1
|
Lero MW, Shaw LM. Diversity of insulin and IGF signaling in breast cancer: Implications for therapy. Mol Cell Endocrinol 2021; 527:111213. [PMID: 33607269 PMCID: PMC8035314 DOI: 10.1016/j.mce.2021.111213] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/02/2021] [Accepted: 02/09/2021] [Indexed: 12/13/2022]
Abstract
This review highlights the significance of the insulin receptor (IR) and insulin-like growth factor-1 receptor (IGF-1R) signaling pathway in cancer and assesses its potential as a therapeutic target. Our emphasis is on breast cancer, but this pathway is central to the behavior of many cancers. An understanding of how IR/IGF-1R signaling contributes to the function of the normal mammary gland provides a foundation for understanding its aberrations in breast cancer. Specifically, dysregulation of the expression and function of ligands (insulin, IGF-1 and IGF-2), receptors and their downstream signaling effectors drive breast cancer initiation and progression, often in a subtype-dependent manner. Efforts to target this pathway for the treatment of cancer have been hindered by several factors including a lack of biomarkers to select patients that could respond to targeted therapy and adverse effects on normal metabolism. To this end, we discuss ongoing efforts aimed at overcoming such obstacles.
Collapse
Affiliation(s)
- Michael W Lero
- Department of Molecular, Cell & Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Leslie M Shaw
- Department of Molecular, Cell & Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
2
|
Beckwith H, Yee D. Insulin-like growth factors, insulin, and growth hormone signaling in breast cancer: implications for targeted therapy. Endocr Pract 2014; 20:1214-21. [PMID: 25297664 DOI: 10.4158/ep14208.ra] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE In recent decades, multiple therapeutics targeting the estrogen and human epidermal growth factor-2 (HER2) receptors have been approved for the treatment of breast cancer. METHODS This review discusses a number of growth factor pathways that have been implicated in resistance to both anti-estrogen and HER2-targeted therapies. The association between growth factors and breast cancer is well established. Over decades, numerous laboratories have studied the link between insulin-like growth factor (IGF), insulin, and growth hormone (GH) to the development and progression of breast cancer. RESULTS Although preclinical data demonstrates that blockade of these receptors inhibits breast cancer growth, progression, and drug resistance, therapies targeting the IGF, insulin, and GH receptors (GHRs) have not been successful in producing significant increases in progression-free, disease-free, or overall survival for patients with breast cancer. The failure to demonstrate a benefit of growth factor blockade in clinical trials can be attributed to redundancy in IGF, insulin, and GHR signaling pathways. All 3 receptors are able to activate oncogenic phosphoinositide-3 kinase (PI3K) and mitogen-activated protein kinase (MAPK) pathways. CONCLUSION Consequently, multitargeted blockade of growth factor receptors and their common downstream kinases will be necessary for the successful treatment of breast cancer.
Collapse
Affiliation(s)
- Heather Beckwith
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Douglas Yee
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota Department of Medicine, University of Minnesota, Minneapolis, Minnesota Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
3
|
Ades F, Zardavas D, Bozovic-Spasojevic I, Pugliano L, Fumagalli D, de Azambuja E, Viale G, Sotiriou C, Piccart M. Luminal B breast cancer: molecular characterization, clinical management, and future perspectives. J Clin Oncol 2014; 32:2794-803. [PMID: 25049332 DOI: 10.1200/jco.2013.54.1870] [Citation(s) in RCA: 263] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Gene expression profiling has reshaped our understanding of breast cancer by defining and characterizing four main intrinsic molecular subtypes: human epidermal growth factor receptor 2-enriched, basal-like, luminal A, and luminal B subtypes. Luminal B breast cancer has been reported to have lower expression of hormone receptors, higher expression of proliferation markers, and higher histologic grade than luminal A. It also exhibits worse prognosis and has a distinct profile of response to hormone therapy and chemotherapy. Although luminal cancers share similarities, the studies conducted in recent years using next-generation sequencing technology show that luminal A and B breast cancers should be perceived as distinct entities, with specific oncogenic drivers, rather than more proliferative varieties of luminal tumors. This review discusses the definition and molecular characterization of luminal B breast cancer and presents the available clinical evidence for chemotherapy and endocrine therapy patterns of response. It also provides an overview of ongoing research on molecularly targeted agents for this disease.
Collapse
Affiliation(s)
- Felipe Ades
- Felipe Ades, Lina Pugliano, Debora Fumagalli, Evandro de Azambuja, Christos Sotiriou, and Martine Piccart, Institut Jules Bordet, Université Libre de Bruxelles; Dimitrios Zardavas, Breast International Group, Brussels, Belgium; Ivana Bozovic-Spasojevic, Institute for Oncology and Radiology of Serbia, Belgrade, Serbia; and Giuseppe Viale, European Institute of Oncology, University of Milan, Milan, Italy
| | - Dimitrios Zardavas
- Felipe Ades, Lina Pugliano, Debora Fumagalli, Evandro de Azambuja, Christos Sotiriou, and Martine Piccart, Institut Jules Bordet, Université Libre de Bruxelles; Dimitrios Zardavas, Breast International Group, Brussels, Belgium; Ivana Bozovic-Spasojevic, Institute for Oncology and Radiology of Serbia, Belgrade, Serbia; and Giuseppe Viale, European Institute of Oncology, University of Milan, Milan, Italy
| | - Ivana Bozovic-Spasojevic
- Felipe Ades, Lina Pugliano, Debora Fumagalli, Evandro de Azambuja, Christos Sotiriou, and Martine Piccart, Institut Jules Bordet, Université Libre de Bruxelles; Dimitrios Zardavas, Breast International Group, Brussels, Belgium; Ivana Bozovic-Spasojevic, Institute for Oncology and Radiology of Serbia, Belgrade, Serbia; and Giuseppe Viale, European Institute of Oncology, University of Milan, Milan, Italy
| | - Lina Pugliano
- Felipe Ades, Lina Pugliano, Debora Fumagalli, Evandro de Azambuja, Christos Sotiriou, and Martine Piccart, Institut Jules Bordet, Université Libre de Bruxelles; Dimitrios Zardavas, Breast International Group, Brussels, Belgium; Ivana Bozovic-Spasojevic, Institute for Oncology and Radiology of Serbia, Belgrade, Serbia; and Giuseppe Viale, European Institute of Oncology, University of Milan, Milan, Italy
| | - Debora Fumagalli
- Felipe Ades, Lina Pugliano, Debora Fumagalli, Evandro de Azambuja, Christos Sotiriou, and Martine Piccart, Institut Jules Bordet, Université Libre de Bruxelles; Dimitrios Zardavas, Breast International Group, Brussels, Belgium; Ivana Bozovic-Spasojevic, Institute for Oncology and Radiology of Serbia, Belgrade, Serbia; and Giuseppe Viale, European Institute of Oncology, University of Milan, Milan, Italy
| | - Evandro de Azambuja
- Felipe Ades, Lina Pugliano, Debora Fumagalli, Evandro de Azambuja, Christos Sotiriou, and Martine Piccart, Institut Jules Bordet, Université Libre de Bruxelles; Dimitrios Zardavas, Breast International Group, Brussels, Belgium; Ivana Bozovic-Spasojevic, Institute for Oncology and Radiology of Serbia, Belgrade, Serbia; and Giuseppe Viale, European Institute of Oncology, University of Milan, Milan, Italy
| | - Giuseppe Viale
- Felipe Ades, Lina Pugliano, Debora Fumagalli, Evandro de Azambuja, Christos Sotiriou, and Martine Piccart, Institut Jules Bordet, Université Libre de Bruxelles; Dimitrios Zardavas, Breast International Group, Brussels, Belgium; Ivana Bozovic-Spasojevic, Institute for Oncology and Radiology of Serbia, Belgrade, Serbia; and Giuseppe Viale, European Institute of Oncology, University of Milan, Milan, Italy
| | - Christos Sotiriou
- Felipe Ades, Lina Pugliano, Debora Fumagalli, Evandro de Azambuja, Christos Sotiriou, and Martine Piccart, Institut Jules Bordet, Université Libre de Bruxelles; Dimitrios Zardavas, Breast International Group, Brussels, Belgium; Ivana Bozovic-Spasojevic, Institute for Oncology and Radiology of Serbia, Belgrade, Serbia; and Giuseppe Viale, European Institute of Oncology, University of Milan, Milan, Italy
| | - Martine Piccart
- Felipe Ades, Lina Pugliano, Debora Fumagalli, Evandro de Azambuja, Christos Sotiriou, and Martine Piccart, Institut Jules Bordet, Université Libre de Bruxelles; Dimitrios Zardavas, Breast International Group, Brussels, Belgium; Ivana Bozovic-Spasojevic, Institute for Oncology and Radiology of Serbia, Belgrade, Serbia; and Giuseppe Viale, European Institute of Oncology, University of Milan, Milan, Italy.
| |
Collapse
|
4
|
Zardavas D, Baselga J, Piccart M. Emerging targeted agents in metastatic breast cancer. Nat Rev Clin Oncol 2013; 10:191-210. [PMID: 23459626 DOI: 10.1038/nrclinonc.2013.29] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Extensive preclinical experimentation has conceptually changed the way we perceive breast cancer, with the wide spectrum of genomic alterations governing its malignant progression now being recognized. Functional genomics has helped us identify important genetic defects that can be pharmaceutically targeted in the setting of metastatic disease. Rationally chosen combination regimens are now under clinical investigation. Recent data underline the functional importance of the tumour-associated stroma, with several candidate molecular targets now emerging. Data elucidating a cellular hierarchy within the breast cancer cellular compartment support the existence of a therapy-resistant subpopulation of breast cancer stem cells. Identification of the developmental pathways that dictate their malignant phenotype and use of high-throughput screening techniques are leading to new therapeutic avenues. In this Review, we present the biological rationale for the clinical development of more than 15 different classes of targeted agents in breast cancer, along with evidence supporting rational combinations. However, metastatic breast cancer resembles a Darwinian evolutionary system, with 'driver' mutations and epigenetic changes determining clonal selection according to branching trajectories. This evolution is reflected in the molecular heterogeneity of the disease and poses severe impediments to the successful clinical development of emerging targeted agents.
Collapse
Affiliation(s)
- Dimitrios Zardavas
- Institut Jules Bordet, Université Libre de Bruxelles, Boulevard de Waterloo 121, 1000 Brussels, Belgium
| | | | | |
Collapse
|
5
|
Abstract
After decades of research, the mechanism by which estrogens stimulate the proliferation of epithelial cells in the endometrium and mammary gland, and in the carcinomas that arise in those tissues, is still not understood. Cells do not proliferate in response to 17β-estradiol (E2) alone, and although it is widely recognized that growth factors play a role in E2's proliferative effect, exactly how they are involved is unclear. It has long been known that the proliferation of endometrial epithelial cells is preceded by dramatic increases in blood flow and microvascular permeability, filling the subepithelial stroma with plasma and the proteins it contains, such as IGF-I, which is known to synergize with E2 in the induction of cell proliferation. The hyperpermeability is caused by vascular endothelial growth factor (VEGF), which is rapidly induced by E2, via the transcription factors hypoxia-inducible factor 1 and estrogen receptor α, in luminal epithelial cells in vivo. As we recently showed, VEGF is also strongly induced in endometrial cancer cells in vitro when excessive degradation of hypoxia-inducible factor 1α, caused by the abnormally high oxygen level to which cultured cells are exposed, is prevented. Putting these facts together, we now propose a new model of E2-induced proliferation in which VEGF-induced vascular hyperpermeability plays an essential role. E2 first induces the expression by endometrial epithelial cells of VEGF, which then acts in a paracrine manner to induce interendothelial cell gaps in subepithelial blood vessels, through which plasma and the proteins therein enter the adjacent stroma. Plasma carries even more E2, which circulates bound to proteins, and IGF-l, which together drive epithelial cells completely through the cell cycle.
Collapse
Affiliation(s)
- Robert D Koos
- Department of Physiology, University of Maryland School of Medicine, 655 West Baltimore Street, Baltimore, Maryland 21201-1559, USA.
| |
Collapse
|
6
|
Hou X, Huang F, Macedo LF, Harrington SC, Reeves KA, Greer A, Finckenstein FG, Brodie A, Gottardis MM, Carboni JM, Haluska P. Dual IGF-1R/InsR inhibitor BMS-754807 synergizes with hormonal agents in treatment of estrogen-dependent breast cancer. Cancer Res 2011; 71:7597-607. [PMID: 22042792 DOI: 10.1158/0008-5472.can-11-1080] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Insulin-like growth factor (IGF) signaling has been implicated in the resistance to hormonal therapy in breast cancer. Using a model of postmenopausal, estrogen-dependent breast cancer, we investigated the antitumor effects of the dual IGF-1R/InsR tyrosine kinase inhibitor BMS-754807 alone and in combination with letrozole or tamoxifen. BMS-754807 exhibited antiproliferative effects in vitro that synergized strongly in combination with letrozole or 4-hydroxytamoxifen and fulvestrant. Similarly, combined treatment of BMS-754807 with either tamoxifen or letrozole in vivo elicited tumor regressions not achieved by single-agent therapy. Notably, hormonal therapy enhanced the inhibition of IGF-1R/InsR without major side effects in animals. Microarray expression analysis revealed downregulation of cell-cycle control and survival pathways and upregulation of erbB in response to BMS-754807 plus hormonal therapy, particularly tamoxifen. Overall, these results offer a preclinical proof-of-concept for BMS-754807 as an antitumor agent in combination with hormonal therapies in hormone-sensitive breast cancer. Cooperative cell-cycle arrest, decreased proliferation, and enhanced promotion of apoptosis may contribute to antitumor effects to be gauged in future clinical investigations justified by our findings.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Hormonal/administration & dosage
- Antineoplastic Agents, Hormonal/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Blotting, Western
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Drug Synergism
- Estradiol/administration & dosage
- Estradiol/analogs & derivatives
- Estradiol/pharmacology
- Estrogens/metabolism
- Female
- Fulvestrant
- Gene Expression Profiling
- Humans
- Letrozole
- Mammary Neoplasms, Experimental/drug therapy
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Nitriles/administration & dosage
- Nitriles/pharmacology
- Oligonucleotide Array Sequence Analysis
- Pyrazoles/pharmacology
- Receptor, IGF Type 1/antagonists & inhibitors
- Receptor, IGF Type 1/genetics
- Receptor, IGF Type 1/metabolism
- Receptor, Insulin/antagonists & inhibitors
- Receptor, Insulin/genetics
- Receptor, Insulin/metabolism
- Tamoxifen/administration & dosage
- Tamoxifen/analogs & derivatives
- Tamoxifen/pharmacology
- Triazines/pharmacology
- Triazoles/administration & dosage
- Triazoles/pharmacology
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Xiaonan Hou
- Department of Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Insulin-Like Growth Factor Pathway–Targeted Therapy in Breast Cancer. CURRENT BREAST CANCER REPORTS 2011. [DOI: 10.1007/s12609-010-0030-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
de Ostrovich KK, Lambertz I, Colby JKL, Tian J, Rundhaug JE, Johnston D, Conti CJ, DiGiovanni J, Fuchs-Young R. Paracrine overexpression of insulin-like growth factor-1 enhances mammary tumorigenesis in vivo. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 173:824-34. [PMID: 18688034 PMCID: PMC2527085 DOI: 10.2353/ajpath.2008.071005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/27/2008] [Indexed: 12/31/2022]
Abstract
Insulin-like growth factor-1 (IGF-1) stimulates proliferation, regulates tissue development, protects against apoptosis, and promotes the malignant phenotype in the breast and other organs. Some epidemiological studies have linked high circulating levels of IGF-1 with an increased risk of breast cancer. To study the role of IGF-1 in mammary tumorigenesis in vivo, we used transgenic mice in which overexpression of IGF-1 is under the control of the bovine keratin 5 (BK5) promoter and is directed to either the myoepithelial or basal cells in a variety of organs, including the mammary gland. This model closely recapitulates the paracrine exposure of breast epithelium to stromal IGF-1 seen in women. Histologically, mammary glands from transgenic mice were hyperplastic and highly vascularized. Mammary glands from prepubertal transgenic mice had significantly increased ductal proliferation compared with wild-type tissues, although this difference was not maintained after puberty. Transgenic mice also had increased susceptibility to mammary carcinogenesis, and 74% of the BK5.IGF-1 mice treated with 7,12-dimethylbenz[a]anthracene (20 microg/day) developed mammary tumors compared with 29% of the wild-type mice. Interestingly, 31% of the vehicle-treated BK5.IGF-1 animals, but none of the wild-type animals, spontaneously developed mammary cancer. The mammary tumors were moderately differentiated adenocarcinomas that expressed functional, nuclear estrogen receptor at both the protein and mRNA levels. These data support the hypothesis that tissue overexpression of IGF-1 stimulates mammary tumorigenesis.
Collapse
|
9
|
Tan XL, Nieters A, Kropp S, Hoffmeister M, Brenner H, Chang-Claude J. The association of cyclin D1 G870A and E-cadherin C-160A polymorphisms with the risk of colorectal cancer in a case control study and meta-analysis. Int J Cancer 2008; 122:2573-80. [PMID: 18196581 DOI: 10.1002/ijc.23363] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Cyclin D1 (CCND1) and E-cadherin (CDH1) have been shown to be important genes of the beta-catenin/LEF pathway that is involved in colorectal carcinogenesis. However, epidemiological studies on relationship between genetic variants of these two genes and colorectal cancer (CRC) have shown inconsistent results. In a population-based case-control study (498 cases and 600 controls), we assessed the association of CCND1 G870A and CDH1 C-160A polymorphisms with CRC risk. Multivariable logistic regression analysis was used to estimate the association between genotypes, environmental exposures and CRC risk, adjusting for potential confounders. Compared to common homozygotes, the OR for heterozygous and homozygote variant genotype was 1.08 (95% CI, 0.80-1.46) in CCND1 and 0.97 (95% CI, 0.75-1.25) in CDH1. Neither tumor stage nor location showed an association with genetic susceptibility. However, a significant interaction between hormone replacement therapy (HRT) and CCND1 genotypes in CRC risk was found among postmenopausal women (p(interaction) = 0.02). The risk reduction associated with HRT was substantial (OR, 0.09; 95% CI, 0.02-0.35) in women who were GG homozygous. A meta-analyses including 11 published studies on CCND1 G870A in addition to our study showed a slightly increased risk of CRC for carriers of the A allele (OR, 1.19; 95% CI, 1.06-1.34); however, there was some indication of publication bias. We conclude that the CCND1 G870A and CDH1 C-160A polymorphisms are not associated with the risk of CRC in the German population. However, the CCND1 G870A polymorphism may modify the protective effect of postmenopausal hormone use on the development of CRC.
Collapse
Affiliation(s)
- Xiang-Lin Tan
- Division of Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany.
| | | | | | | | | | | |
Collapse
|
10
|
Queiroga FL, Pérez-Alenza MD, Silvan G, Peña L, Lopes CS, Illera JC. Crosstalk between GH/IGF-I axis and steroid hormones (progesterone, 17beta-estradiol) in canine mammary tumours. J Steroid Biochem Mol Biol 2008; 110:76-82. [PMID: 18367392 DOI: 10.1016/j.jsbmb.2008.02.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Revised: 02/07/2008] [Accepted: 02/07/2008] [Indexed: 11/19/2022]
Abstract
Growth hormone (GH), insulin-like growth factor I (IGF-I), progesterone (P4) and 17beta-estradiol (17-E2) concentrations have been studied in 84 mammary tumours (44 dysplasias and benign tumours and 40 malignant neoplasias) from 33 female dogs. Thirteen normal mammary glands from 80 healthy female dogs were also analysed as controls. GH concentrations were determined in mammary homogenates by radio-immunoassay. IGF-I, P4 and 17-E2 tissue levels were determined by enzyme-immunoassay (EIA) techniques. The potential correlations between GH/IGF-I concentrations and P4 and 17-E2 mammary tissue levels were investigated. Tissue GH (p<0.01) and IGF-I concentrations (p<0.01) were significantly higher in malignant tumours than in benign neoplasms. Likewise, malignant tumours were the mammary lesions that displayed the highest P4 and 17-E2 tissue levels. Strong correlations between GH/IGF-I (n=84; r=0.436; p<0.001), P4/GH (n=84; r=0.562; p<0.001) and 17-E2/IGF-I (n=84; r=0.638; p<0.001) were observed in tumoral tissue homogenates. Our study provides evidence that P4 might increase autocrine GH production which might directly stimulate local or systemic IGF-I secretion. Additionally, the IGF-I effect might be influenced by local levels of 17-E2. These results suggest that all these hormones and factors might act as local growth factors stimulating the development and/or maintenance of canine mammary tumours in an autocrine/paracrine manner.
Collapse
Affiliation(s)
- Felisbina L Queiroga
- CECAV, Department of Veterinary Sciences, Universidade de Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal.
| | | | | | | | | | | |
Collapse
|
11
|
Lin CW, Yang LY, Shen SC, Chen YC. IGF-I plus E2 induces proliferation via activation of ROS-dependent ERKs and JNKs in human breast carcinoma cells. J Cell Physiol 2007; 212:666-74. [PMID: 17458902 DOI: 10.1002/jcp.21061] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Induction of 17beta-estradiol (E2) and insulin-like growth factor-I (IGF-I) has been detected in breast carcinoma, however the interaction between E2 and IGF-I in the proliferation of breast carcinoma cells is still unclear. In the present study, we found that IGF-I enhances the E2-induced proliferation in MCF-7 human breast carcinoma cells in accordance with stimulation of colony formation via a soft agar assay. Activation of insulin receptor substrate-1 (IRS-1) protein and extracellular signal-related kinases (ERKs) and c-Jun N-terminal kinases (JNKs), but not p38 mitogen-activated protein kinase (MAPK), via phosphorylation induction was detected in MCF-7 cells treated with IGF-I plus E2 (E2/IGF-I). E2/IGF-I-induced proliferation was blocked by chemical inhibitors of ERKs (PD98059) and JNKs (SP600125). An increase in the expression of c-Jun protein was detected in E2/IGF-I-treated MCF-7 cells, and this was inhibited by PD98059 and SP600125. Transfection of the dominant negative MEKK and JNK plasmids significantly reduced E2/IGF-I-induced proliferation with suppression of c-Jun protein expression. An increase in peroxide production was detected in E2/IGF-I-treated cells, and N-acetyl-L-cysteine (NAC) and Tiron (TIR) addition significantly inhibited E2/IGF-I-induced cell proliferation with blocking of the phosphorylation of ERKs and JNKs, and the expression of c-Jun protein. Additionally, 3-OH flavone, baicalein, and quercetin showed effective inhibitory activities against E2/IGF-I-induced proliferation through suppressing proliferative events such as phosphorylation of IRS-1, ERKs, and JNKs proteins, and induction of c-Jun protein and colony formation. These results indicate that IGF-I interacts with E2 to promote the proliferation of breast carcinoma cells via ROS-dependent MAPK activation and c-Jun protein expression. The structure-related inhibition of E2/IGF-I-induced proliferative events by flavonoids is elucidated.
Collapse
Affiliation(s)
- Cheng-Wei Lin
- Graduate Institute of Pharmacy, School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | | | | | | |
Collapse
|
12
|
Lin J, Ridker PM, Rifai N, Lee IM, Manson JE, Buring JE, Zhang SM. A Prospective Study of Hemoglobin A1c Concentrations and Risk of Breast Cancer in Women. Cancer Res 2006; 66:2869-75. [PMID: 16510610 DOI: 10.1158/0008-5472.can-05-3922] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract
Impaired glucose metabolism and hyperinsulinemia have been hypothesized to increase breast cancer risk. However, findings from observational studies relating blood concentrations of hyperinsulinemia markers to breast cancer risk have been inconsistent. We prospectively evaluated whether hemoglobin A1c (HbA1c) concentrations predict breast cancer risk in a large female cohort. We included 27,110 female participants of the Women's Health Study who were, at baseline, free of cancer and had usable blood specimens as well as sufficient information on potential risk factors for breast cancer. Relative risks (RR) and 95% confidence intervals (95% CI) were estimated from Cox proportional hazards regression models. All Ps were two sided. During an average of 10 years of follow-up, 790 incident cases of invasive breast cancer were confirmed. Higher baseline HbA1c levels were not associated with an increased risk of breast cancer. The multivariate RR for the highest relative to the lowest quintile of HbA1c levels was 0.87 (95% CI, 0.69-1.10; Ptrend = 0.22). Higher HbA1c levels were also not associated with an increased risk of breast cancer according to alternative clinical cutoff points for HbA1c or in the analyses stratified by body mass index or according to certain tumor characteristics. However, a weakly inverse association was noted among postmenopausal women, especially among those who had never used hormone therapy. There was also a weakly inverse association between HbA1c levels and estrogen receptor–negative breast tumors. These data suggest that higher HbA1c concentrations do not seem to increase risk of breast cancer among apparently healthy women. (Cancer Res 2006; 66(5): 2869-75)
Collapse
Affiliation(s)
- Jennifer Lin
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA.
| | | | | | | | | | | | | |
Collapse
|
13
|
Affiliation(s)
- Adda Grimberg
- The Children's Hospital of Philadelphia, PA 19104-4318, USA
| |
Collapse
|
14
|
Mendez P, Cardona-Gomez GP, Garcia-Segura LM. Interactions of insulin-like growth factor-I and estrogen in the brain. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2005; 567:285-303. [PMID: 16370144 DOI: 10.1007/0-387-26274-1_12] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
15
|
Lamote I, Meyer E, Massart-Leën AM, Burvenich C. Sex steroids and growth factors in the regulation of mammary gland proliferation, differentiation, and involution. Steroids 2004; 69:145-59. [PMID: 15072917 DOI: 10.1016/j.steroids.2003.12.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2003] [Revised: 12/10/2003] [Accepted: 12/16/2003] [Indexed: 11/23/2022]
Abstract
The mammary gland is subjected to major morphological and biochemical changes during the lactation cycle. It is therefore not surprising that this dynamic process is strictly controlled. The importance of the sex steroid hormones 17beta-estradiol and progesterone for normal development of the mammary gland was recognized several decades ago and has been unequivocally confirmed since. Furthermore, it is now also established that the influence of sex steroids is not restricted to mammogenesis, but that these hormones also control involution. Another important regulatory role is played by growth factors that have been shown to modulate survival (epidermal growth factor, amphiregulin, transforming growth factor alpha, insulin like growth factor, and tumor necrosis factor alpha) or apoptosis (tumor necrosis factor alpha, transforming growth factor beta) of mammary cells. However, the molecular mechanism underlying the influence of sex steroid hormones and/or growth factors on the development and function of the mammary gland remains largely unknown to date. Also scarce is information on the interaction between both groups of modulators. Nevertheless, based on the current indications compiled in this review, an important functional role for sex steroid hormones in the lactation cycle in co-operation with growth factors can be suggested.
Collapse
Affiliation(s)
- I Lamote
- Department of Physiology, Biochemistry, and Biometrics, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium.
| | | | | | | |
Collapse
|
16
|
Chaturvedi K, Sarkar DK. Involvement of protein kinase C-dependent mitogen-activated protein kinase p44/42 signaling pathway for cross-talk between estradiol and transforming growth factor-beta3 in increasing basic fibroblast growth factor in folliculostellate cells. Endocrinology 2004; 145:706-15. [PMID: 14605008 PMCID: PMC2895416 DOI: 10.1210/en.2003-1063] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We have recently shown that TGF-beta3, in the presence of estradiol, increases the release of basic fibroblast growth factor (bFGF) from folliculostellate (FS) cells in the pituitary. We determined the interactive effects of TGF-beta3 and estradiol on bFGF production and release from FS cells, and the role of the MAPK pathway in TGF-beta3 and estradiol interaction. We found that TGF-beta3 and estradiol alone moderately increased cell content and release of bFGF from FS cells; but together, they markedly increased the peptide. Estradiol and TGF-beta3 alone moderately activated MAPK p44/42; together they produced marked activation of MAPK p44/42. Pretreatment of FS cells with an MAPK kinase 1/2 inhibitor or with protein kinase C inhibitors suppressed the activation of MAPK p44/42, bFGF release, and protein level increases, all of which were induced by TGF-beta3 and estradiol. Estradiol and TGF-beta3, either alone or in combination, increased the levels of active Ras. Furthermore, bFGF induction by TGF-beta3 and estradiol was blocked by overexpression of Ras N17, a dominant negative mutant of Ras p21. Estrogen receptor blocker ICI 182,780 failed to prevent estrogen's and TGF-beta3's effects on bFGF. These data suggest that an estradiol receptor-independent protein kinase C- activated Ras-dependent MAPK pathway is involved in the cross-talk between TGF-beta3 and estradiol to increase bFGF production and/or release from FS cells.
Collapse
Affiliation(s)
- Kirti Chaturvedi
- Endocrinology Program, Biomedical Division of the Center of Alcohol Studies and Department of Animal Sciences, Rutgers, The State University of New Jersey, 84 Lipman Drive, New Brunswick, NJ 08901, USA
| | | |
Collapse
|
17
|
Stull MA, Rowzee AM, Loladze AV, Wood TL. Growth factor regulation of cell cycle progression in mammary epithelial cells. J Mammary Gland Biol Neoplasia 2004; 9:15-26. [PMID: 15082915 DOI: 10.1023/b:jomg.0000023585.95430.f4] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Growth factors are among the critical positive and negative regulators of cell proliferation for normal mammary/breast epithelial cells and for breast cancer cells. The mechanisms by which specific growth factors regulate the cell cycle in mammary/breast epithelial cells is beginning to be understood for several growth factor families, including the epidermal growth factor, insulin-like growth factor, and transforming growth factor-beta families. A critical issue for understanding how growth factors regulate the cell cycle in vivo is how individual factors interact with other growth factors or hormones to enhance or inhibit specific molecular targets in the cell cycle machinery. This review addresses what is currently known about how growth factors regulate the cell cycle in mammary/breast epithelial cells both individually and in coordination with other growth regulators.
Collapse
Affiliation(s)
- Malinda A Stull
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | |
Collapse
|
18
|
Hamelers IHL, van Schaik RFMA, Sussenbach JS, Steenbergh PH. 17beta-Estradiol responsiveness of MCF-7 laboratory strains is dependent on an autocrine signal activating the IGF type I receptor. Cancer Cell Int 2003; 3:10. [PMID: 12890289 PMCID: PMC169177 DOI: 10.1186/1475-2867-3-10] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2003] [Accepted: 07/11/2003] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND: Human MCF-7 cells have been studied extensively as a model for breast cancer cell growth. Many reports have established that serum-starved MCF-7 cells can be induced to proliferate upon the sole addition of 17beta-estradiol (E2). However, the extent of the mitogenic response to E2 varies in different MCF-7 strains and may even be absent. In this study we compared the E2-sensitivity of three MCF-7 laboratory strains. RESULTS: The MCF-7S line is non-responsive to E2, the MCF-7 ATCC has an intermediate response to E2, while the MCF-7 NKI is highly E2-sensitive, although the levels and activities of the estrogen receptor (ER) are not significantly different. Both suramin and IGF type I receptor blocking antibodies are able to inhibit the mitogenic response to E2-treatment in MCF-7 ATCC and MCF-7 NKI cells. From this we conclude that E2-induced proliferation is dependent on IGF type I receptor activation in all three MCF-7 strains. CONCLUSIONS: The results presented in this article suggest that E2-responsiveness of MCF-7 cells is dependent on the secretion of an autocrine factor activating the IGF-IR. All three strains of MCF-7 breast cancer cells investigated do not respond to E2 if the IGF-RI-pathway is blocked. Generally, breast cancer therapy is targeted at inhibiting estrogen action. This study suggests that inhibition of IGF-action in combination with anti-estrogen-treatment may provide a more effective way in treatment or even prevention of breast cancer.
Collapse
Affiliation(s)
- Irene HL Hamelers
- Utrecht Graduate School of Developmental Biology, Department of Physiological Chemistry, University Medical Center Utrecht, P. O. Box 85060, 3508 AB Utrecht, The Netherlands
| | - Richard FMA van Schaik
- Utrecht Graduate School of Developmental Biology, Department of Physiological Chemistry, University Medical Center Utrecht, P. O. Box 85060, 3508 AB Utrecht, The Netherlands
| | - John S Sussenbach
- Utrecht Graduate School of Developmental Biology, Department of Physiological Chemistry, University Medical Center Utrecht, P. O. Box 85060, 3508 AB Utrecht, The Netherlands
| | - Paul H Steenbergh
- Utrecht Graduate School of Developmental Biology, Department of Physiological Chemistry, University Medical Center Utrecht, P. O. Box 85060, 3508 AB Utrecht, The Netherlands
| |
Collapse
|
19
|
Cui X, Zhang P, Deng W, Oesterreich S, Lu Y, Mills GB, Lee AV. Insulin-like growth factor-I inhibits progesterone receptor expression in breast cancer cells via the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin pathway: progesterone receptor as a potential indicator of growth factor activity in breast cancer. Mol Endocrinol 2003; 17:575-88. [PMID: 12554765 DOI: 10.1210/me.2002-0318] [Citation(s) in RCA: 181] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Although interactions between estrogen and growth factor signaling pathways have been studied extensively, how growth factors and progesterone regulate each other is less clear. In this study, we found that IGF-I sharply lowers progesterone receptor (PR) mRNA and protein levels in breast cancer cells. Other growth factors, such as epidermal growth factor, also showed the same effect. The decrease of PR levels was associated with reduced PR activity. Unlike progestins, IGF-I does not utilize the proteasome for down-regulating PR. Instead, the IGF-I-mediated decrease in PR levels is via an inhibition of PR gene transcription. In addition, the phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway was found to be specifically involved in this IGF-I effect. Our data also suggest that the IGF-I down-regulation of PR is not mediated via a reduction of estrogen receptor (ER) levels or activity. First, IGF-I induced ligand-independent ER activity while reducing ER-dependent PR levels. Second, whereas PR and cyclin D1 are both ER up-regulated, IGF-I increased cyclin D1 levels while decreasing PR levels. Third, constitutively active PI3K or Akt induced ER activity but reduced PR levels and activity. Taken together, our data indicate that IGF-I inhibits PR expression in breast cancer cells via the PI3K/Akt/mTOR pathway. Because low or absent PR in primary breast cancer is associated with poor prognosis and response to hormone therapy, our results suggest that low PR status may serve as an indicator of activated growth factor signaling in breast tumor cells, and therefore of an aggressive tumor phenotype and resistance against hormonal therapy.
Collapse
Affiliation(s)
- Xiaojiang Cui
- Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Hamelers IHL, van Schaik RFMA, Sipkema J, Sussenbach JS, Steenbergh PH. Insulin-like growth factor I triggers nuclear accumulation of cyclin D1 in MCF-7S breast cancer cells. J Biol Chem 2002; 277:47645-52. [PMID: 12364325 DOI: 10.1074/jbc.m208727200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Stimulation of the breast cancer-derived MCF-7S cell line with insulin-like growth factor I (IGF-I; 20 ng/ml) leads to enhanced expression of cyclin D1, hyperphosphorylation of pRb, DNA synthesis, and cell division. 17beta-Estradiol (E(2); 10(-9) m) is not able to stimulate proliferation of MCF-7S cells, although addition of E(2) to serum-starved cells does result in induction of cyclin D1. However, in combination with submitogenic amounts of IGF-I (2 ng/ml), E(2) induces cell proliferation. We have previously shown that the synergistic action of E(2) and IGF-I emanates from the ability of both hormones to induce cyclin D1 expression and that IGF-I action is required to induce activity of the cyclin D1-CDK4 complex, which triggers cell cycle progression. Here, we show that IGF-I (but not E(2)) is able to induce nuclear accumulation of cyclin D1 by a phosphatidylinositol 3-kinase-dependent mechanism. Nuclear accumulation of cyclin D1 and cell cycle progression were also observed when LiCl, a known inhibitor of GSK3beta, was added to E(2)-stimulated cells. Thus, inhibition of GSK3beta activity appears to trigger nuclear accumulation of cyclin D1 and cell cycle progression. This notion was confirmed by overexpression of constitutively active GSK3beta, which blocks IGF-I-induced nuclear accumulation of cyclin D1 as well as S phase transition.
Collapse
Affiliation(s)
- Irene H L Hamelers
- Department of Physiological Chemistry, Utrecht Graduate School of Developmental Biology, University Medical Center, P.O. Box 85060, 3508 AB Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|