S. Protein kinase C in the immune system: from signalling to chromatin regulation. Immunology 2015; 146:508-22. [PMID: 26194700 DOI: 10.1111/imm.12510] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 06/29/2015] [Accepted: 07/15/2015] [Indexed: 12/12/2022] Open
Abstract
Protein kinase C (PKC) form a key family of enzymes involved in signalling pathways that specifically phosphorylates substrates at serine/threonine residues. Phosphorylation by PKC is important in regulating a variety of cellular events such as cell proliferation and the regulation of gene expression. In the immune system, PKCs are involved in regulating signal transduction pathways important for both innate and adaptive immunity, ultimately resulting in the expression of key immune genes. PKCs act as mediators during immune cell signalling through the immunological synapse. PKCs are traditionally known to be cytoplasmic signal transducers and are well embedded in the signalling pathways of cells to mediate the cells' response to a stimulus from the plasma membrane to the nucleus. PKCs are also found to transduce signals within the nucleus, a process that is distinct from the cytoplasmic signalling pathway. There is now growing evidence suggesting that PKC can directly regulate gene expression programmes through a non-traditional role as nuclear kinases. In this review, we will focus on the role of PKCs as key cytoplasmic signal transducers in immune cell signalling, as well as its role in nuclear signal transduction. We will also highlight recent evidence for its newly discovered regulatory role in the nucleus as a chromatin-associated kinase.
Collapse
Affiliation(s)
- Pek Siew Lim
- Discipline of Biomedical Sciences, Faculty of Applied Science, University of Canberra, Canberra, ACT, Australia
| | - Christopher Ray Sutton
- Discipline of Biomedical Sciences, Faculty of Applied Science, University of Canberra, Canberra, ACT, Australia
| | - Sudha Rao
- Discipline of Biomedical Sciences, Faculty of Applied Science, University of Canberra, Canberra, ACT, Australia
| |
Collapse
|
10
|
Mie M, Naoki T, Kobatake E. Tracking a protein following dissociation from a protein–protein complex using a split SNAP-tag system. Anal Biochem 2015; 477:53-5. [DOI: 10.1016/j.ab.2015.02.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 02/13/2015] [Accepted: 02/17/2015] [Indexed: 12/01/2022]
|
11
|
Gonnella R, Granato M, Farina A, Santarelli R, Faggioni A, Cirone M. PKC theta and p38 MAPK activate the EBV lytic cycle through autophagy induction. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:1586-95. [PMID: 25827954 DOI: 10.1016/j.bbamcr.2015.03.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 03/17/2015] [Accepted: 03/20/2015] [Indexed: 01/14/2023]
Abstract
PKC activation by combining TPA with sodium butyrate (T/B) represents the most effective and widely used strategy to induce the Epstein-Barr virus (EBV) lytic cycle. The results obtained in this study show that novel PKCθ is involved in such process and that it acts through the activation of p38 MAPK and autophagy induction. Autophagy, a mechanism of cellular defense in stressful conditions, is manipulated by EBV to enhance viral replication. Besides promoting the EBV lytic cycle, the activation of p38 and autophagy resulted in a pro-survival effect, as indicated by p38 or ATG5 knocking down experiments. However, this pro-survival role was counteracted by a pro-death activity of PKCθ, due to the dephosphorylation of AKT. In conclusion, this study reports, for the first time, that T/B activates a PKCθ-p38 MAPK axis in EBV infected B cells, that promotes the viral lytic cycle and cell survival and dephosphorylates AKT, balancing cell life and cell death.
Collapse
Affiliation(s)
- Roberta Gonnella
- Department of Experimental Medicine, "Sapienza" University of Rome, Italy
| | - Marisa Granato
- Department of Experimental Medicine, "Sapienza" University of Rome, Italy
| | - Antonella Farina
- Department of Experimental Medicine, "Sapienza" University of Rome, Italy
| | - Roberta Santarelli
- Department of Experimental Medicine, "Sapienza" University of Rome, Italy
| | - Alberto Faggioni
- Department of Experimental Medicine, "Sapienza" University of Rome, Italy.
| | - Mara Cirone
- Department of Experimental Medicine, "Sapienza" University of Rome, Italy.
| |
Collapse
|
12
|
The role of anti-apoptotic protein kinase Cα in response to hypericin photodynamic therapy in U-87 MG cells. Photodiagnosis Photodyn Ther 2014; 11:213-26. [DOI: 10.1016/j.pdpdt.2014.02.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 02/13/2014] [Accepted: 02/17/2014] [Indexed: 01/06/2023]
|
13
|
Newman RH, Fosbrink MD, Zhang J. Genetically encodable fluorescent biosensors for tracking signaling dynamics in living cells. Chem Rev 2011; 111:3614-66. [PMID: 21456512 PMCID: PMC3092831 DOI: 10.1021/cr100002u] [Citation(s) in RCA: 260] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Robert H. Newman
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Matthew D. Fosbrink
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Jin Zhang
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
14
|
Vázquez-Iglesias L, Lostalé-Seijo I, Martínez-Costas J, Benavente J. Avian reovirus sigmaA localizes to the nucleolus and enters the nucleus by a nonclassical energy- and carrier-independent pathway. J Virol 2009; 83:10163-75. [PMID: 19640987 PMCID: PMC2747991 DOI: 10.1128/jvi.01080-09] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Accepted: 07/16/2009] [Indexed: 12/24/2022] Open
Abstract
Avian reovirus sigmaA is a double-stranded RNA (dsRNA)-binding protein that has been shown to stabilize viral core particles and to protect the virus against the antiviral action of interferon. To continue with the characterization of this viral protein, we have investigated its intracellular distribution in avian cells. Most sigmaA accumulates into cytoplasmic viral factories of infected cells, and yet a significant fraction was detected in the nucleolus. The protein also localizes in the nucleolus of transfected cells, suggesting that nucleolar targeting is not facilitated by the viral infection or by viral factors. Assays performed in both intact cells and digitonin-permeabilized cells demonstrate that sigmaA is able to enter the nucleus via a nucleoporin-dependent nondiffusional mechanism that does not require added cytosolic factors or energy input. These results indicate that sigmaA by itself is able to penetrate into the nucleus using a process that is mechanistically different from the classical nuclear localization signal/importin pathway. On the other hand, two sigmaA arginines that are necessary for dsRNA binding are also required for nucleolar localization, suggesting that dsRNA-binding and nucleolar targeting are intimately linked properties of the viral protein.
Collapse
Affiliation(s)
- Lorena Vázquez-Iglesias
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | | | | | | |
Collapse
|
15
|
Subcellular Localization of Diacylglycerol-responsive Protein Kinase C Isoforms in HeLa Cells. B KOREAN CHEM SOC 2009. [DOI: 10.5012/bkcs.2009.30.9.1981] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Hasegawa H, Nakano T, Hozumi Y, Takagi M, Ogino T, Okada M, Iseki K, Kondo H, Watanabe M, Martelli AM, Goto K. Diacylglycerol kinase zeta is associated with chromatin, but dissociates from condensed chromatin during mitotic phase in NIH3T3 cells. J Cell Biochem 2008; 105:756-65. [PMID: 18680142 DOI: 10.1002/jcb.21873] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Diacylglycerol kinase (DGK) converts diacylglycerol (DG) to phosphatidic acid, both of which act as second messengers to mediate a variety of cellular mechanisms. Therefore, DGK contributes to the regulation of these messengers in cellular signal transduction. Of DGK isozymes cloned, DGKzeta is characterized by a nuclear localization signal that overlaps with a sequence similar to the myristoylated alanine-rich C-kinase substrate. Previous studies showed that nuclear DG is differentially regulated from plasma membrane DG and that the nuclear DG levels fluctuate in correlation with cell cycle progression, suggesting the importance of nuclear DG in cell cycle control. In this connection, DGKzeta has been shown to localize to the nucleus in fully differentiated cells, such as neurons and lung cells, although it remains elusive how DGK behaves during the cell cycle in proliferating cells. Here we demonstrate that DGKzeta localizes to the nucleus during interphase including G1, S, and G2 phases and is associated with chromatin although it dissociates from condensed chromatin during mitotic phase in NIH3T3 cells. Furthermore, this localization pattern is also observed in proliferating spermatogonia in the testis. These results suggest a reversible association of DGKzeta with histone or its related proteins in cell cycle, plausibly dependent on their post-translational modifications.
Collapse
Affiliation(s)
- Hiroshi Hasegawa
- Department of Anatomy and Cell Biology, Yamagata University School of Medicine, Yamagata 990-9585, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Persiyantseva NA, Bolshakov AP, Mikhailova MM, Birikh KR, Pinelis VG. Retranslocation of active protein kinase C-beta II during calcium overload of cultured neurons. NEUROCHEM J+ 2008. [DOI: 10.1134/s181971240804003x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Abstract
G protein-coupled receptors (GPCRs) transmit extracellular signals into the intracellular space, and play key roles in the physiological regulation of virtually every cell and tissue. Characteristic for the GPCR superfamily of cell surface receptors are their seven transmembrane-spanning alpha-helices, an extracellular N terminus and intracellular C-terminal tail. Besides transmission of extracellular signals, their activity is modulated by cellular signals in an auto- or transregulatory fashion. The molecular complexity of GPCRs and their regulated signaling networks triggered the interest in academic research groups to explore them further, and their drugability and role in pathophysiology triggers pharmaceutical research towards small molecular weight ligands and therapeutic antibodies. About 30% of marketed drugs target GPCRs, which underlines the importance of this target class. This review describes current and emerging cellular assays for the ligand discovery of GPCRs.
Collapse
Affiliation(s)
- Sandra Siehler
- Novartis Institutes for BioMedical Research Basel, Center for Proteomic Chemistry, Novartis Pharma AG, 4002 Basel, Switzerland.
| |
Collapse
|
19
|
Kuyumcu-Martinez NM, Wang GS, Cooper TA. Increased steady-state levels of CUGBP1 in myotonic dystrophy 1 are due to PKC-mediated hyperphosphorylation. Mol Cell 2008; 28:68-78. [PMID: 17936705 DOI: 10.1016/j.molcel.2007.07.027] [Citation(s) in RCA: 330] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Revised: 06/19/2007] [Accepted: 07/26/2007] [Indexed: 02/08/2023]
Abstract
The genetic basis of myotonic dystrophy type 1 (DM1) is a CTG expansion in the 3' untranslated region (UTR) of DMPK. The pathogenic mechanism involves an RNA gain of function in which the repeat-containing transcripts accumulate in nuclei and alter the functions of RNA-binding proteins such as CUG-binding protein 1 (CUGBP1). CUGBP1 levels are increased in DM1 myoblasts, heart, and skeletal muscle tissues and in some DM1 mouse models. However, the molecular mechanisms for increased CUGBP1 in DM1 are unclear. Here, we demonstrate that expression of DMPK-CUG-repeat RNA results in hyperphosphorylation and stabilization of CUGBP1. CUGBP1 is hyperphosphorylated in DM1 tissues, cells, and a DM1 mouse model. Activation of PKC is required for CUGBP1 hyperphosphorylation in DM1 cells, and PKCalpha and betaII directly phosphorylate CUGBP1 in vitro. These results indicate that inappropriate activation of the PKC pathway contributes to the pathogenic effects of a noncoding RNA.
Collapse
|
20
|
Kazi JU, Soh JW. Isoform-specific translocation of PKC isoforms in NIH3T3 cells by TPA. Biochem Biophys Res Commun 2007; 364:231-7. [PMID: 17942077 DOI: 10.1016/j.bbrc.2007.09.123] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2007] [Accepted: 09/26/2007] [Indexed: 02/04/2023]
Abstract
Protein kinase C (PKC), a multi-gene family of enzymes, plays key roles in the pathways of signal transduction, growth control and tumorigenesis. Variations in the intracellular localization of the individual isoforms are thought to be an important mechanism for the isoform-specific regulation of enzyme activity and substrate specificity. To provide a dynamic method of analyzing the localization of the specific isoforms of PKC in living cells, we generated fluorescent fusion proteins of the various PKC isoforms by using the green fluorescent protein (GFP) as a fluorescent marker at the carboxyl termini of these enzymes. The intracellular localization of the specific PKC isoforms was then examined by fluorescence microscopy after transient transfection of the respective PKC-GFP expression vector into NIH3T3 cells and subsequent TPA stimulation. We found that the specific isoforms of PKC display distinct localization patterns in untreated NIH3T3 cells. For example, PKCalpha is localized mainly in the cytoplasm while PKCepsilon is localized mainly in the Golgi apparatus. We also observed that PKCalpha, beta1, beta2, gamma, delta, epsilon, and eta translocate to the plasma membrane within 10 min of the start of TPA treatment, while the cellular localizations of PKCzeta and iota were not affected by TPA. Using a protein kinase inhibitor, we also showed that the kinase activity was not important for the translocation of PKC. These results suggest that specific PKC isoforms exert spatially distinct biological effects by virtue of their directed translocation to different intracellular sites.
Collapse
Affiliation(s)
- Julhash U Kazi
- Biomedical Research Center for Signal Transduction Networks, Department of Chemistry, Inha University, Incheon 402-751, Republic of Korea
| | | |
Collapse
|
21
|
Grimm PR, Foutz RM, Brenner R, Sansom SC. Identification and localization of BK-beta subunits in the distal nephron of the mouse kidney. Am J Physiol Renal Physiol 2007; 293:F350-9. [PMID: 17459953 DOI: 10.1152/ajprenal.00018.2007] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Large-conductance, Ca(2+)-activated K(+) channels (BK), comprised of pore-forming alpha- and accessory beta-subunits, secrete K(+) in the distal nephron under high-flow and high-K(+) diet conditions. BK channels are detected by electrophysiology in many nephron segments; however, the accessory beta-subunit associated with these channels has not been determined. We performed RT-PCR, Western blotting, and immunohistochemical staining to determine whether BK-beta1 is localized to the connecting tubule's principal-like cells (CNT) or intercalated cells (ICs), and whether BK-beta2-4 are present in other distal nephron segments. RT-PCR and Western blots revealed that the mouse kidney expresses BK-beta1, BK-beta2, and BK-beta4. Available antibodies in conjunction with BK-beta1(-/-) and BK-beta4(-/-) mice allowed the specific localization of BK-beta1 and BK-beta4 in distal nephron segments. Immunohistochemical staining showed that BK-beta1 is localized in the CNT but not ICs of the connecting tubule. The localization of BK-beta4 was discerned using an anti-BK-beta4 antibody on wild-type tissue and anti-GFP on GFP-replaced BK-beta4 mouse (BK-beta4(-/-)) tissue. Both antibodies (anti-BK-beta4 and anti-GFP) localized BK-beta4 to the thick ascending limb (TAL), distal convoluted tubule (DCT), and ICs of the distal nephron. It is concluded that BK-beta1 is narrowly confined to the apical membrane of CNTs in the mouse, whereas BK-beta4 is expressed in the TAL, DCT, and ICs.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Cloning, Molecular
- Green Fluorescent Proteins/biosynthesis
- Green Fluorescent Proteins/genetics
- Immunohistochemistry
- Kidney Tubules, Collecting/drug effects
- Kidney Tubules, Collecting/metabolism
- Kidney Tubules, Distal/anatomy & histology
- Kidney Tubules, Distal/metabolism
- Large-Conductance Calcium-Activated Potassium Channel beta Subunits/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Nephrons/anatomy & histology
- Nephrons/metabolism
- Potassium Channels, Calcium-Activated/genetics
- Potassium Channels, Calcium-Activated/metabolism
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
- P Richard Grimm
- Dept. of Cellular and Integrative Physiology, University of Nebraska Medical Center, 985850 Nebraska Medical Center, Omaha, NE 68198-5850, USA
| | | | | | | |
Collapse
|
22
|
Ho KK, Mann DJ. Nuclear signalling through phospholipase C and phosphatidyl 4,5-bisphosphate. ACTA ACUST UNITED AC 2006. [DOI: 10.1002/sita.200500078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
23
|
Martelli AM, Evangelisti C, Nyakern M, Manzoli FA. Nuclear protein kinase C. Biochim Biophys Acta Mol Cell Biol Lipids 2006; 1761:542-51. [PMID: 16574477 DOI: 10.1016/j.bbalip.2006.02.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2005] [Accepted: 02/16/2006] [Indexed: 11/20/2022]
Abstract
Protein kinase C (PKC) isozymes constitute a family of ubiquitous phosphotransferases which act as key transducers in many agonist-induced signaling cascades. To date, at least 11 different PKC isotypes have been identified and are believed to play distinct regulatory roles. PKC isoforms are physiologically activated by a number of lipid cofactors. PKC is thought to reside in the cytoplasm in an inactive conformation and to translocate to the plasma membrane or cytoplasmic organelles upon cell activation by different stimuli. However, a sizable body of evidence collected over the last 20 years has shown PKC to be capable of translocating to the nucleus. Furthermore, PKC isoforms are resident within the nucleus. Studies from independent laboratories have to led to the identification of quite a few nuclear proteins which are PKC substrates and to the characterization of nuclear PKC-binding proteins which may be critical for finely tuning PKC function in this cell microenvironment. Several lines of evidence suggest that nuclear PKC isozymes are involved in the regulation of biological processes as important as cell proliferation and differentiation, gene expression, neoplastic transformation, and apoptosis. In this review, we shall highlight the most intriguing and updated findings about the functions of nuclear PKC isozymes.
Collapse
Affiliation(s)
- Alberto M Martelli
- Dipartimento di Scienze Anatomiche Umane e Fisiopatologia dell'Apparato Locomotore, Sezione di Anatomia Umana, Cell Signalling Laboratory, Università di Bologna, 40126 Bologna, Italy.
| | | | | | | |
Collapse
|
24
|
Fontainhas AM, Obukhov AG, Nowycky MC. Protein kinase Calpha modulates depolarizaton-evoked changes of intracellular Ca2+ concentration in a rat pheochromocytoma cell line. Neuroscience 2005; 133:393-403. [PMID: 15878642 DOI: 10.1016/j.neuroscience.2005.02.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2004] [Revised: 02/01/2005] [Accepted: 02/12/2005] [Indexed: 11/20/2022]
Abstract
Conventional protein kinase C (cPKC) isoforms are activated by a coincident rise in cytosolic Ca(2+) and membrane-bound diacylglycerol. In excitable cells, cPKC may be activated by Ca(2+) influx through voltage-gated Ca(2+) channels (VGCC). cPKCs, in turn, are known to modulate the activity of VGCC. We examined whether PKCalpha, a cPKC, could be activated by depolarization in a neuroendocrine cell line and whether activation occurred on a time scale that modulated the depolarization-evoked intracellular Ca(2+) concentration ([Ca(2+)](i)) signal. Pheochromocytoma cells (PC12 cells) were transfected with wild-type and mutant forms of PKCalpha labeled with yellow fluorescent protein to monitor kinase translocation. Simultaneously, [Ca(2+)](i) changes were monitored with fura-2. Two point mutations that render PKCalpha inactive, D187A in the Ca(2+) binding site and K368R in the ATP binding site, significantly prolonged the time-to-peak of the depolarization-evoked [Ca(2+)](i) signal. A mutation that modulates membrane insertion (W58G) and two mutations of an autophosphorylation site (S657A, S657E) had no effect on the kinetics of the [Ca(2+)](i) signal. We conclude that in PC12 cells, Ca(2+) entry through VGCC rapidly activates PKCalpha, and that PKCalpha can modulate the Ca(2+) signal on a physiologically relevant time scale. Point mutations of PKCalpha can be used as specific and potent modulators of the PKC signaling pathway.
Collapse
Affiliation(s)
- A M Fontainhas
- Department of Pharmacology and Physiology, University of Medicine and Dentistry New Jersey-New Jersey Medical School, Newark, NJ 07101-1709, USA
| | | | | |
Collapse
|
25
|
Sharma GD, Ottino P, Bazan NG, Bazan HEP. Epidermal and Hepatocyte Growth Factors, but Not Keratinocyte Growth Factor, Modulate Protein Kinase Cα Translocation to the Plasma Membrane through 15(S)-Hydroxyeicosatetraenoic Acid Synthesis. J Biol Chem 2005; 280:7917-24. [PMID: 15613483 DOI: 10.1074/jbc.m408852200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation of protein kinase C (PKC) involves its recruitment to the membrane, where it interacts with its activator(s). We expressed PKCalpha fused to green fluorescent protein and examined its real time translocation to the plasma membrane in living human corneal epithelial cells. Upon 10 min of stimulation with epidermal and hepatocyte growth factors (EGF and HGF), PKCalpha translocated to the plasma membrane. Keratinocyte growth factor did not stimulate PKCalpha translocation up to 1 h after stimulation. Pretreatment with the 15-lipoxygenase metabolite, 15(S)-hydroxyeicosatetraenoic acid (15(S)-HETE), followed by EGF or HGF, produced faster translocation of PKCalpha detectable at 2 min. However, the same concentration of 15(S)-HETE alone did not stimulate translocation. 15(S)-Hydroperoxyeicosatetraenoic acid and 5(S)-HETE did not affect growth factor-induced translocation of PKCalpha. PD153035, a specific inhibitor of tyrosine kinase activity of the EGF receptor, completely blocked PKCalpha translocation induced by EGF. PD98059, a specific MEK inhibitor, significantly inhibited EGF- and HGF-mediated PKCalpha translocation, which was reversed by addition of 15(S)-HETE. Phosphorylation of ERK1/2 by EGF was followed by phosphorylation of cytosolic phospholipase A(2) (cPLA(2)), and blocking ERK1/2 inhibited cPLA(2) activation. Immunofluorescence demonstrated translocation of p-cPLA(2) to plasma and nuclear membranes as early as 2 min. This may further increase arachidonic acid release from membrane phospholipid pools and increase the intracellular pool of HETEs. In fact, in cells prelabeled with [(3)H]arachidonic acid, EGF stimulated synthesis of 15(S)-HETE in the cytosolic fraction. 15(S)-HETE also reversed the effect of LOX inhibitor on EGF-mediated cell proliferation. Our results indicate that 15(S)-HETE is an intracellular second messenger that facilitates translocation of PKCalpha to the membrane and elucidate a mechanism that plays a regulatory role in cell proliferation crucial to corneal wound healing.
Collapse
Affiliation(s)
- Guru Dutt Sharma
- Department of Ophthalmology and Neuroscience Center of Excellence, Louisiana State University Health Sciences Center School of Medicine, New Orleans, Louisiana 70112, USA
| | | | | | | |
Collapse
|
26
|
San-Juan-Vergara H, Peeples ME, Lockey RF, Mohapatra SS. Protein kinase C-alpha activity is required for respiratory syncytial virus fusion to human bronchial epithelial cells. J Virol 2004; 78:13717-26. [PMID: 15564481 PMCID: PMC533893 DOI: 10.1128/jvi.78.24.13717-13726.2004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Respiratory syncytial virus (RSV) infection activates protein kinase C (PKC), but the precise PKC isoform(s) involved and its role(s) remain to be elucidated. On the basis of the activation kinetics of different signaling pathways and the effect of various PKC inhibitors, it was reasoned that PKC activation is important in the early stages of RSV infection, especially RSV fusion and/or replication. Herein, the role of PKC-alpha during the early stages of RSV infection in normal human bronchial epithelial cells is determined. The results show that the blocking of PKC-alpha activation by classical inhibitors, pseudosubstrate peptides, or the overexpression of dominant-negative mutants of PKC-alpha in these cells leads to significantly decreased RSV infection. RSV induces phosphorylation, activation, and cytoplasm-to-membrane translocation of PKC-alpha. Also, PKC-alpha colocalizes with virus particles and is required for RSV fusion to the cell membrane. Thus, PKC-alpha could provide a new pharmacological target for controlling RSV infection.
Collapse
Affiliation(s)
- Homero San-Juan-Vergara
- The Joy McCann Culverhouse Airways Disease Research Center, Division of Allergy and Immunology, Department of Internal Medicine, College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | | | | | | |
Collapse
|
27
|
Louis K, Guérineau N, Fromigué O, Defamie V, Collazos A, Anglard P, Shipp MA, Auberger P, Joubert D, Mari B. Tumor cell-mediated induction of the stromal factor stromelysin-3 requires heterotypic cell contact-dependent activation of specific protein kinase C isoforms. J Biol Chem 2004; 280:1272-83. [PMID: 15509588 DOI: 10.1074/jbc.m405482200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Stromelysin-3 (ST3, MMP-11) has been shown to be strongly overexpressed in stromal fibroblasts of most invasive human carcinomas. However, the molecular mechanisms leading to ST3 expression in nonmalignant fibroblasts remain unknown. The aim of the present study was to analyze the signaling pathways activated in normal pulmonary fibroblasts after their interaction with non-small cell lung cancer (NSCLC) cells and leading to ST3 expression. The use of selective signaling pathway inhibitors showed that conventional and novel protein kinase Cs (PKC) were required for ST3 induction, whereas Src kinases exerted a negative control. We observed by both conventional and real time confocal microscopy that green fluorescent protein-tagged PKCalpha and PKCepsilon, but not PKCdelta, transfected in fibroblasts, accumulate selectively at the cell-cell contacts between fibroblasts and tumor cells. In agreement, RNAi-mediated depletion of PKCalpha and PKCepsilon, but not PKCdelta significantly decreased co-culture-dependent ST3 production. Finally, a tetracycline-inducible expression model allowed us to confirm the central role of these PKC isoforms and the negative regulatory function of c-Src in the control of ST3 expression. Altogether, our data emphasize signaling changes occurring in the tumor microenvironment that may define new stromal targets for therapeutic intervention.
Collapse
Affiliation(s)
- Krystel Louis
- INSERM U526, IFR50, Faculté de Médecine Pasteur, 06107 Nice, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Mancini A, Koch A, Whetton AD, Tamura T. The M-CSF receptor substrate and interacting protein FMIP is governed in its subcellular localization by protein kinase C-mediated phosphorylation, and thereby potentiates M-CSF-mediated differentiation. Oncogene 2004; 23:6581-9. [PMID: 15221008 DOI: 10.1038/sj.onc.1207841] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Macrophage colony-stimulating factor (M-CSF or CSF-1) and its cognate receptor, the tyrosine kinase c-fms, are essential for monocyte and macrophage development. We have recently identified an Fms-interacting protein (FMIP) that binds transiently to the cytoplasmic domain of activated Fms molecules and is phosphorylated on tyrosine by Fms tyrosine kinase. FMIP is a substrate not only for Fms but also for protein kinase C (PKC). Mutagenesis reveals that this occurs on serines 5 and 6. Adjacent to these sites is a nuclear localization signal (NLS). We show that this NLS is essential for the predominantly nuclear localization of FMIP. Generation of phosphomimetic substitutions on serine residues 5 and 6 confirms that PKC-mediated phosphorylation on this site leads to translocation of FMIP to the cytosol. Furthermore, the mutant FMIP (FMIPSS5,6AA) was detected abundantly in the nucleus even in the presence of activated PKCalpha. Wild-type FMIP and FMIPSS5,6AA inhibited M-CSF-mediated survival signaling, while FMIPSS5,6EE-expressing cells survived and differentiated into macrophages more efficiently than wild-type cells in the presence of M-CSF or TPA. We conclude M-CSF-mediated activation of PKCalpha can potentiate FMIP action to initiate survival/differentiation signaling.
Collapse
Affiliation(s)
- Annalisa Mancini
- Institut für Biochemie, OE 4310, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, D-30623 Hannover, Germany
| | | | | | | |
Collapse
|
29
|
Reuben PM, Sun Y, Cheung HS. Basic Calcium Phosphate Crystals Activate p44/42 MAPK Signal Transduction Pathway via Protein Kinase Cμ in Human Fibroblasts. J Biol Chem 2004; 279:35719-25. [PMID: 15190081 DOI: 10.1074/jbc.m403406200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although basic calcium phosphate (BCP) crystals are common in osteoarthritis, the crystal-induced signal transduction pathways in human fibroblasts have not been fully comprehended. We have previously demonstrated that the induction of matrix metalloproteinases (MMP) 1 and 3 by BCP crystals follows both the calcium-dependent protein kinase C (PKC) pathway and the calcium-independent p44/42 mitogen-activated protein kinase (p44/42 MAPK) pathway. Although we showed that the calcium-dependent PKC pathway was characterized by calcium-dependent PKCalpha, here we show that the calcium-independent p44/42 MAPK pathway is mediated by calcium-independent PKCmicro. Inhibition of PKCmicro synthesis and activity by antisense oligodeoxynucleotides and H-89 (N-(2-[p-bromocinnamylamino]ethyl)-5-isoquinolinesulfonamide), respectively, results in the inhibition of p44/42 MAPK activation, thus demonstrating that p44/42 MAPK activity is dependent upon PKCmicro. Reverse transcription-polymerase chain reaction and Western blotting also show that inhibition of PKCmicro results in the inhibition of MMP-1 and MMP-3 mRNA and protein expression as a result of p44/42 MAPK inhibition. These results now lead us to the conclusion that BCP crystal activation of human fibroblasts follows two pathways: 1) the calcium-dependent PKC pathway characterized by PKCalpha and 2) the calcium-independent p44/42 MAPK pathway mediated by PKCmicro, which operate independently leading to an increase in mitogenesis and MMP synthesis and ultimately complementing each other for the efficient regulation of cellular responses to BCP crystal stimulation of human fibroblasts.
Collapse
Affiliation(s)
- Paul M Reuben
- Research Service & Geriatric Research, Education and Clinical Center, Veterans Administration Medical Center, Miami, Florida 33125, USA
| | | | | |
Collapse
|
30
|
Yamauchi Y, Hayashi M, Abe-Dohmae S, Yokoyama S. Apolipoprotein A-I activates protein kinase C alpha signaling to phosphorylate and stabilize ATP binding cassette transporter A1 for the high density lipoprotein assembly. J Biol Chem 2003; 278:47890-7. [PMID: 12952980 DOI: 10.1074/jbc.m306258200] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ATP-binding cassette transporter A1 (ABCA1) plays an essential role in the helical apolipoprotein-mediated assembly of high density lipoprotein, and the apolipoporteins stabilize ABCA1 against calpain-mediated degradation during the reaction ((2002) J. Biol. Chem. 277, 22426-22429). Protein kinase C (PKC) inhibitors suppressed both ABCA1 stabilization and cellular lipid release mediated by apolipoprotein A-I (apoA-I) but not ABCA1 increase by calpain inhibitors. The increase of ABCA1 and the cellular lipid release by apoA-I were both suppressed by a phosphatidylcholine phospholipase C (PC-PLC) inhibitor but not by the inhibitors of phosphatidylinositol-PLC and phosphatidylinositol 3-kinase. A protein phosphatase inhibitor further enhanced the ABCA1 increase by apoA-I. Biochemical and microscopic evidence indicated that apoA-I activated PKC alpha, and phosphorylation of ABCA1 was directly demonstrated by apoA-I via PKC. Finally, digestion of sphingomyelin increased ABCA1, and a PC-PLC inhibitor suppressed it. We conclude that apoA-I activates PKC alpha by PC-PLC-mediated generation of diacylglycerol initiated by the removal of cellular sphingomyelin ((2002) J. Biol. Chem. 277, 44709-44714), and subsequently phosphorylates and stabilizes ABCA1.
Collapse
Affiliation(s)
- Yoshio Yamauchi
- Department of Biochemistry, Cell Biology, and Metabolism, Nagoya City University Graduate School of Medical Sciences, Kawasumi 1, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | | | | | | |
Collapse
|
31
|
Luo B, Prescott SM, Topham MK. Association of diacylglycerol kinase zeta with protein kinase C alpha: spatial regulation of diacylglycerol signaling. J Cell Biol 2003; 160:929-37. [PMID: 12629049 PMCID: PMC2173768 DOI: 10.1083/jcb.200208120] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Activation of PKC depends on the availability of DAG, a signaling lipid that is tightly and dynamically regulated. DAG kinase (DGK) terminates DAG signaling by converting it to phosphatidic acid. Here, we demonstrate that DGKzeta inhibits PKCalpha activity and that DGK activity is required for this inhibition. We also show that DGKzeta directly interacts with PKCalpha in a signaling complex and that the binding site in DGKzeta is located within the catalytic domain. Because PKCalpha can phosphorylate the myristoylated alanine-rich C-kinase substrate (MARCKS) motif of DGKzeta, we tested whether this modification could affect their interaction. Phosphorylation of this motif significantly attenuated coimmunoprecipitation of DGKzeta and PKCalpha and abolished their colocalization in cells, indicating that it negatively regulates binding. Expression of a phosphorylation-mimicking DGKzeta mutant that was unable to bind PKCalpha did not inhibit PKCalpha activity. Together, our results suggest that DGKzeta spatially regulates PKCalpha activity by attenuating local accumulation of signaling DAG. This regulation is impaired by PKCalpha-mediated DGKzeta phosphorylation.
Collapse
Affiliation(s)
- Bai Luo
- The Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Salt Lake City, UT 84112, USA.
| | | | | |
Collapse
|
32
|
Lounsbury KM, Stern M, Taatjes D, Jaken S, Mossman BT. Increased localization and substrate activation of protein kinase C delta in lung epithelial cells following exposure to asbestos. THE AMERICAN JOURNAL OF PATHOLOGY 2002; 160:1991-2000. [PMID: 12057904 PMCID: PMC1850823 DOI: 10.1016/s0002-9440(10)61149-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The protein kinase C (PKC) family consists of several isozymes whose substrates may be necessary for the regulation of key cellular events important in the pathogenesis of proliferative diseases. Asbestos is a carcinogen and fibroproliferative agent in lung that may cause cell signaling events through activation of PKC. Here we used a murine inhalation model of asbestos-induced inflammation and fibrosis to examine immunoreactivity of PKC delta and its substrate, phosphorylated-adducin (p-adducin), in cells of the lung. Moreover, we characterized PKC delta and p-adducin expression in a pulmonary epithelial cell line (C10) in both log versus confluent cells and in cells after mechanical wounding or crocidolite asbestos exposure. Both PKC delta and p-adducin were almost exclusively expressed in bronchiolar and alveolar type II (ATII) epithelial cells in lung sections and increased in these cell types after inhalation of asbestos by mice. Increases in membrane and nuclear localization of PKC delta were seen in log phase as compared to confluent C10 cells. Moreover, enhanced immunoreactivity of PKC delta was observed in epithelial cells expressing proliferating cell nuclear antigen (PCNA) after mechanical wounding or exposure to asbestos fibers. These studies show that activated PKC delta in pulmonary epithelial cells is a consequence of inhalation of asbestos and may be linked to the activation of cell proliferation.
Collapse
Affiliation(s)
- Karen M Lounsbury
- Department of Pharmacology, University of Vermont, Burlington, Vermont 05405, USA
| | | | | | | | | |
Collapse
|
33
|
Masur K, Lang K, Niggemann B, Zanker KS, Entschladen F. High PKC alpha and low E-cadherin expression contribute to high migratory activity of colon carcinoma cells. Mol Biol Cell 2001; 12:1973-82. [PMID: 11451996 PMCID: PMC55643 DOI: 10.1091/mbc.12.7.1973] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The protein kinase C (PKC) is a family of serine/threonine kinases that are key regulatory enzymes involved in growth, differentiation, cytoskeletal reorganization, tumor promotion, and migration. We investigated the functional involvement of PKC isotypes and of E-cadherin in the regulation of the locomotion of six human colon-adenocarcinoma cell lines. The different levels of the PKC alpha and the E-cadherin expression have predictable implications in the spontaneous locomotory activity. With the use of PKC alpha--specific inhibitors (safingol, Go6976) as well as the PKC delta--specific inhibitor rottlerin, we showed that only PKC alpha plays a major role in the regulation of tumor cell migration. The results were verified by knocking out the translation of PKC isozymes with the use of an antisense oligonucleotide strategy. After stimulation with phorbol ester we observed a translocation and a colocalization of the activated PKC alpha at the plasma membrane to the surrounding extracellular matrix. Furthermore, we investigated the functional involvement of E-cadherin in the locomotion with the use of a blocking antibody. A high level of PKC alpha expression together with a low E-cadherin expression was strongly related to a high migratory activity of the colon carcinoma cells. This correlation was independent of the differentiation grade of the tumor cell lines.
Collapse
Affiliation(s)
- K Masur
- Institute of Immunology, Witten/Herdecke University, 58448 Witten, Germany.
| | | | | | | | | |
Collapse
|